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Abstract

As a possible extension to his Haskell Object Observation Debugger Hood [7], Andy
Gill has described the “dynamic viewing of structures”, stepping through observa-
tions instead of accumulating them into a static view. Starting from this idea, we
have implemented and released an animation back-end for Hood, called GHood.
Instead of the dynamic textual visualisation based on pretty-printing proposed in
[7], our back-end features a dynamic graphical visualisation, based on a simple
tree layout algorithm. This paper reviews the main aspects of Hood, gives a brief
introduction to GHood’s features and summarises our experience so far.

The visualisation of program behaviour via animations of data structure obser-
vations has uses for program comprehension and exposition, in development, de-
bugging and education. We find that the graphical structure facilitates orientation
even when textual labels are no longer readable due to scaling, suggesting advan-
tages over a purely textual visualisation. A novel application area is opened by the
use of GHood as an applet on web pages — discussions of Haskell program behaviour,
e.g., in educational online material or in explanations of functional algorithms, can
now easily be augmented with graphical animations of the issues being discussed.

1 Well-typed programs don’t go anywhere — or do they?

The war-cry of static typing is that “well-typed programs don’t go wrong”, but
sometimes the question is “where does this well-typed program go?”, requiring
a more detailed understanding of program behaviour.

For a surprisingly long time, Haskell programmers have been deprived of
tools that would enable them to investigate the behaviour of their programs at
a suitable level of abstraction. This lack of tool support, especially in the areas
of debugging and profiling, has been quoted as one of the reasons “why no one
uses functional languages” [18]. In the context of Haskell profiling, the lack has
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not been felt quite so urgently, because increasingly sophisticated lower-level
tools have continued to appear (support still varies between implementations,
though, and tools are implementation-specific). Still, there is a discrepancy:
if programs are written in a nice high-level language, why do their dynamic
aspects have to be studied in low-level terms of stack- and heap-usage? And
in the area of debugging, the situation has only just started to improve.

A recent survey [3] compares three tools for tracing and debugging of lazy
functional programs: Hat [20], Freja [13], and Hood [7]. All of these systems
offer inspection facilities at a level close to the programming language, based
on different forms of execution traces, and can be characterised on the basis
of the questions they help to answer. Hat? takes wrong program output as
starting points, enabling users to trace backwards through reduction sequences
(“where did this result or output come from?”). Freja supports a technique
known as declarative debugging, involving users in a dialogue that narrows
down to the source of errors (“this part of your program gives the following
result. Is this correct (yes/no)?”). For Hood, it is useful to imagine a data-flow
model of functional program execution, with parameters flowing into operators
or functions and results flowing out. On this basis, programmers can use Hood
to insert probes into their programs to monitor or observe the flow of data at
runtime (“what kind of data structure is flowing through here?”).

Tracing tools offer high-level views into Haskell program executions. Focus-
ing on different aspects of program behaviour, the existing tools complement
each other, but it turns out that they all provide essentially static views of
program execution traces, highlighting logical connections between interme-
diate terms instead of execution dynamics. As a possible extension to Hood,
Andy Gill described the “dynamic viewing of structures”, stepping through
observations using a textual form of visualisation based on pretty-printing [7].
Gill implemented and demonstrated a browser back-end for Hood, based on
this idea (the back-end itself is available from the Haskell CVS repository, but
it is not supported by the Hood observation library, as released in July 2000;
that Haskell library implements the observation combinator by accumulating
observations and printing a static view at the end of program runs).

We are here concerned with extending the usefulness of Hood (the most
recent of these tools, and also the only implementation-independent one) by
adding dynamic views of observation traces. Starting from Gill’s idea, and
building on the Hood observation library, we have implemented and released
a graphical animation back-end for Hood, called GHood. Instead of a dy-
namic textual visualisation based on pretty-printing, our back-end features a
dynamic graphical visualisation, based on a simple tree layout algorithm. Af-
ter reviewing the main aspects of Hood, this paper gives a brief introduction
to GHood’s features, demonstrates some of the new applications enabled by
GHood by way of two small examples, and summarises our experience so far.

2 Hat has since been extended considerably, and now supports several models of tracing,
implemented on top of a single program execution trace (cf. Section 5.1, as well as [19,20]).
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2 Hood — goodbye trace, hello observe

The pseudo-function trace :: String -> a -> a — not part of any Haskell
language definition, but supported by all Haskell implementations — is sup-
posed to be acting as an identity with a String-label. When evaluated, it
returns its second parameter, but also prints its label as a side-effect. Rem-
iniscent of the print-statements with which imperative programmers inspect
their programs in the absence of proper debuggers, side-effecting output can
thus be used to generate a trace of the execution of a Haskell program.

But in the end, unconstrained use of side-effecting input/output operations
is no more suitable for debugging than for any other kind of input/output in a
lazy functional language. Functional input/output has moved on to more sys-
tematic, declarative means of expression, which require to make effects visible
in the structure, and thus in the type of programs (Chapter 3 of [16] aims to
give a logical reconstruction of the main lines in this development). But this is
exactly what prevents the use of these more structured means of input/output
for debugging purposes, where one wants to inspect the behaviour of a given
program, without having to restructure it into something else first.

Enter Hood (Haskell Object Observation Debugger). One way of under-
standing Hood is via a line of reasoning similar to that which led to today’s
functional input/output systems — it is not the idea of side-effecting opera-
tions that is at fault, it is their undisciplined use that causes problems. As the
requirements of debugging differ from those of standard input/output, a simi-
lar line of reasoning will not necessarily lead to similar solutions. In standard
usage, input/output is part of the program and should be reflected in its type
structure whereas, for debugging purposes, the input/output-operations are
part of the workbench used to inspect the program, and the original program
should be disturbed as little as possible.

Developing this idea, Hood consists of a fairly complex library with a
relatively simple interface. In fact, the type of the major function has not
changed much: observe :: Observable a => String -> a -> a. Similar
to trace, observe acts as an identity with a String label. But the similari-
ties end here — calls to trace effectively imitate imperative print-statements,
whereas calls to observe capture the intention behind print-style-debugging
(indicating interest in intermediate values) in a declarative way, leaving the
“how” of capturing and presenting information to the implementation. The
combination of observe and its observation and presentation library elimi-
nates all the major deficiencies of trace:

(i) (a) With trace, all information is communicated via the String parame-
ter. Programmers have to add code to inspect parts of their program,
and to incorporate the inspection results into the String labels.

(b) With observe, instances of the Observable class handle all aspects
of program inspection, offering a much more convenient high-level
interface. The String parameter is just used as a label.
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(ii) (a) The extra inspection code needed to feed information into trace
labels implies non-trivial program modifications, which run the risk
of introducing bugs and changing strictness properties in the process.

(b) Predefined instances for most standard types and a combinator ap-
proach to user-defined instances of Observable imply smaller pro-
gram modifications and ensure that strictness properties of the pro-
gram under inspection are not affected by the use of observe.

(iii) (a) When evaluated, trace immediately attempts to output its label.
Under a lazy evaluation strategy, this may cause other traced expres-
sions to be evaluated, and the order of output can be confusing.

(b) Evaluation of observe causes information to be captured, but this is
decoupled from presentation and output. In Hood, the observation
events are post-processed when the observed program has terminated
— observations are grouped by their labels into comprehensive sum-
maries, which are pretty-printed as partially-known data structures.

For the full details, readers are referred to the Hood paper and documen-
tation [7,8], but for a two-parameter constructor C' in an algebraic data type,
the general mechanism can be illustrated by the following pseudo-code:

observer (C z y) = Aposition -> unsafePerformIO $
do sendEvent <observed constructor C' at position position>
return (C (observer z position.0) (observer y position.l))

where observer is a helper function called by observe (initialising position),
and position records the position of the current subexpression in the observed
data structure. The definition is strict in the observed (sub-)structure, forcing
its evaluation to weak head normal form, but only if the weak head normal
form of the whole expression is required by the evaluation context. On this
occasion, the observer generates an observation event, tagged with the po-
sition information, wraps any constructor parameters in new observers, and
returns the observed constructor to the evaluation context.

All those implementation details are hidden behind suitable monads and
combinators, offering a simple user-level interface, and observers for most
standard types are predefined. The (predefined) instance of Observable for
lists may serve to illustrate that it is straightforward, if somewhat tedious, to
make new types observable:

instance (Observable a) => Observable [a] where
observer (a:as) send ":" (return (:) << a << as)
observer [] send "[1" (return [])

Using observe is equally straightforward (run0 :: I0 a -> I0 () runs
an I0-script while taking care of observation event processing):

import Observe
main = run0 $§ print $ observe "just a list" [1..4::Intl
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3 GHood — seeing what your program does

Using a small set of commonly implemented extensions to standard Haskell,
Hood instruments existing Haskell implementations to generate observation
data during program evaluation, and when the observed program terminates,
the stream of observation events is postprocessed and pretty-printed. The
result is a portable library that can be used with the full Haskell language.

However, there is more information in the stream of observation events
than is utilised in the vanilla version of Hood. Each observation event conveys
three kinds of information:

(i) what constructor or constant is observed?
(ii) where is this part of a data structure located?
(iii) when is this part of a data structure observed?

Hood uses location information (where) to collate related observations and
then pretty-prints the collection of partial information (what) about the data
structures under observation. The original Hood publication [7] mentions “We
have an extension to the released version of HOOD, that includes a browser
that allows dynamic viewing of structures.” and includes screenshots showing
dynamic pretty-printing, but this combination has yet to be released? .

For GHood, we have taken Gill’s idea of using the when information of
observation events as a basis for animating observations as our point of depar-
ture. GHood can be characterised as a new back-end for Hood’s observation
library — instead of textual visualisation, based on pretty-printing, we have
chosen a graphical form of visualisation, based on a simple tree-layout algo-
rithm. The visualisation consists of displaying the structure under observation
as a tree, and the animation refines the display whenever an observation event
adds information. With the potential exception of functions (see section 4.2),
all Haskell types are of the (recursive) sum-of-products kind, and thus have a
simple mapping to a tree representation. This is not always the most natural
mapping — e.g., GHood currently renders Strings as binary lists of characters.

3.1 Implementation

We have added extension hooks in the Hood observation library: apart from
initialisation and finalisation, these hooks enable additional processing of ob-
servation events, either individually, as each observation occurs (extending the
sendEvent used in observer), or on the event stream as a whole, between
program termination and Hood’s pretty-printing. These hooks give fairly good
control over the production and formatting of observation logs and could be
used by other postprocessing tools. No further modifications of Hood’s obser-

3 nhc98 comes bundled with pre-release versions of the browser (from the Haskell CVS
repository) and the Hood observation library, the latter modified to produce the XML-
based input expected by the browser (referred to as THood in section 5.1).
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Fig. 1. GHood screenshot

vation library are necessary — the Haskell interface remains unchanged.

Using these hooks, the observation log is made available in a text file. To
keep parsing of these logs in our back-end simple, log files consist of one line
of plain text per observation event, giving position information and type of
observation (observation label, demand for evaluation, constructor or func-
tion) for each event, as well as observation-type-specific information (arity
and constructor name for observations of constructors, label text for observa-
tion labels). Observation logs can then be processed, visualised and animated
in our graphical back-end GHood. The hooks give a choice between online
and offline generation of external logs, with associated trade-offs: On current
machines, the slow-down of programs by file i/o during evaluation in the on-
line variant appears to be more substantial than the extra space usage by the
offline version, so the latter is the default. The online version remains useful
when GHood is used to debug programs that do not terminate successfully: on
ghc, Hood manages to process the observation log anyway, capturing abnor-
mal termination via exceptions, but on other Haskell implementations, only
our online version of Hood generates an external log in these cases.

The GHood viewer itself is Java-based, ensuring availability on most plat-
forms that support Haskell implementations, and it can be used with any
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Haskell implementation that supports Hood (plus hooks). The graphical user
interface (figure 1) is straightforward, comprising a drawing panel in which
partially observed structures are displayed using a tree-layout algorithm, and
a few buttons to play, stop, reset, and single-step the animation (forwards or
backwards), or to print snapshots (printing produces bitmap-style Postscript,
so export of vectorised encapsulated Postscript was added for use in print pub-
lications). When observation trees get large, they can be scaled down, or the
panel can be scrolled, providing survey views or access to parts of the struc-
tures under observation. To provide for comprehensible automatic stepping
on different platforms, controlable delays have be added between observation
events in automatic animation. In the following, we focus on the observation
trees, as shown in the drawing panel, but produced by the EPS export.

The main reason for implementing our own viewer was that existing graph
drawing tools -as far as they have not gone commercial- appear to be lim-
ited to certain platforms or specialised towards pretty, reasonably fast (a few
seconds) layout, whereas our application required portability and a quick and
simple tree layout for an incrementally updated tree. The only complication
resulted from the single-threaded design of Java’s GUI libraries (event han-
dlers are scheduled non-preemptively). Fortunately, GHood can be decom-
posed into two threads (observation tree update and GUI), only one of which
requires access to the GUI, but both threads operate on the observation tree.
Synchronising the threads on a per-node basis, with an atomic transaction
corresponding to the processing of each observation event, appears to give a
reasonable compromise between GUI responsiveness and animation progress
while avoiding erroneous displays of partially updated trees.

GHood can be used as a standalone Java application or as a Java applet in
web pages, and the production and visualisation of observation event logs can
be decoupled. This means that online course material, documentation and
publications of functional algorithms can be enhanced with dynamic visuali-
sations without requiring a Haskell implementation on the browser side.

3.2  Observations about unsafePerformI0 and extension hooks

In the implementation of observe, the non-standard, but commonly imple-
mented, pseudo-function unsafePerformI0 :: I0 a -> ais used to turn an
effect (logging an observation event), documented in the type of an expression,
into a side-effect, so that the expression tagged with a call to observe can be
used just as the original expression.

Traditionally, unsafePerformIO is seen as a means to extend programs
with impure operations in such a way that their use, as seen from the evalu-
ating context, can be shown to be uncritical (the prefix unsafe is meant to
document this proof obligation). In the case of observers, however, the idea is
to leave the program under observation entirely undisturbed while extending
the implementation that runs the program. In other words, unsafePerformI0
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can also be seen as a hook provided in the Haskell evaluation mechanism.

This hook is used in observe to instrument the evaluator so that it per-
forms useful logging functions when evaluating structures under obervation.
And just as Hood uses an implementation hook to reuse and extend the func-
tionality of existing Haskell implementations, GHood uses hooks in Hood to
reuse the observation functionality while extending it for purposes of graph-
ical visualisation. Such implementation extension hooks enormously simplify
the implementation of portable tools, and it would seem worthwhile to create
and standardise a catalogue of such hooks across Haskell implementations,
moving towards portable tools that can plug into different implementations,
using only the standardised extension interfaces.

Once it is understood that unsafePerformI0 functions as an extension
hook in the underlying implementation, other uses become possible as well.
Instead of just logging the evaluation of some expression, the hook could be
used to wait for user input before continuing the evaluation. Such user input
could even be used to modify the structure under observation before passing
it on to the evaluation context, enabling interactive debugging.

In the specific context of GHood, another useful implementation hook
would be to the memory manager, permitting GHood to show when struc-
tures become unobservable. According to the documentation (module Weak in
HsLibs), addFinalizer :: a -> I0 () -> I0 () should do just that. This
operation should associate an IO-script with an expression, so that the script
is guaranteed to be run after the expression gets garbage collected. Unfor-
tunately, implementation optimisations currently subvert this operation for
most types, rendering it unusable in the general form.

4 GHood applications, by examples

To demonstrate the opportunities opened by GHood, we choose two examples
that display non-obvious behaviour but have either been analysed recently
(the breadth-first numbering problem) or can be assumed to be well-known to
Haskell programmers (the interaction of non-strict evaluation with the use of
foldl as a pattern for tail recursion). We can thus focus on the visualisation
and on the information that can be derived from it. Both of the following
subsections can also be seen as examples of how descriptions of functional
algorithms can be augmented with animations of program behaviour. To avoid
page-filling series of snapshots, we occasionally resort to radio-style textual
commentaries of animations that do not easily fit into the static publication
format here. Online versions of the examples discussed here are provided
on the GHood home page*, and readers are strongly encouraged to use the
online animations side by side with the text here (for completeness, and to
give a rough impression of the graphical animations, samples of reduced-size

4 http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/GHood/
8
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Fig. 2. End-of-run observation of breadth-first numbering

snapshot series are provided in the appendix of this paper).

4.1  Breadth-first numbering revisited

As a first small example, consider the breadth-first numbering problem pro-
posed in a recent functional pearl [14] as “an interesting toy problem that
exposes a blind spot common to many —perhaps most— functional program-
mers”. The problem is stated as follows:

Given a tree T, create a new tree of the same shape, but with the values at
the nodes replaced by the numbers 1...|T| in breadth-first order.

Readers who have not come across this problem before are encouraged
to try finding a solution for themselves before reading on (our Haskell code
is in Appendix A). Originally, we tried to animate our solutions more to
gain insight into the practicalities of visualisation than in the expectation to
learn anything new about the problem. As a first illustration, figure 2 shows
observations of two trees, one before and one after breadth-first numbering,
in the final state of the animation. All observations are grouped under a root
node, which also gives the name of the observation file. Below the root node
come observation labels (the String parameters to the function observe),
followed by tree-representations of the observed Haskell structures.

The observation labels are underlined and coloured blue®, constructors
and constants are coloured black, unobserved subexpressions (thunks) are
shown as red boxes. Thunks under observation are represented as orange
boxes with red outlines until their weak head normal form becomes available,
and the thunk is replaced by some constructor. The typical lifecycle of a node
is from “not yet inspected” (red, closed box) to “under observation, but weak
head normal form not yet available” (orange, open box) to some constructor
(black constructor label).

Trees are either empty (E) or nodes (N) with left and right subtree and
some label, so the display in figure 2 gives the information expected from the

5 Presentation scheme changed for publication, to facilitate readability of both colour and
greyscale renderings (red and orange appear as dark and light shades of grey, respectively).
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task2Events.log(33/76)
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Fig. 3. A middle-of-run strictness problem

task1Events.log(33/76)

after before

o
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Fig. 4. Strictness problem solved?

problem specification, in that only the shape, but not the node labels of the
input tree need to be inspected to construct the resulting tree, in which nodes
are labeled with positive integers in breadth-first order.

The surprise came while inspecting intermediate stages of the animation
— figure 3 shows an extreme situation in the middle of the run. The thunk
which will evaluate to the tree after renumbering is represented as an opened
box, indicating that it is being inspected by the evaluation context, but that
its weak-head normal form has not yet become available. It has been in that
state all the way from just after the start, while more and more of the shape of
the input tree has been observed. In other words, this solution has an extreme
strictness problem, inspecting parts of the input long before they should be
needed! Only the very next step will replace the thunk under inspection by a
node labeled N, with three unobserved thunks as subnodes, so no part of the
result tree becomes available for observation until after all observations of the
input tree shape have taken place.

Once the animation had so drastically brought this strictness problem to
our attention, improving the program was not too difficult. Choosing roughly
the same stage in a run of the modified program, the intermediate observation
in figure 4 shows the difference quite clearly (watching the observed structures
unfold dynamically during animation, it is almost impossible not to notice the
difference between the two programs): parts of the resulting tree have become
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available for observation, right down to the first complete non-trivial sub-tree
at the left, while still not all of the input tree shape has been observed.

In spite of the drastic improvement, a careful inspection of the animation
for the new version shows that it still does not behave as one might expect.
The relabeled tree is observed in depth-first order, whereas the input tree
is observed in breadth-first order. At first, that looks reasonable: the prob-
lem specification calls for a breadth-first traversal of the input tree, and the
printing routine traverses the result in depth-first order. On second thought,
though, only the computation of the new labels should depend on a breadth-first
traversal of the input, and printing the result should give the whole leftmost
branch of the tree before inspecting any node labels.

At this point, we need to explain our approach to the problem and the
differences between the versions. In our earliest attempts, we did indeed ex-
perience the blind spot discussed by Okasaki, though not for the reasons listed
by him. Instead, our road-block was that any solution seems to involve two
different views of the input trees: whereas the problem specification clearly
calls for a breadth-first traversal, the easy way to describe a recursive algo-
rithm over the trees follows their recursive structure — in depth-first order!
Our very first solution side-stepped the issue in an overcautiously systematic
approach, restructuring the input tree into a list of levels, then doing the
relabeling (straightforward in this form), and finally rebuilding a tree of the
original structure, with the new labels. But once we had managed to find at
least one solution to Okasaki’s problem, and identified our own blind spot on
the way, we then sought to get rid of the blind spot by constructing a more
suitable solution. This led to the variants described in the present paper (the
original brute-force solution had similar strictness problems).

The new approach does not impose a breadth-first traversal on the input
tree, but instead follows its natural recursive structure, generating a pool of
“things to do” on the way. The tasks -one for each subtree- are connected
by data-dependencies which represent the breadth-first traversal constraint,
and it is left to the inspection of the result tree to actually cause those tasks
to be evaluated, in a co-routine-like fashion. In other words, the producer
of relabeled trees consumes the input trees in a depth-first traversal, and any
consumer of the result tree will implicitly (by the virtues of lazy evaluation and
the data dependencies set up by the producer) cause a breadth-first traversal
to take place. This decoupling of the two conflicting traversals solves our
blind-spot problem and gives a concise first variant of a solution, called task1
(figures A.2, A.6, 4).

After reading Okasaki’s comments [14], we noticed that his suggestion
about replacing two-way queues by unidirectional queues in languages that
do not support matching on both ends applied to our task pool (represented
as a list, with an awkward use of splitAt to pattern-match at its back end).
So taskl became task2 (figures A.3, A.5, 3) — and acquired the extreme
strictness problem described earlier: Okasaki’s workaround maintains queues
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task1newEvents.log(27/76)
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N N e

Fig. 5. Strictness problem solved!

in reversed order (so that elements can be taken from the output ends using
pattern-matching), which happens to put the relabeled top node at the very
end of the queue, so that the whole task queue has to be processed -and the
whole input tree be observed- to get to the very first node of the result tree.

Switching back to our original variant got rid of this problem, but left
another, only slightly more subtle strictness problem: to show the result tree
up to the first label, as in figure 4, it should not be necessary to observe three
levels of nodes in the input tree. The node labeled 4 in the result is the first at
level three, so observing two levels of the input tree should suffice to compute
the label! Perusing the animation again gives the embarrassing insight: just
traversing the structure of the result tree seems to trigger the breadth-first
traversal of the input tree, even before any labels are inspected. And indeed,
this variant takes the result structure from the task pool that was set up to
enforce the breadth-first traversal. Separately passing the structure of the
input tree and filling in the labels computed on demand solves this problem,
and the animation of our final variant, taskinew (figures A.4, A.7, 5), exhibits
a nice, demand-driven pattern of observations.

Note that this kind of dynamic strictness problem, where parts of inputs
are demanded too early, differs from the kind of problems that could be inves-
tigated using static strictness information (is a part of input ever demanded or
not at all?). If the iteration bounds that guarantee termination of a strictness
inference system can be increased in cases where termination is obvious for
other reasons, the best information such a system could give corresponds to
that deducible from figure 2. But that information is the same for all variants
of the solution!

4.2 A well-known strictness problem

Recursive algorithms over lists can often be expressed more concisely as folds,
avoiding explicitly recursive definitions. For lists, there are two standard fold
operators, foldr and foldl, which combine the list elements by right- and left-
associative operators, respectively. More generally, a fold operator replaces
constructors in a parameter structure by operators of appropriate arity, thus
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foldIEvents.log(66/66) foldl'Events.log(66/66)
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Fig. 6. foldl versus foldl’ - tail recursion with (non-)strict accumulator

expressing the recursive structure of the algorithm in terms of the recursive
structure of its input. Viewed in these more general terms, foldr expresses
a standard recursion along the list structure, whereas foldl expresses a tail
recursion with an accumulator. Such tail recursions are usually associated
with constant stack-usage.

foldr op ¢ [] =c
foldr op ¢ (x:xs) = x ‘op‘ (foldr op c xs)

foldl op ¢ [] =c
foldl op ¢ (x:xs) = foldl op (op c x) xs

As many Haskell programmers discover for the first time in more complex
programs, this idea does not quite work — for large inputs their programs can
run out of stack space in spite of the careful use of tail recursion! This is
quite a common experience, and so it seems worthwhile to see how much of
the problem reveals itself by careful analysis of an example, using only the
graphical animation of observations. The reader should keep in mind that
this subsection is not concerned with new aspects of folds — rather, it serves
to illustrate the novel ways of explaining more or less well-known properties
of functional algorithms, made possible by visualisation tools such as GHood.

Figure 6 (left) shows an end-of-animation snapshot of the call:

observe "foldl" foldl (+) O [1..4::Int]
13
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To make up for the lack of animation here, nodes in this figure are annotated
with superscripts giving the number of observation events between the begin-
ning of their observation and the availability of their weak head normal form
(shown only if that number exceeds one). As in Hood, the observed part of a
function is presented as a finite map of input/output pairs. Those pairs are
labeled with arrows here, so FUN{6->FUN{4->10},3->FUN{3->6}, ..} repre-
sents a function f that, when applied to 6, returned a function that, when
applied to 4, returned 10 (f was also applied to 3, and returned a function
that, when applied to 3, returned 6). The overall picture tells us that foldl
is a ternary function, mapping a binary function (itself applied four times, as
there are four pairs in its map) to a function, that maps the integer 0 to a
function, that maps the list [1,2,3,4] to the integer 10.

In the animation, several phases can be distinguished. First, foldl itself is
observed to reveal its arity, then evaluation demands that its result be observed
(the box corresponding to this thunk is opened). Before this becomes available,
the spine of the input list is observed in full, which in itself is a stumbling block
in many programs operating on lists of substantial size: the whole length of the
input list is created in memory before any other computations take place (the
spine of the list can be collected immediately, but the thunks for its elements
take up space, even though these elements are not yet about to be inspected).
Using foldr would avoid this problem, at the expense of linear stack usage.

Next, observation of the result of applying the binary operator is de-
manded, leading to a demand for the first parameter of this application. This,
in turn, demands observation of the result of another application of the opera-
tor, and so on, creating a chain of thunks under observation until the demand
for the first parameter of the fourth application is fulfilled by observing the
second parameter to foldl. After that point, the chain unwinds step by step,
demanding successive observations of all input list elements before, finally, the
result of the call to foldl becomes observable.

Returning to the annotated snapshot in figure 6 (left), we see that some 58
events passed during observation of the final result, 10, and that the chain con-
sisted of computing, starting in this sequence 6+4->10, 3+3->6, 1+2->3, and
0+1->1, and terminating in reversed order, taking 42, 31, 20, and 9 observed
steps, respectively. In summary, the call to foldl was indeed tail recursive,
but it only observed the spine of the input list and delivered a thunk involving
the list elements as an interim result. Evaluating this thunk then unfolded
another, implicit recursion (corresponding to the evaluation of a nested arith-
metical expression) with just the kind of linearly growing stack-usage (the
chain of opened boxes) we wanted to avoid.

The obvious countermeasure is to force evaluation of the accumulator to
avoid this split into a tail-recursive thunk construction and a not tail-recursive
evaluation of that thunk, e.g., by using the call-by-value applicator $!:

foldl’ op c¢ [] =cC
foldl’ op ¢ (x:xs) (foldl’ op $! (op c x)) xs
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The new annotated end-of-animation snapshot in figure 6 (right) already
indicates a major change. With the exception of the final result, no more
than 9 observation events occur between the beginning of a node observation
and the availability of its weak head normal form. As those delays roughly
correspond to stack usage, getting rid of the ghost-recursion has established
the bound on stack usage that was the original goal. The order of applications
of the binary operator seems to have changed as well.

Going through the full animation sequence shows further differences: the
spine and elements of the input list are now inspected in a stepwise fash-
ion, interleaved with applications of the binary operator, now in the sequence
0+1->1, 1+2->3, 3+3->6, and 6+4->10. This ordering ensures that intermedi-
ate results are already available when demanded by the next application and
is the result of forcing the evaluation of the accumulator. So, not only has the
unbounded use of stack space been avoided, but a space leak (observing the
full spine of the input list -thus creating implicit thunks for all elements- long
before its elements are inspected) has been plugged as well.

4.8  Summary, and further examples

The examples in this section have been chosen to be small, relatively well-
known, yet displaying interesting behaviour and illustrating different aspects
of GHood. In the case of breadth-first numbering, animation of observations
was used during algorithm development and helped to discover unexpected
properties of early program variants, as well as pointing to the source of the
problems. In the case of foldl, the algorithm and problems are usually con-
sidered to be well-known, but resurface with surprising reliability, and the
animation was used to demonstrate and explain how a tail-recursive function
could still lead to linear resource usage for intermediate structures. The ex-
amples differ in another notable aspect: for breadth-first numbering, the tree
layout imposed by GHood naturally matches the trees in the problem, whereas
the tree layout is rather less natural for foldl.

In both examples, observation of unexpected behaviour could be traced
back to problems and led to modifications of the programs observed. It would
be misleading, though, to assume that the main use of GHood was in debug-
ging — it just happens that understanding what a program does can be a useful
asset in debugging (declarative debugging, as in Freja [13], suggests that such
an understanding is not always necessary). For a nice example of how ani-
mation of observations can aid program comprehension outside of debugging,
readers are again referred to the GHood home page: the online examples in-
clude an animated observation of Colin Runciman’s Haskell implementation
of the “wheel sieve” algorithm for generating prime numbers [17]. The pro-
gram is considerably more complex than the examples discussed here, and the
animation provides a nice complement to the discussion in the JFP paper.
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5 Evaluation, related and further work

5.1 FEzxperience, feedback, and evaluation

After some internal testing at UKC, first versions of GHood were made avail-
able to the Haskell community in January 2001. Since then, we have received
a lot of positive feedback, very few feature requests, and problem reports
have mostly been limited to problems with the Java 2 runtime installations
on which our viewer depends. This suggests that the tool, while far from per-
fect, is already considered good enough to fill its niche. In other words, while
our current users might welcome refinements of the current features, such im-
provements will not be considered essential unless they reflect changes in the
basic approach. Our plans for GHood are thus limited to completion of the
modifications currently under development (see below), to be incorporated in
a final release later this year.

In March, we also had the opportunity to visit® the functional program-
ming group in York and take part in a repetition of the usability study de-
scribed in [3], with updated variants of the same tools. Though limited to
case studies in debugging, the experiment provided a host of useful feedback
and ideas. The most important outcome was that the tools (Freja, Hat, and
GHood) had actually managed to explore, and partially fill, different niches in
the area of debugging Haskell programs. Each tool was useful for debugging,
but each tool was useful in a different way, and more than once, we would
have wanted an easy way to switch from one tool to another — not only with
the same Haskell implementation, but in the same debugging session, taking
the current debugging state and investigating it from a different perspective.
As the Hat trace seems to contain most of the information needed for each
of the tools, the York group has now started to move in that direction, and
first results are visible in the new Hat toolsuite bundled with the just-released
nhc98-1.04 [20,19] (the suite includes a variant of Hood-style observation, im-
plemented on top of Hat’s redex trails instead of Hood’s observation library).

In the following, we distinguish between Hood -the Haskell library released
in July 2000, GHood -the graphical back-end for Hood described in this paper,
and THood, by which we refer to the version of Hood that comes bundled
with nhc. The latter includes Gill’s textual browser from the Haskell CVS
repository, and a pre-release version of the Hood library, modified to generate
the XML input expected by the browser. In its current pre-release form,
THood suffers from differences to the released Hood (this is easily repaired)
and from a lack of automated animation (only single-stepping forwards and
backwards and jumps to beginning and end of observations are provided).

All Hood backends inherit the core functionality and some limitations from
the library. In practice, the most annoying limitation is the need to inspect
and modify the source code in order to import the module Observe and to

6 This visit was supported by EPSRC grant number GR/M81953.
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define instances of the class Observable for all non-standard data types, as
far as values of these types need to be observed (this set of types needs to
be closed with respect to embedded types). Further modifications include
a call to run0 in main and running the implementation with options indi-
cating extensions beyond Haskell 98. In contrast to calls to observe, which
indicate programmer intentions, these modifications are implied, boring, and
error-prone. Even though errors introduced in the process are isolated from
the program, easily spotted and fixed, they could be avoided entirely by au-
tomating these tasks (Malcolm Wallace suggested using Drift to generate the
instances of Observable). The main problem with calls to observe is to
identify program positions where such calls will provide useful information.

The York experiment was limited to debugging, and as far this is con-
cerned, the most useful feature of GHood surprisingly turned out to be infor-
mation about what is not there: again and again, unevaluated thunks provided
shortcuts to spotting bugs (one example was a bugged compiler in which a
symboltable lookup managed to return values without the symboltable ever
being observed). Both Hood and THood indicate unevaluated thunks as sim-
ple underscores, and neither shows temporal relations between different obser-
vations (Hood has no animation, THood treats observations under different
labels separately). GHood, in contrast, displays unevaluated thunks in clearly
visible red, and animates all observations under a single root node, facilitating
comprehension of interrelationships. Deriving information from non-available
data (thunks) seems to take some getting-used-to, though: the important con-
nection is that Hood-based tools show what the program sees, so if GHood
does not show the value of a thunk, there is no need for the debugger to know
the value, simply because the program never asks for that value.

Of the tools in the experiment, GHood seemed to cope best with large
structures, but it was not entirely without problems in this regard: scaling
(both in time and in space) is useful because the graphical structure supports
orientation even when textual labels are no longer readable, but because of
this graphical structure, small structures are not represented as compactly as
in Hood or THood. If THood would be extended with automated animation,
it would be at an advantage for small, not inherently tree-like structures, such
as the observation of foldl. For slightly larger observations, such as the lazy
wheel sieve, THood’s compact representation can no longer entirely make up
for the lack of scaling (scaling the pretty-printed representation to point size
would give a graphic represention without much structure, but it would be
interesting to compare that representation to GHood’s).

GHood extends Hood, so the static pretty-printed observations are still
available to complement the dynamic graphic visualisation, but some graphs,
especially Strings, should be represented more compactly, to improve read-
ability. Another problem concerns navigation in large structures: the stan-
dard two-scrollbars solution is rather unsuited for concurrently navigating in
both dimensions and needs to be replaced, and although both survey views
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and zooming to details are currently supported, they should not exclude each
other. On a related note, we should point out that Hood-based animation
tools not only enable programmers to focus on the parts of the program to
be observed, decoupling program size from the size of observations. To some
extent, the level of abstraction at which to animate program observations
can also be controlled: at the level described in section 3, entirely different
approaches to the breadth-first numbering problem, such as the brute-force
level-and-reconstruct approach, will display similar behaviour, even though
their behaviour would differ substantially under more detailed observations.

Other issues include online versus offline generation of observation logs (cf.
section 3.1), observability of n-conversion (observe "f" f shares a single ob-
servation label between all uses of f, whereas \x->observe "f" f x creates
separate observation labels for each call), the need to remove calls to observe
to avoid clutter (GHood should be extended to permit selective observation),
and the need for “packaging” of observations, preserving the connection be-
tween them (for instance, several local variable bindings in a function body).

As mentioned earlier, the approach taken by Hood and GHood does not in
principle exclude interactive debugging, and the February 2001 release of Hugs
(www.haskell.org/hugs) offers support for a built-in variant of Hood, called
HugsHood, which heads in this direction by supporting breakpoints. Similarly,
there is no fundamental reason against online visualisation (during program
execution) but our current offline approach to visualisation has opened new
application areas beyond debugging.

5.2  Other related work

The idea to visualise and animate the execution of functional programs in or-
der to gain insights into their behaviour is an old one. For an overview of the
problems and opportunities see Sandra Foubister’s thesis [5]. We are not aware
of a survey covering this area, but various proposals and even implementations
have been put forward, including Foubister’s “hint” tool and an animation of
a G-machine implementation using the graph layout tool daVinci [15], not to
mention proposals for specially designed visual functional languages. More re-
cent incarnations of the idea include a graphical debugger/tracer in the Curry
Integrated Development EnviRonment CIDER [11], and the Kiel Interactive
Evaluation Laboratory [2] for a simple first-order subset of ML. For com-
pleteness, text-based navigation through reduction sequences should also be
mentioned, as in the DrScheme environment [4] or in the reduction systems
in the Berkling and Kluge tradition [10].

Animation of observations in GHood is distinctly different from traditional
text- or graphics-based animation or navigation of reduction sequences. Com-
paring our experience with GHood and with textual single-stepping through
reduction sequences, as afforded, e.g., by the reduction systems developed by
Kluge et. al. [10,6], we find both disadvantages and advantages.
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At first, the disadvantages seem overwhelming: without any extra effort by
programmers, reduction systems provide a direct experience of the operational
semantics, as well as navigation, editing, and selective reduction of parts of
intermediate programs in a reduction sequence. GHood, as a back-end for
Hood, only animates observations of intermediate structures. Observations
are approximations of weak head normal forms of those intermediates, and
the animation shows the sequence in which parts of structures under observa-
tion are inspected. This allows only indirect conclusions about the program
behaviour. In practice, it can be rather difficult to try and infer the algorithm
from the visualisation alone but, starting with a conjecture or some approxi-
mate understanding of the program behaviour, it tends to be straightforward
to confirm or refute such hypotheses in the visualisation.

On the positive side, graphical visualisation is more suitable for overviews
of larger programs and of animation sequences, where textual information
is no longer readable. The observational approach also makes it easier to
focus visualisation on interesting aspects of program behaviour, excluding both
unobserved parts of programs and intermediate expression representations on
the way to weak head normal forms. Nevertheless, observation graphs for
realistic programs grow quickly, demanding further work on the user interface.

The general problem faced by developers of execution monitoring tools is
the need to use (and most likely create) specially instrumented implementa-
tions. As a consequence of the efforts involved, such specialised implementa-
tions tend to support only small subsets of the original languages, visualisation
often takes place at the implementation level, and the specialised implemen-
tations do not evolve with the language and its standard implementations.
Tools based on specialised implementations are by definition not portable,
and if separate implementations are needed for normal and for visualisation
use, differences in evaluation mechanisms may occur.

Another alternative is to use a separate evaluator with built-in execution
animation facilities and to provide mappings between subsets of that evalu-
ator’s language and subsets of the language to be extended with execution
monitoring. Wolfram Kahl has demonstrated this approach with his term-
graph-based program development and transformation environment HOPS [9],
but it means that two evaluators, their languages, and the mapping between
them have to be kept in synch, not to mention portability issues.

Hood avoids all these problems by using a commonly implemented im-
plementation hook (unsafePerformI0) to instrument existing Haskell imple-
mentations, reusing and extending their functionality. The resulting library is
portable and can be used with the full Haskell language. GHood uses hooks
in Hood to reuse the observation functionality while extending it for purposes
of dynamic graphical visualisation, using Java as a widely available imple-
mentation platform. Reflecting on the success of these hook-based solutions,
implementation hooks turn out to be (application-specific) residues of more
general meta-programming infra-structure.
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In language communities with successful tool-building traditions, such as
Lisp, Prolog, and Smalltalk, tool development seems to rely on well-developed
infra-structures for meta-programming and reflection. At a prototype stage,
the key idea is to write a meta-interpreter (between a few lines and a page
of code for these languages) that reuses existing implementation functional-
ity, and then to instrument the meta-interpreter for purposes of monitoring
(animation in our case). Successful prototype tools can then be implemented
more efficiently, often using standard techniques. To achieve efficiency, the
meta-interpreter should delegate standard functionality to the standard eval-
uator with as little overhead as possible. In such embedded meta-interpreters,
only the extra functionality (e.g., for program monitoring) incurs interpreta-
tive overhead, and if suitable extension interfaces to the standard evaluator
are available (aka reflection or introspection capabilities), the meta-interpreter
becomes the standard interpreter, instrumented via its extension hooks.

In the context of declarative debugging, Naish and Barbour [12] have used
this idea to design a “portable lazy functional declarative debugger” which
could be implemented in the functional language to be debugged, assuming a
single impure primitive, called dirt (display intermediate reduced term).

Haskell neither supports reflection” nor does it offer well-documented in-
terfaces to implementation functionality (cf. the SML/NJ Compiler structure
[1]), or other typical parts of a meta-programming infra-structure. Its syntax
is more complex than Lisp’s S-expressions, and reusable parsers for full Haskell
have only recently started to appear, but the parsers in the various Haskell
implementations remain practically unaccessible; all Haskell implementations
internally build up a symbol-table, associating identifiers with attributes, such
as types or strictness, but there is no standard interface by which Haskell pro-
grams could load a Haskell program and query the symbol-table information.

6 Conclusions

GHood is a new back-end for Hood, providing graphical visualisation and an-
imation of Haskell program execution. Unlike traditional approaches to graph
reduction animation, GHood is not based on a special-purpose implementa-
tion, but extends and reuses existing Haskell implementations, via Hood. The
visualisation itself is also different, in that it does not animate reductions of
terms to normal form, but inspection of terms by their evaluation contexts:
instead of evolution of a term through intermediate representations, an anima-
tion shows refinement of information about a term in a single representation.

Portable tools such as Hood and GHood depend critically on being able
to instrument and thus reuse existing Haskell implementations by means of
extension hooks, and the ease with which tool implementers can reuse existing

7 How to do this properly in a statically typed, pure, and non-strict functional language is
another research direction that would merit more attention
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implementation functionality has an important impact on the development of
tools for Haskell. We suggest that a common (implementation-independent)
infra-structure for meta-programming and reflection in Haskell, with standard
interfaces to implementation functionality, could improve the basis for Haskell
tool development, and that both the general framework and specific imple-
mentation extension hooks should become a focus of research.

In the present paper, we have focussed on illustrating the way in which
GHood can be used to help comprehension of Haskell program behaviour,
using small examples from everyday practice. Our own experience and feed-
back from users shows that dynamic observation of intermediate structures is
a useful addition to the Haskell programmer’s toolbox. Although the ‘d’ in
Hood stands for “debugger”, we prefer to see GHood as a workbench: Haskell
programmers can use it to set up and perform experiments involving dynamic
aspects of their programs. Such experiments can be used to validate theories
of program behaviour or they can deliver the data points from which such the-
ories can be abstracted. For both uses, experiments have to be set up and the
data be interpreted carefully, so Hood and GHood are tools that can inform
thinking about programs, but they cannot replace such thinking.

We hope to see GHood or similar tools for the visualisation of functional
program behaviour used in education (online course material), documentation,
and publication (online supplements to articles on functional algorithms). In-
structors might want to consider the motivational aspect as well — several
correspondents commented the first pre-releases with the words “GHood is
cool!”. Another correspondent remarked “finally, I can show my colleagues
what non-strict evaluation means”.
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A Source code and animation sequences

A note on the use of animation sequences: online animations for all examples
are available on the GHood home page. Snapshot samples of animation sequences
are included in this appendix for archival reasons, but as the static medium cannot
portray the advantages of dynamic visualisation, the online animations should be
preferred, if at all possible. Readers without access to the online animations will
find it helpful to print or display this appendix separately from the main text, so
that they can see both side by side without having to jump back and forth.

import Observe
data Tree a = E | N (Tree a) a (Tree a) deriving (Show)

instance Observable a => Observable (Tree a) where
observer E = gend "E" (return E)
observer (N1 x r) = send "N" (return N << 1 << x << r)

main = print0 $ observe "after" $ bfnum $ observe "before" xxx
where { xxx = Nxx 2 xx; xx =Nx1x; x=NEOE}Z}

Fig. A.1. task-based breadth-first numbering, common prefix
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-- for non-empty tree, fork out immediate subtrees (1,r) as
-- new tasks, build result from sub-results (1’,r’)

task n "[] E =@ ,L[ ,E)

task n “[1’,r’] (W1l xr) = (n+1,[1,r],N 1’ n )

taskM n [] = []
taskM n (t:ts) = t’:rs’
where
(n’,tp’,t’) =task nrt
ts’ = taskM n’ (ts++tp’)
(rs’,r) = splitAt (length ts) ts’

bfnum t = head $ taskM (1::Integer) [t]

Fig. A.2. taskl — task-based breadth-first numbering, first attempt

(n ,rs,I[] ,E)
(n+1,rs,[1,r],N 1’ n r’)

task n “rs E
task n “(r’:1’:rs) (N1 x r)

taskM n [] = [1
taskM n (t:ts) = rs’++[t’]
where
(n’,rs’,tp’,t’) = task n ts’ t
ts’ = taskM n’ (ts++tp’)

bfnum t = head $ taskM (1::Integer) [t]

Fig. A.3. task2 — task-based breadth-first numbering, more elegant?

task n ~[] E
task n “"[1°,r’] (N1 x r)

(n ,[I ,E)
(n+1,[1,r]1,N 1’ n r’)

taskM n [] =0
taskM n (t:ts) = t’:rs’
where
(n’,tp’,t’) = task nr t
ts’ = taskM n’ (ts++tp’)
(rs’,r) = gplitAt (length ts) ts’
fillln E “E = E

£fillIn (N1 _r) (N 1’ x* r’) N (fillIn 1 1’) x’ (fillIn r r’)

bfnum t = fillIn t $ head $ taskM (1::Integer) [t]

Fig. A.4. tasklnew — task-based breadth-first numbering, improved!
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Fig. A.7. taskinew: steps 2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, ...and 76
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Fig. A.8. foldl steps 2, 9, 18, 24, 29, 41, 47, 53 and 66
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