

THE DISTRIBUTED OCCAM PROTOCOL
A New Layer On Top Of TCP/IP

To Serve occam Channels Over The Internet

Mario Schweigler

A dissertation submitted for the degree of

MSc in Distributed Systems and Networks

Supervised by Peter H. Welch

Computing Laboratory

University of Kent at Canterbury

Friday, 7th of September, 2001

13,000 words

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/91968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Networking, especially the internet, is playing a more and more

important role in our lives. Many new applications are distributed on several

computers which are connected over the internet.

The occam parallel processing language offers some features which

make it particularly suited for writing applications which are distributed over

the internet. Especially the channel paradigm which enables concurrent

processes to communicate with each other, is a good basis for distribution.

This project deals with the development of a distributed version of

occam channels which allow occam processes running on different

computers to communicate with each other in a similar way as they would do

if they were running on the same machine.

CONTENTS

1. INTRODUCTION .. 5
1.1. THE AIM OF THE PROJECT ..9
1.2. OBJECTIVES.. 10

2. THE BACKGROUND ...12
2.1. THE OCCAM SOCKET LIBRARY ... 12
2.2. THE JCSP.NET PROJECT... 13
2.3. THE OCCAM NETCHANS PROJECT... 16
2.4. THE PROGRESS OF THIS PROJECT – HOW THE DOP DEVELOPED 19
2.5. THE DOP FROM A NETWORKING PERSPECTIVE...................................... 21

3. A USER GUIDE TO THE DOP...22

3.1. THE DOP INTERFACE... 22
3.2. CONFIGURATION .. 23
3.3. CONFIGURATION OF THE CHANNEL NAME SERVER 24
3.4. HOW TO BUILD A DISTRIBUTED OCCAM NETWORK 25
3.5. REGISTRATION .. 28
3.6. SUPPORT OF DIFFERENT DATA TYPES ... 31
3.7. CONNECTIONS ... 36
3.8. ANONYMOUS CHANNELS.. 41
3.9. TESTING NETWORKS.. 43

4. HOW IT WORKS – A LOOK INSIDE THE DOP46

4.1. GENERAL IDEAS – THE PARTS OF THE DOP INTERFACE 46
4.2. HOW TO ENSURE A SINGLE SOCKET CONNECTION BETWEEN TWO MACHINES –
THE HANDSHAKE ALGORITHM ... 50

5. THE PERFORMANCE – BENCHMARKING RESULTS...........................54

6. A SUMMARY . AND WHICH STEPS COULD FOLLOW.........................60

BIBLIOGRAPHY ..62

APPENDICES ...64

A. THE ORIGINAL PROJECT PLAN... 64
B. CHANGES TO THE ORIGINAL PLAN.. 69
C. THE DOP ITSELF .. 71
D. GLOSSARY .. 74

5

1. INTRODUCTION

occam is a parallel processing language which is based on the CSP

calculus. This calculus is basically a neat mathematical way of modelling

concurrency. There is a whole bunch of literature written about CSP, for

instance [1], which the interested reader might investigate to get further

insights into the calculus. In this paper I do not intend to get further into

detail about the CSP calculus, as this is not necessary to understand the

objectives of this project, and also because it was not a substantial part of

the project work to deal with the calculus itself.

What is more important, in fact it is crucial, in order to be able to

understand the aims of this project and the way it was carried out, is to

understand the occam language. occam was originally developed by INMOS

in 1985 to support their newly developed transputer [2].

The transputer was a new microchip which was specifically developed for

parallel computing. It is able to carry out several instructions in parallel

because it does not follow the von Neumann principle of sequential execution

of each instruction and even each sub-instruction. The parallel processes are

scheduled by a micro-coded scheduler which performs an effective

management of the transputer’s time slices. This is the reason why the

transputer is much more efficient than even highly developed pipeline

structures in conventional von Neumann architectures.

Furthermore, the transputer eliminates many of the bottlenecks which

are caused by increased bus traffic in conventional microchips. Firstly, it has

on-chip local memory which helps to eliminate the usual processor-to-

memory bottlenecks. And secondly, it can communicate in parallel with other

transputers using one of the four built-in high-speed serial links.

6

The concept of connecting transputers directly over independent links

was a revolutionary idea. Now it was possible to let several, maybe

thousands of transputers work in parallel and communicate with each other

without the common problems of overloaded shared buses. The transputer-

to-transputer links work autonomously form internal instructions the

transputer is executing. Therefore, once a link communication is initialised, it

proceeds concurrently with the internal processes. This is possible due to the

use of direct memory access techniques.

This enables “real” concurrent communication with no more need to wait

for a shared bus. It is possible to build large networks of transputers without

the bandwidth becoming saturated as the systems increase in size.

Furthermore, as the links are only thought for communication between two

individual transputers, a large system will not suffer contention as it is the

case when using a shared bus.

To use these high potentials, INMOS developed a new language –

occam. The key feature of occam is that it was specifically developed for

parallel processing. The concurrency features of occam were not added to an

existing language by additional language constructs or by libraries. The

support of concurrency in occam was a design issue.

There is a lot of literature written about occam. A good and compact

introduction into occam is given in [5], for instance. In the following, I would

like to point out some of the key features of occam which are necessary to

understand how this project was done. However, I cannot give a complete

introduction as this would exceed the scope of this dissertation. Readers who

are not familiar with the occam syntax and semantics should therefore

consult an occam manual.

The general idea of occam is that is enables the programmer to write

sequential processes which can be executed in parallel. The parallel

7

execution of processes is also a process which again might be executed in

parallel with other processes and so on.

Processes running in parallel are independent from each other. They run

autonomously. The only way to communicate with each other is over well-

defined channels. This communication follows a handshake principle. This

means that if one of the processes wants to write to a channel and the other

process wants to read from it, the one who is first will be suspended until the

other process is ready to perform the counterpart operation on the other side

of the channel. This means that there is no buffering built into the channels.

These features offer a large range of possibilities how various processes

can be allocated to different transputers [3]. The design of the transputer

allows to execute several processes in parallel. When they communicate, the

channel behaviour is achieved by block movements of data in the

transputer’s memory. I will refer to this kind of channel behaviour as “soft

channels”.

On the other hand, processes can also be distributed on different

transputers. When two processes on two different transputers want to

communicate, they have to do so over the physical links of the transputers.

Each of a transputer’s four links implements two occam channels – one for

outputs and one for inputs.

The main program can assign an occam channel to a specific link

address (i.e. the number of the link and whether it is the incoming or the

outgoing channel of this link) on each of two transputers. These transputers

have to be connected over those link addresses. Communication over such

an occam channel now means physical communication from one transputer

to another. I will refer to this kind of channel behaviour as “hard channels”.

8

The key point is that the occam processes themselves do know at all

whether they are communicating over a soft channel or a hard channel. For

an occam process a channel is a channel, no matter whether it is emulated

internally by the transputer moving data in its memory or whether it is a

physical channel using one of the transputer’s links.

Over the years, the occam language has been made available for other

platforms too. An important step to achieve this was the Kent Retargetable

occam Compiler (KRoC) [11], which was developed at the University of Kent

at Canterbury. KroC is available, among others, for SunOS, Solaris, and Alpha

DEC stations, as well as for Intel PCs under Linux.

KRoC performs two stages. At first, it compiles occam code into

transputer assembly language. So the advantages of the transputer can be

maintained. Among these advantages there are in particular the effective

scheduling mechanisms for concurrent processes and the secure

communication mechanisms between those processes which are used for the

occam soft channels.

The second stage is to translate the transputer code into the assembly

language of the target machine. That way, the target machines, or strictly

speaking the resulting executables, are turned into virtual transputers. Those

programs perform concurrency as a transputer would do. There is no need to

involve the operating system’s scheduling mechanisms. In fact, a running

occam program is only one operating system process (one Linux process, for

instance).

This is achieved by linking the compiled occam program with a runtime

system that acts as a virtual transputer – the occam kernel – to an

executable file. This fine-grained concurrency on application level makes

occam programs that efficient. The advantages of transputers are so

transferred to conventional processor architectures and operating systems.

9

What, however, has been lost in this process are the hard channels. As there

are no real transputers but “only” virtual ones, hard channels have suddenly

disappeared.

1.1. THE AIM OF THE PROJECT

Today’s world is largely influenced by networking. Networks, above all

the internet, are playing a more and more important role not only in the

computing community but rather for the whole society. The aim of this

project is to utilise the internet for occam.

The goal is to be able to distribute occam processes on different

computers and enable them to communicate the same way as if they were

running on the same machine – through occam channels. I will define this

new kind of channels as “network channels”. A network channel is a rather

theoretical construct, which means that it is not a real channel but it

emulates the behaviour of an occam channel, but with the two end points

being located on different computers. In the following, I will call these end

points “writer” and “reader” which means the sending and the receiving side

of a network channel respectively.

Although hard channels and network channels are not really comparable,

they have some aspects in common. They both are a contrast to soft

channels, as they are not emulated by the same transputer or virtual

transputer respectively by performing memory operations. What they both

perform is some physical communication; in case of hard channels over

transputer links, and in case of network channels over the internet.

10

1.2. OBJECTIVES

The objective of this project is to create an occam library which offers an

interface to the internet. This interface shall support network channels of all

occam standard data types and arrays thereof. The interface shall offer an

array of normal occam channels (soft channels) to user processes. The user

processes shall be connected to the interface via channels from this array.

The interface shall communicate with other computers – which are running

the same interface – via TCP socket connections.

A rather naïve way of doing this would be to assign a separate socket

connection to each network channel. But this is not really feasible as it would

mean a huge waste of resources. The number of socket connections

supported by the operating system which can be used concurrently is

restricted. Really necessary is only one socket connection between two

computers. Should there exist more than one network channel between

processes on these two computers, the data sent over these channels shall

be multiplexed over the single socket connection between the two machines.

In order to ensure an easy use of the network channels, they must be

easily identifiable. The easiest way to identify a channel is to give it a name.

This is the way soft channels work, so why should not it be done the same

way with network channels? Well, it is not that easy. For processes which are

supposed to run on the same machine, in the main program a (soft) channel

is defined by giving it a name, like with a variable. Then this channel is

passed as a parameter to the processes which are supposed to communicate

over it and these processes are executed in parallel.

In case of network channels there is no main program which can

manage the names of network channels. We need a higher authority, which

is located somewhere in the internet, to play this role. Here the Channel

Name Server (CNS) comes into play. It is used to maintain information about

11

the names of network channels and the related location of the channels in

the internet.

A network channel itself is not located anywhere. What is located

somewhere in the internet are the two end points of the network channel. So

the CNS has to be a mediator between the end points. This is why the CNS

shall be designed alike a Domain Name Server. At first the reader has to

register with the CNS. The reader must tell the CNS the name of the network

channel and its own location which the CNS will store in its database. When

a writer wants to use this network channel, it has to make a request at the

CNS, telling it the name of the network channel. Then the CNS will respond

by telling the reader’s location to the writer.

This way of implementing the CNS gives Any to One semantics for

network channels, as there can be more than one writer requesting the

location of the same reader by asking for the same network channel, (i.e. by

telling the same name to the CNS). Nevertheless, it is still possible to use

network channels as normal One to One channels (as conventional soft

channels are). For that, it only has to be assured that only one writer makes

a request to the same network channel.

12

2. THE BACKGROUND

There were several pieces of research work which built the fundament of

this project. The occam socket library is the basis for the use of TCP socket

connections under occam. Furthermore, there have been two undergraduate

final year projects dealing with the distribution of CSP channels over the

internet, which this project was building on.

2.1. THE OCCAM SOCKET LIBRARY

In 2000, the occam socket library [14] was created. It is an occam

library which enables the use of socket connections for occam processes.

This library is available for the Linux release of KRoC. This is also the main

reason why this project was carried out under Linux.

Generally, socket communications, as other IO operations as well, are

performed by user programs by making a system call to the operating

system. The problem, however, is that these system calls cause the calling

operating system level process, in our case the entire occam program, to

block. This means that not only the occam process that wants to perform a

socket operation would be blocked. In fact, all occam processes running in

parallel with it as well as the occam microscheduler would be suspended as

well until the socket operation is finished. As this would not be efficient at all

– it would withdraw all the advantages of occam programs – another solution

had to be found [13].

A naïve solution to avoid other occam processes being blocked when one

occam process makes a Linux system call would be to run all occam

processes as separate Linux processes and let them communicate with each

other via the normal operating system level mechanisms. But this is not

13

feasible either. When operating system level processes communicate over

standard process communication, there are large communication overheads

compared to the high performance of the occam kernel microscheduler.

The occam socket library therefore uses Linux clones. A clone in Linux is

an operating system level process, but not a conventional one. The

difference between a normal forked process and a clone is that the clone

shares the same virtual memory and the same file descriptors with its parent.

When a blocking system call, such as for a socket operation, has to be

performed, the occam kernel suspends the occam process which wants to do

this operation and tells a clone of itself to make the blocking system call. Due

to the fact that clones use the same shared memory, it is possible to use

shared variables which enables an efficient way to communicate between the

occam kernel and its clones. When the clone has finished the system call, it

tells this to the occam kernel who then reschedules the suspended occam

process.

The occam socket library offers the typical socket operations for creating

sockets, reading, writing, resolving host names etc. I used the socket library

to perform the necessary TCP/IP communication in the occam code which I

created for the project.

2.2. THE JCSP.NET PROJECT

The JCSP.net project [18] was an undergraduate final year project which

was done this academic year. The objectives of this project were pretty

much the same as for mine, but for JCSP instead of occam. JCSP is a

package for Java which offers CSP semantics. It enables users, such as

occam does, to program sequential processes which are running in parallel

and communicating over channels.

14

The advantages of JCSP are that it can utilise all the features Java

provides, including objects. Furthermore, the resulting classes can be run on

every platform which offers a Java Virtual Machine – as usual for Java

programs. There are, however, also some disadvantages. Due to the fact

that JCSP is added on top of Java, it firstly has some performance overheads

compared to occam which was designed as a parallel processing language

from the scratch. And secondly, in JCSP the CSP semantics are not so

straightforward as in occam because they all had to be coded as Java

objects.

Despite all the differences, the requirements for a distributed version of

channels in occam and JCSP are quite similar. They both should use a

Channel Name Server to store information about network channels. And they

both should implement the network channels so that processes could use

them the same way as they use soft channels.

The JCSP.net project, however, did more than the implementation of

normal Any to One network channels. Two important additional features

were the implementation of Connections and anonymous channels.

A Connection is a special network channel. The end points are not a

normal reader and a normal writer, and the communication is also not one

way as it is with normal channels. The end points of a Connection are called

“client” and “server”. Connections enable the development of client/server

style applications. The server registers the Connection with the CNS (by

name) and interested clients can make a request about that Connection at

the CNS who will then return the location of the server. So far, this is not

different from normal Any to One channels.

What is different, however, is the fact that in order to communicate, a

Connection has to be opened first. When the server and a client have opened

15

the Connection then they are really connected. This is different from normal

Any to One channels as normal writers (all of them) can write to a normal

reader as soon as they have the location of this reader.

The second difference is that Connections are there for two way

communication between clients and servers rather than normal network

channels which are only one way. So Connections are a good solution when

we do not intend to establish a network with fixed network channels but we

rather have several clients which might be interested in connecting to a

server and it is not known at compile time when a client needs to talk to the

server. If more than one client is requesting to open the Connection to the

same server, it has to wait until the Connection to the previous client has

been closed. Should several clients have tried to open the Connection to a

server which is busy, they form a queue before this server.

Anonymous channels are another special kind of network channels. As

the name indicates, they do not have a name associated with them and they

are not established by use of the Channel Name Server. The usual way of

establishing an anonymous channel is to first create an anonymous reader.

The location of the anonymous reader is not registered with the CNS but

rather sent from a Connection server to a Connection client or vice versa.

Then an anonymous writer can be connected to the anonymous reader using

this location which has just been received.

The use of anonymous channels is particularly useful when we want to

increase the availability of a Connection server. When a server performs all

operations itself which are necessary during a Connection with a client, it

could happen that the next client has to wait quite long for the server to

finish. On the other hand, the server could delegate the work to a worker

process of which there might run several in parallel with the server. The

client could communicate with the worker process over anonymous channels

which it has exchanged with the server before. The Connection between the

16

client and the server could be closed as soon as the anonymous locations

have been exchanged and the server would be available immediately for the

next client while the previous client could still be communicating with the

worker process.

2.3. THE OCCAM NETCHANS PROJECT

The occam NetChans project [17] was also an undergraduate final year

project which was done in parallel with the JCSP.net project. Originally, both

projects were part of a bigger project, but after some time they departed

from each other and were run more or less independently. The objectives of

both projects were the same – developing distributed channels and the use

of a Channel Name Server.

Whereas the JCSP.net project fulfilled all the original objectives and even

achieved more, such as Connections and anonymous servers, the occam

NetChans project did not really achieve its aims. Especially the Channel

Name Server was not implemented in a satisfactory way.

The libraries which were written during the occam NetChans project

provide several different interfaces instead of one. Firstly, there are different

interfaces for sending and receiving data. Secondly, each interface supports

only the sending or receiving of one data type. There are even different

interfaces for single data types and for arrays of these data types. The size

of the arrays is fixed, so when users want to use an interface to send an

array of another size they have to recompile the library which is not very

sensible.

The occam NetChans project supports only four of the occam standard

data types. As described above, there are four different interfaces for each

data type which makes a total of 16 different interfaces. This is far from

17

being satisfactory. If a programmer would want to send and receive several

different data types over network channels, they would have to run several

of these interfaces in parallel which creates an overhead which is not

necessary. If all eight occam standard data types would have been

supported this would even have doubled the number of interfaces to 32.

(Actually, the number of interfaces in the occam NetChans project is 32.

This is due to the fact that there are also interfaces which do not use the

CNS but connect directly to each other.)

The implementation of the CNS was not done as set out in the objectives

of the project. In fact the CNS which was written in the occam NetChans

project is not even a Channel Name Server. Neither does it support channels

nor does it support names. A better name for it would have been “socket

connection number server”.

Firstly, the occam NetChans CNS does not store information about

network channels but about the location of a machine with a sending

interface. This information can be requested by a machine with a receiving

interface. Then the occam NetChans CNS removes the information about the

sending interface from its database as soon as a reading interface has read

it. This means that each machine which has been registered with the CNS

can only connect to one other machine. That way, a programmer who wants

to send (or receive) data to different machines has to run several interfaces

in parallel, even if they use the same data type.

The individual channels of an interface have to be referenced by their

array index. Moreover, the sender and the receiver have to be connected to

the same array index on both the sending and the receiving machine’s

interfaces. This is not sensible as it requires the user processes on the

different machines to know exactly at which array index they have to

connect to the interface.

18

Secondly, even the information about sending machines are not

referenced by a name, but rather by the index of the position where this

information is stored in the database of the occam NetChans CNS. So instead

of thinking “I want to connect to the network channel called ‘fred’” a

programmer would have to think something like “I want to connect to the

network channel with the index number x on the machine which is stored by

the CNS under index number y”. This is not satisfactory. This solution lacks

transparency as well as scalability.

Nevertheless, the occam NetChans project implements a sensible way of

emulating occam channel semantics over socket connections. I adopted that

way of communication, even if I had to implement it completely new as my

interface is totally different from what has been done in the occam NetChans

project.

When a writer wants to send data to a network channel, it has to send it

to the interface on its machine. The interface sends the data over a socket

connection to the remote machine. The remote machine receives the data

from the network and places it in a buffer. Finally the reader receives the

data from the buffer. The buffer is necessary to prevent the reader’s

machine from being blocked while waiting for the reader to read the data. As

we use multiplexing techniques, it must be ensured that the reader’s

machine can already receive new data from the network (which might be

destined for another reader) also when the previously sent data has not yet

been read by the first reader. By placing the data in the buffer (which can

read the data before a reader might be able to read it) the receiving machine

does not have to wait for the reader.

For readers, the handshake principle is fulfilled automatically. When they

want to read data from a network channel they are automatically suspended

until the data can be read from the buffer. For writers, however, this is not

19

so straightforward. To get real CSP semantics, a writer can only be allowed

to continue its work when it knows for sure that the reader has received the

sent data. For that, there is a need for an acknowledgement to be sent back

to the writer.

This is done by the buffer. When the reader has read the data from the

buffer, an acknowledgement is sent back to the writer’s machine over the

network. For that, the occam NetChans project uses another socket

connection than the one over which the data had been sent. This deviates

from the requirement to have only one socket connection between two

computers. In my code, I removed the redundant socket and use only one

socket for the communication in both directions.

The interface on the writer’s machine finally sends the acknowledgement

to the writer. This means, in order to get CSP semantics, a writer has always

to await the acknowledgement before continuing. So where for a soft

channel a writer would only have to make an output, for a network channel a

writer has always to do two operations: the output itself and the input of an

acknowledgement.

2.4. THE PROGRESS OF THIS PROJECT – HOW THE DOP DEVELOPED

When I started this project, my ideas about what was I was going to do

were rather general. I understood what was expected, but I had not worked

out yet a detailed plan about how I was going to achieve the requirements of

the specification with my software.

At the beginning, I was not so familiar with occam. I had had about five

introductory lessons about occam during one of the modules of my course,

but this could only give me the very first contact with the language and the

principles behind it. So the first thing to do for me was to consult literature

20

about occam and to understand occam by heart. A particularly useful guide

for me was [5] as it is short and easy to understand but very comprehensive

as it covers all the important occam constructs.

Nevertheless, everything – also a programming language – is learnt best

by doing. This is the reason why now, after having finished the project, my

understanding of occam and even the understanding of how my code works

is much bigger than at the beginning. If now I had to write everything from

the scratch again, I would certainly need much less time then I did now.

Originally, I was a little naïve about what I could achieve in the time

given. I was thinking of playing around with the compiler or the occam

kernel; and I thought of many possible further improvements and

extensions, for example the dynamic distribution of frozen processes [19]

over the network. But this would have exceeded the limited time of this

project, especially as I had a wrong imagination about how far the occam

NetChans project had already progressed.

Before I started the project, I thought that both the JCSP.net project and

the occam NetChans project would more or less have achieved to fulfil the

objectives. But then, talking with my supervisor, I found out that the

interfaces which were produced in the occam NetChans project were not

really feasible. This is the reason why we agreed that for the time being the

main issue was to achieve the same level on the occam side which had

previously been achieved on the JCSP side by the JCSP.net project.

Since the JCSP.net project had even done more, after a while we agreed

to amend the aims of my project and that I should also implement

Connections and anonymous channels. Due to all this, there was no more

time left to investigate the distribution of frozen processes or possible

changes of the compiler or the occam kernel. All this is subject to further

research work.

21

Nevertheless, what I think has been achieved is that the interface of the

Distributed occam Protocol now has a standard which is comparable to what

has been done in the JSCP.net project.

2.5. THE DOP FROM A NETWORKING PERSPECTIVE

An interesting question is what is the scope for distributed CSP channels

from a networking point of view. Network models, for instance the ISO-OSI

reference model, are usually built up in form of layers [20]. The lowest layer

is the physical layer which is concerned with the physical sending and

receiving of data. The highest layer is the application layer which abstracts

the technical aspects of a network and is concerned with the communication

between applications.

In the TCP/IP model there are no layers between the transport layer and

the application layer. OSI’s session layer and presentation layer are rather

abstract, and in everyday use they are rarely necessary. This is why they

have been omitted in the TCP/IP model. Therefore, the application layer is

quite extensive in the TCP/IP model. In the end, everything which builds on

TCP connections is said to be in the application layer. This covers telnet and

ftp as well as HTTP.

The DoP, however, is a little different. It is obviously situated on top of

TCP, i.e. on top of the transport layer. But is it therefore automatically in the

application layer? One could argue that it is not, but rather something in

between. As occam applications can be built on top of the DoP, it can be

considered an own layer. This is, however, dependent on the point of view.

Standardisation is always a matter of definitions, and every definition is

influenced by personal attitudes of the people who makes it.

22

3. A USER GUIDE TO THE DOP

3.1. THE DOP INTERFACE

The Distributed occam Protocol provides an occam library. In order to

use this library, programs have to use and include the following files:

#INCLUDE "doplib.inc"

#USE "dop.lib"

The main part of the DoP library is its network interface:

PROC dop.interface([dop.count.channels]CHAN OF DOP.PACKET

from.net, to.net,

CHAN OF DOP.PACKET reconnection.channel,

CHAN OF BOOL reconnection.ack.channel,

VAL []BYTE my.ip, VAL INT my.port,

VAL []BYTE cns.ip, VAL INT cns.port)

The interface provides two arrays of channels. One of these arrays is

called from.net and is used to read data from the DoP interface. The other

one is called to.net and it us used to send data to the DoP interface. All

user processes that want to use the DoP interface have to run in parallel with

it and to communicate over these channels. The end point of each network

channel is a pair of from.net and to.net channels with the same index.

The DoP library, however, also offers a number of auxiliary processes

which ease the interaction with the DoP interface as the programmers of the

user processes do not have to cope with the structures of messages by

whom they communicate with the interface.

23

The protocol of the from.net and to.net channels is called

DOP.PACKET. It is a counted array protocol with INT as count type and

BYTE as data type. This means that the user processes send and receive

byte arrays of variable size to or from the DoP interface. This makes sense,

as the data which is sent over socket connections also consists of byte

arrays.

The other parameters of the DoP interface will be dealt with in the

following sections of this chapter.

3.2. CONFIGURATION

There are two ways to configure the DoP interface. Most of the options

have to be known at compile time. The options can be changed by changing

the values of constants of the doplib.inc file (in the following called

“configuration file”) and recompiling the DoP library.

The number of channels provided by the DoP interface, i.e. the size of

the from.net and to.net arrays is defined by dop.count.channels.

The standard value is 100.

The number of socket connections provided by the DoP interface, i.e. the

number of machines it can connect to is defined by dop.count.sockets.

The standard value is 50.

The maximum size of a DoP packet i.e. the maximum number of bytes

that can be sent over the network as one packet is defined by

dop.max.packet.size. The standard value is 65536 which is 64K.

24

The other options that can be adjusted in the configuration file will be

dealt with in the following sections of this chapter.

The second type of options of the DoP interface are local options. These

are the values which are necessary to identify the location of a concrete

running instance of the interface, namely the IP address or the host name of

the machine it is running on and the socket port number it is listening on.

These two values are passed to the local DoP interface as parameters.

my.ip is a string which contains the local IP address in the usual notation

(“x.x.x.x”) or the local host name. my.port is an integer which contains

the local socket port.

For ease of use, there exists a file called dop.local.config.inc (in

the following called “local configuration file”). This file should be placed in

the directory of each program which wants to use the DoP interface. It

contains two constants, namely dop.local.ip and dop.local.port

which store the local IP address or host name and the local socket port.

Programmers should adjust those values in the local configuration file and

include the file in their program. Then the two constants should be passed to

the DoP as parameters.

3.3. CONFIGURATION OF THE CHANNEL NAME SERVER

The Channel Name Server is configured similarly as the DoP interface.

There are two files in the Channel Name Server’s directory called

dop.cns.config.inc (in the following called “CNS configuration file”) and

dop.cns.config.export.inc (in the following called “exportable CNS

configuration file”).

25

The CNS configuration file contains a constant called

dop.cns.count.channels which defines the number of channel

locations the CNS can store in its database. The standard value is 500.

The exportable CNS configuration file contains two constants, namely

dop.cns.ip which stores the IP address or host name of the machine

where the CNS is supposed to be running on, and dop.cns.port which

stores the socket port the CNS is listening on.

All three options can be changed by changing the values in the CNS

configuration file or the exportable CNS configuration file respectively and

recompiling the CNS program.

The IP address or host name and the socket port of the CNS are values

which also have to be known by each local DoP interface. They are passed to

the local DoP interface as parameters. cns.ip is contains the CNS IP

address or host name. cns.port contains the local socket port.

For ease of use, the exportable CNS configuration file should be passed

to all programmers who write programs which want to use this CNS (i.e. the

CNS with the location stored in the exportable CNS configuration file). The

file should be placed in the directory and included in the program. Then the

two constants should be passed to the DoP as parameters.

3.4. HOW TO BUILD A DISTRIBUTED OCCAM NETWORK

Writing a program which runs on a single machine or a single transputer

is quite easy. The main program just defines some channels over which the

occam processes shall communicate. Then it runs the processes in parallel

and passes the channels to the processes as parameters.

26

When occam processes shall be distributed to several transputers who

are connected by links, the main program has to perform a PLACED PAR [3]

which means that it has to assign (i.e. place) occam channels to transputer

link addresses (i.e. the number of the link and whether it is the incoming or

the outgoing channel of this link) prior to passing the channels to the

processes as parameters.

In the case of network channels there is a similar approach. At first, the

main program has first to define two arrays (of size dop.count.channels)

of channels of the DoP packet protocol.

[dop.count.channels]CHAN OF DOP.PACKET from.net, to.net:

(Of course they need not be called from.net and to.net, this is just

due to better understanding as it indicates to which parameters of the DoP

interface these arrays have to be passed to.)

Then the DoP interface, which has been passed the from.net and

to.net parameters, has to be run in parallel with a sequence which first

registers the network channels with the Channel Name Server and then runs

the user processes, which have also been passed the appropriate from.net

and to.net channels, in parallel. Figure 3.1 shows the resulting structure.

27

user process

writer

dop.interface

to.net[0]

from.net[0]

dop.interface

internet

user process

reader

from.net[0]

.

.

.

to.net[0]

.

.

.

.

.

.

.

.

.

Figure 3.1

Usually, once registered (which is done in the main program) a reader

need not send data to the DoP interface. Therefore, readers are usually not

connected to the interface via a to.net channel but only via a from.net

one.

As already mentioned above, in order to get CSP semantics, a writer

always has to await an acknowledgement from the interface before it can

continue. This is the reason why the writer is connected to the interface both

via a to.net and a from.net one. For ease use, user processes can use

the following process to receive an acknowledgement from the interface:

PROC dop.receive.ack(CHAN OF DOP.PACKET from.net)

The parameter from.net is the channel on which the acknowledgement

is received from the interface, i.e. the from.net channel.

28

3.5. REGISTRATION

As mentioned in the previous section, before a user process can use a

network channel, the network channel has to be registered. Please note that

I use the term registration for both when readers register their location with

the CNS and when writers make a request at the CNS about a reader.

The usual way to register a network channel is as described above – in

the main program before starting the user process that uses the network

channel. However, this is only a suggestion. Generally, the registration can

take place any time before a network channel is used. So also a user process

itself could register a network channel before using it. The user process

could even wait and see and only register a network process when it is really

needed the first time.

The registration of a reader or a writer takes place by sending a special

message to the DoP interface over the to.net channel. The first message

which is sent to the interface has to be a registration. When a process tries

to send user data to the interface before the network channel is registered,

this is very likely to produce an error which will cause the interface to crash.

For the sake of convenience, there are several registration processes

which perform the sending of a registration message to the interface and

react with the response. The basic registration processes are

PROC dop.reg.write(CHAN OF DOP.PACKET from.net, to.net,

VAL []BYTE channel.name)

PROC dop.reg.read(CHAN OF DOP.PACKET from.net, to.net,

VAL []BYTE channel.name,

VAL INT buffer.size,

BYTE result)

29

where dop.reg.write() is used to register as a writer and

dop.reg.read() is used to register as a reader. from.net and to.net

are the end point of the network channel. channel.name is a string which

indicated the name of the network channel.

The registration process for a writer does not end until the CNS request

for a reader with the relevant name has been successful. Should the CNS not

know about the reader yet (because it has not yet registered) it will tell this

the DoP interface which is connected to the writer. This will then wait for

some time and retry the request. It will do so infinitely until finally it has

been successful.

The time interval between two successive tries is a constant which is

stored in the configuration file. The name of the constant is

dop.reg.time.wait. It contains the waiting time in microceconds (as

usual in occam). The standard value is 5000000 which means that the DoP

interface will wait five seconds before retrying to register.

To prevent a livelock, the order of the registrations is important.

Although this is not the only livelock-free solution, it is a good rule to first

register all readers and then all writers. Otherwise the following scenario

would be possible, for instance: Two machines want to establish two

network channels between each other for either direction. They both first

want to register their writer and their which causes infinite retries to request

the corresponding readers’ location because neither of the machines

manages to register its reader.

One parameter of the registration process for a reader is buffer.size.

This is needed to indicate the size of the buffer which is placed before the

reader. As mentioned above, we need in any case one buffer in order to

prevent the reader’s machine from being blocked. In the following I will call

this buffer “acknowledgement buffer” because (as mentioned above) it is the

30

one who sends an acknowledgement back to the writer’s machine as soon as

the reader has read the data.

However, due to the Any to One semantics of network channels, a single

buffer might not be enough to prevent a blocking of the reader’s machine. If

several writers should write to a network channel and the reader has not

read them yet, the data of the different writers has to be queued before the

reader. For that we need a buffer additional to the acknowledgement buffer.

The buffer.size parameter indicates the size of that additional buffer. A

value of 0 means that there will only be the acknowledgement buffer but no

further one.

The maximum size of such an additional buffer is stored in the

configuration file. The name of the constant is dop.max.buffer.size.

The standard value is 20 which means that the buffer.size parameter

can be passed values between 0 and 20.

The Channel Name Server’s response to the registration of a reader will

be returned by the registration process in the parameter result. This is an

integer which can return three different values. The possible values are

stored as constants in the configuration file and will therefore be available to

the user program as it has INCLUDEd the configuration file. These are the

possible values:

DOP.CNS.OK means that the registration of the reader was successful and

the reader’s location is now stored in the Channel Name Server’s

database.

DOP.CNS.FULL means that the registration was not successful because the

database of the CNS was already full.

DOP.CNS.NAME.EXISTS means that the registration was not successful

because another reader has registered before under the same name.

31

The result should be checked and considered somehow. Typically, it

should be asserted that the registration was successful by calling

ASSERT(result = DOP.CNS.OK) after the registration.

3.6. SUPPORT OF DIFFERENT DATA TYPES

Until this point, it has been assumed that the type of the data which a

network channel can carry is a counted array of bytes. However, the

objectives say that network channels of all standard occam data types and

arrays thereof shall be supported by the DoP interface. As socket

connections carry bytes, it is generally a good choice that a DoP packet also

is a counted array of bytes. If we want to use other data types, we must

retype the data from them to an array of bytes before sending it over the

network and vice versa after having received it from the network.

There are two ways of doing that. Either a small conversion process has

to be plugged between the writer and the DoP interface and between the

remote interface and the reader, or the user processes have to do the

retyping themselves.

The DoP library offers conversion processes to convert from and to all

eight occam standard data types. It also offers conversion processes for

counted array protocols of all eight occam standard data types with both INT

and BYTE as count type. There is only one exception: As the DOP.PACKET

protocol is defined as INT::[]BYTE, there is no need for conversion

processes for this protocol, so these two conversion processes have been

omitted.

This makes a total of 46 conversion process. As it is not useful to

describe all of them, I will rather describe their usage in general, as apart

from the different data type they support they are equal.

32

In the following, {TYPE} stands for one of the standard occam data

types. {type} stands for the same, but written in small letters. So {TYPE}

is a substitution for one of the following:

INT, INT16, INT32, INT64, BYTE, BOOL, REAL32, REAL64,

whereas {type} is a substitution for one of the following:

int, int16, int32, int64, byte, bool, real32, real64.

There are three variants of conversion processes from {TYPE}:

PROC dop.conv.from.{type}

(CHAN OF {TYPE} from.proc,

CHAN OF DOP.PACKET to.net)

PROC dop.conv.from.ca.i.{type}

(CHAN OF INT::[]{TYPE} from.proc,

CHAN OF DOP.PACKET to.net)

PROC dop.conv.from.ca.b.{type}

(CHAN OF BYTE::[]{TYPE} from.proc,

CHAN OF DOP.PACKET to.net)

The first process converts from {TYPE} to a DoP packet. The second

and the third process convert from a counted array protocol with {TYPE} as

data type to a DoP packet. The count type is INT in the second and BYTE in

the third process.

The parameters are quite obvious: from.proc is the channel to be

connected to the user process and to.net is the channel to be connected to

the DoP interface.

33

The corresponding three variants of conversion processes to {TYPE} are

the following:

PROC dop.conv.to.{type}

(CHAN OF {TYPE} to.proc,

CHAN OF DOP.PACKET from.net, to.net)

PROC dop.conv.to.ca.i.{type}

(CHAN OF INT::[]{TYPE} to.proc,

CHAN OF DOP.PACKET from.net, to.net)

PROC dop.conv.to.ca.b.{type}

(CHAN OF BYTE::[]{TYPE} to.proc,

CHAN OF DOP.PACKET from.net, to.net)

The naming conventions are the same as for the conversion processes

from {TYPE}.

The parameters are also obvious: from.net is the channel to be

connected to the DoP interface and to.proc is the channel to be connected

to the user process.

There is, however, an exception. The conversion processes to {TYPE}

also have a from.net parameter which is also the channel to be connected

to the interface. This is necessary in order to keep CSP semantics. The

acknowledgement is only allowed to be sent back to the writer when it is

sure that the reader has read the data. If the reader is connected directly to

the interface (without a conversion process), this is done by the

acknowledgement buffer as soon as it has written the data out.

If there is a conversion process between the acknowledgement buffer

and the reader, then the fact that the acknowledgement buffer has written

the data out does not mean that the reader has read it. It rather means that

the conversion process has read it. So in order to be able to send the

34

acknowledgement back to the writer, the acknowledgement buffer has to a

await an acknowledgement from the conversion process. The conversion

process will send the acknowledgement to the interface (i.e. to the

acknowledgement buffer) as soon as the reader has read the converted data.

This is the reason why we also need a from.net parameter for conversion

processes to {TYPE}.

In order to let the DoP interface know which kind of acknowledgement

buffer it has to use, it is necessary to inform it whether there is a conversion

process between a reader and the interface or not. This is done during

registration. Therefore, we need a separate registration process for readers

which use converted data:

PROC dop.reg.read.conv

(CHAN OF DOP.PACKET from.net, to.net,

VAL []BYTE channel.name,

VAL INT buffer.size,

BYTE result)

The parameters are the same as for the dop.reg.read() process. The

difference is only internal as the DoP interface is told about the fact that

there is a conversion process. So it knows which kind of acknowledgement

buffer it has to use.

35

user process

writer

dop.interface

from.proc

from.net[0]

dop.interface

internet

user process

reader

.

.

.

.

.

.

dop.conv.
from.{type}

to.net[0] .
.
.

to.net[0] .
.
.

dop.conv.
to.{type}

from.net[0]to.proc

Figure 3.2

Figure 3.2 shows the structure when conversion processes are in use. As

can be seen, the network is more complex now. This is a drawback of the

use of conversion processes. If we do not want this complexity in our

networks, the user processes have to perform the retyping themselves. For

ease of use, the DoP library offers several processes which user processes

can call to retype {TYPE} data to a DoP packet and send it to the interface

or to receive a DoP packet from the interface and retype it to {TYPE}

respectively.

There are processes to send and receive data of all occam standard data

types as well as arrays of all types. The only exception are byte arrays as a

DoP packet is already a counted byte array. This makes a total of 15 sending

and 15 receiving process. These are the processes provided:

36

PROC dop.send.{type}(VAL {TYPE} data,

CHAN OF DOP.PACKET to.net)

PROC dop.send.array.{type}([]{TYPE} data,

CHAN OF DOP.PACKET to.net)

PROC dop.receive.{type}({TYPE} data,

CHAN OF DOP.PACKET from.net)

PROC dop.receive.array.{type}([]{TYPE} data,

INT size, CHAN OF DOP.PACKET from.net)

The parameters should be obvious. data is the data from the user

process or the data which is returned to the user process respectively.

from.net and to.net are the network channel end points of a reader or a

writer respectively. Finally, size is the size of the {TYPE} array which was

received. (After the retyping! Not the size of the DoP packet from which it

was retyped.)

Please note that the use of sending processes does not exempt writers

from the duty to await an acknowledgement (for which, as already

mentioned, dop.receive.ack() can be used).

An advantage of sending and receiving processes over conversion

processes is that several different data types can be sent over the same

channel. This is particularly useful for Connections – where conversion

processes cannot be used anyway (see next section).

3.7. CONNECTIONS

As outlined in chapter 2, Connections are special network channels which

allow two way communication between a client and a server. The

advantages of Connections for the development of client/server style

applications were also already mentioned.

37

The registration of Connection servers and Connection clients is more or

less identical with the registration of normal readers and writers. The

following registration processes are provided:

PROC dop.reg.conn.client

(CHAN OF DOP.PACKET from.net, to.net,

VAL []BYTE channel.name)

PROC dop.reg.conn.server

(CHAN OF DOP.PACKET from.net, to.net,

VAL []BYTE channel.name,

VAL INT buffer.size, BYTE result)

The parameters are the same as for dop.reg.write() and

dop.reg.read(). There is, however, a peculiarity with Connections. The

buffer.size parameter of dop.reg.conn.server() means the size of

the buffer which is used to form a queue of clients waiting for the server. For

the actual communication between a client and the server there is no buffer

necessary additional to the acknowledgement buffer. This is due to the fact

that the communication over a Connection implements One to One

semantics, i.e. as long as the Connection is open between a client and the

server, no other client can communicate with the server.

But the request to open a Connection follows Any to One semantics, as

several clients can make such a request at the same server. There is also an

acknowledgement buffer which sends an acknowledgement to a client when

the server has accepted to open the Connection. If there was only the

acknowledgement buffer, it would have to be assured that maximum one

client would try to connect to the server while the server is busy. Otherwise

the server's machine would be blocked.

38

Therefore, it is likely to need an additional buffer. The buffer.size

parameter indicates the size of that additional buffer. A value of 0 means

that there will only be the acknowledgement buffer but no further one.

The maximum size of such an additional buffer is stored in the

configuration file. The name of the constant is

dop.max.conn.buffer.size. The standard value is 20 which means that

the buffer.size parameter can be passed values between 0 and 20.

user process

server

dop.interface

to.net[0]

from.net[0]

internet
.
.
.

dop.interface

to.net[0] .
.
.

from.net[0]user process

client

dop.interface

to.net[0] .
.
.

from.net[0]user process

client

. . .

Figure 3.3

Figure 3.3 shows the structure of a Connection. As can be seen, both

clients and servers are connected to the DoP interface via both from.net

and to.net. This is necessary to allow two way communication between

client and server. Please note that even if the Connection between the clients

and the server is established, i.e. the clients know the server’s location,

39

communication between a client and a server is only possible when the

Connection has been opened first.

As Connections are more sophisticated than normal Any to One

channels, it is necessary to give the DoP interface instructions on how to use

them. Firstly, it is necessary to tell the interface when to open and to close a

Connection. And secondly, the interface has to know if the client wants to

write to the server (which I will call “request” in the following) or vice versa

(which I will call “response” in the following).

As these instructions are sent to the interface over the same channels as

the data is sent (from.net and to.net), the interface must find a way to

find out what is data and what is an instruction. This is done quite simple.

Both client and server have to do the following: The first thing to send to the

interface after registering a client or a server is a request to open the

Connection. After that there are three possibilities: Either a request

instruction is sent to the interface or a response instruction or an instruction

to close the Connection. It is important that both client and server always

send the same instructions.

When a client has sent a request instruction, the next step for it is to

send data to the server. This is done the usual way as it is done with normal

Any to One channels too. This means in particular that the client has to await

the acknowledgement. When a client has sent a response instruction, the

next step for it is to read data from the server, as well the usual way.

The server has to do this vice versa, i.e. it has to read after it has sent a

request instruction and it has to write after a response instruction. What is

important is that it does not matter which instruction is sent when, as long

as server and client always send the same instructions. This means that the

communication can absolutely start with a response or that there might be

40

several requests or responses successively. Figure 3.4 shows the state

diagrams for servers and Figure 3.5 shows the one for clients.

closed waiting

reading

writing

close

open,
client has
opened too

request

response

written, ack received

reading finished

Figure 3.4

closed waiting

reading

writing

close

open,
server has
opened too

response

request

written, ack received

reading finished

Figure 3.5

The DoP library offers four processes to send the instructions to the

interface:

PROC dop.conn.open(CHAN OF DOP.PACKET from.net, to.net)

PROC dop.conn.close(CHAN OF DOP.PACKET to.net)

PROC dop.conn.request(CHAN OF DOP.PACKET to.net)

PROC dop.conn.response(CHAN OF DOP.PACKET to.net)

The parameters are the usual from.net and to.net channels.

dop.conn.open() needs from.net because it has to wait for the

acknowledgement that the other side of the Connection has also opened.

41

It is not possible to use conversion processes with Connections. There

are two reasons. Firstly, both clients and servers can both read and write.

This means that on each end both conversion processes would have to be

plugged in: from {TYPE} and to {TYPE}. As both of them need to be

connected over a to.net channel, this is not possible. And secondly, clients

and servers send both data and instructions to the interface. If there was a

conversion process plugged in between, the instructions would be converted

as well, which hardly makes any sense.

3.8. ANONYMOUS CHANNELS

As outlined in chapter 2, anonymous channels are a neat way to reduce

the workload of connection servers. The difference between normal Any to

One channels and anonymous channels is that they are not established by

name over the CNS but rather anonymously by exchanging the reader’s

location.

The registration processes for anonymous channels are the following:

PROC dop.reg.write.anonymous(CHAN OF DOP.PACKET to.net)

PROC dop.reg.read.anonymous

(CHAN OF DOP.PACKET from.net, to.net,

DOP.CHANNEL.LOCATION the.channel.location,

VAL INT buffer.size)

PROC dop.reg.read.anonymous.conv

(CHAN OF DOP.PACKET from.net, to.net,

DOP.CHANNEL.LOCATION the.channel.location,

VAL INT buffer.size)

When an anonymous reader is registered, we do not give it a name. The

CNS is not involved, rather the location of the reader is returned to the caller

42

of the registration process. The return value the.channel.location is of

type DOP.CHANNEL.LOCATION. This is a record which stores the IP

address, the port number and the channel index of an endpoint of a network

channel. In the following, I will call data members of this type “channel

locations”. The other parameters are as with normal Any to One channels.

When an anonymous writer is registered, we do not need a name as

well, as there is no request made at the CNS. The only thing that happens is

that the DoP interface now knows that this network channel end point is an

anonymous writer. In order to connect an anonymous writer to a reader, we

need to get the reader’s channel location.

The channel location of an anonymous reader is usually exchanged

during a Connection. To do so, the DoP library offers two processes:

PROC dop.send.channel.location(DOP.CHANNEL.LOCATION

the.channel.location, CHAN OF DOP.PACKET to.net)

PROC dop.receive.channel.location(DOP.CHANNEL.LOCATION

the.channel.location, CHAN OF DOP.PACKET from.net)

The parameters are the channel location which shall be sent or received

and the usual from.net and to.net channels.

Once we have the reader’s channel location, the writer con be connected

to the reader. This is done by the following process:

PROC dop.reconnect.anonymous(

CHAN OF DOP.PACKET reconnection.channel,

VAL INT channel.index,

VAL DOP.CHANNEL.LOCATION the.channel.location,

CHAN OF BOOL reconnection.ack.channel)

43

reconnection.channel and reconnection.ack.channel are two

special channels to communicate with the DoP interface via whom

reconnections of writers are done. These channels have also to be passed to

the DoP interface as parameters. (Should we not need anonymous channels

in a program, we can pass two dummy channels to the interface.)

channel.index is the index of the anonymous writer which has to be

connected. Finally, the.channel.location is the channel location of the

anonymous reader which we just received.

dop.reconnect.anonymous() can be used several times to connect

a writer to another anonymous reader. This means that the end poins of

anonymous channels can be changed. Moreover, we can use

dop.reconnect.anonymous() even to reconnect normal writers (which

have previously been connected via the CNS) to an anonymous reader. This

makes anonymous channels a powerful tool.

3.9. TESTING NETWORKS

During the project, I created two testing networks. One is for testing

normal Any to One channels and the other one is for testing Connections and

anonymous channels. Readers who want to test these networks should copy

the contents of the enclosed CD-ROM to their hard drive and follow the

instructions to compile the library and the programs.

Before a testing network can be started, it is necessary to start the CNS.

It is the executable dop.cns in the /dop/dop.cns directory. The testing

network for normal Any to One channels is started by starting the

executables in the machine.1, machine.2 and machine.3 subdirectories

of the /dop/test.normal.channels directory. The testing network for

Connections and anonymous channels is started by starting the executables

in the server.machine, client.machine.1, client.machine.2 and

44

client.machine.3 subdirectories of the

/dop/test.connections.and.anonymous.channels directory.

The local IP addresses in the local configuration files are set to the local

host (“127.0.0.1”) which means that the different parts of the networks

can be executed in different terminal windows of any Linux machine.

The first testing network consists of three machines. The first machine

contains two processes, a and b. a is waiting for a request over a Boolean

channel network channel. When it has got that request, it asks the user to

type in an integer. Then it outputs it over an integer network channel. This

all is repeated infinitely in a WHILE TRUE loop. b is a simple process which

inputs a string over a network channel and outputs it to a channel which is

connected to the standard output. The second machine contains two

processes, c and d. c does the same as a, but for strings. d does the same

as b, but for integers.

The third machine contains one process, e. e asks the user for a choice

between machine one and two. According to that choice, it makes a request

at the chosen machine and reads a string or an integer respectively from it

which it then sends to the other of the two machines.

In the first network, the general network channel semantics were tested

as well as special features like conversion processes.

The second testing network consists of one server machine and three

client machines which are equal. The client’s task is to send strings to the

server machine where they are displayed on the screen. The client offers the

user two possibilities: to do it without workers or with workers. Then it opens

a Connection to the server. Without workers, the Connection is open as long

as the client gets string inputs because the displaying of the strings is done

45

by the server itself. The user can end the inputs by entering an empty string.

Then the Connection is closed.

With workers, the Connection is only open for a short while. until the

server has sent the location of an anonymous reader to the client. The client

then connects to this reader, and over this network channel it then sends the

strings to one of ten worker processes, which run in parallel with the server,

rather than to the server itself. As the worker processes are performing the

task of displaying the strings, the server can in the meanwhile connect to

another client. By playing around with this network, this difference will

become recognisable as the server is blocked or not according to the option

chosen.

46

4. HOW IT WORKS – A LOOK INSIDE THE DOP

4.1. GENERAL IDEAS – THE PARTS OF THE DOP INTERFACE

In order to perform its work, the DoP interface needs two databases

where it can store important values. The first one, called “socket location

database”, stores all machines to which the interface is connected and the

socket which is used to communicate with that machines. The machines are

identified by their IP address and port number.

The second database, called “channel destination database”, stores for

each pair of from.net and to.net channels the socket (by its index in the

socket location database) to the remote machine where the other end point

of the network channel is and the other end point’s channel index on that

machine.

The acknowledgement buffers and the additional buffers for Any to One

channels and for waiting Connection clients are written as small internal

processes which can be launched on demand.

There are four main processes which are running in parallel in the DoP

interface: The acceptor, the receiver, the registrar and the reconnector. As

these processes are using shared variables and channels (for instance the

socket location database), we need SEMAPHOREs [15] to protect them.

The registrar is a parallel process which reads in parallel on all to.net

channels to register. When it is requested to register a reader or a

Connection server, the registrar connects to the Channel Name Server and

registers the network channel there. Then it sets up the acknowledgement

buffer and, if needed, the additional buffer in parallel.

47

When the registrar is requested to register a writer or a Connection

client, it makes a request at the CNS and gets the reader’s or server’s

channel location respectively. Then the registrar first looks in the socket

location database if there is already a socket connection to the remote

machine. If not, it establishes one by an algorithm which I called the

“handshake algorithm”. This algorithm is described in section 4.2. As soon as

there is a socket connection to the remote machine, the registrar saves the

socket index and the channel index of the remote end point in the channel

destination database. Then, in case of writers, it starts an infinite loop that

reads on the to.net channel and send any received data down the socket,

preceded by a data message.

For anonymous channels, the registrar acts quite similar, but without

contacting the CNS. For anonymous readers it returns the channel location of

the reader to the caller of the registration. Then it sets up the buffers the

same way as for normal readers.

For anonymous writers, the registrar sets up the infinite loop

immediately without coping with the channel destination of that writer.

Before this writer can be used, it has to be reconnected anonymously. The

reconnector listens on the reconnection channel and when a request for a

reconnection of a writer is made, it does the same thing that the registrar

would do for a normal writer after it has got the reader’s channel location

from the CNS. This means that the reconnector updates the channel

destination database for the writer it is requested to do so. This might be

any writer, an anonymous one or a normal one which has been connected

via the CNS before.

Messages which are sent over the network contain the message type,

the channel index of the writer (on the writer’s machine) and the channel

index of the reader (on the reader’s machine). The receiver reads from all

48

sockets which are stored in the socket location database. When it gets a data

message, it creates a new channel destination for the acknowledgement. The

socket index is the socket index from where the data has been received and

the channel index is the channel index of the remote writer, which is stored

in the message. Then it passes the new channel destination and the sent

data to the buffer of the reader. The acknowledgement buffer sends an

acknowledgement message, using the new channel destination, as soon as

the reader had read the data. When the receiver gets a message to open a

Connection it does the same as if it would get a data message, but with the

difference that it only sends the new channel destination (no data, as there

was no data sent) to the Connection buffer. The new channel destination is

used to update the server’s channel destination database for the time the

Connection is open.

When the receiver reads an acknowledgement message, it just sends an

acknowledgement to the writer over the from.net channel. When it

reads an acknowledgement message to a Connection open request, it does

the same, but it sends it to a special channel on which clients are waiting for

an acknowledgement to their open request.

For connection servers, the registrar acts quite similar as for readers. It

sets up the Connection buffers (which are used to build a queue of clients).

In parallel to that it reads from the server and waits for an open. Then it

reads the channel destination of the first client which wants to open a

Connection from the Connection acknowledgement buffer (which causes the

Connection acknowledgement buffer to sends an acknowledgement message

to the client) and updates the server’s entry in the channel destination

database. Then the registrar waits for instructions. When a request

instruction comes, it does the same as an acknowledgement buffer would do

(waiting for data from the receiver and sending an acknowledgement

message as soon as the server has read the data), but only once instead of

infinitely. When a response instruction comes, it acts as a writer, i.e. it sends

49

a data message and the data to the remote machine. Then it waits for the

next instruction and so on until a close instruction comes.

For Connection clients, the registrar reads from the client and waits for

an open. Then it sends a message to the server to open a Connection. Then

it waits for an acknowledgement from the receiver. After that, the client does

the same as the server, only the reactions to request and response are the

exact opposite.

In order to better understand the communication paths, I will explain

step by step what happens when a writer sends data to a network channel.

(For Connections this is corresponding.)

1) The writer sends data to its to.net channel.

2) The registrar creates a new data message which contains the channel

index of the writer as source channel index and the channel index of

the reader (which is stored in the channel destination database) as

destination channel index.

3) The registrar sends this message and the data to the remote

interface.

4) The remote receiver reads the message and the data.

5) The remote receiver creates a channel destination for the

acknowledgement, which contains the socket index from where the

message was received and the source channel index of the message

(i.e. the channel index of our writer)

6) The remote receiver passes the channel destination and the data to

the buffer before the remote reader.

7) When it is its turn, the channel destination and the data arrive at the

remote acknowledgement buffer.

8) The remote acknowledgement buffer sends the data to the reader’s

from.net channel.

50

9) The remote acknowledgement buffer creates a new

acknowledgement message which contains the channel index of the

acknowledgement channel destination as destination index.

10)The remote acknowledgement buffer sends the acknowledgement

message to the socket with the socket index from the

acknowledgement channel destination.

11)Our receiver reads the message

12)Our receiver sends an acknowledgement to our writer’s from.net

channel.

4.2. HOW TO ENSURE A SINGLE SOCKET CONNECTION

BETWEEN TWO MACHINES – THE HANDSHAKE ALGORITHM

An important problem was how to assure that there is only one socket

connection between two machines. The general idea is that at first a writer

usually connects to the remote machine. The remote acceptor accepts that

socket connection and both of them store their new socket in the socket

location database, together with the machine details of the other machine

each.

Please note that by “writer” I mean every part of the interface that might

get information about a remote machine (IP address and port number) and

want to connect to it. This could be the registrar where a writer or a

Connection client has just been registered or the reconnector which wants to

connect to a previously unknown machine.

Before a writer connects to the remote acceptor, it looks in its own

socket location database whether there is already a socket to the concerning

machine. If not, it connects to the remote acceptor in order to set up such a

socket. But there is a trap, as at the same time there might a remote writer

51

try to connect our acceptor. At the time of the database check, both our

writer and the remote writer have no information about the other machine

yet each. But then suddenly we have two socket connections between the

two machines which is not suitable.

The naïve solution would be just not to allow the socket which comes

second to be stored in the database. But this is not suitable as well as it

might happen that on both machines the acceptors (say) are the first to

store the new socket in the database, and the writers would not be able to

do so and would have to close their sockets. This would result in two cut

socket connections each of whom one socket is stored and the other one has

disappeared.

Another naïve solution would be that a writer has to claim a semaphore

for the database before the database check which would not be released

until the newly established socket is stored in the database. The remote

acceptor would have to claim the database as well in order to assure that

there is no writer on the remote machine which might save an entry about

our machine in the meanwhile. This would mean that the database would

not be available during the whole handshake algorithm, which is not very

good from a performance point of view. But this is not the main problem.

The problem is that it could happen that again on both machines writers

want to connect to the other machine each. So they would claim the

database semaphore and try to connect to the remote acceptor. But none of

the acceptors can get a lock on their database. So we would have produced

a deadlock.

To make a long story short, I tried innumerable solution but they were

all not suitable. They either produced a deadlock or multiple socket

connections. The reason was what I called the “symmetry trap”. As the same

algorithm would have to be run on both machines, and it could always be

52

possible that on both machines happens the same (e.g. a writer wants to

connect to the other machine) at the same time, there was no way out.

The solution is simple. We just have to make all machines different, and

there is no more symmetry trap. So I decided to distinguish between the

what the machines were doing in the handshake algorithm according to their

IP address and port number. I defined an order so that a machine is defined

“bigger” as another one if its IP address is greater, and in case of equal IP

addresses if its port is greater than the other one. Then I defined that an

acceptor should be high priorised if it runs on a bigger machine and low

priorised if it runs on a smaller machine. As for the writers it is the other way

round: writers are high priorised if they run on a smaller machine and low

priorised if they run on a bigger machine.

The key point now is that only high priorised writers and acceptors are

allowed to store sockets in the database. So if a writer connects to the

remote acceptor, the first thing to do it to tell it the own machine details.

Then both the writer and the remote acceptor compare their IP addresses

and port numbers and find out whether they both are high priorised or not.

It is unavoidable that either both of them are high priorised or both of them

are low priorised.

When they are high priorised, the remote acceptor has to look in its

database whether there is already an entry to our machine. This is necessary

because the following could have happened: Our writer could have checked

our database and not have found a socket to the remote machine there. So

it connected to the remote acceptor. But there was another writer on our

machine already connected to the remote acceptor for whose completion our

writer would have to wait. This is the reason why despite our writer’s

negative database check there could now be a socket connection between

the two machines in the databases.

53

If this should be the case, our writer and the remote acceptor would

close the socket connection and our writer would wait until a socket

connection to the remote machine appears in our database, which will

definitely be the case sooner or later as there must have been another writer

on our machine who already established a socket connection to the remote

machine.

If the remote acceptor does not find a socket to our machine in its

database, the new socket connection can be saved in both databases. With

this solution it is only necessary to lock the database for a very short period.

If our writer and the remote acceptor are low priorised, they would close

the socket connection again. Then the remote acceptor would simulate a

writer, i.e. it would connect to our acceptor. The rest is the same as

explained above. So our (low priorised) writer would only have to wait until

the remote machine appears in the database.

54

5. THE PERFORMANCE – BENCHMARKING RESULTS

In order to get an imagination of the performance of the DoP interface, I

wrote three small benchmarking programs. They can be found in the

benchmark.send and benchmark.receive subdirectories of the

/dop/benchmark directory on the enclosed CD-ROM.

All three programs benchmark the bandwidth [Bytes/s] against the size

of the sent packet. The first program uses the DoP and is called

send.with.dop and receive.with.dop respectively. The second

program sends over normal socket connections and receives a one byte

acknowledgement after each packet. It is called send.socket.with.ack

and receive.socket.with.ack respectively. The third program only

flushes the data to the network over raw sockets without receiving any

acknowledgement. It is called send.raw.socket and

receive.raw.socket respectively.

I ran all three programs locally on my computer stue4b3 and on

kalgan which is a Linux machine at the Computing Laboratory. Then I ran

them over the university Ethernet in both directions stue4b3 à kalgan and

kalgan à stue4b3. The results can be found in the file benchmark.txt in

the /dop/benchmark/ directory.

Figures 5.1 - 5.3 show the four different locations for each of the three

programs. In each of them kalgan shows the best performance, especially

for high packet sizes. This must be due to some networking reasons, as

kalgan is a slower machine than stue4b3 and this is every time the case,

independent from the computational workload (which is definitely higher for

the DoP as for the socket with acknowledgement or even for the raw socket

version.)

55

DoP

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size [Bytes]

B
an

d
w

id
th

 [
B

yt
es

/s
]

stue4b3 kalgan stue4b3 --> kalgan kalgan --> stue4b3

Figure 5.1

Sockets with ack

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size [Bytes]

B
an

d
w

id
th

 [
B

yt
es

/s
]

stue4b3 kalgan stue4b3 --> kalgan kalgan --> stue4b3

Figure 5.2

56

Raw sockets

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size [Bytes]

B
an

d
w

id
th

 [
B

yt
es

/s
]

stue4b3 kalgan stue4b3 --> kalgan kalgan --> stue4b3

Figure 5.3

Figures 5.4 - 5.7 show the four different locations for each of the three

programs.

57

stue4b3

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size [Bytes]

B
an

d
w

id
th

 [
B

yt
es

/s
]

DoP Sockets with ack Raw sockets

Figure 5.4

kalgan

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size [Bytes]

B
an

d
w

id
th

 [
B

yt
es

/s
]

DoP Sockets with ack Raw sockets

Figure 5.5

58

stue4b3 --> kalgan

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size [Bytes]

B
an

d
w

id
th

 [
B

yt
es

/s
]

DoP Sockets with ack Raw sockets

Figure 5.6

kalgan --> stue4b3

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Size [Bytes]

B
an

d
w

id
th

 [
B

yt
es

/s
]

DoP Sockets with ack Raw sockets

Figure 5.7

59

In all versions, except the kalgan à stue4b3 version, the raw sockets

are fastest, as one could expect.

The two local versions are, in principle, equal. The DoP is slower than

the socket with acknowledgement version, but the factor is more or less

constant around three. The raw socket version is fastest, but at a packet size

of 64K the raw socket both non DoP versions reach about the same

bandwidth.

The Ethernet versions show a much smaller difference between the DoP

version and the socket with acknowledgement version. This is due to the fact

that the socket operations are much slower so that the software overhead of

the DoP is not that significant.

60

6. A SUMMARY. AND WHICH STEPS COULD FOLLOW

This project has as a result an interface for distributed occam channels

which is easy to use. After a rather slow start, I managed to get all the

programming work done. It was also no problem to extend the objectives of

the project and to add the support for Connections and anonymous

channels.

During this project I learned a lot about occam and the way it works. I

also could strengthen my knowledge about several networking topics, in

particular about the usage of TCP sockets, and about several aspects of

concurrent programming in general, especially about semaphores and the

avoidance of deadlocks.

Most of the time the work went quite smoothly, although there were also

some problems which had to be solved and mistakes that had to be

corrected. For example did I first use two instead of one socket connection

between two machines. This was mainly due to the fact that I had seen it

that way in the occam NetChans code and therefore I thought that one could

not read and write to the same socket in parallel. Nevertheless, it was not a

big deal to change that into a single socket after my supervisor had

explained me how it really worked.

The greatest problems did I have with the handshake algorithm. It took

me quite a long time until I could sort that out, and if my mother would not

have given me the tip to distinguish between the machines by their IP

address, I would have struggled with it even longer.

Although the DoP has reached quite a good standard, there are of

course lots of things which could be investigated in the future. One aspect

61

that could be amended is that there could be the possibility added to

terminate one interface without crashing the whole network.

Another feature which was added to JCSP.net were streaming channels.

Streaming channels are used to send streams of data over a network

channel without receiving acknowledgements after each single data item but

only maybe after a larger amount of data. This could be particularly useful

for multimedia applications and could be implemented in the DoP as well.

A research area will certainly be the extension of the DoP to support the

dynamic distribution of frozen occam processes which are currently being

dealt with by Fred Barnes.

All in all I can say that though it was really a lot of work, the project was

fun, especially when I could see that the programs which I had written did

really work! ☺

62

BIBLIOGRAPHY

[1] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall,

London, 1985

[2] A. Carling, Parallel Processing - The Transputer And occam, Sigma

Press, Wilmslow, 1988

[3] J. Kerridge, occam Programming: A Practical Approach, Blackwell

Scientific Publications, Oxford, 1987

[4] P.H. Welch, occam2 & Transputer Engineering, 1991 in CO516: Parallel

And Imperative Programming, Lecture Notes, Computing Laboratory,

University of Kent at Canterbury, 2000

[5] P.H. Welch, An occam2 Checklist in CO516: Parallel And Imperative

Programming, Lecture Notes, Computing Laboratory, University of Kent

at Canterbury, 2000

[6] INMOS Ltd., occam® 2 Reference Manual, Prentice Hall, Hertfordshire,

1988

[7] G. Jones and M. Goldsmith, Programming In occam® 2, Prentice Hall,

Hertfordshire, 1988

[8] D. Pountain and D. May, A Tutorial Introduction To occam

Programming, BSP Professional Books, Oxford, 1987

[9] P.H. Welch, An occam Approach To Transputer Engineering, 1988 in

CO516: Parallel And Imperative Programming, Lecture Notes,

Computing Laboratory, University of Kent at Canterbury, 2000

[10] P.H. Welch, GOTO (Considered Harmful)n, n Is Odd, 1988, in CO516:

Parallel And Imperative Programming, Lecture Notes, Computing

Laboratory, University of Kent at Canterbury, 2000

[11] D.C. Wood and P.H. Welch, KRoC – The Kent Retargetable occam

Compiler, Computing Laboratory, University of Kent at Canterbury, 1996

[12] P.H. Welch, Essentially KRoC, Computing Laboratory, University of Kent

at Canterbury, 2000

63

[13] F.R.M. Barnes, Blocking System Calls in KroC/Linux, 2000 in

Communication Process Architectures 2000 – WoTUG-23 Conference

Proceedings, Computing Laboratory, University of Kent at Canterbury,

2000

[14] F.R.M. Barnes, The occam Socket Library, Computing Laboratory,

University of Kent at Canterbury, 2000

[15] P.H. Welch and D.C. Wood, Higher Levels of Process Synchronisation,

Computing Laboratory, University of Kent at Canterbury, 1997

[16] P.H. Welch and D.C. Wood, SEMAPHOREs, RESOURCEs, EVENTs and

BUCKETs, Computing Laboratory, University of Kent at Canterbury,

1997

[17] I.N. Goodacre, occam NetChans, Project Report, Computing Laboratory,

University of Kent at Canterbury, 2001

[18] C. Lahure and J.G. Foster, JCSP.net, Project Report, Computing

Laboratory, University of Kent at Canterbury, 2001

[19] F.R.M. Barnes, Dynamic occam processes, Fringe talk during the CPA

2000 Conference, University of Kent at Canterbury, 2000

[20] A.S. Tanenbaum, Computer Networks, Prentice Hall, Upper Saddle

River, 1996

64

APPENDICES

A. THE ORIGINAL PROJECT PLAN

21/03/2001 Mario Schweigler Project Plan

Project Title: occam and Distribution

occam is a language which is based on the CSP calculus. The general idea

behind CSP and occam is to provide a formal method respectively a language

to enable the users to model concurrent systems. occam’s parallelity features

were a design issue. So they were not added to an already existing

language; they are the general principle behind the language.

occam programs are built upon sequential processes that communicate with

each other. The only way for processes to communicate with each other is

over well-defined channels. So an occam process can be thought as a black

box with input and output channels which are the interface to the outside

world.

This project is concerned with the distribution of occam processes in a

network. The occam paradigms, especially the channel paradigm, form a

good basis for distribution. Several issues of distribution will be addressed

during this project.

What has been done so far

The project will build upon a range of research work which has already been

done. The most important foundation is the new TCP Socket library that has

been created recently. It has been created for the Linux version of the

compiler; therefore the further development will be under Linux.

65

In his research paper “Blocking System Calls in KroC/Linux”, Fred Barnes

describes the possibility of allowing occam processes to make a blocking

system call without blocking the processes that are running in parallel with it.

From this basis he created a new library which allows to utilise TCP sockets

from occam processes.

The Socket library provides a number of processes to create TCP sockets,

open them, read from them and write to them, close them, etc. The data

format which can be sent over a socket is arrays of bytes. This library will be

an important basis for the project.

Another research work this project will build on is the final year project of the

BSc student Ian Goodacre. His work is primarily concerned with the

construction of an interface from the occam world to the network. It consists

of an interface for sending data, an interface for receiving data and a buffer

on the receiving side.

These interfaces provide a certain level of transparency, as the users are no

longer required to perform the socket operations themselves nor to cope

with IP addresses or socket numbers. But there are still restrictions and a

number of requirements have to be met in order to use this interfaces.

Another research work that has been done is Fred Barnes’ method to freeze

occam processes and their state, saving them and restoring them in order to

continue to run them. There is, however, no formal research paper about

this but only a fringe talk during the Communicating Process Architectures

2000 conference.

66

Objectives of the project

One target of the project is to provide a new level of transparency to the

existing work.

The aim is to provide occam programmers with a transparency that in fact

there is no more difference for them whether their processes which want to

communicate, are running on the same machine or on different machines.

The currently existing interfaces have a number of restrictions. This project

will try to overcome them.

The Socket library only accepts arrays of bytes to be sent over a TCP socket.

It will be an aim of this project to provide the possibility to sent also other

data types, including protocols, by automatic retyping.

Ian Goodacre’s interface provides the following processes: a process to input

bytes coming from the network, a process to output bytes to the network

and a process acting as an input buffer. Both input and output processes

have as a parameter an array of channels of bytes which are used to input

respectively output the data which has to be sent over the socket connection

and an array of Booleans for sending confirmations. Different sending and

receiving processes can connect to these channels; the channels are

identified by their index within the array.

The handshake paradigm is implemented as follows: On the receiving side an

input buffer is set between the receiving process and the input process. The

data coming from the network is passed to the buffer by the input process.

When the receiving process tries to read from the buffer it is suspended until

there arrives something from the network. This means that the receiving

process can be written the same way as if it would be for the use of local

channels. The buffer sends a confirmation back to the input process after the

receiving process has read the data. Only after the receiving process has

67

read the data from the buffer, the buffer accepts new data from the input

process.

On the sending side the sending process writes the data to the output

process. After having passed over the network the input process sends the

confirmation, which it gets from the buffer, back to the output process,

which passes it to the sending process. This means that the sending process

cannot be written as it would be the case for local channels. The sending

process has to await the confirmation before it can continue.

Today it is possible to connect two processes which are running on the same

machine over a channel by calling them (from another process, usually the

main program) and giving them as parameter the same channel, which has

been defined before. One process uses this channel as input channel and the

other uses it as output channel.

The project’s target is to provide the same technology over the network, i.e.

to map occam channels on TCP socket connections. The aim is that in the

end there is no more difference between local channels and channels using

TCP sockets. The ideal solution would be that a socket channel could be

created and identified by a name as today local channels are. On one

machine this channel would be passed to a process as an input channel and

on another machine the same channel would be passed to another process

as an output channel. The communication would work by handshake as in

the local occam world. There would be no additional work necessary to be

done for the programmer.

The project will have to explore how far it can reach by creating occam code

and to which extent the compiler will have to be adapted.

Another target of the project can be to distribute the process dynamics

created by Fred Barnes. The aim could be to create the possibility to freeze

68

processes and their state, pass the whole over the network to another

machine, defrost it there and continue to run them.

Planned phases of the project

• Background reading

There will be need for me to read a good amount of background material

(see bibliography).

• Implementation and documentation of the TCP socket channels

It will be explored how to implement transparent TCP socket channels.

The implementation will be done and documented.

• Conditional: Dynamic distribution of occam processes

If there is enough time left, this area can be explored. Again, all

implementations will be documented.

• Building a demonstration application

In order to demonstrate the newly implemented capabilities, one ore

more sample applications will be written and their behaviour will be

documented.

• Final phase: Writing up

The final phase will be concerned with bringing all the documentation

that has been done during the project into a coherent form that meets

the requirements for a dissertation.

69

B. CHANGES TO THE ORIGINAL PLAN

All in all I think I can say that the project covered to a great extend what

was purposed in the original plan. The result is an interface which is easy to

use and, apart from having to wait for an acknowledgement when writing to

a network channel, occam programmers can write their processes for

distributed networks the same way as they would write them for local

programs. Furthermore, Connections and anonymous channels are powerful

extensions for client/server style applications. However, there were some

minor changes to the original project plan.

The first change is quite obvious: it is the project title. At the time when

the original plan was set out, I did not know yet that I would call my

interface “Distributed occam Protocol”. At that time my ideas about what I

would do in the project were quite vague. This is the reason for the rather

general original title.

A more substantial change was the fact that the project did not cope

with the dynamic distribution of frozen processes. The main reason for that

was the lack of time. Firstly, I agreed with my supervisor to concentrate on

the aim to reach a similar level with the DoP as there had been achieved

with the JCSP.net project before. Two important aspects of that were the

implementation of Connections and anonymous channels which were not

part of the original project plan.

And secondly, the occam code which was developed in the occam

NetChans project was so far from the objectives of this project that it was

hard for me to build upon that. In fact, I decided to build my interface from

the scratch because there was not really code which I could reuse.

70

The project did also not cope with possible changes to the compiler or

the occam kernel as this would have beaten the time constraints. It rather

concentrated, agreed with my supervisor, on the development of a library

which could possibly later be part of a KRoC release.

71

C. THE DOP ITSELF

On the enclosed CD-ROM there are the following directories and files

(directories are printed in bold).

dop Main DoP directory

 dop.occ Source file for the DoP library

 doplib.inc Configuration include file

 dop.def.inc Definition include file

 dop.aux.inc Include file for auxiliary processes

 dop.make Shell script to compile all sources

(change mode before executing!)

 dop.cns Channel Name Server directory

 dop.cns.occ CNS source file

 dop.cns.config.inc CNS configuration include file

 dop.cns.config.export.inc Exportable CNS

configuration include file

 test.normal.channels Contains testing programs for

normal Any to One channels

 machine.1 Program for test machine 1

 machine.1.occ Source file for test machine 1

 dop.local.config.inc Local configuration include file

 machine.2 Program for test machine 2

 machine.2.occ Source file for test machine 2

 dop.local.config.inc Local configuration include file

 machine.3 Program for test machine 3

 machine.3.occ Source file for test machine 3

 dop.local.config.inc Local configuration include file

 test.connections.and.

 anonymous.channels
Contains testing programs for

Connections and for

anonymous channels

 server.machine Program for the test server

 server.machine.occ Source file for the test server

 dop.local.config.inc Local configuration include file

 client.machine.1 Program for test client 1

72

 client.machine.occ Source file for test client 1

 dop.local.config.inc Local configuration include file

 client.machine.2 Program for test client 2

 client.machine.occ Source file for test client 2

 dop.local.config.inc Local configuration include file

 client.machine.3 Program for test client 3

 client.machine.occ Source file for test client 3

 dop.local.config.inc Local configuration include file

 benchmark Contains benchmarking programs

 benchmark.txt The results of the benchmarking

 benchmark.send Contains benchmarking senders

 send.with.dop.occ Sender which uses the DoP

 dop.local.config.inc Local configuration include file

 send.socket.with.ack.occ Sender which uses sockets

with acknowledgement

 send.raw.socket.occ Sender which uses raw sockets

 benchmark.receive Contains benchmarking receivers

 receive.with.dop.occ Receiver which uses the DoP

 dop.local.config.inc Local configuration include file

 receive.socket.with.ack.occ Receiver which uses sockets

with acknowledgement

 receive.raw.socket.occ Receiver which uses raw sockets

dissertation Contains this dissertation...

 dissertation.ps ... in Postscript format

 dissertation.pdf ... in Portable Document Format

api.documentation Contains the HTML API documentation

 api.html HTML API documentation

 datatypes.html HTML documentation about data types

The reader should copy the dop directory, including all files and

subdirectories, to the hard drive and set the mode of the dop.make file to

executable. Then they should execute the dop.make script. This will compile

the library, copy the library and all necessary include files to the appropriate

subdirectories and compile all programs.

73

The library (dop.lib, libdop.a) and the include file (the configuration

file) (doplib.inc) might be placed into a directory which is part of the

path which is defined in the OCSEARCH environmental variable. So when a

new program is developed which uses the DoP, it could be avoided to copy

these files to the new program’s directory.

Please note that the values of the local configuration file

(dop.local.config.inc) have to be adjusted individually for each new

program which uses the DoP. The values of the exportable CNS configuration

file (dop.cns.config.export.inc) have to be adjusted according to the

location of the CNS and this file has to be given to programmers who write a

program which wants to use the CNS at that location. This is the reason why

these files usually have to be in the program directory for each program

individually and therefore can hardly be put in a shared directory.

The HTML API documentation was created by the JoccDoc utility which

had been developed during the occam NetChans project. However, I had to

post-edit the produced HTML files because I was not fully saisfied with the

result.

74

D. GLOSSARY

ACKNOWLEDGEMENT. A writer has to wait for an acknowledgement that the

reader has read the data the writer has sent. This is necessary to get CSP

semantics.

ANONYMOUS CHANNEL. A network channel which is not connected over the

Channel Name Server but anonymously after the exchange of a reader’s

channel location.

ANONYMOUS READER. The reading end point of an anonymous channel. Its

channel location is sent to an anonymous writer which then connects to it.

ANONYMOUS WRITER. The writing end point of an anonymous channel. It

connects to an anonymous reader after having received its channel location.

ANY TO ONE CHANNEL. See “Normal Any to One channel”.

CHANNEL LOCATION. A record to identify the location of a channel. Consists of

the IP address, the port number and the channel index.

CHANNEL NAME SERVER. A mediator between a writer and a reader or

between a Connection server and a Connection client. Used to connect the

end points of a network channel. Stores channel locations under a name and

returns them on request.

CLIENT. See “Connection client”.

CLOSE. An instruction to close a Connection between a client and a server.

CNS. See “Channel Name Server”.

75

CNS CONFIGURATION FILE. The file dop.cns.config.inc. It contains

options of the Channel Name Server program.

CONFIGURATION FILE. The file doplib.inc. It contains several options of

the DoP interface. Programs which want to use this interface have to include

this file.

CONNECTION. A special network channel for client/server style two way

communication.

CONNECTION CLIENT. One end point of a Connection. Several clients can use

the same server.

CONNECTION SERVER. One end point of a Connection. Several clients can use

the same server.

CONVERSION PROCESS. An process which is plugged between the DoP

interface and a user process and which converts network data.

DOP. The Distributed occam Protocol. The title of this project and the name

of a protocol whose main part is a library which enables the mapping of

occam channels on TCP socket connections.

END POINT. See “Network channel”.

EXPORTABLE CNS CONFIGURATION FILE. The file

dop.cns.config.export.inc. It contains the location of the machine

the Channel Name Server is running on. This file should be given to

programs which want to use the CNS. The values should be passed to the

DoP interface as parameters.

76

INTERFACE. The DoP interface is connected to the end points of a network

channel and emulates its behaviour over TCP socket connections.

The LIBRARY. The library to the DoP consists of the files dop.lib and

libdop.a. It offers the DoP interface as well as several auxiliary processes.

LOCAL CONFIGURATION FILE. The file dop.local.config.inc. It contains

the location of the machine a DoP interface is running on. These values

should be passed to the DoP interface as parameters.

NETWORK CHANNEL. An emulation of an occam channel where the processes

who are connected to it are distributed on different machines in the internet.

These processes are called end points.

NORMAL ANY TO ONE CHANNEL. A network channel which implements Any to

One semantics. This means that there can be several writers but only one

reader.

OPEN. An instruction to open a Connection between a client and a server.

READER. An end point of a network channel which reads from it.

RECONNECTION. Connecting an anonymous writer to an anonymous reader

after having exchanged its channel location.

REGISTRATION. The end points of a network channel have to tell the DoP

interface of which type they are. This process is called registration.

REQUEST. An instruction to perform a writing operation from a Connection

client to the Connection server.

77

RESPONSE. An instruction to perform a writing operation from the Connection

server to a Connection client.

RETYPING. Converting the data type of network data. Done by conversion

processes.

SERVER. See “Connection server”.

WRITER. An end point of a network channel which writes to it.

