
GHood { Graphi
al Visualisation andAnimation of Haskell Obje
t ObservationsClaus Reinke 1Computing Laboratory, University of KentCanterbury, UKAbstra
tAs a possible extension to his Haskell Obje
t Observation Debugger Hood [7℄, AndyGill has des
ribed the \dynami
 viewing of stru
tures", stepping through observa-tions instead of a

umulating them into a stati
 view. Starting from this idea, wehave implemented and released an animation ba
k-end for Hood,
alled GHood.Instead of the dynami
 textual visualisation based on pretty-printing proposed in[7℄, our ba
k-end features a dynami
 graphi
al visualisation, based on a simpletree layout algorithm. This paper reviews the main aspe
ts of Hood, gives a briefintrodu
tion to GHood's features and summarises our experien
e so far.The visualisation of program behaviour via animations of data stru
ture obser-vations has uses for program
omprehension and exposition, in development, de-bugging and edu
ation. We �nd that the graphi
al stru
ture fa
ilitates orientationeven when textual labels are no longer readable due to s
aling, suggesting advan-tages over a purely textual visualisation. A novel appli
ation area is opened by theuse of GHood as an applet on web pages { dis
ussions of Haskell program behaviour,e.g., in edu
ational online material or in explanations of fun
tional algorithms,
annow easily be augmented with graphi
al animations of the issues being dis
ussed.1 Well-typed programs don't go anywhere { or do they?The war-
ry of stati
 typing is that \well-typed programs don't go wrong", butsometimes the question is \where does this well-typed program go?", requiringa more detailed understanding of program behaviour.For a surprisingly long time, Haskell programmers have been deprived oftools that would enable them to investigate the behaviour of their programs ata suitable level of abstra
tion. This la
k of tool support, espe
ially in the areasof debugging and pro�ling, has been quoted as one of the reasons \why no oneuses fun
tional languages" [18℄. In the
ontext of Haskell pro�ling, the la
k has1 mailto:
.reinke�uk
.a
.uk http://www.
s.uk
.a
.uk/people/staff/
r3/(a

epted for Haskell workshop)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/91967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reinkenot been felt quite so urgently, be
ause in
reasingly sophisti
ated lower-leveltools have
ontinued to appear (support still varies between implementations,though, and tools are implementation-spe
i�
). Still, there is a dis
repan
y:if programs are written in a ni
e high-level language, why do their dynami
aspe
ts have to be studied in low-level terms of sta
k- and heap-usage? Andin the area of debugging, the situation has only just started to improve.A re
ent survey [3℄
ompares three tools for tra
ing and debugging of lazyfun
tional programs: Hat [20℄, Freja [13℄, and Hood [7℄. All of these systemso�er inspe
tion fa
ilities at a level
lose to the programming language, basedon di�erent forms of exe
ution tra
es, and
an be
hara
terised on the basisof the questions they help to answer. Hat 2 takes wrong program output asstarting points, enabling users to tra
e ba
kwards through redu
tion sequen
es(\where did this result or output
ome from?"). Freja supports a te
hniqueknown as de
larative debugging, involving users in a dialogue that narrowsdown to the sour
e of errors (\this part of your program gives the followingresult. Is this
orre
t (yes/no)?"). For Hood, it is useful to imagine a data-
owmodel of fun
tional program exe
ution, with parameters
owing into operatorsor fun
tions and results
owing out. On this basis, programmers
an use Hoodto insert probes into their programs to monitor or observe the
ow of data atruntime (\what kind of data stru
ture is
owing through here?").Tra
ing tools o�er high-level views into Haskell program exe
utions. Fo
us-ing on di�erent aspe
ts of program behaviour, the existing tools
omplementea
h other, but it turns out that they all provide essentially stati
 views ofprogram exe
ution tra
es, highlighting logi
al
onne
tions between interme-diate terms instead of exe
ution dynami
s. As a possible extension to Hood,Andy Gill des
ribed the \dynami
 viewing of stru
tures", stepping throughobservations using a textual form of visualisation based on pretty-printing [7℄.Gill implemented and demonstrated a browser ba
k-end for Hood, based onthis idea (the ba
k-end itself is available from the Haskell CVS repository, butit is not supported by the Hood observation library, as released in July 2000;that Haskell library implements the observation
ombinator by a

umulatingobservations and printing a stati
 view at the end of program runs).We are here
on
erned with extending the usefulness of Hood (the mostre
ent of these tools, and also the only implementation-independent one) byadding dynami
 views of observation tra
es. Starting from Gill's idea, andbuilding on the Hood observation library, we have implemented and releaseda graphi
al animation ba
k-end for Hood,
alled GHood. Instead of a dy-nami
 textual visualisation based on pretty-printing, our ba
k-end features adynami
 graphi
al visualisation, based on a simple tree layout algorithm. Af-ter reviewing the main aspe
ts of Hood, this paper gives a brief introdu
tionto GHood's features, demonstrates some of the new appli
ations enabled byGHood by way of two small examples, and summarises our experien
e so far.2 Hat has sin
e been extended
onsiderably, and now supports several models of tra
ing,implemented on top of a single program exe
ution tra
e (
f. Se
tion 5.1, as well as [19,20℄).2

Reinke2 Hood { goodbye tra
e, hello observeThe pseudo-fun
tion tra
e :: String -> a -> a { not part of any Haskelllanguage de�nition, but supported by all Haskell implementations { is sup-posed to be a
ting as an identity with a String-label. When evaluated, itreturns its se
ond parameter, but also prints its label as a side-e�e
t. Rem-inis
ent of the print-statements with whi
h imperative programmers inspe
ttheir programs in the absen
e of proper debuggers, side-e�e
ting output
anthus be used to generate a tra
e of the exe
ution of a Haskell program.But in the end, un
onstrained use of side-e�e
ting input/output operationsis no more suitable for debugging than for any other kind of input/output in alazy fun
tional language. Fun
tional input/output has moved on to more sys-temati
, de
larative means of expression, whi
h require to make e�e
ts visiblein the stru
ture, and thus in the type of programs (Chapter 3 of [16℄ aims togive a logi
al re
onstru
tion of the main lines in this development). But this isexa
tly what prevents the use of these more stru
tured means of input/outputfor debugging purposes, where one wants to inspe
t the behaviour of a givenprogram, without having to restru
ture it into something else �rst.Enter Hood (Haskell Obje
t Observation Debugger). One way of under-standing Hood is via a line of reasoning similar to that whi
h led to today'sfun
tional input/output systems { it is not the idea of side-e�e
ting opera-tions that is at fault, it is their undis
iplined use that
auses problems. As therequirements of debugging di�er from those of standard input/output, a simi-lar line of reasoning will not ne
essarily lead to similar solutions. In standardusage, input/output is part of the program and should be re
e
ted in its typestru
ture whereas, for debugging purposes, the input/output-operations arepart of the workben
h used to inspe
t the program, and the original programshould be disturbed as little as possible.Developing this idea, Hood
onsists of a fairly
omplex library with arelatively simple interfa
e. In fa
t, the type of the major fun
tion has not
hanged mu
h: observe :: Observable a => String -> a -> a. Similarto tra
e, observe a
ts as an identity with a String label. But the similari-ties end here {
alls to tra
e e�e
tively imitate imperative print-statements,whereas
alls to observe
apture the intention behind print-style-debugging(indi
ating interest in intermediate values) in a de
larative way, leaving the\how" of
apturing and presenting information to the implementation. The
ombination of observe and its observation and presentation library elimi-nates all the major de�
ien
ies of tra
e:(i) (a) With tra
e, all information is
ommuni
ated via the String parame-ter. Programmers have to add
ode to inspe
t parts of their program,and to in
orporate the inspe
tion results into the String labels.(b) With observe, instan
es of the Observable
lass handle all aspe
tsof program inspe
tion, o�ering a mu
h more
onvenient high-levelinterfa
e. The String parameter is just used as a label.3

Reinke(ii) (a) The extra inspe
tion
ode needed to feed information into tra
elabels implies non-trivial program modi�
ations, whi
h run the riskof introdu
ing bugs and
hanging stri
tness properties in the pro
ess.(b) Prede�ned instan
es for most standard types and a
ombinator ap-proa
h to user-de�ned instan
es of Observable imply smaller pro-gram modi�
ations and ensure that stri
tness properties of the pro-gram under inspe
tion are not a�e
ted by the use of observe.(iii) (a) When evaluated, tra
e immediately attempts to output its label.Under a lazy evaluation strategy, this may
ause other tra
ed expres-sions to be evaluated, and the order of output
an be
onfusing.(b) Evaluation of observe
auses information to be
aptured, but this isde
oupled from presentation and output. In Hood, the observationevents are post-pro
essed when the observed program has terminated{ observations are grouped by their labels into
omprehensive sum-maries, whi
h are pretty-printed as partially-known data stru
tures.For the full details, readers are referred to the Hood paper and do
umen-tation [7,8℄, but for a two-parameter
onstru
tor C in an algebrai
 data type,the general me
hanism
an be illustrated by the following pseudo-
ode:observer (C x y) = �position -> unsafePerformIO $do sendEvent <observed
onstru
tor C at position position>return (C (observer x position:0) (observer y position:1))where observer is a helper fun
tion
alled by observe (initialising position),and position re
ords the position of the
urrent subexpression in the observeddata stru
ture. The de�nition is stri
t in the observed (sub-)stru
ture, for
ingits evaluation to weak head normal form, but only if the weak head normalform of the whole expression is required by the evaluation
ontext. On thiso

asion, the observer generates an observation event, tagged with the po-sition information, wraps any
onstru
tor parameters in new observers, andreturns the observed
onstru
tor to the evaluation
ontext.All those implementation details are hidden behind suitable monads and
ombinators, o�ering a simple user-level interfa
e, and observers for moststandard types are prede�ned. The (prede�ned) instan
e of Observable forlists may serve to illustrate that it is straightforward, if somewhat tedious, tomake new types observable:instan
e (Observable a) => Observable [a℄ whereobserver (a:as) = send ":" (return (:) << a << as)observer [℄ = send "[℄" (return [℄)Using observe is equally straightforward (runO :: IO a -> IO () runsan IO-s
ript while taking
are of observation event pro
essing):import Observemain = runO $ print $ observe "just a list" [1..4::Int℄4

Reinke3 GHood { seeing what your program doesUsing a small set of
ommonly implemented extensions to standard Haskell,Hood instruments existing Haskell implementations to generate observationdata during program evaluation, and when the observed program terminates,the stream of observation events is postpro
essed and pretty-printed. Theresult is a portable library that
an be used with the full Haskell language.However, there is more information in the stream of observation eventsthan is utilised in the vanilla version of Hood. Ea
h observation event
onveysthree kinds of information:(i) what
onstru
tor or
onstant is observed?(ii) where is this part of a data stru
ture lo
ated?(iii) when is this part of a data stru
ture observed?Hood uses lo
ation information (where) to
ollate related observations andthen pretty-prints the
olle
tion of partial information (what) about the datastru
tures under observation. The original Hood publi
ation [7℄ mentions \Wehave an extension to the released version of HOOD, that in
ludes a browserthat allows dynami
 viewing of stru
tures." and in
ludes s
reenshots showingdynami
 pretty-printing, but this
ombination has yet to be released 3 .For GHood, we have taken Gill's idea of using the when information ofobservation events as a basis for animating observations as our point of depar-ture. GHood
an be
hara
terised as a new ba
k-end for Hood's observationlibrary { instead of textual visualisation, based on pretty-printing, we have
hosen a graphi
al form of visualisation, based on a simple tree-layout algo-rithm. The visualisation
onsists of displaying the stru
ture under observationas a tree, and the animation re�nes the display whenever an observation eventadds information. With the potential ex
eption of fun
tions (see se
tion 4.2),all Haskell types are of the (re
ursive) sum-of-produ
ts kind, and thus have asimple mapping to a tree representation. This is not always the most naturalmapping { e.g., GHood
urrently renders Strings as binary lists of
hara
ters.3.1 ImplementationWe have added extension hooks in the Hood observation library: apart frominitialisation and �nalisation, these hooks enable additional pro
essing of ob-servation events, either individually, as ea
h observation o

urs (extending thesendEvent used in observer), or on the event stream as a whole, betweenprogram termination and Hood's pretty-printing. These hooks give fairly good
ontrol over the produ
tion and formatting of observation logs and
ould beused by other postpro
essing tools. No further modi�
ations of Hood's obser-3 nh
98
omes bundled with pre-release versions of the browser (from the Haskell CVSrepository) and the Hood observation library, the latter modi�ed to produ
e the XML-based input expe
ted by the browser (referred to as THood in se
tion 5.1).5

Reinke

Fig. 1. GHood s
reenshotvation library are ne
essary { the Haskell interfa
e remains un
hanged.Using these hooks, the observation log is made available in a text �le. Tokeep parsing of these logs in our ba
k-end simple, log �les
onsist of one lineof plain text per observation event, giving position information and type ofobservation (observation label, demand for evaluation,
onstru
tor or fun
-tion) for ea
h event, as well as observation-type-spe
i�
 information (arityand
onstru
tor name for observations of
onstru
tors, label text for observa-tion labels). Observation logs
an then be pro
essed, visualised and animatedin our graphi
al ba
k-end GHood. The hooks give a
hoi
e between onlineand o�ine generation of external logs, with asso
iated trade-o�s: On
urrentma
hines, the slow-down of programs by �le i/o during evaluation in the on-line variant appears to be more substantial than the extra spa
e usage by theo�ine version, so the latter is the default. The online version remains usefulwhen GHood is used to debug programs that do not terminate su

essfully: ongh
, Hood manages to pro
ess the observation log anyway,
apturing abnor-mal termination via ex
eptions, but on other Haskell implementations, onlyour online version of Hood generates an external log in these
ases.The GHood viewer itself is Java-based, ensuring availability on most plat-forms that support Haskell implementations, and it
an be used with any6

ReinkeHaskell implementation that supports Hood (plus hooks). The graphi
al userinterfa
e (�gure 1) is straightforward,
omprising a drawing panel in whi
hpartially observed stru
tures are displayed using a tree-layout algorithm, anda few buttons to play, stop, reset, and single-step the animation (forwards orba
kwards), or to print snapshots (printing produ
es bitmap-style Posts
ript,so export of ve
torised en
apsulated Posts
ript was added for use in print pub-li
ations). When observation trees get large, they
an be s
aled down, or thepanel
an be s
rolled, providing survey views or a

ess to parts of the stru
-tures under observation. To provide for
omprehensible automati
 steppingon di�erent platforms,
ontrolable delays have be added between observationevents in automati
 animation. In the following, we fo
us on the observationtrees, as shown in the drawing panel, but produ
ed by the EPS export.The main reason for implementing our own viewer was that existing graphdrawing tools -as far as they have not gone
ommer
ial- appear to be lim-ited to
ertain platforms or spe
ialised towards pretty, reasonably fast (a fewse
onds) layout, whereas our appli
ation required portability and a qui
k andsimple tree layout for an in
rementally updated tree. The only
ompli
ationresulted from the single-threaded design of Java's GUI libraries (event han-dlers are s
heduled non-preemptively). Fortunately, GHood
an be de
om-posed into two threads (observation tree update and GUI), only one of whi
hrequires a

ess to the GUI, but both threads operate on the observation tree.Syn
hronising the threads on a per-node basis, with an atomi
 transa
tion
orresponding to the pro
essing of ea
h observation event, appears to give areasonable
ompromise between GUI responsiveness and animation progresswhile avoiding erroneous displays of partially updated trees.GHood
an be used as a standalone Java appli
ation or as a Java applet inweb pages, and the produ
tion and visualisation of observation event logs
anbe de
oupled. This means that online
ourse material, do
umentation andpubli
ations of fun
tional algorithms
an be enhan
ed with dynami
 visuali-sations without requiring a Haskell implementation on the browser side.3.2 Observations about unsafePerformIO and extension hooksIn the implementation of observe, the non-standard, but
ommonly imple-mented, pseudo-fun
tion unsafePerformIO :: IO a -> a is used to turn ane�e
t (logging an observation event), do
umented in the type of an expression,into a side-e�e
t, so that the expression tagged with a
all to observe
an beused just as the original expression.Traditionally, unsafePerformIO is seen as a means to extend programswith impure operations in su
h a way that their use, as seen from the evalu-ating
ontext,
an be shown to be un
riti
al (the pre�x unsafe is meant todo
ument this proof obligation). In the
ase of observers, however, the idea isto leave the program under observation entirely undisturbed while extendingthe implementation that runs the program. In other words, unsafePerformIO7

Reinke
an also be seen as a hook provided in the Haskell evaluation me
hanism.This hook is used in observe to instrument the evaluator so that it per-forms useful logging fun
tions when evaluating stru
tures under obervation.And just as Hood uses an implementation hook to reuse and extend the fun
-tionality of existing Haskell implementations, GHood uses hooks in Hood toreuse the observation fun
tionality while extending it for purposes of graph-i
al visualisation. Su
h implementation extension hooks enormously simplifythe implementation of portable tools, and it would seem worthwhile to
reateand standardise a
atalogue of su
h hooks a
ross Haskell implementations,moving towards portable tools that
an plug into di�erent implementations,using only the standardised extension interfa
es.On
e it is understood that unsafePerformIO fun
tions as an extensionhook in the underlying implementation, other uses be
ome possible as well.Instead of just logging the evaluation of some expression, the hook
ould beused to wait for user input before
ontinuing the evaluation. Su
h user input
ould even be used to modify the stru
ture under observation before passingit on to the evaluation
ontext, enabling intera
tive debugging.In the spe
i�

ontext of GHood, another useful implementation hookwould be to the memory manager, permitting GHood to show when stru
-tures be
ome unobservable. A

ording to the do
umentation (module Weak inHsLibs), addFinalizer :: a -> IO () -> IO () should do just that. Thisoperation should asso
iate an IO-s
ript with an expression, so that the s
riptis guaranteed to be run after the expression gets garbage
olle
ted. Unfor-tunately, implementation optimisations
urrently subvert this operation formost types, rendering it unusable in the general form.4 GHood appli
ations, by examplesTo demonstrate the opportunities opened by GHood, we
hoose two examplesthat display non-obvious behaviour but have either been analysed re
ently(the breadth-�rst numbering problem) or
an be assumed to be well-known toHaskell programmers (the intera
tion of non-stri
t evaluation with the use offoldl as a pattern for tail re
ursion). We
an thus fo
us on the visualisationand on the information that
an be derived from it. Both of the followingsubse
tions
an also be seen as examples of how des
riptions of fun
tionalalgorithms
an be augmented with animations of program behaviour. To avoidpage-�lling series of snapshots, we o

asionally resort to radio-style textual
ommentaries of animations that do not easily �t into the stati
 publi
ationformat here. Online versions of the examples dis
ussed here are providedon the GHood home page 4 , and readers are strongly en
ouraged to use theonline animations side by side with the text here (for
ompleteness, and togive a rough impression of the graphi
al animations, samples of redu
ed-size4 http://www.
s.uk
.a
.uk/people/staff/
r3/toolbox/haskell/GHood/8

Reinke
task2Events.log(76/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3 N

E 7 E

before

N

N

N

E E

N

E E

N

N

E E

N

E EFig. 2. End-of-run observation of breadth-�rst numberingsnapshot series are provided in the appendix of this paper).4.1 Breadth-�rst numbering revisitedAs a �rst small example,
onsider the breadth-�rst numbering problem pro-posed in a re
ent fun
tional pearl [14℄ as \an interesting toy problem thatexposes a blind spot
ommon to many {perhaps most{ fun
tional program-mers". The problem is stated as follows:Given a tree T,
reate a new tree of the same shape, but with the values atthe nodes repla
ed by the numbers 1. . . jTj in breadth-�rst order.Readers who have not
ome a
ross this problem before are en
ouragedto try �nding a solution for themselves before reading on (our Haskell
odeis in Appendix A). Originally, we tried to animate our solutions more togain insight into the pra
ti
alities of visualisation than in the expe
tation tolearn anything new about the problem. As a �rst illustration, �gure 2 showsobservations of two trees, one before and one after breadth-�rst numbering,in the �nal state of the animation. All observations are grouped under a rootnode, whi
h also gives the name of the observation �le. Below the root node
ome observation labels (the String parameters to the fun
tion observe),followed by tree-representations of the observed Haskell stru
tures.The observation labels are underlined and
oloured blue 5 ,
onstru
torsand
onstants are
oloured bla
k, unobserved subexpressions (thunks) areshown as red boxes. Thunks under observation are represented as orangeboxes with red outlines until their weak head normal form be
omes available,and the thunk is repla
ed by some
onstru
tor. The typi
al life
y
le of a nodeis from \not yet inspe
ted" (red,
losed box) to \under observation, but weakhead normal form not yet available" (orange, open box) to some
onstru
tor(bla
k
onstru
tor label).Trees are either empty (E) or nodes (N) with left and right subtree andsome label, so the display in �gure 2 gives the information expe
ted from the5 Presentation s
heme
hanged for publi
ation, to fa
ilitate readability of both
olour andgreys
ale renderings (red and orange appear as dark and light shades of grey, respe
tively).9

Reinke
task2Events.log(33/76)

after before

N

N

N

E E

N

E E

N

N

E E

N

E EFig. 3. A middle-of-run stri
tness problem
task1Events.log(33/76)

after

N

N

N

E 4 E

before

N

N

N

E E

N

N

N NFig. 4. Stri
tness problem solved?problem spe
i�
ation, in that only the shape, but not the node labels of theinput tree need to be inspe
ted to
onstru
t the resulting tree, in whi
h nodesare labeled with positive integers in breadth-�rst order.The surprise
ame while inspe
ting intermediate stages of the animation{ �gure 3 shows an extreme situation in the middle of the run. The thunkwhi
h will evaluate to the tree after renumbering is represented as an openedbox, indi
ating that it is being inspe
ted by the evaluation
ontext, but thatits weak-head normal form has not yet be
ome available. It has been in thatstate all the way from just after the start, while more and more of the shape ofthe input tree has been observed. In other words, this solution has an extremestri
tness problem, inspe
ting parts of the input long before they should beneeded! Only the very next step will repla
e the thunk under inspe
tion by anode labeled N, with three unobserved thunks as subnodes, so no part of theresult tree be
omes available for observation until after all observations of theinput tree shape have taken pla
e.On
e the animation had so drasti
ally brought this stri
tness problem toour attention, improving the program was not too diÆ
ult. Choosing roughlythe same stage in a run of the modi�ed program, the intermediate observationin �gure 4 shows the di�eren
e quite
learly (wat
hing the observed stru
turesunfold dynami
ally during animation, it is almost impossible not to noti
e thedi�eren
e between the two programs): parts of the resulting tree have be
ome10

Reinkeavailable for observation, right down to the �rst
omplete non-trivial sub-treeat the left, while still not all of the input tree shape has been observed.In spite of the drasti
 improvement, a
areful inspe
tion of the animationfor the new version shows that it still does not behave as one might expe
t.The relabeled tree is observed in depth-�rst order, whereas the input treeis observed in breadth-�rst order. At �rst, that looks reasonable: the prob-lem spe
i�
ation
alls for a breadth-�rst traversal of the input tree, and theprinting routine traverses the result in depth-�rst order. On se
ond thought,though, only the
omputation of the new labels should depend on a breadth-�rsttraversal of the input, and printing the result should give the whole leftmostbran
h of the tree before inspe
ting any node labels.At this point, we need to explain our approa
h to the problem and thedi�eren
es between the versions. In our earliest attempts, we did indeed ex-perien
e the blind spot dis
ussed by Okasaki, though not for the reasons listedby him. Instead, our road-blo
k was that any solution seems to involve twodi�erent views of the input trees: whereas the problem spe
i�
ation
learly
alls for a breadth-�rst traversal, the easy way to des
ribe a re
ursive algo-rithm over the trees follows their re
ursive stru
ture { in depth-�rst order!Our very �rst solution side-stepped the issue in an over
autiously systemati
approa
h, restru
turing the input tree into a list of levels, then doing therelabeling (straightforward in this form), and �nally rebuilding a tree of theoriginal stru
ture, with the new labels. But on
e we had managed to �nd atleast one solution to Okasaki's problem, and identi�ed our own blind spot onthe way, we then sought to get rid of the blind spot by
onstru
ting a moresuitable solution. This led to the variants des
ribed in the present paper (theoriginal brute-for
e solution had similar stri
tness problems).The new approa
h does not impose a breadth-�rst traversal on the inputtree, but instead follows its natural re
ursive stru
ture, generating a pool of\things to do" on the way. The tasks -one for ea
h subtree- are
onne
tedby data-dependen
ies whi
h represent the breadth-�rst traversal
onstraint,and it is left to the inspe
tion of the result tree to a
tually
ause those tasksto be evaluated, in a
o-routine-like fashion. In other words, the produ
erof relabeled trees
onsumes the input trees in a depth-�rst traversal, and any
onsumer of the result tree will impli
itly (by the virtues of lazy evaluation andthe data dependen
ies set up by the produ
er)
ause a breadth-�rst traversalto take pla
e. This de
oupling of the two
on
i
ting traversals solves ourblind-spot problem and gives a
on
ise �rst variant of a solution,
alled task1(�gures A.2, A.6, 4).After reading Okasaki's
omments [14℄, we noti
ed that his suggestionabout repla
ing two-way queues by unidire
tional queues in languages thatdo not support mat
hing on both ends applied to our task pool (representedas a list, with an awkward use of splitAt to pattern-mat
h at its ba
k end).So task1 be
ame task2 (�gures A.3, A.5, 3) { and a
quired the extremestri
tness problem des
ribed earlier: Okasaki's workaround maintains queues11

Reinke
task1newEvents.log(27/76)

after

N

N

N

E 4 E

before

N

N

N

E E

N

Fig. 5. Stri
tness problem solved!in reversed order (so that elements
an be taken from the output ends usingpattern-mat
hing), whi
h happens to put the relabeled top node at the veryend of the queue, so that the whole task queue has to be pro
essed -and thewhole input tree be observed- to get to the very �rst node of the result tree.Swit
hing ba
k to our original variant got rid of this problem, but leftanother, only slightly more subtle stri
tness problem: to show the result treeup to the �rst label, as in �gure 4, it should not be ne
essary to observe threelevels of nodes in the input tree. The node labeled 4 in the result is the �rst atlevel three, so observing two levels of the input tree should suÆ
e to
omputethe label! Perusing the animation again gives the embarrassing insight: justtraversing the stru
ture of the result tree seems to trigger the breadth-�rsttraversal of the input tree, even before any labels are inspe
ted. And indeed,this variant takes the result stru
ture from the task pool that was set up toenfor
e the breadth-�rst traversal. Separately passing the stru
ture of theinput tree and �lling in the labels
omputed on demand solves this problem,and the animation of our �nal variant, task1new (�gures A.4, A.7, 5), exhibitsa ni
e, demand-driven pattern of observations.Note that this kind of dynami
 stri
tness problem, where parts of inputsare demanded too early, di�ers from the kind of problems that
ould be inves-tigated using stati
 stri
tness information (is a part of input ever demanded ornot at all?). If the iteration bounds that guarantee termination of a stri
tnessinferen
e system
an be in
reased in
ases where termination is obvious forother reasons, the best information su
h a system
ould give
orresponds tothat dedu
ible from �gure 2. But that information is the same for all variantsof the solution!4.2 A well-known stri
tness problemRe
ursive algorithms over lists
an often be expressed more
on
isely as folds,avoiding expli
itly re
ursive de�nitions. For lists, there are two standard foldoperators, foldr and foldl, whi
h
ombine the list elements by right- and left-asso
iative operators, respe
tively. More generally, a fold operator repla
es
onstru
tors in a parameter stru
ture by operators of appropriate arity, thus12

Reinke
foldlEvents.log(66/66)

foldl

FUN

->

FUN

->

6
36

FUN

->

4
3

10
42

->

3
25

FUN

->

3
3

6
31

->

1
14

FUN

->

2
3

3
20

->

0
3

FUN

->

1
3

1
9

FUN

->

0 FUN

->

:

1 :

2 :

3 :

4 []

10
58

foldl’Events.log(66/66)

foldl’

FUN

->

FUN

->

0
3

FUN

->

1
3

1
9

->

1 FUN

->

2
3

3
7

->

3 FUN

->

3
3

6
7

->

6 FUN

->

4
3

10
7

FUN

->

0 FUN

->

:

1 :

2 :

3 :

4 []

10
58

Fig. 6. foldl versus foldl' { tail re
ursion with (non-)stri
t a

umulatorexpressing the re
ursive stru
ture of the algorithm in terms of the re
ursivestru
ture of its input. Viewed in these more general terms, foldr expressesa standard re
ursion along the list stru
ture, whereas foldl expresses a tailre
ursion with an a

umulator. Su
h tail re
ursions are usually asso
iatedwith
onstant sta
k-usage.foldr op
 [℄ =
foldr op
 (x:xs) = x `op` (foldr op
 xs)foldl op
 [℄ =
foldl op
 (x:xs) = foldl op (op
 x) xsAs many Haskell programmers dis
over for the �rst time in more
omplexprograms, this idea does not quite work { for large inputs their programs
anrun out of sta
k spa
e in spite of the
areful use of tail re
ursion! This isquite a
ommon experien
e, and so it seems worthwhile to see how mu
h ofthe problem reveals itself by
areful analysis of an example, using only thegraphi
al animation of observations. The reader should keep in mind thatthis subse
tion is not
on
erned with new aspe
ts of folds { rather, it servesto illustrate the novel ways of explaining more or less well-known propertiesof fun
tional algorithms, made possible by visualisation tools su
h as GHood.Figure 6 (left) shows an end-of-animation snapshot of the
all:observe "foldl" foldl (+) 0 [1..4::Int℄13

ReinkeTo make up for the la
k of animation here, nodes in this �gure are annotatedwith supers
ripts giving the number of observation events between the begin-ning of their observation and the availability of their weak head normal form(shown only if that number ex
eeds one). As in Hood, the observed part of afun
tion is presented as a �nite map of input/output pairs. Those pairs arelabeled with arrows here, so FUN{6->FUN{4->10},3->FUN{3->6},..} repre-sents a fun
tion f that, when applied to 6, returned a fun
tion that, whenapplied to 4, returned 10 (f was also applied to 3, and returned a fun
tionthat, when applied to 3, returned 6). The overall pi
ture tells us that foldlis a ternary fun
tion, mapping a binary fun
tion (itself applied four times, asthere are four pairs in its map) to a fun
tion, that maps the integer 0 to afun
tion, that maps the list [1,2,3,4℄ to the integer 10.In the animation, several phases
an be distinguished. First, foldl itself isobserved to reveal its arity, then evaluation demands that its result be observed(the box
orresponding to this thunk is opened). Before this be
omes available,the spine of the input list is observed in full, whi
h in itself is a stumbling blo
kin many programs operating on lists of substantial size: the whole length of theinput list is
reated in memory before any other
omputations take pla
e (thespine of the list
an be
olle
ted immediately, but the thunks for its elementstake up spa
e, even though these elements are not yet about to be inspe
ted).Using foldr would avoid this problem, at the expense of linear sta
k usage.Next, observation of the result of applying the binary operator is de-manded, leading to a demand for the �rst parameter of this appli
ation. This,in turn, demands observation of the result of another appli
ation of the opera-tor, and so on,
reating a
hain of thunks under observation until the demandfor the �rst parameter of the fourth appli
ation is ful�lled by observing these
ond parameter to foldl. After that point, the
hain unwinds step by step,demanding su

essive observations of all input list elements before, �nally, theresult of the
all to foldl be
omes observable.Returning to the annotated snapshot in �gure 6 (left), we see that some 58events passed during observation of the �nal result, 10, and that the
hain
on-sisted of
omputing, starting in this sequen
e 6+4->10, 3+3->6, 1+2->3, and0+1->1, and terminating in reversed order, taking 42, 31, 20, and 9 observedsteps, respe
tively. In summary, the
all to foldl was indeed tail re
ursive,but it only observed the spine of the input list and delivered a thunk involvingthe list elements as an interim result. Evaluating this thunk then unfoldedanother, impli
it re
ursion (
orresponding to the evaluation of a nested arith-meti
al expression) with just the kind of linearly growing sta
k-usage (the
hain of opened boxes) we wanted to avoid.The obvious
ountermeasure is to for
e evaluation of the a

umulator toavoid this split into a tail-re
ursive thunk
onstru
tion and a not tail-re
ursiveevaluation of that thunk, e.g., by using the
all-by-value appli
ator $!:foldl' op
 [℄ =
foldl' op
 (x:xs) = (foldl' op $! (op
 x)) xs14

ReinkeThe new annotated end-of-animation snapshot in �gure 6 (right) alreadyindi
ates a major
hange. With the ex
eption of the �nal result, no morethan 9 observation events o

ur between the beginning of a node observationand the availability of its weak head normal form. As those delays roughly
orrespond to sta
k usage, getting rid of the ghost-re
ursion has establishedthe bound on sta
k usage that was the original goal. The order of appli
ationsof the binary operator seems to have
hanged as well.Going through the full animation sequen
e shows further di�eren
es: thespine and elements of the input list are now inspe
ted in a stepwise fash-ion, interleaved with appli
ations of the binary operator, now in the sequen
e0+1->1, 1+2->3, 3+3->6, and 6+4->10. This ordering ensures that intermedi-ate results are already available when demanded by the next appli
ation andis the result of for
ing the evaluation of the a

umulator. So, not only has theunbounded use of sta
k spa
e been avoided, but a spa
e leak (observing thefull spine of the input list -thus
reating impli
it thunks for all elements- longbefore its elements are inspe
ted) has been plugged as well.4.3 Summary, and further examplesThe examples in this se
tion have been
hosen to be small, relatively well-known, yet displaying interesting behaviour and illustrating di�erent aspe
tsof GHood. In the
ase of breadth-�rst numbering, animation of observationswas used during algorithm development and helped to dis
over unexpe
tedproperties of early program variants, as well as pointing to the sour
e of theproblems. In the
ase of foldl, the algorithm and problems are usually
on-sidered to be well-known, but resurfa
e with surprising reliability, and theanimation was used to demonstrate and explain how a tail-re
ursive fun
tion
ould still lead to linear resour
e usage for intermediate stru
tures. The ex-amples di�er in another notable aspe
t: for breadth-�rst numbering, the treelayout imposed by GHood naturally mat
hes the trees in the problem, whereasthe tree layout is rather less natural for foldl.In both examples, observation of unexpe
ted behaviour
ould be tra
edba
k to problems and led to modi�
ations of the programs observed. It wouldbe misleading, though, to assume that the main use of GHood was in debug-ging { it just happens that understanding what a program does
an be a usefulasset in debugging (de
larative debugging, as in Freja [13℄, suggests that su
han understanding is not always ne
essary). For a ni
e example of how ani-mation of observations
an aid program
omprehension outside of debugging,readers are again referred to the GHood home page: the online examples in-
lude an animated observation of Colin Run
iman's Haskell implementationof the \wheel sieve" algorithm for generating prime numbers [17℄. The pro-gram is
onsiderably more
omplex than the examples dis
ussed here, and theanimation provides a ni
e
omplement to the dis
ussion in the JFP paper.15

Reinke5 Evaluation, related and further work5.1 Experien
e, feedba
k, and evaluationAfter some internal testing at UKC, �rst versions of GHood were made avail-able to the Haskell
ommunity in January 2001. Sin
e then, we have re
eiveda lot of positive feedba
k, very few feature requests, and problem reportshave mostly been limited to problems with the Java 2 runtime installationson whi
h our viewer depends. This suggests that the tool, while far from per-fe
t, is already
onsidered good enough to �ll its ni
he. In other words, whileour
urrent users might wel
ome re�nements of the
urrent features, su
h im-provements will not be
onsidered essential unless they re
e
t
hanges in thebasi
 approa
h. Our plans for GHood are thus limited to
ompletion of themodi�
ations
urrently under development (see below), to be in
orporated ina �nal release later this year.In Mar
h, we also had the opportunity to visit 6 the fun
tional program-ming group in York and take part in a repetition of the usability study de-s
ribed in [3℄, with updated variants of the same tools. Though limited to
ase studies in debugging, the experiment provided a host of useful feedba
kand ideas. The most important out
ome was that the tools (Freja, Hat, andGHood) had a
tually managed to explore, and partially �ll, di�erent ni
hes inthe area of debugging Haskell programs. Ea
h tool was useful for debugging,but ea
h tool was useful in a di�erent way, and more than on
e, we wouldhave wanted an easy way to swit
h from one tool to another { not only withthe same Haskell implementation, but in the same debugging session, takingthe
urrent debugging state and investigating it from a di�erent perspe
tive.As the Hat tra
e seems to
ontain most of the information needed for ea
hof the tools, the York group has now started to move in that dire
tion, and�rst results are visible in the new Hat toolsuite bundled with the just-releasednh
98-1.04 [20,19℄ (the suite in
ludes a variant of Hood-style observation, im-plemented on top of Hat's redex trails instead of Hood's observation library).In the following, we distinguish between Hood -the Haskell library releasedin July 2000, GHood -the graphi
al ba
k-end for Hood des
ribed in this paper,and THood, by whi
h we refer to the version of Hood that
omes bundledwith nh
. The latter in
ludes Gill's textual browser from the Haskell CVSrepository, and a pre-release version of the Hood library, modi�ed to generatethe XML input expe
ted by the browser. In its
urrent pre-release form,THood su�ers from di�eren
es to the released Hood (this is easily repaired)and from a la
k of automated animation (only single-stepping forwards andba
kwards and jumps to beginning and end of observations are provided).All Hood ba
kends inherit the
ore fun
tionality and some limitations fromthe library. In pra
ti
e, the most annoying limitation is the need to inspe
tand modify the sour
e
ode in order to import the module Observe and to6 This visit was supported by EPSRC grant number GR/M81953.16

Reinkede�ne instan
es of the
lass Observable for all non-standard data types, asfar as values of these types need to be observed (this set of types needs tobe
losed with respe
t to embedded types). Further modi�
ations in
ludea
all to runO in main and running the implementation with options indi-
ating extensions beyond Haskell 98. In
ontrast to
alls to observe, whi
hindi
ate programmer intentions, these modi�
ations are implied, boring, anderror-prone. Even though errors introdu
ed in the pro
ess are isolated fromthe program, easily spotted and �xed, they
ould be avoided entirely by au-tomating these tasks (Mal
olm Walla
e suggested using Drift to generate theinstan
es of Observable). The main problem with
alls to observe is toidentify program positions where su
h
alls will provide useful information.The York experiment was limited to debugging, and as far this is
on-
erned, the most useful feature of GHood surprisingly turned out to be infor-mation about what is not there: again and again, unevaluated thunks providedshort
uts to spotting bugs (one example was a bugged
ompiler in whi
h asymboltable lookup managed to return values without the symboltable everbeing observed). Both Hood and THood indi
ate unevaluated thunks as sim-ple unders
ores, and neither shows temporal relations between di�erent obser-vations (Hood has no animation, THood treats observations under di�erentlabels separately). GHood, in
ontrast, displays unevaluated thunks in
learlyvisible red, and animates all observations under a single root node, fa
ilitating
omprehension of interrelationships. Deriving information from non-availabledata (thunks) seems to take some getting-used-to, though: the important
on-ne
tion is that Hood-based tools show what the program sees, so if GHooddoes not show the value of a thunk, there is no need for the debugger to knowthe value, simply be
ause the program never asks for that value.Of the tools in the experiment, GHood seemed to
ope best with largestru
tures, but it was not entirely without problems in this regard: s
aling(both in time and in spa
e) is useful be
ause the graphi
al stru
ture supportsorientation even when textual labels are no longer readable, but be
ause ofthis graphi
al stru
ture, small stru
tures are not represented as
ompa
tly asin Hood or THood. If THood would be extended with automated animation,it would be at an advantage for small, not inherently tree-like stru
tures, su
has the observation of foldl. For slightly larger observations, su
h as the lazywheel sieve, THood's
ompa
t representation
an no longer entirely make upfor the la
k of s
aling (s
aling the pretty-printed representation to point sizewould give a graphi
 represention without mu
h stru
ture, but it would beinteresting to
ompare that representation to GHood's).GHood extends Hood, so the stati
 pretty-printed observations are stillavailable to
omplement the dynami
 graphi
 visualisation, but some graphs,espe
ially Strings, should be represented more
ompa
tly, to improve read-ability. Another problem
on
erns navigation in large stru
tures: the stan-dard two-s
rollbars solution is rather unsuited for
on
urrently navigating inboth dimensions and needs to be repla
ed, and although both survey views17

Reinkeand zooming to details are
urrently supported, they should not ex
lude ea
hother. On a related note, we should point out that Hood-based animationtools not only enable programmers to fo
us on the parts of the program tobe observed, de
oupling program size from the size of observations. To someextent, the level of abstra
tion at whi
h to animate program observations
an also be
ontrolled: at the level des
ribed in se
tion 3, entirely di�erentapproa
hes to the breadth-�rst numbering problem, su
h as the brute-for
elevel-and-re
onstru
t approa
h, will display similar behaviour, even thoughtheir behaviour would di�er substantially under more detailed observations.Other issues in
lude online versus o�ine generation of observation logs (
f.se
tion 3.1), observability of �-
onversion (observe "f" f shares a single ob-servation label between all uses of f, whereas \x->observe "f" f x
reatesseparate observation labels for ea
h
all), the need to remove
alls to observeto avoid
lutter (GHood should be extended to permit sele
tive observation),and the need for \pa
kaging" of observations, preserving the
onne
tion be-tween them (for instan
e, several lo
al variable bindings in a fun
tion body).As mentioned earlier, the approa
h taken by Hood and GHood does not inprin
iple ex
lude intera
tive debugging, and the February 2001 release of Hugs(www.haskell.org/hugs) o�ers support for a built-in variant of Hood,
alledHugsHood, whi
h heads in this dire
tion by supporting breakpoints. Similarly,there is no fundamental reason against online visualisation (during programexe
ution) but our
urrent o�ine approa
h to visualisation has opened newappli
ation areas beyond debugging.5.2 Other related workThe idea to visualise and animate the exe
ution of fun
tional programs in or-der to gain insights into their behaviour is an old one. For an overview of theproblems and opportunities see Sandra Foubister's thesis [5℄. We are not awareof a survey
overing this area, but various proposals and even implementationshave been put forward, in
luding Foubister's \hint" tool and an animation ofa G-ma
hine implementation using the graph layout tool daVin
i [15℄, not tomention proposals for spe
ially designed visual fun
tional languages. More re-
ent in
arnations of the idea in
lude a graphi
al debugger/tra
er in the CurryIntegrated Development EnviRonment CIDER [11℄, and the Kiel Intera
tiveEvaluation Laboratory [2℄ for a simple �rst-order subset of ML. For
om-pleteness, text-based navigation through redu
tion sequen
es should also bementioned, as in the DrS
heme environment [4℄ or in the redu
tion systemsin the Berkling and Kluge tradition [10℄.Animation of observations in GHood is distin
tly di�erent from traditionaltext- or graphi
s-based animation or navigation of redu
tion sequen
es. Com-paring our experien
e with GHood and with textual single-stepping throughredu
tion sequen
es, as a�orded, e.g., by the redu
tion systems developed byKluge et. al. [10,6℄, we �nd both disadvantages and advantages.18

ReinkeAt �rst, the disadvantages seem overwhelming: without any extra e�ort byprogrammers, redu
tion systems provide a dire
t experien
e of the operationalsemanti
s, as well as navigation, editing, and sele
tive redu
tion of parts ofintermediate programs in a redu
tion sequen
e. GHood, as a ba
k-end forHood, only animates observations of intermediate stru
tures. Observationsare approximations of weak head normal forms of those intermediates, andthe animation shows the sequen
e in whi
h parts of stru
tures under observa-tion are inspe
ted. This allows only indire
t
on
lusions about the programbehaviour. In pra
ti
e, it
an be rather diÆ
ult to try and infer the algorithmfrom the visualisation alone but, starting with a
onje
ture or some approxi-mate understanding of the program behaviour, it tends to be straightforwardto
on�rm or refute su
h hypotheses in the visualisation.On the positive side, graphi
al visualisation is more suitable for overviewsof larger programs and of animation sequen
es, where textual informationis no longer readable. The observational approa
h also makes it easier tofo
us visualisation on interesting aspe
ts of program behaviour, ex
luding bothunobserved parts of programs and intermediate expression representations onthe way to weak head normal forms. Nevertheless, observation graphs forrealisti
 programs grow qui
kly, demanding further work on the user interfa
e.The general problem fa
ed by developers of exe
ution monitoring tools isthe need to use (and most likely
reate) spe
ially instrumented implementa-tions. As a
onsequen
e of the e�orts involved, su
h spe
ialised implementa-tions tend to support only small subsets of the original languages, visualisationoften takes pla
e at the implementation level, and the spe
ialised implemen-tations do not evolve with the language and its standard implementations.Tools based on spe
ialised implementations are by de�nition not portable,and if separate implementations are needed for normal and for visualisationuse, di�eren
es in evaluation me
hanisms may o

ur.Another alternative is to use a separate evaluator with built-in exe
utionanimation fa
ilities and to provide mappings between subsets of that evalu-ator's language and subsets of the language to be extended with exe
utionmonitoring. Wolfram Kahl has demonstrated this approa
h with his term-graph-based program development and transformation environment HOPS [9℄,but it means that two evaluators, their languages, and the mapping betweenthem have to be kept in syn
h, not to mention portability issues.Hood avoids all these problems by using a
ommonly implemented im-plementation hook (unsafePerformIO) to instrument existing Haskell imple-mentations, reusing and extending their fun
tionality. The resulting library isportable and
an be used with the full Haskell language. GHood uses hooksin Hood to reuse the observation fun
tionality while extending it for purposesof dynami
 graphi
al visualisation, using Java as a widely available imple-mentation platform. Re
e
ting on the su

ess of these hook-based solutions,implementation hooks turn out to be (appli
ation-spe
i�
) residues of moregeneral meta-programming infra-stru
ture.19

ReinkeIn language
ommunities with su

essful tool-building traditions, su
h asLisp, Prolog, and Smalltalk, tool development seems to rely on well-developedinfra-stru
tures for meta-programming and re
e
tion. At a prototype stage,the key idea is to write a meta-interpreter (between a few lines and a pageof
ode for these languages) that reuses existing implementation fun
tional-ity, and then to instrument the meta-interpreter for purposes of monitoring(animation in our
ase). Su

essful prototype tools
an then be implementedmore eÆ
iently, often using standard te
hniques. To a
hieve eÆ
ien
y, themeta-interpreter should delegate standard fun
tionality to the standard eval-uator with as little overhead as possible. In su
h embedded meta-interpreters,only the extra fun
tionality (e.g., for program monitoring) in
urs interpreta-tive overhead, and if suitable extension interfa
es to the standard evaluatorare available (aka re
e
tion or introspe
tion
apabilities), the meta-interpreterbe
omes the standard interpreter, instrumented via its extension hooks.In the
ontext of de
larative debugging, Naish and Barbour [12℄ have usedthis idea to design a \portable lazy fun
tional de
larative debugger" whi
h
ould be implemented in the fun
tional language to be debugged, assuming asingle impure primitive,
alled dirt (display intermediate redu
ed term).Haskell neither supports re
e
tion 7 nor does it o�er well-do
umented in-terfa
es to implementation fun
tionality (
f. the SML/NJ Compiler stru
ture[1℄), or other typi
al parts of a meta-programming infra-stru
ture. Its syntaxis more
omplex than Lisp's S-expressions, and reusable parsers for full Haskellhave only re
ently started to appear, but the parsers in the various Haskellimplementations remain pra
ti
ally una

essible; all Haskell implementationsinternally build up a symbol-table, asso
iating identi�ers with attributes, su
has types or stri
tness, but there is no standard interfa
e by whi
h Haskell pro-grams
ould load a Haskell program and query the symbol-table information.6 Con
lusionsGHood is a new ba
k-end for Hood, providing graphi
al visualisation and an-imation of Haskell program exe
ution. Unlike traditional approa
hes to graphredu
tion animation, GHood is not based on a spe
ial-purpose implementa-tion, but extends and reuses existing Haskell implementations, via Hood. Thevisualisation itself is also di�erent, in that it does not animate redu
tions ofterms to normal form, but inspe
tion of terms by their evaluation
ontexts:instead of evolution of a term through intermediate representations, an anima-tion shows re�nement of information about a term in a single representation.Portable tools su
h as Hood and GHood depend
riti
ally on being ableto instrument and thus reuse existing Haskell implementations by means ofextension hooks, and the ease with whi
h tool implementers
an reuse existing7 How to do this properly in a stati
ally typed, pure, and non-stri
t fun
tional language isanother resear
h dire
tion that would merit more attention20

Reinkeimplementation fun
tionality has an important impa
t on the development oftools for Haskell. We suggest that a
ommon (implementation-independent)infra-stru
ture for meta-programming and re
e
tion in Haskell, with standardinterfa
es to implementation fun
tionality,
ould improve the basis for Haskelltool development, and that both the general framework and spe
i�
 imple-mentation extension hooks should be
ome a fo
us of resear
h.In the present paper, we have fo
ussed on illustrating the way in whi
hGHood
an be used to help
omprehension of Haskell program behaviour,using small examples from everyday pra
ti
e. Our own experien
e and feed-ba
k from users shows that dynami
 observation of intermediate stru
tures isa useful addition to the Haskell programmer's toolbox. Although the `d' inHood stands for \debugger", we prefer to see GHood as a workben
h: Haskellprogrammers
an use it to set up and perform experiments involving dynami
aspe
ts of their programs. Su
h experiments
an be used to validate theoriesof program behaviour or they
an deliver the data points from whi
h su
h the-ories
an be abstra
ted. For both uses, experiments have to be set up and thedata be interpreted
arefully, so Hood and GHood are tools that
an informthinking about programs, but they
annot repla
e su
h thinking.We hope to see GHood or similar tools for the visualisation of fun
tionalprogram behaviour used in edu
ation (online
ourse material), do
umentation,and publi
ation (online supplements to arti
les on fun
tional algorithms). In-stru
tors might want to
onsider the motivational aspe
t as well { several
orrespondents
ommented the �rst pre-releases with the words \GHood is
ool!". Another
orrespondent remarked \�nally, I
an show my
olleagueswhat non-stri
t evaluation means".Referen
es[1℄ Standard ML of New Jersey, http://www.smlnj.org.[2℄ Berghammer, R. and M. Tiedt,Kiel Intera
tive Evaluation Laboratory, Te
hni
al report, Institute of ComputerS
ien
e and Applied Mathemati
s, Christian-Albre
hts-University, Kiel (1999),http://www.informatik.uni-kiel.de/~progsys/kiel.html.[3℄ Chitil, O., C. Run
iman and M. Walla
e, Freja, Hat and Hood - AComparative Evaluation of Three Systems for Tra
ing and Debugging LazyFun
tional Programs, in: Pro
eedings of the 12th International Workshop onImplementation of Fun
tional Languages, Aa
hen, Germany, September 4th -7th 2000, LNCS 2011, 2001, pp. 176{193.[4℄ Clements, J., M. Flatt and M. Felleisen, Modeling an Algebrai
 Stepper,in: Programming Languages and Systems, 10th European Symposium onProgramming, ESOP 2001 Held as Part of the Joint European Conferen
es onTheory and Pra
ti
e of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,Le
ture Notes in Computer S
ien
e 2028 (2001).21

Reinke[5℄ Foubister, S., \Graphi
al Appli
ation and Visualisation of Lazy Fun
tionalComputation ," Ph.D. thesis, Department of Computer S
ien
e, University ofYork (1995).[6℄ G�artner, D. and W. Kluge, �-RED+: An intera
tive
ompiling graph redu
tionsystem for an applied �-
al
ulus, Journal of Fun
tional Programming 6 (1996).[7℄ Gill, A., Debugging Haskell by Observing Intermediate Data Stru
tures, in:G. Hutton, editor, 2000 ACM SIGPLAN Haskell Workshop (2000).[8℄ Gill, A., The Haskell Obje
t Observation Debugger, http://www.haskell.org/hood/ (2000).[9℄ Kahl, W., HOPS { The Higher Obje
t Programming System, http://ist.unibw-muen
hen.de/kahl/HOPS/.[10℄ Kluge, W. E., A User's Guide for the Redu
tion System �-RED+, Te
hni
alReport 9419, Institute ofComputer S
ien
e and Applied Mathemati
s, Christian-Albre
hts-University,Kiel (1994), http://www.informatik.uni-kiel.de/~base/.[11℄ Koj, J., \Eine graphis
he Programmierumgebung f�ur deklarativeProgrammierspra
hen," Master's thesis, RWTH Aa
hen, Germany (2000),the Curry Integrated Development EnviRonment http://www.informatik.uni-kiel.de/~pak
s/
ider/.[12℄ Naish, L. and T. Barbour, Towards a portable lazy fun
tional de
larativedebugger, Australian Comp. S
ien
e Communi
ations 18 (1996), pp. 401{408.[13℄ Nilsson, H., \De
larative Debugging for Lazy Fun
tional Languages," Ph.D.thesis, Department of Computer and Information S
ien
e, Link�opingsUniversitet, S-581 83, Link�oping, Sweden (1998).[14℄ Okasaki, C., Breadth-First Numbering: Lessons from a Small Exer
ise inAlgorithm Design , in: International Conferen
e on Fun
tional ProgrammingICFP'2000, Montreal, Canada, 2000, pp. 131{136.[15℄ Panne, S., Graph Visualization with daVin
i, http://www.pms.informatik.uni-muen
hen.de/mitarbeiter/panne/haskell_libs/daVin
i.html.[16℄ Reinke, C., \Fun
tions, Frames, and Intera
tions {
ompleting a �-
al
ulus-based purely fun
tional language with respe
t to programming-in-the-large andintera
tions with runtime environments," Ph.D. thesis, Fa
ulty of Engineering,Christian-Albre
hts-University, Kiel (1997), Te
hni
al Report 9804, Instituteof Computer S
ien
e, May 1998, http://www.
s.uk
.a
.uk/people/staff/
r3/publi
ations/phd.html .[17℄ Run
iman, C., Lazy wheel sieves and spirals of primes, Journal of Fun
tionalProgramming 7 (1997), pp. 219{225.[18℄ Wadler, P., Fun
tional Programming: Why no one uses fun
tional languages,SIGPLAN Noti
es 33 (1998), pp. 23{27.22

Reinke[19℄ Walla
e, M., O. Chitil, T. Brehm and C. Run
iman, Multiple-View Tra
ingfor Haskell: a New Hat, in: ACM SIGPLAN Haskell Workshop, Firenze, Italy,2001.[20℄ York Fun
tional Programming Group, Hat - The Haskell Tra
er, http://www.
s.york.a
.uk/fp/hat/ (2001).A Sour
e
ode and animation sequen
esA note on the use of animation sequen
es: online animations for all examplesare available on the GHood home page. Snapshot samples of animation sequen
esare in
luded in this appendix for ar
hival reasons, but as the stati
 medium
annotportray the advantages of dynami
 visualisation, the online animations should bepreferred, if at all possible. Readers without a

ess to the online animations will�nd it helpful to print or display this appendix separately from the main text, sothat they
an see both side by side without having to jump ba
k and forth.

import Observedata Tree a = E | N (Tree a) a (Tree a) deriving (Show)instan
e Observable a => Observable (Tree a) whereobserver E = send "E" (return E)observer (N l x r) = send "N" (return N << l << x << r)main = printO $ observe "after" $ bfnum $ observe "before" xxxwhere { xxx = N xx 2 xx; xx = N x 1 x; x = N E 0 E }Fig. A.1. task-based breadth-�rst numbering,
ommon pre�x23

Reinke-- for non-empty tree, fork out immediate subtrees (l,r) as-- new tasks, build result from sub-results (l',r')task n ~[℄ E = (n ,[℄ ,E)task n ~[l',r'℄ (N l x r) = (n+1,[l,r℄,N l' n r')taskM n [℄ = [℄taskM n (t:ts) = t':rs'where(n',tp',t') = task n r tts' = taskM n' (ts++tp')(rs',r) = splitAt (length ts) ts'bfnum t = head $ taskM (1::Integer) [t℄Fig. A.2. task1 { task-based breadth-�rst numbering, �rst attempttask n ~rs E = (n ,rs,[℄ ,E)task n ~(r':l':rs) (N l x r) = (n+1,rs,[l,r℄,N l' n r')taskM n [℄ = [℄taskM n (t:ts) = rs'++[t'℄where(n',rs',tp',t') = task n ts' tts' = taskM n' (ts++tp')bfnum t = head $ taskM (1::Integer) [t℄Fig. A.3. task2 { task-based breadth-�rst numbering, more elegant?task n ~[℄ E = (n ,[℄ ,E)task n ~[l',r'℄ (N l x r) = (n+1,[l,r℄,N l' n r')taskM n [℄ = [℄taskM n (t:ts) = t':rs'where(n',tp',t') = task n r tts' = taskM n' (ts++tp')(rs',r) = splitAt (length ts) ts'fillIn E ~E = EfillIn (N l _ r) ~(N l' x' r') = N (fillIn l l') x' (fillIn r r')bfnum t = fillIn t $ head $ taskM (1::Integer) [t℄Fig. A.4. task1new { task-based breadth-�rst numbering, improved!24

Reinke

task2Events.log(2/76)

after

task2Events.log(4/76)

after before

task2Events.log(8/76)

after before

N

N

task2Events.log(10/76)

after before

N

N N

task2Events.log(12/76)

after before

N

N

N

N

task2Events.log(14/76)

after before

N

N

N N

N

task2Events.log(16/76)

after before

N

N

N N

N

N

task2Events.log(33/76)

after before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(35/76)

after

N

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(37/76)

after

N

N

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(39/76)

after

N

N

N

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(45/76)

after

N

N

N

E 4 E

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(55/76)

after

N

N

N

E 4 E

2 N

E 5 E

before

N

N

N

E E

N

E E

N

N

E E

N

E E

task2Events.log(76/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3 N

E 7 E

before

N

N

N

E E

N

E E

N

N

E E

N

E EFig. A.5. task2: steps 2, 4, 8, 10, 12, 14, 16, 33, 35, 37, 39, 45, 55, and 76
25

Reinke
task1Events.log(2/76)

after

task1Events.log(4/76)

after before

task1Events.log(5/76)

after before

N

task1Events.log(7/76)

after

N

before

N

task1Events.log(9/76)

after

N

before

N

N

task1Events.log(11/76)

after

N

N

before

N

N

task1Events.log(13/76)

after

N

N

before

N

N N

task1Events.log(15/76)

after

N

N

before

N

N

N

N

task1Events.log(17/76)

after

N

N

N

before

N

N

N

N

task1Events.log(19/76)

after

N

N

N

before

N

N

N N

N

task1Events.log(21/76)

after

N

N

N

before

N

N

N N

N

N

task1Events.log(23/76)

after

N

N

N

before

N

N

N N

N

N N

task1Events.log(25/76)

after

N

N

N

before

N

N

N

E

N

N

N N

task1Events.log(27/76)

after

N

N

N

E

before

N

N

N

E

N

N

N N

task1Events.log(76/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3 N

E 7 E

before

N

N

N

E E

N

E E

N

N

E E

N

E EFig. A.6. task1: steps 2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 76
26

Reinke
task1newEvents.log(2/76)

after

task1newEvents.log(4/76)

after before

task1newEvents.log(5/76)

after before

N

task1newEvents.log(7/76)

after

N

before

N

task1newEvents.log(9/76)

after

N

before

N

N

task1newEvents.log(11/76)

after

N

N

before

N

N

task1newEvents.log(13/76)

after

N

N

before

N

N

N

task1newEvents.log(15/76)

after

N

N

N

before

N

N

N

task1newEvents.log(17/76)

after

N

N

N

before

N

N

N

E

task1newEvents.log(19/76)

after

N

N

N

E

before

N

N

N

E

task1newEvents.log(21/76)

after

N

N

N

E

before

N

N

N

E

N

task1newEvents.log(23/76)

after

N

N

N

E 4

before

N

N

N

E

N

task1newEvents.log(25/76)

after

N

N

N

E 4

before

N

N

N

E E

N

task1newEvents.log(29/76)

after

N

N

N

E 4 E

2

before

N

N

N

E E

N

task1newEvents.log(31/76)

after

N

N

N

E 4 E

2

before

N

N

N

E E

N

N

task1newEvents.log(47/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

before

N

N

N

E E

N

E E

N

task1newEvents.log(49/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

before

N

N

N

E E

N

E E

N

N

task1newEvents.log(63/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3

before

N

N

N

E E

N

E E

N

N

E E

task1newEvents.log(65/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3

before

N

N

N

E E

N

E E

N

N

E E

N

task1newEvents.log(76/76)

after

N

N

N

E 4 E

2 N

E 5 E

1 N

N

E 6 E

3 N

E 7 E

before

N

N

N

E E

N

E E

N

N

E E

N

E EFig. A.7. task1new: steps 2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, . . . and 7627

Reinke
foldlEvents.log(2/66)

foldl

foldlEvents.log(9/66)

foldl

FUN

->

FUN

->

FUN

->

foldlEvents.log(18/66)

foldl

FUN

->

FUN

->

FUN

->

:

:

:

:

[]

foldlEvents.log(24/66)

foldl

FUN

->

FUN

->

FUN

->

FUN

->

FUN

->

:

:

:

:

[]

foldlEvents.log(29/66)

foldl

FUN

->

FUN

->

FUN

->

->

FUN

->

FUN

->

FUN

->

:

:

:

:

[]

foldlEvents.log(41/66)

foldl

FUN

->

FUN

->

FUN

->

->

FUN

->

->

FUN

->

->

FUN

->

FUN

->

0 FUN

->

:

:

:

:

[]

foldlEvents.log(47/66)

foldl

FUN

->

FUN

->

FUN

->

->

FUN

->

->

FUN

->

->

0 FUN

->

1 1

FUN

->

0 FUN

->

:

1 :

:

:

[]

foldlEvents.log(53/66)

foldl

FUN

->

FUN

->

FUN

->

->

FUN

->

->

1 FUN

->

2 3

->

0 FUN

->

1 1

FUN

->

0 FUN

->

:

1 :

2 :

:

[]

foldlEvents.log(66/66)

foldl

FUN

->

FUN

->

6 FUN

->

4 10

->

3 FUN

->

3 6

->

1 FUN

->

2 3

->

0 FUN

->

1 1

FUN

->

0 FUN

->

:

1 :

2 :

3 :

4 []

10

Fig. A.8. foldl steps 2, 9, 18, 24, 29, 41, 47, 53 and 6628

Reinke

foldl’Events.log(2/66)

foldl’

foldl’Events.log(9/66)

foldl’

FUN

->

FUN

->

FUN

->

foldl’Events.log(17/66)

foldl’

FUN

->

FUN

->

FUN

->

FUN

->

FUN

->

:

foldl’Events.log(25/66)

foldl’

FUN

->

FUN

->

0 FUN

->

1 1

FUN

->

0 FUN

->

:

1

foldl’Events.log(34/66)

foldl’

FUN

->

FUN

->

0 FUN

->

1 1

->

1 FUN

->

FUN

->

0 FUN

->

:

1 :

foldl’Events.log(38/66)

foldl’

FUN

->

FUN

->

0 FUN

->

1 1

->

1 FUN

->

2 3

FUN

->

0 FUN

->

:

1 :

2

foldl’Events.log(47/66)

foldl’

FUN

->

FUN

->

0 FUN

->

1 1

->

1 FUN

->

2 3

->

3 FUN

->

FUN

->

0 FUN

->

:

1 :

2 :

foldl’Events.log(51/66)

foldl’

FUN

->

FUN

->

0 FUN

->

1 1

->

1 FUN

->

2 3

->

3 FUN

->

3 6

FUN

->

0 FUN

->

:

1 :

2 :

3

foldl’Events.log(60/66)

foldl’

FUN

->

FUN

->

0 FUN

->

1 1

->

1 FUN

->

2 3

->

3 FUN

->

3 6

->

6 FUN

->

FUN

->

0 FUN

->

:

1 :

2 :

3 :

foldl’Events.log(66/66)

foldl’

FUN

->

FUN

->

0 FUN

->

1 1

->

1 FUN

->

2 3

->

3 FUN

->

3 6

->

6 FUN

->

4 10

FUN

->

0 FUN

->

:

1 :

2 :

3 :

4 []

10

Fig. A.9. foldl': steps 2, 9, 17, 25, 34, 38, 47, 51, 60 and 66
29

