
A Semantics for Tracing

— Work in Progress —

Olaf Chitil?

University of York, UK
olaf@cs.york.ac.uk

Abstract. We define a small step operational semantics for a core of
Haskell. We modify this semantics to generate traces, specifically Aug-
mented Redex Trails. This small and direct definition of Augmented
Redex Trails shall improve our understanding of them and shall help to
extend them systematically.

1 Hat — The Haskell Tracer

Hat is a tool for viewing the computation of a Haskell program in various ways.
Hat enables the programmer to understand how the various parts of a program
cause the computation to perform the observed actions. It is useful for debugging,
program comprehension and teaching [3].

Hat transforms a Haskell program into a new Haskell program. When the
compiled new program is executed, it writes a trace to a file in addition to any
normal I/O the original program would perform. Hat includes several separate
tools for viewing the trace in various ways.

2 Aims

Hat’s trace, called Augmented Redex Trail (ART), is a complex directed graph.
The only formal definition of an ART is given through the transformation that
enables its creation. However, this definition is inadequate. To obtain an ART
of a program’s computation, the program has to be transformed and then be
executed to create the trail. This has the following disadvantages:

– It is hard to determine the ART of even a simple computation by hand.
– The second stage of obtaining an ART is based on the semantics of the

transformed program. This is rather confusing, because the purpose of an
ART is to give an abstract view of the computation of the original program.

? The work reported in this paper was supported by the Engineering and Physical
Sciences Research Council of the United Kingdom under grant number GR/M81953.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/91969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– Although it is the purpose of an ART to give an abstract view of a computa-
tion, a description of the computation of a program is not part of the defini-
tion. It remains unclear which assumptions about the operational semantics
are made, both in that an ART shall be an abstraction of a computation
and that the execution of the transformed program shall yield the desired
ART.

So the transformation defines an ART only in a very indirect manner, as
depicted here:

computation semantics←− program 1
transformation−→ program 2 semantics−→ ART

We conclude that the transformation is a good definition of an implementa-
tion of generating ARTs but not a good definition of ARTs themselves.

Hence we are working on a direct definition of ARTS. Because an ART shall
give an abstract view of a computation, we start with a high-level semantics of
a functional language and then modify it to describe ARTs beside the normal
semantics. This semantics will not have the disadvantage listed before and we
can furthermore use it for the following purposes:

– Inconsistencies between the two definitions of ARTs will improve our under-
standing of them. The final consistency of the two definitions of ARTs will
give us confidence that we have defined what we had in mind.

– To prove the correctness of the transformation that implements ART gener-
ation.

– To extend ARTs systematically to language constructs for which they are
not yet (properly) defined, for example list comprehensions and IO.

– In [2] it is claimed that the Redex Trail of a program is complete, that
“every reduction occurring in the computation can be observed in the trail”.
It would be nice to prove this and similar properties.

3 Design Decisions

An ART is a graph that describes the reductions of a computation and their
relationships. Hence our basis has to be an operational semantics.

We have to use a call-by-need semantics — a call-by-name semantics is not
sufficient — because an ART describes how expressions are shared. Especially,
it is visible in an ART that when a shared expression is evaluated, it is replaced
by the result at all its usage points.

We do not want to tie ourselves to a specific abstract machine. Hence Launch-
bury’s big-step semantics for call-by-need [1] is an obvious starting point.

A big-step semantics only describes computations of expressions that have
a value, that is, a weak head normal form. However, we are also interested in
obtaining an ART for expressions that have value ⊥, that is, whose evaluation

2



leads to an error, a black hole, or an infinite computation that has to be inter-
rupted. To be able to obtain a computation in this case, we switch to a small
step variant of Launchbury’s semantics.

An ART is basically independent of the order in which the reductions of
a computation are performed.1 An ART for a terminating eager and a lazy
computation of the same program may differ only in so far that the eager com-
putation evaluates all arguments completely, whereas the lazy computation may
leave some partially unevaluated. To clearly express this property of ARTs we
separate our operational semantics into a definition of non-deterministic rewrit-
ing steps and an arbitrary function that chooses the next rewriting step. This
evaluation strategy function may implement eager, lazy or any other evaluation
order.

4 An Operational Semantics

The syntax is defined in Figure 1. We give a semantics to an expression by
defining to which value it evaluates.

To express sharing the semantics operates on rooted graphs instead of ex-
pressions. An expression is respresented by a rooted graph, that is, a graph plus
a graph node or pointer which indicates the top of the expression. A graph,
denoted by Γ or ∆, is a partial mapping from nodes to expressions. We write
it as a set of tuples p 7→ M . The nodes of the graph are its domain, that is,
the domain of the mapping. The operator comma (,) extends a graph by a node
under the assumption that the node does not occur in the domain of the graph.
Computation is performed only on closed graphs, that is, graphs where the nodes
of all terms in the graph are a subset of the domain of the graph. So a closed
graph represents a closed term with shared subterms.

The value lookup function defined in Figure 2 just follow chains of pointers
(graph nodes). The function is undefined, if the expression points to a cycle of
pointers.

In Figure 3 we define a reduction relation on graphs, where Γ ⇒ ∆ means
that the graph Γ reduces to the graph ∆. A computation is a finite or infinite
sequence of graphs Γ1, Γ2, . . . with Γi ⇒ Γi+1 for all graphs in the sequence.
The reduction relation is non-deterministic. We do not discuss the evaluation
strategy here.

The computation of an expression M is the computation beginning with the
graph {p 7→ M}. M evaluates to a value, if its computation is finite with the
last graph ∆ having the property ∆(p) = V .

The sharing rules assure that a redex will never be a proper subexpression
of a node expression, but that every redex will be a node expression. On the
one hand this simplifies the other rules; we do not require an evaluation context.
However, most importantly we will need this property later when we modify the
semantics for defining ARTs.
1 We can easily extend ARTs to record the order of reductions. However, for most

purposes it is best to ignore this order.

3



variable x, y, z

graph node (pointer) p, q, r

expression M,N := x variable
| p node
| λx.M abstraction
| M N application
| C data constructor

| case M of {Ci xi 7→ Ni}ki=1 data destruction

| let {xi = Mi}ki=1 in N local definition
value V := λx.M abstraction

| C p1 . . . pn with n ≥ 0 (part.) applied constructor

Fig. 1. Syntax

〈M〉Γ =

{
M , if M is not a graph node

〈Γ (p)〉Γ , if M = p and p ∈ dom(Γ )

Fig. 2. Value Lookup Function

〈M〉Γ = λx.N

Γ, p 7→M q ⇒ Γ, p 7→ N [q/x]
application reduction

〈M〉Γ = Cj q

Γ, p 7→ case M of {Ci xi 7→ Ni}ki=1 ⇒ Γ, p 7→ Nj [q/xj ]
case reduction

Γ, p 7→ let {xi = Mi}ki=1 in N ⇒ Γ, p 7→ N [q/x], q 7→M [q/x] let reduction

Sharing rules:

Γ, p 7→M N ⇒ Γ, p 7→M q, q 7→ N

Γ, p 7→M N ⇒ Γ, p 7→ q N, q 7→M

Γ, p 7→ case M of {Ci xi 7→ Ni}ki=1 ⇒ Γ, p 7→ case q of {Ci xi 7→ Ni}ki=1, q 7→M

Fig. 3. Small Step Reduction Rules

Note that there is no reduction inside a variable binding expression. Hence
we also never break up a variable binding expression into several nodes. So we
can instantiate a bound variable by standard substitution.

4



〈M〉Γ =


M , if M is not a graph node
〈r〉Γ , if M = p and Γ (p) = s

rN and r 6= �
〈Γ (p)〉Γ , otherwise

Fig. 4. Value Lookup Function for ARTs

〈M〉Γ = λx.N

Γ, p 7→s
� M q ⇒ Γ, p 7→s

r M q, r 7→p
� N [q/x]

application reduction

〈M〉Γ = Cj q

Γ, p 7→s
� case M of {Ci xi 7→ Ni}ki=1

⇒ Γ, p 7→s
r case M of {Ci xi 7→ Ni}ki=1, r 7→p

� Nj [q/xj ]

case reduction

Γ, p 7→s
� let {xi = Mi}ki=1 in N

⇒ Γ, p 7→s
r let {xi = Mi}ki=1 in N, r 7→s

� N [q/x], q 7→p
� M [q/x]

let reduction

Sharing rules:

Γ, p 7→s
r M N ⇒ Γ, p 7→s

r M q, q 7→s
� N

Γ, p 7→s
r M N ⇒ Γ, p 7→s

r q N, q 7→s
� M

Γ, p 7→s
r case M of {Ci xi 7→ Ni}ki=1 ⇒ Γ, p 7→s

r case q of {Ci xi 7→ Ni}ki=1, q 7→s
� M

Fig. 5. Small Step Reduction Rules for Defining ARTs

5 An Operational Semantics Defining ARTs

An ART shall describe a complete computation. However, the reduction rules
update expressions in the graph and thus information is lost. To preserve the
information we do not update any expression but allocate a new graph node
for a reduction result. We extend each graph node by a pointer pointing to the
reduction result of the graph node, if any. Hence we also introduce the null
pointer � for graph nodes that do not have a result. This is the case if the
expression of the node is a value or has not (yet) been reduced.

Furthermore, each node has a second pointer to its parent, that is, the node
whose reduction caused the creation of the node.

We write p 7→s
r M for a node p with expression M , parent s and result

r. Figure 5 gives the modified semantics that defines ARTs. The value lookup
function has to be modified to follow result pointers, see Figure 4.

5



6 Conclusions

The definition does not yet cover all aspects of ARTs and much remains to be
done.

References

1. John Launchbury. A natural semantics for lazy evaluation. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 144–154. ACM Press, 1993.

2. Jan Sparud and Colin Runciman. Complete and partial redex trails of functional
computations. In C. Clack, K. Hammond, and T. Davie, editors, Selected papers
from 9th Intl. Workshop on the Implementation of Functional Languages (IFL’97),
pages 160–177. Springer LNCS Vol. 1467, September 1997.

3. Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Preliminary Proceedings of the 2001 ACM
SIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001.

6


	Hat --- The Haskell Tracer
	Aims
	Design Decisions
	An Operational Semantics
	An Operational Semantics Defining ARTs
	Conclusions

