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ABSTRACT

A subpath-based methodology is proposed to capture the 
travellers’ route choice behaviours and their perceptual cor-
relation of routes, because the original link-based style may 
not be suitable in application: (1) travellers do not process 
road network information and construct the chosen route by 
a link-by-link style; (2) observations from questionnaires and 
GPS data, however, are not always link-specific. Subpaths 
are defined as important portions of the route, such as ma-
jor roads and landmarks. The cross-nested Logit (CNL) struc-
ture is used for its tractable closed-form and its capability 
to explicitly capture the routes correlation. Nests represent 
subpaths other than links so that the number of nests is sig-
nificantly reduced. Moreover, the proposed method simpli-
fies the original link-based CNL model; therefore, it alleviates 
the estimation and computation difficulties. The estimation 
and forecast validation with real data are presented, and the 
results suggest that the new method is practical.

KEY WORDS

cross-nested Logit; stochastic route choice; subpath; cor-
relation;

1. INTRODUCTION
Route choice models capture the travellers’ choos-

ing behaviours in order to reproduce their choosing 
preferences and probabilities, and hence to compute 
traffic flows on each road for the demand forecast 
and management. Discrete choice models, especially 
the Logit-based models are the most frequently used 
for its closed-form structure and its simplicity in esti-
mation and prediction [1]. The utilities of alternative 
routes are assumed to be stochastic, and the error 
terms are included into the utility function to represent 
the uncertainty or the unobserved stochastic attri-
butes. In particular, the assumption that the errors are 

independently identically extreme value distributed 
(IID), lead to the multinomial Logit (MNL) model with 
a closed form. Generally, Logit requires less computa-
tional time than the multinomial Probit model, which 
assumes that error terms are normally distributed but 
lead to a non-closed-form expression; therefore, its 
estimation and computation require simulation-based 
methods.

1.1 Literature review

The IID assumption of Logit, however, leads to a 
major drawback which is that it cannot represent the 
correlation of alternatives, and therefore leads to inac-
curate results when routes overlap. Advanced meth-
ods are proposed to address this issue, such as Path 
Size Logit (PSL) [1], CNL [2], mixed Logit (also called 
error component) [3],etc. Prato [4] provided a litera-
ture review on the most frequently used methodolo-
gies in route choice modelling. Recently, Fosgerau et 
al. [5] proposed a recursive Logit model that does not 
require the enumeration of paths. Papola and Marza-
no [6] proposed a joint network generalized extreme 
value (GEV) approach to model the route choice that 
does not require choice set generation as well. Given 
that the choice set is sampled beforehand, Frejinger et 
al. [7] used the sampling correction term for the MNL 
model, and Lai and Bierlaire [8] studied the sampling 
issues in GEV route choice model.

Data used for the mentioned route choice models 
are frequently collected either from questionnaires or 
from GPS devices. With the former approach, the re-
spondents are required to report the itineraries from 
the origin to destination (OD) [9]. However the respon-
dents do not always report with a link-by-link style; in-
stead, they just recall the major roads or landmarks 
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they passed, but not necessarily the minor streets or 
smaller intersections, such as “home - TV tower – Sun-
set Av. - workplace”, instead of “home – 1st alley – 34th 

street - TV tower – 52nd street – Sunset Av. – 5th alley 
- workplace”. Most importantly, travellers do not plan 
their trips by a link-specific style. Recently, the GPS 
technology has become the mainstream to collect the 
route choice data [10]; however, errors in route recon-
structions are inevitable when processing GPS points, 
especially in the urban area with skyscrapers where 
the signals are disturbed. Besides, the same problem 
occurs to the studies with floating car data [11-13] 
and smartphone data [10] where they are even spars-
er. Regarding this issue, Frejinger and Bierlaire [14] 
proposed a network-free approach to link this gap, 
and the domains of data relevance (DDR) is used to 
determine the relevance of the collected data points 
to the physical network. A probabilistic map-matching 
algorithm is proposed based on the DDR method and 
several candidate re-constructed paths are given likeli-
hoods of being the true one [10]. However, it still raises 
a concern whether the link-based route choice models 
are suitable with these data collecting and processing 
approaches. In particular, the information of minor de-
tails is not essentially useful. From the perspective of 
travellers, they might not consider the correlation of 
alternatives in links; on the other hand, from the view 
of analysts, considering and processing link-based de-
tails might be time-consuming. 

The idea of modelling travel behaviours with sim-
plified network has been firstly used in traffic assign-
ment to reduce the computational burden [15-17]. 
Frejinger and Bierlaire [18] used the subnetwork idea 
in route choice analysis to capture the perceptual cor-
relation of routes in travellers, and the idea is used by 
an error component (EC) model with a specification of 
Path Size term in the utility. The subnetworks can be 
motorways and main roads in the network hierarchy 
or by the most frequently used names when people 
describe itineraries. The “subnetwork” they used is ac-
tually a portion of a path, but not a network; therefore, 
there is no grid or loop in the “subnetwork”. as the 
notation “subpath” has been preferred in this paper. 
Their research explores and provides more insights in 
interpreting travellers’ behaviours in an abstract lev-
el of the road network. However, the employed error 
component (EC) model is based on the Probit mixture 
and thus based on simulation-based estimation and 
computation, which are highly time-consuming. Kazag-
li and Bierlaire [19] used the mental representation 
item to capture the travellers route choice behaviours, 
thus simplifying the modelling. Li et al. [20] provide the 
equivalent impedance idea to simplify road networks 
into one virtual link, similar to resisters simplification 
in an electric circuit. Papola and Marzano [6] used link 
aggregation method in a network GEV structure and 
thus simplified the network analysis. These studies all 

provide methodologies and prospects in simplifying 
the route choice and network analysis. 

1.2 Motivation and paper structure

The aim of the paper is to explore the usage of sim-
plified network in route choice modelling. The merits 
of the subpath idea can thus reduce the complexity 
in models and provide more behavioural information 
on travellers’ perception in the route choice context. 
The cross-nested Logit (CNL) [21] model was used be-
cause of its closed form, which is valuable and sup-
posed to be more time-saving than the EC model that 
was used by Frejinger and Bierlaire [18]. Moreover, 
Fosgerau et al. [16] have shown that any random util-
ity model can be approached as close as needed by 
a CNL model. The original CNL in route choice with a 
link-based style [2] is not always flexible in application, 
because estimating a large set of nesting parameters 
is time-consuming, and it is difficult to successfully 
and significantly estimate all of them. Therefore, em-
pirical approximation is often required. However, with 
a loss in behavioural interpretation [4]. The proposed 
subpath-based CNL model aims at capturing route 
choice behaviours by considering the travellers’ con-
ceptual correlation of routes. The new model simplifies 
the structure of the link-based CNL model and thus 
reduces its difficulties in estimation and computation. 
In particular, we are able to utilize the non-link-specific 
data that can be easily obtained, such as question-
naires and sparse GPS points, etc.

The rest of the paper is organized as follows: Sec-
tion 2 provides the methodology of the subpath-based 
CNL model, with an illustrated example. In Section 3 
the proposed method is then applied with the sparse 
GPS data in the urban area, estimation and forecast 
validation results are provided. Finally, Section 4 pro-
vides a conclusion.

2. METHODOLOGY

2.1 A subpath-based cross-nested Logit model

A subpath is defined as a portion of a route, and 
it can be a major road, a landmark or the most fre-
quently used location name from the surveys, e.g. “TV 
tower” or “Sunset Avenue”. In particular, when the raw 
and sparse GPS data in the urban area are processed, 
it is not necessary to accurately match the data to a 
specific link; instead, matching it to a subpath is suf-
ficient. Routes that share a same subpath item may 
not physically overlap, but they might seem to be 
partially identical for the unobserved attribute, the 
correlated subpath. In order to capture such features 
we proposed the subpath-based method and defined 
that routes that share a same subpath are correlat-
ed. The cross-nested Logit (CNL) model is adopted to  
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explicitly capture this correlation, and each subpath is 
represented by a nest. Each alternative route uses one 
subpath item that belongs to that nest, as shown in 
Figure 1, and the correlation of alternatives are cap-
tured by this structure. It can be interpreted as a spe-
cial case of the link-based CNL model where each link 
in the network is a subpath. This allows for simplicity 
and flexibility of modelling because it greatly reduces 
the computation time as the number of nests decreas-
es; besides, the estimation would be easier since the 
number of estimated scale parameters is much small-
er. In particular, it enables to capture the perceptual 
correlation between the paths, even though they might 
not physically overlap, e.g. two paths that partly use 
the Sunset Av. might share unobserved attributes even 
though they do not overlap at all.

The CNL model is used for its flexibility in explicitly 
modelling the correlation and its tractability in mod-
el solving because of its closed-form structure. The 
proposed method is a two-level CNL model; the up-
per-level represents the subpaths, and the lower-level 
represents the alternative routes. The subpaths M are 
mutually exclusive subsets, which are called subsets of 
the study network, and they are denoted by β1{E1,K1}, 
…, βM{EM,KM}, where Em is the set of links in subpath 
Sm, and Km is the set of nodes. Besides, two subpaths 
should not have correlated links, which is

, ,S S K m gm g mg+ 4 6= =Y" ,  (1)

where Kmg is the intersection set of Km and Kg.
Let C be the full choice set of paths from origin O 

to destination D, and the utility of alternative path i is 

,U x Cii i i i 6 !b f= +  (2)

where xi is a vector of attributes, βi is the correspond-
ing parameter vector to be estimated, the term βi xi can 
be interpreted as the deterministic part of the utility, 
named Vi; εi is the error part of utility. The distribution 
of the error and the correlation of alternatives in a CNL 
model are discussed by Abbe et al. [21].

Each path that uses subpath Sm belongs to the nest 
m, and each route at least belongs to one subpath. 
The probability that a path i is chosen from choice set 
C can be interpreted as 
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Figure 1 – Routes 1 and 2 are not physically correlated but share the same subpaths, and the correlation is captured by a 
two-level CNL structure
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is the marginal probability that subpath m is chosen;   
CS is the set of subpaths; μ is the root scale parameter 
and usually normalized to 1; αim is the inclusive pa-
rameter to capture the level of membership of alterna-
tive i in subpath m, defined as /l Lim m i\a   and

, i C1im
m

M

1
6 !a =

=
|  (6)

where lm is the length of path i in subspath m, and Li is 
the length of path i; μm is the nesting scale parameter 
of subpath m. Besides, this condition 0 ≤ μ ≤ μm holds 
for all m.

The proposed model can be rewritten as an  
MNL-like structure with the theories of the multivari-
ate extreme value (MEV) models [22], as shown in 
Equation 7
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with the choice probability generating function, the G 
function, as 

G e e
/

/Vi Vi

im

M

im
m

C

11

m

a= n

n n

n n

==
^ h f p||  (8)

Therefore, the logarithm of the derivative of (8) is 
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It should be noted that if μm=v, it means there is 
no correlation between alternatives. The G function (8) 
takes the form 
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i

C
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and the model collapses to an MNL model. Besides, 
the proposed method collapses into a link-based CNL 
model when each subpath is one link, then lnGi is 

ln lnGi e eiq
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where Q is the set of links, the subscript q represents 
link ,q q Q6 ! , iq

la  is the inclusive parameter that 
/l Liq

l
q ia = .

2.2 Illustrated example

A demonstrated network shown in Figure 2 is pre-
sented to illustrate the proposed model. It is a grid 
network from origin O to destination H. The lengths of 
links are marked above arrows. Three major roads in 
the network are shown in bold arrows, a+b, c+d and 
e+f, and they are chosen as the subpaths, named as  
S1, S2 and S3. Other links which are drawn in dashed 
arrows are minor streets. Five shortest paths are se-
lected as the considerable choice set for all the travel-
lers and shown in Figure 2. Each of them uses at least 
one subpath.

The relations of five paths and three subpaths can 
be represented as the structure in Figure 3. Therefore, 
with the proposed method the probability of choosing 
path i is as Equation 7, where

ln lnGi e eim
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C={1,2,3,4,5}; α1-1=1, α2-1=1/2.2, α2-2=1.2/2.2, 
α3-2=1, α4-3=1, α5-2=1/2 and α5-3=1/2; μ1, μ2 and μ3 
are parameters that should be estimated.

If each link in the network is one subpath, then the 
model is a link-based CNL model, and  its structure is 
shown in Figure 4. The choice model is (7) and (11), 
where |Q|=12, and the number of estimated nesting 
scale parameters μq is 12. We can see that the pro-
posed method increases the simplicity of the model, 
and it also reduces the estimation difficulties because 
the number of nesting scale parameters is much low-
er. Moreover, it should be noted that not all parame-
ters in a link-based CNL model, shown in Figure 4, can 
be successfully estimated because the structure is too 
complex. As a consequence, it is not unusual that an-
alysts do not estimate the nesting scale parameters in 
Figure 4’s model but to postulate them (Vosha, Ram-
ming), but with a loss of precision. The simplified struc-
ture of the proposed model enables us to estimate all 
the nesting scale parameters.

Besides, it should be noted that if one path does 
not belong to any subpath, the choice probability of 
this path would be zero according to Equation 3. There-
fore, when the analysts design the model and specify 
the subpaths, they should be certain that each path 
at least belongs to one subpath. In particular, the rel-
evance and the specifications of subpaths should be 
tested after estimation to confirm or reject various hy-
potheses. 

Path 1/4

Path 4/4.1 Path 5/4

Path 2/4.2 Path 3/4.2

C D E

F G H

O A B

j/1 k/1 m/1

g/1 h/1 i/1

a/1 b/1

e/1.1 f/.1

c/1 d/1.2

Figure 2 – Demonstrated grid network
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Root/µ

S1/µ1 S2/µ2 S3/µ3

Subpath
level

Path
level

Path 1 Path 2 Path 3 Path 4 Path 5

α1-1 α2-1 α2-2 α3-2 α4-3 α5-2 α5-3

Figure 3 – Structure of a subpath CNL model

Path 1 Path 2 Path 3 Path 4 Path 5

Root

Link
level

Path
level

a b c d e f g h i j k m

Figure 4 – Structure of a link-based CNL model

3. EMPIRICAL RESULTS
In order to evaluate the performances of the pro-

posed method with other models, this section applies 
the new model with real data. A case study of taxi driv-
ers choosing routes in the city centre is presented. The 
studied city, Guangzhou, is situated in the southern 
China and has approximately ten million inhabitants. 
Only the central business district, the Tianhe region 
as shown in Figure 5, is studied. The information on 
the studied network is shown in Table 1. The data set 
for the estimation is from GPS-equipped taxis when 
they were carrying passengers. The data was collected 
by a management company for monitoring purposes 
but not for navigation, so the route choice behaviour 
is based on the drivers’ own judgement. Besides, the 
GPS points are collected every 30 seconds; therefore, 
the data are very sparse and sometimes difficult to 
be accurately matched to a specific link; however, it is  

easier to identify which major roads or major intersec-
tions they passed, so the proposed method is suitable. 
The vehicles were monitored within a radius of 2 km in 
the CBD, and 7,810 trips from 1,066 OD pairs are col-
lected for case study, as shown in Table 2. The statistics 
of the observations show that the maximum, minimum 
and average number of the chosen routes between an 
OD pair are 12, 2 and 4, respectively. This indicates 
that more than one route is considered and chosen 
by the drivers, suggesting the need to investigate their 
route-choosing behaviours and, particularly, to analyze 
how they perceive and learn the network and how they 
change their behaviours when attributes change.

S1

S2

S3

1 
km

Figure 5 – The studied region

We chose three subpaths which are the major roads 
that traverse the studied region. The bold dashed lines 
illustrated in the figure are the most frequently used 
major roads when travellers describe itineraries. Two 
of them are east-west directional, and one is south-
north directional, with their IDs marked in the figure. 
We also used the GPS data to count how many trips 
used these subpaths, and the results are that out of 
7,810 trips, 4,884 trips used subpath 1 (denoted as 
S1), 1,189 trips used S2, and 1,150 used S3. Besides, 
they are the most frequently used roads among others 
in this region. Therefore, they are selected as the sub-

Table 1 – Information on the studied network

Nodes Unidirectional 
links Major roads Arterial streets Minor streets Signal-controlled 

intersections

208 662 24 34 32 57

Table 2 – Information on the collected data

Taxis Observations OD pairs

2569 7810 1066
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paths in the model, and their attributes are provided 
in Table 3.

3.1 Choice set generation

We used the GPS data and the link elimination 
method (Azevedo et al., 1993) to generate the consid-
erable choice set for each observation. According to 
one day’s GPS data in the studied region, 7,810 trips 
are made between 1,066 OD pairs, and the number 
of actual chosen paths between any OD are not larger 
than 12; moreover, the average is just four paths. It 
suggests that in the studied region, the number of the 
actual chosen paths by the taxi drivers is not large. In 
order to build a considerable choice set, for each OD 
pair we firstly include the chosen paths into the choice 
set, and then we use the link elimination method (Aze-
vedo et al., 1993) to generate more paths until there 
are 20 paths in the choice set. This algorithm finds the 
shortest path and then adds it to the choice set; after-
wards it eliminates one link from the original shortest 
path, and another shortest path is generated from the 
modified network and added to the choice set, if it was 
not generated before. In this data set we cannot have 
access to the information on each driver, but since 
they are taxi drivers they are assumed to be equally 
familiar with the transportation network and traffic 
conditions. Without loss of generality we assume that 
the choice sets between one OD pair are the same for 
all the taxi drivers. 

3.2 Model specification

We compare the new model with the MNL, PSL, 
CNL and EC models. The MNL model is chosen for 
comparison because it is the traditional model; howev-
er, it cannot account for the correlation of alternatives. 
The PSL model is chosen because it is the most used 
model in route choice and because it considers the 
correlation; however, it only captures the physical over-
lap. Additionally, the PS term is derived from an ap-
proximation. The CNL model systematically captures 
the correlation, but has a more complex form. Finally, 
the EC model, which also considers the subpath ef-
fect, similar to the proposed model, is compared as 
well. From the comparison among these models, we 

can assess the performance of the proposed model in 
terms of the calculation time, fitting of the data, and 
forecasting ability. The choosing probability of path i 
from choice set C by the MNL model is 

exp
exp

P i
V
V

j
j C

i=
!

^ ^
^h h
h|  (13)

where Vi is the deterministic utility of path i. As for the 
PSL model, a path-size term lnPSi [1] is added to Vi as

ln lnPS L
l 1

i
i
a
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j C

i d
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!
!

a C
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where la is the length of link a, Γi is the set of links be-
longing to route i, δaj is a route-link incidence dummy 
which equals one if route j uses link a, and zero other-
wise. The individual heterogeneity is ignored here for 
illustrative simplicity thus n is not in the model.

The link-based CNL model is shown in Equations 
7 and 11, where the scale parameter of each nest is 
computed by the specification of Vovsha and Bekhor 
[2] as

1m

mi
j C

mi
j C

n

a

d
= - !

!

|
|  (15)

and it is denoted as L-CNL1. We also test another link-
based CNL model, denoted as L-CNL2, where the nests 
scale parameters are all assumed to be the same, and 
they are estimated from the observations. 

Regarding EC model [18], an error component is 
added to the utility Equation 2 to represent the correla-
tion between subpaths, and it is defined as FTζ, where   
F(JxQ) is the loading matrix (J is the number of paths and 
Q is the number of subpaths), and an element fij of   
F(Nxm) equals lij  where lij is the length by which path 
i overlaps with path j ( , )i j C! ; T(QxQ)=diag(σ1, σ2 ,..., σQ )  
(σq is the covariance parameter associated with sub-
path q, to be estimated), ζ(Qx1) is a vector of IID N(0,1) 
variates. It is denoted as the SP-EC model.

Four attributes are chosen for the utility function, 
as shown in the following

ln
V Length ArteryRoadRatio

Signal PS
i L i ARR i

S i PS i

$ $

$ $

b b

b b

= + +
+ +  (16)

Table 3 – Information on the studied subpaths

ID Length (km) Nb. of lanes 
(bi-direction)

Signal-con-
trolled inter-

sections
Used times* Remarks

1 3.2 8 9 4,884 Traffic lights are set as green band-
width for south-north directions

2 3.8 12 0 1,189

3 4.1 12 0 1,150 There is one bottleneck and the ca-
pacity decreases in half

* Out of 7,810 trips
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The length and time are two highly similar and cor-
related attributes, so only one of them is considered 
in the utility function. However, it is difficult to obtain 
a precise actual travelling time before departure. Al-
though the actual consumed time can be captured by 
the GPS device in this case, it is not the time perceived 
by the drivers. Note that in route choice we are actu-
ally modelling the drivers perception and perception 
error. Therefore, we choose length rather than time 
as the attribute in the utility. The unit of Length is ki-
lometers; therefore, its magnitude is similar to other 
attributes for the convenience of the estimation. The  
ArteryRoadRatio is the length of the artery road (major 
roads and arterial streets) divided by the total length of 
the trip and is used to test the assumption that travel-
lers prefer to drive on the artery links, so a higher ratio 
is expected to have a larger utility. The information on 
traffic light settings, such as waiting time and coordi-
nated green wave, is also useful; however, we cannot 
obtain such information. Instead, we use the number 
of signal-controlled intersections in the utility; it is ex-
pected to have a significant effect on the urban route 
choice. The more intersections with traffic lights, the 
lower is the utility of the path. The lnPSi is the path-size 
term of path i, which represents the impact of the over-
lapping degree of alternative paths. For comparison, 
the model without lnPSi is also estimated. The param-
eters of the coefficients in the utility are assumed to be 
the same for all of the drivers.

3.3 Estimation

Estimation results are shown in Table 4, where the 
estimation of SP-EC model is based on 100 draws of 
simulation. SP-CNL1 is the proposed model whose 
utility is without the term lnPSi, and the utilities of 
SP-CNL2 and SP-EC are with this term. We perform 
a scaled estimation to facilitate comparison among 
models, because we cannot solely estimate μ and 
β, and the coefficient estimates are really estimates 
of μβ jointly [9]. Therefore, we fixed the estimates of 
length, which is actually μβL, of the MNL model for the 
rest of the models, and the scale for all the models is 
consequently the same.

The estimates all have the expected signs and they 
have similar values for the same attribute among mod-
els, except the one of AteryRoadRatio of the SP-EC 
model, which is approximately 10 times smaller than 
other models. The SP-EC model also has the smallest 
value of the adjusted likelihood ratio index 2t , possi-
bly due to the small value of draws in the simulation. 
The L-CNL2 model with an estimated nesting scale out-
performs the L-CNL1 where the nesting scale is approx-
imated by empirical method, in the sense that it has 
larger value of 2t . This tells us that if we use the CNL 
model in route choice analysis, explicitly estimating 
the scale parameter will improve the fitting of the data 

and will not increase much the estimating time. The 
new model with a Path Size term in the utility is better 
than the one without, according to the 2t  value, and 
both of them have estimates of μ2 approximate to 1 
which shows a low correlation. The estimation results 
of 2t  suggest that the SP-CNL2 model has worse data 
fit than the original CNL model. Regarding the estima-
tion times, the new model excels in its computation-
al time as compared to the original CNL model and 
particularly the original subpath model, SP-EC, whose 
time is approximately 100 times larger with only 100 
draws. It suggests that the new model is advanced in 
computational efficiency, especially when applied to 
big network analysis and traffic assigning computa-
tion. The new model requires approximately 50 times 
less time than the CNL models, due to the simplified 
structure. Note that the studied network only includes 
662 links and the estimation only includes 7,810 ob-
servations. If we enlarge the studied region and use 
more observations to train the models, the cost in 
time may be larger. The L-CNL2 model produces the 
highest value of 2t , but it may cost too much time in 
its application. Moreover, if we want to consider more 
effects in the model, e.g., the sampling of alternatives 
[8], the estimation time will be too large if we use the 
original L-CNL2 model. Therefore, introducing the pro-
posed model is appropriate to simplify the original one, 
to reduce the consumed time, and to obtain a usable 
trade-off between data fitting and cost.

3.4 Forecasting

The route choice model is mostly used in predicting 
travel behaviours. Thus, the model prediction ability is 
more important than its data-fit in estimation; there-
fore we also perform a validation experiment to further 
examine the forecast power of different models. 

An out-of-sample forecasting method is presented, 
and the term “out-of-sample” means the data sets for 
validating forecasting have not been used for estimat-
ing the models. There are 200 randomly selected OD 
pairs including 3,345 observations that are used for 
the forecasting validation. The models with the esti-
mated parameters are used back to calculate the 
choosing probabilities of these trips, and then they are 
compared with the actual choosing behaviours. The 
out-of-sample error is used for comparing the forecast-
ing power of models, and the smaller value indicates a 
better performance. 

The out-of-sample error is defined as

,P C P cf
z

n
R

n
Z Z

n

N
2

1
f b= -

=
^ ^ ^h hh|  (17)

where N is the number of observations; Z is the type 
of models, which are the seven compared models in 
this section; ,P cnZ Zb^ h  is the predicted probability that 
traveller n chooses the chosen path c, computed by 
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model Z with the estimated parameters βZ; P cnR ^ h is 
the real probability that traveller n chooses the chosen 
path c in reality, which is one. 

The out-of-sample forecasting errors of the models 
are shown in Table 5. The error of the SP-EC model is 
the largest, probably due to the small draws in estima-
tion. The new model with the Path Size correction term 
is superior to the compared models, but the one with-

out the term has a slightly larger error than the L-CNL2 
and PSL model. This suggests that adding the Path 
Size term into the utility does increase the model’s 
ability in modelling travellers’ route choice behaviours. 
The results from this experiment suggest that the new 
model indeed outperforms others, which is different 
from what the estimation results suggest, where the 
new model shows an inferior data-fit than the original 
CNL model. We thus conclude that the SP-CNL2 model 

Table 4 – Estimation of compared models

Parameters MNL PSL L-CNL1 L-CNL2 SP-CNL1 SP-CNL2 SP-EC

Length (fixed) -1.26 -1.26 -1.26 -1.26 -1.26 -1.267 -1.26
Std. err. 0.0444 0.0742 0.0774 0.0713 0.345 0.0585 0.148
t-test 28.3 16.9 16.2 17.7 3.65 21.7 8.54
Artery road ratio 5.52 5.24 5.73 2.94 5.32 5.01 0.621
Std. err. 0.0729 0.0689 0.0798 0.0332 0.0465 0.0469 0.0968
t-test 75.7 65.6 71.8 88.5 114 106 6.41
Nb. Signals -0.646 -0.526 -0.561 -0.330 -0.611 -0.495 -0.709
Std. err. 0.0161 0.0184 0.0204 0.0105 0.0192 0.0226 0.0934
t-test 40.1 28.5 27.5 31.4 31.8 22.0 7.60
Path Size - 0.371 0.435 0.250 - 0.361 0.204
Std. err. 0.0391 0.0400 0.0489 0.024 0.102
t-test 9.48 10.8 5.11 14.6 2.00
μlink 5.17
Std. err. 0.173
t-test 29.8
μ1 1.07 1.07
Std. err. 0.0273 0.0230
t-test 39.2 46.5
μ2 1.01 1.05
Std. err. 0.0543 0.0392
t-test 18.6 26.8
μ3 1.06 1.13
Std. err. 0.0380 0.0454
t-test 28.0 24.8
σ1 1.60
Std. err. 0.265
t-test 6.04
σ2 1.36
Std. err. 0.0857
t-test 15.8
σ3 1.60
Std. err 0.331
t-test 4.85
Final L-L -610×10 -600×10 -606×10 -584×10 -609×10 -599×10 -744×10
L(0) 104×102 104×102 -104×102 104×102 104×102 104×102 104×102

p 2
0.413 0.423 0.418 0.439 0.415 0.424 0.285

Elapsed time (s) 3.10 3.32 469 532 10.4 12.6 151×10
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performs the best in reproducing the expected results 
in the sense that it has the smallest out-of-sample er-
ror in forecasting. It should be noted that this conclu-
sion is based on a one-time test, and more validation 
exercises and more networks should be performed 
and tested to comprehensively evaluate the proposed 
model. Moreover, because this is a route choice model 
of taxi drivers, estimates should not be directly used 
for analyzing all types of drivers. Because this “pilot” 
exercise on taxi drivers shows that the new model is 
practical, it will be useful and suitable for analyzing 
other drivers’ route choice behaviours.

4. CONCLUSION
The paper presents a simplified structure of the 

cross-nested Logit model to capture travellers’ per-
ception in higher-level of the road network, where the 
correlation of alternatives is not specified from a link-
by-link style, but from the subpath perspective. The 
subpath idea is applied to capture drivers conceptual 
correlation of routes, and a CNL model is employed to 
(1) decrease the computational time of the original EC-
based model, then non-simulated method is required; 
(2) to explore the usage of the CNL model because the 
original model is not always flexible in route choice for 
its large set of parameters to be estimated. Results 
with real data suggest that the new model is practi-
cal and capable of reproducing the expected results. 
The proposed approach shows superiority in computa-
tional time saving and its ability to capture travellers’ 
choosing behaviours on a perceptual level. 

Future directions of the subpath idea would be the 
expansions to: (1) the choice set generation / sample 
step; (2) data map-matching step, where in this paper 
we still use the link-specific style. Besides, it would be 
useful to examine and discuss the appropriate size 
of the subpath in the CNL model. Moreover, the pro-
posed idea can be applied with the DDR [14] or the 
recursive Logit [5] methods; therefore, the “data pro-
cessing”-“choice set generation”-“route choice model” 
steps can be obtained at the same time, instead of 
doing them step-by-step. 
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标题: 基于子路径的logit选择模型及重叠路径表征

摘要: 提出一种基于子路径的logit选择模型，用
以建模出行者的感知重叠路径和路径选择行为，用
以解决传统的基于路段的模型在应用中所存在的问
题：（1）出行者对路网信息的记忆和处理，难以细
致到每一个具体的路段；（2）利用问卷和GPS收集
的出行信息，并不以完整的路段形式表达。本文提
出子路径以表征路径的重要部分，如主干道或地标
等。交互巢式logit模型用于显式建模路径的重叠部
分，模型中的每一个巢为一个子路径，代替原模型
中表征路段的巢，用以大幅度减少巢的数目和计算
时间。通过实例数据对模型进行参数估计并进行预
测检验，显示新模型有较好的实用性。

关键词
交互巢式logit; 随机路径选择; 子路径; 重叠
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