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tranx86 – an Optimising ETC to IA32 Translator
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Abstract. This paper describestranx86, a program which converts Extended Trans-
puter Code (ETC) from a modified Inmosoccam compiler, into IA32 code for exe-
cution on the Intel i386 family of processors within the KRoC/Linux system. Several
optimisations are employed in an attempt to maximise performance on this family
of processors, including optimisations in the CCSP run-time kernel. These include a
graph-colouring type register allocation scheme and various inlining of code. Whiletranx86 is mostly architecture dependent, effort has been made to allow the use of
arbitrary schedulers, although currently CCSP is the only fully supported one.

Various benchmark programs are used to compare the performance of this transla-
tor with the old system, giving significant time wins in some cases. For the
ommstime
benchmark program on an 800 MHz Pentium-3, the old KRoC/Linux system gave 233
ns per communication (2 context switches); the new one, withoptimisations and in-
lining, gives 67 ns per communication – more than a 3-fold reduction in overheads.

1 Introduction and Motivation

The KRoC[1] system, on the Linux/i386 platform, is composed of a number of smaller pro-
grams which are used to produce executables for the target platform (in this case the IA32[2]
– Intel Architecture 32-bit – platform1) from occam[3] sources. A modified Inmosoccam
compiler (o

21) is used to generate Extended Transputer Code (ETC) [4] fromoccam
sources. ETC can be thought of asVirtual Transputer Byte-Code. A translator is then used
to turn ETC into native i386 code, which is then linked with libraries and the CCSP [5]
run-time kernel to produce an executable. Figure 1 shows this layout, with routes for two
different translators,tranp
 andtranx86.

The original translator used in the KRoC/Linux system wastranp
. This was written
by Michael Poole inoccam and, to a small extent, based on theo
tran translator from the
SPARC port of the KRoC system.tranx86 was a complete re-write, this time in C, incorpo-
rating a mixture of ideas fromtranp
 ando
tran. The structure oftranx86 andtranp

are quite different.tranp
 took a very direct approach, generating machine-code bytesdi-
rectly from the ETC. While this worked, developing from it proved to be fairly difficult, thus
a new one emerged.

One obvious problem with translating from one architectureto another, in this case from
ETC to IA32, is the potential loss of efficiency, since the target architecture might have a
largely incompatible instruction set. ETC is effectively code for avirtual transputer, a stack
machine with instructions for CSP [6, 7, 8] concurrency operations. The target instruction
set (IA32) is a CISC2 architecture (on the outside only in the Pentium-Pro and above), and
is register based. Fortunately the floating-point co-processor on the IA32 can be treated

1more commonly known as the i386 platform
2Complex Instruction Set Computing
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Figure 1: Stages in turningoccam sources into i386 executables in the KRoC/Linux system

as a stack machine, which makes the translation of floating-point code relatively painless,
although implementing a register-based approach would notbe too difficult.

The majority of existing KRoC translators are for RISC architectures,o
tran ando
-X
[9] for example. Althoughtranx86 generates CISC code, existing optimisations have been
reused where possible.

1.1 The virtual transputer architecture

The virtual transputer targetted by theoccam compiler is a stack machine, similar to the
T800 transputer. It has a 3-level integer stack and a 3-levelfloating-point stack. A special
register exists which provides the workspace address of thecurrent process, ‘Wptr’. The
instruction set is based on a combination of T800 and T9000 transputer instructions [10]
(T800 instructions form a subset of T9000 instructions). This instruction set is complemented
by various additional instructions, for example instructions for dynamic memory allocation
and mobile communication [11]. Figure 2 shows the register layout of the virtual transputer.
In addition to the workspace-pointer ‘Wptr’, there is also the instruction pointer ‘Iptr’ and
three queue pointers which are used to manage the timer-queue and run-queue. There are
also some status registers which are not shown.
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Figure 2: Registers in the virtual transputer
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1.2 The IA32 architecture

The IA32 architecture is primarily a register based CISC architecture. There are four general-
purpose 32-bit integer registers, stack and frame pointer registers, index registers, and various
segment registers. The CISC nature of the IA32 allows complex instruction encodings to be
used, which greatly enhances the expressive power of the instruction set. Figure 3 shows the
register layout of the IA32 architecture. The layout of the FPU (floating-point unit) registers
shows the register view, whereas the translator treats it asa stack machine. When treated
like a stack, a top-of-stack pointer (held in part of the FPU control word) indexes one of the
FPU data registers (R0::R7). The segment-registers are not used at all, although the FSand
GS registers could be utilised (generally they are only usedby debuggers). The translator
uses the four general-purpose and base-pointer (EBP) registers most of the time, and uses the
stack-pointer (ESP) and index registers some of the time.
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Figure 3: Registers in IA32 processors

2 The Structure of tranx86

Figure 4 shows the overall organisation oftranx86, starting from the ETC output from the
compiler. Sections 2.1 through 2.8 describe the various functional components.

Internally, the code of anoccam program is held on one of twochains. Chains in this
context are very much like linked-lists, except that a lot ofcross-references come into ex-
istence along the way. The first chain is created as the (binary) ETC[4] file is read. After
pre-optimisation, this is either passed to the translator or output in a textual format. Having
textual output at this point provides a good method for examining the output of theoccam
compiler.

The second chain is generated by the translator (section 2.2) and consists of a sequence of
intermediate-code (IMC) blocks. These blocks break the program up into fairly large chunks,
such as program code, program data, global entry-points, etc., each with its own particular
additional data. On blocks marked as ‘code’ hangs a list of instructions which represent the
translated program. Figure 5 shows an example of a simple IMCchain.

The instruction mnemonics used in the intermediate code relate largely one-to-one with
IA32 instructions. This arose from the specialist nature ofcertain instructions, such as
‘movzbl’, which zero extends an 8-bit quantity to a 32-bit quantity during the move. In
some ways, this restricts the ability to target multiple (differing) instruction sets. Work is in
progress to replace the more specialist instructions with sequences of simpler ones, leaving
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Figure 4: Structure oftranx86
generation of the replaced instructions to the assembler-generating stage. On the more posi-
tive side however, the encoding of arguments differs significantly compared with IA32 argu-
ments. We split the arguments into two distinct groups:input operands andoutput operands.
Operands can also take a variety of flags, one of which indicates animplied operand – for
instructions which use registers not present in the encodedarguments.
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instruction
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Figure 5: Internal program representation intranx86
Instead of inventing our own intermediate code representation, we could have usedg

’s

RTL (register transfer language) [12], which has a well established following, and used theg

 back-end to generate the native code. However, it is envisaged thattranx86 will be
used to generate code for targets whichg

 does not support (the Intel IXP-1200 network
processor was discussed at one point). In these cases, re-targetting tranx86 is likely to
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be much easier than re-targettingg

. The possibility of usingg

 has not been removed
altogether, merely deferred for the future.

2.1 Pre-optimisation

The pre-optimiser performs some simple transformations onthe ETC code to make the task of
translation easier. One feature of KRoC is that theoccam compiler is used to generate code
for a virtual transputer with T800 characteristics. This includes a particularly tricky floating-
point remainder (modulo) operation (withFPREMFIRST andFPREMSTEP), which needs to be
transformed into a more conventional remainder operation,in this case the corresponding
instruction for the T9000 transputer (FPREM).

If CCSP has been selected as the target run-time kernel, channel communications of 1
and 4 bytes are turned into communication instructions specific to those lengths. While only
being a minor thing, this allows a significant improvement inthe handling ofBYTE andINT
channel communications – mostly because the inputting and outputting processes no longer
need to specify the length of the data being communicated.

2.2 Translation

The translator moves along the ETC chain instruction by instruction, putting translated code
onto the IMC chain as it goes. Since ETC is targetted at astack-machine, a mapping between
the virtual transputer stack and virtual target registers is maintained, along with information
such as stack depth, floating-point stack depth and any previous stacks (stacks can become
nested). A new virtual register is created each time the virtual transputer stack is pushed, and
is forgotten when popped from the stack. As well as this stackstate information, which is
present intranp
 ando
tran, a mapping between virtual registers and any related constants
is maintained (constant-map).

The virtual-transputer workspace pointer ‘Wptr’ is mappedinto the IA32 ‘EBP’ (base-
pointer) register. This is hidden though through the use of aspecial virtual register calledREG WPTR. Along with this areREG JPTR andREG LPTR which are mapped into ‘ESI’ and
‘EDI’ respectively. The actual fixing of these registers happens during register allocation
(section 2.7). If it is desired that these registers should be mapped differently, all that is
required is a small change in the register allocator. Some IA32 instructions use registers im-
plicitly (notably the various divide instructions) which is a potential cause of problems. The
handling of this is done by inserting special constraint instructions, which link a virtual regis-
ter to an actual target register. The register allocator performs the fixing of these constraints,
as well as resolving any conflicts which may arise from their use.

The target instruction set is CISC, as opposed to RISC, whichallows the majority of
instructions to take a variety of argument types, includingregisters, constants, indirect ad-
dresses and more exotic variants. The majority ofoccam variables live in the workspace (as
referenced by ‘Wptr’) which are loaded and stored mostly through the use instructions which
use ‘Wptr’ as a base and provide a constant offset. When constants, local-variables and ad-
dresses are loaded into the virtual transputer stack, a corresponding entry in the constant-map
is generated which indicates what was loaded. When translating certain other instructions
(especially those that pop the stack), the constant map is checked to see if what was loaded
onto the stack can be used directly.
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2.3 Interaction with the kernel

Interaction with the run-time kernel, which implements thevirtual transputer for communica-
tion and scheduling, is done through the use of kernel calls3. Support for two existing kernels
is provided, the original CCSP [5] and a heavily modified version of CCSP which provides
additional kernel calls and supports different calling conventions. Parts of the framework
are also in place to support MESH4 [13] and kernel-level schedulers such aslibcsp [14] or
pthreads.

The original combination oftranp
 and CCSP used a push-pop method (on the C stack)
to pass arguments from the translated program to CCSP. Whentranp
 encountered some-
thing requiring a kernel call (process scheduling and communication instructions), it pushed
the virtual transputer stack onto the C stack then called therelevant entry-point from a lookup
table (pointed at by the ‘ESI’ register). Figure 6 shows thiscalling sequence. Although this
works, it is non optimal – arguments are pushed onto the stackonly to be removed again after
the jump.

push %breg

push %areg

call %jptr[n]

...

<num−entries>

&kernel_in

&kernel_out

&kernel_startp

&kernel_endp

...

move %ebp,Wptr

pop ReturnAddress

pop arg1

pop arg0

...

C stack

Creg

Breg

translated program CCSP run−time kernel

return−address

ESP

EBP

ESI

IA32 registers

jump table

occam workspace

Figure 6: Original run-time kernel calling sequence

The enhanced kernel-call interface for the modified CCSP allows for a variety of calling
conventions which do not require the use of the ‘ESI’ register. A table of kernel entry-points
is held in the translator which holds a named label for each entry-point, along with how to to
pass arguments and call it. For argument passing, parameters can either be pushed onto the
C stack (old behavior), or the relevant virtual registers can be constrained to specific IA32
registers. The method used depends on how the modified CCSP handles the other half of
the call in C. For the constraint method, the entry-point in the C world (handled by inline
assembly macros) arranges for certain variables to be mapped against the registers used. This
requires the use of certain features in the GNU CC compilerg

.

3our kernel calls (to a user-space kernel) differ significantly from traditional kernel-space kernel calls, which
involve privilege-level changes and page-table manipulations

4The user-level schedulers in both CCSP and MESH were originally the same, developed by James Moores
and Marcel Boosten.
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For the actual jump to the run-time kernel, the modified interface supports four different
methods, listed in table 1. When anoccam process is not being run, it uses workspace
offsets beneath zero to store run-time state information. How much state is required depends
on what the process interacts with. For non-running processes, the return-address is held at
offset -1. The “storeip-jump” kernel call takes advantage of this by saving the return address
in the workspace before making the kernel call. The “jump” kernel call is used for calls which
never return. This includes theENDP (end-process) call and various run-time error handling
calls. Arguments being returned from the kernel to the program are handled in the same way
as the arguments passed to the kernel. As it happens,g

 seems particularly reluctant to
allow register constraints in the places where we want them –only a handful of kernel-calls
return things, and they do this using the C stack.

Method Mechanics
call regular call (IA32 call instruction), return-address is left on the stack
storeip-jump place return-address at ‘Wptr[-1]’ and jump to the entry-point
regip-jump place return-address in a register and jump to the entry-point
jump ump directly to the entry-point (return-address is lost)

Table 1: Different methods of entering the run-time kernel

In addition to the kernel interface enhancements, the ‘ESI’register is freed up. The
translator generates references to entry-pointnames, and lets the linker resolve the references.

2.4 Run-time errors

Thepost-mortem debugging implemented in the older KRoC/Linux system [15] has been re-
implemented intranx86 along with various deficiency fixes and additions, notably support
for floating-point debugging. The floating-point unit runs asynchronously to the integer unit
in IA32 processors, so the location at which an error is reported might not be the same as
where it originated. Care is taken in the implementation to ensure this is handled correctly.

For more extensive debugging needs, anexecution-trace functionality has been added.
This records the execution position at each point a new source-line instruction (generated by
theoccam compiler) is encountered. The source position (and other associated information)
is stored in special memory locations inside the run-time kernel. When the program exits due
to error, this information is printed. Which not much use forordinary errors (which have their
own debugging information) this is useful for diagnosing errors such as segmentation-faults
(from invalid memory accesses), which can arise whentransputer-assembly is inlined into
occam source-code. For memory violations in linked C code [16] thereported position will
be the point in theoccam program at which the external call was made – a C debugger (such
asgdb) can then be used to diagnose further.

2.5 Initial optimisations

The first series of transformations are used to clean-up the output from the translator. The
first of these is dead-code removal, which is done by removingany code between uncondi-
tional jumps and the following label. As well as generating code, theoccam compiler also
generates a reasonable amount of constant data. This is usedto encode constants from the
source code. Any constant data considered relocatable, i.e. it is preceded by a label, is moved
to the end of the IMC chain. When the output is generated, thiswill end up in the ‘.data’
segment, and be cached as such by the CPU.
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The next transformation finds occurrences of labels as arguments and replaces them with
a link to the correspondingSETLABEL instruction. This makes it easier to re-arrange code
involving labels, since each label knows where its references are.

2.6 Optimisations proper

The bulk of optimisations intranx86 deal with re-arranging common sequences of code into
shorter forms. Rather than being generic, these optimisations are based on finding certain
sequences of instructions and replacing them with shorter or more efficient sequences. If
an optimisation has to choose between time or space efficiency, tranx86 will generate for
time efficiency. Modern PCs, which are the primary target here, generally are not short of
memory. Figure 7 shows a selection of the transformations performed bytranx86.

Original code Optimised codepop %r...move %r, <x> pop <x>move <x>, %ror %r, %r 
mpl $0, <x>add $N, %r, %radd $M, %r, %r add $(N+M), %r, %rpush <x>ret jump *<x>
jump CC, Lxjmp <y>Lx: 
jump CC^1, <y>or %r, %r, %rset

 _Z_, %rand $1, %r, %r xor $1, %r, %rand $1, %r, %r
Figure 7: Selection of code transformations intranx86

A large proportion of overhead reduction (compared to the old system) has arisen from
the use of a colouring register allocator and constant propagation. A reasonable number of
IA32 instructions have their input or output operands fixed to certain registers (often due to
limitations in the encoding). The old translator (tranp
) handled these by re-writing the
registers in already generated code (and insertingmove instructions if necessary) if there was
a register collision. Although this works, it isn’t terribly nice.

The constant map helps reduce the amount of code generated bysubsituting constants for
registers if possible. Constants here also include workspace variables at constant offsets from
the workspace pointer. For cases where a constant is loaded then used once, the constant will
be subsituted, leaving just the initial load instruction. These are swept away by the optimiser
– the register is only used in one instruction. Virtual registers help here since the register
is only used just the once – ever! Code involving physical registers is unlikely to have this
property.

In some cases, a constant may be subsituted for a register at aloss of effiency – if what
was loaded is required to be in a register later on. This is taken care of by a pass in the
optimiser which subsitutes constants for registers, with the potential additional benefit of
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subsituting other, unrelated constants. Additionally, constants take up more space in the
instruction encoding than registers, hence we try and reduce the number of constants in the
generated code.

In an attempt to exploit features of newer IA32 processors (Pentium, Pentium-II, etc.)tranx86 attempts to generate new instructions where possible. Currently, this is limited to
the ‘
mov
’ (conditional move) instruction. For example, the instructions:
jump CC, Lxmove <s>, <d>Lx:
reduce into a single “
mov
 CC, <s>, <d>” instruction.

Some of the more exotic features, such as MMX (Matrix Math Extensions) and SIMD
(Single Instruction, Multiple Data) extensions are currently not generated. Using MMX
would require more information from theoccam compiler about the semantic structure of
the program being translated. SIMD instructions are a potential possibility however. These
work by performing single-cycle operations on 128-bit registers, which contain packed 16,
32 or 64-bit words, depending on the desired size. Of course,there is a cost associated with
the loading and storing of these special registers, but it islikely to be more efficient than the
corresponding looping code, especially for multiple operations on the same data elements
[17].

2.7 Register allocation

Register allocation is performed in order to allocate the virtual registers generated during the
translation into physical registers on the IA32 architecture. The majority of the time, we are
only concerned with targetting four common general-purpose registers (‘EAX’, ‘ EBX’, ‘ ECX’
and ‘EDX’).

The first step is to fix constrained virtual registers into their corresponding physical regis-
ters. In some cases, two overlapping virtual registers may be constrained to the same physical
register. In these cases, one of the virtual registers is split into two different registers, and the
constraint moved to resolve the overlap. In a similar way, any alternative real-registers are
fixed to physical registers. Alternative real-registers are used in cases where we wish to use a
particular physical register, but wish to avoid any interaction with the register allocation. This
mainly occurs during run-time error handling (section 2.4), where walking on the program
state is harmless.

For each intermediate code block, a graph is built describing the liveness of registers
in relation to each other. When the number of active registers reaches zero, any generated
graph is coloured. In the majority of cases, the graph can be coloured on the first attempt
– thevirtual-transputer stack is only three deep and any graph can be coloured with four
colours [18]. The colouring algorithm is currently non-recursive, using a jump to resolve
conflicts. A recursive implementation will be used in the future, would enable back-tracking
with relative ease5.

2.8 Code generation

Generating the output code is a relatively simple process. The translated program, after
optimisation and register allocation is generated in a formwhich the GNU assembler under-

5The current colouring algorithm is sufficient in that it has handled all the input thrown at it so far. How-
ever, a recursive implementation would allow for better searching of a more efficient solution – some IA32
instructions execute faster if the input is in certain registers.
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stands. The default output is an actual object file. It does this by invoking the assembler
directly, feeding it the assembler code through a pipe.

The code given to the assembler lacks some of the informationcontained within the in-
termediate stages however, largely to comply with the assembler syntax. For example, the
internal ‘add’ instruction has three arguments – two inputs and an output.In the generated
code, the second input and output are reduced to (and required to be) the same register. This
is indeed the case for many IA32 instructions, which use a single argument for both input and
output. For different architecture types, e.g. RISC6, this additional information is likely to be
relevant (where there are more registers and the ‘add’ instruction takes three arguments).

2.9 An example

To illustate the mechanisms involved during translation, the state of a simpleoccam pro-
gram is shown as it passes through the translatior, optimiser and register allocator. A simple
(sequential)integrate process is used, the code for which is:PROC integrate (CHAN OF INT in, out)INITIAL INT v IS 0:WHILE TRUEINT x:SEQin ? xv := v + xout ! v:

After compilation, this is left as an ETC file. Rather than showing the ETC output, figure 8
shows the code after translation and initial optimisation,alongside the ETC input (thePROC
entry/exit related code has been removed for clarity).

The optimiser removes the two instructions which only use a single register, those be-
ing “move $$x0, %8” and “move 16(%wptr), %12”. Being a simple program, no other
optimisations are performed. The generated code, after register allocation, is:movl $0, 0(%ebp) -- `v' := 0L1: lea 16(%ebp), %ebx -- address of `x'movl 8(%ebp), %eax -- `in'movl $0f, -4(%ebp) -- save return addressjmp _Y_in32 -- jump to input0: movl 0(%ebp), %eax -- `v'addl 16(%ebp), %eax -- add `x'into -- interrupt if overflowmovl %eax, 0(%ebp) -- store in `v'movl %ebp, %ebx -- address of `v'movl 12(%ebp), %eax -- `out'movl $0f, -4(%ebp) -- save return addressjmp _Y_out32 -- jump to output0: jmp L1 -- loop

6Reduced Instruction Set Computing
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load constant 0

L1: L1:

LDC 0

STL 0

move $$x0, %8

move $$x0, 0(%wptr)

LDLP 4 lea 16(%wptr), %9

LDL 2 move 8(%wptr), %10

IN32 move $0f, −4(%wptr)

jump _Y_in32

0::

LDL 0 move 0(%wptr), %11

LDL 4 move 16(%wptr), %12

ADD add 16(%wptr), %11, %11

into

STL 0 move %11, 0(%wptr)

LDLP 0 move %wptr, %13

LDL 3 move 12(%wptr), %14

OUT32 move $0f, −4(%wptr)

jump _Y_out32

0::

J L1 jump L1

store in ‘v’

load pointer to ‘x’

load channel ‘in’

32−bit input

jump into kernel

load pointer to ‘v’

load pointer to ‘x’

add

interrupt if overflow

store in ‘v’

load pointer to ‘v’

load channel ‘out’

32−bit output

jump into kernel

saved return−address

saved return−address

jump (loop)

ETC code intermediate code lifetimes
register

explanation

8

9
10

11

13
14

12

Figure 8: ETC and intermediate code for the ‘integrate’ process

3 Inlining for Performance

The default implementation for kernel-involving actions (input, output,ALTernative-wait,
etc.) load the necessary parameters into registers or onto the stack, then call an entry-point in
the run-time kernel (CCSP [5] in the default case) to performthe action.

Since these operations are essential building-blocks of concurrent applications, efforts
have been made to improve their performance through inlining. This basically involves im-
plementing parts, or the whole, of a kernel-call in the generated code.

3.1 Inlined communications and scheduling

The implementations of the input and output instructions follow the transputer algorithms
[10], checking the state of the channel word then either performing the communication or
blocking the invoking process.

The default translation of the ‘IN’ instruction is a call to the relevant kernel entry point,
which implements the transputer algorithm. Ultimately, the inputting process will do one
of two things when called. If the channel-word is empty, the process inserts itself in the
channel word, otherwise it copies the data from the process already in the channel word,
before rescheduling it. An inlined version of the ‘IN’ kernel-call is shown, where upon entry
‘%
ptr’ holds the channel address, ‘%dest’ holds the destination (data) address and ‘%
ount’
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holds the communication size in bytes:move $0f, -4(%Wptr) -- store return-address at Wptr[-1℄
mp $0, (%
ptr) -- pro
ess waiting ?
jump _NZ_, _Y_fastin -- yes, jump into the kernel (for 
opy)move %Wptr, (%
ptr) -- otherwise, pla
e pro
ess in 
hannel wordmove %dest, -12(%Wptr) -- store destination address at Wptr[-3℄jump _Y_fasts
heduler -- 
all s
heduler0:
There are various possible re-arrangements of the above code, but all result in around the

same execution time. Two new kernel calls are provided to implement the different actions
which can be taken by the input (communicate or block). The ‘Y fastin’ call copies the
data between the two processes, puts the invoking process onthe run-queue and returns to the
process which was blocked on the channel. The ‘Y fasts
heduler’ call calls the scheduler
proper if there are no runnable processes left, or picks the next process off the run-queue and
runs it. In the case where another process is picked off the run-queue, no checks are made
for timeouts, completed blocking system calls [19] or keyboard input – the process which
completes the input will make these checks.

If the inline-scheduler option is enabled, then the call to ‘Y fasts
heduler’ above is
replaced with the following code:
mp $0, Fptr -- run-queue empty ?
jump _Z_, _X_s
heduler -- yes, 
all s
hedulermove Fptr, %Wptr -- otherwise, load pro
ess from run-queuemove -8(%Wptr), %tmp -- load Wptr[next℄ (next pro
ess on queue)move %tmp, Fptr -- update run-queuejump -4(%Wptr) -- 
ontinue running new pro
ess

Inlining this part of the scheduler improves performance significantly (around 20%). To
improve the scheduling performance even further, it would be possible to remove checks for
an empty run-queue all together, which would result in apage-fault exception. This could
be wired to call the scheduler, which would either sleep waiting for an event, or report a
deadlock sitation. Note that there would be no need to recover information about the faulting
(occam) process – it would be sitting in a channel word.

3.2 Inlined timer operations

The original implementation of timers in KRoC/Linux was done using the ‘gettimeofday’
system-call, which returns the current time in seconds and micro-seconds. This meant that
anyTIMER input in occam caused the Linux kernel to be entered, entailing a relatively large
overhead (tens of micro-seconds).

Fortunately, the Pentium family of processors provide a 64-bit real-time clock, which is
incremented at the processor clock speed and set to zero whenthe processor is reset. An
instruction exists which reads this value into two of the general-purpose registers, which can
then be used to calculate the current time in micro-seconds for theoccam program. When
the system is built on a pre-pentium architecture, using the‘gettimeofday’ system-call is
unavoidable, in the majority of cases however, these CPU timers will be available.

In order to use CPU timers, the processor clock speed needs tobe known. Rather than
attempting to calcuate this each time a program starts (which takes a few seconds for an
accurate result), the CPU speed is calculated during the installation of KRoC/Linux and
placed in a system-wide file. Rather than dividing the CPU time by the clock speed, a small
trick is used to minimise the cost of this calculation (both in the inlining and in the kernel
implementation). The value of(232 � Smhz) is calculated initially from the clock speed
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pufa
tor’, which is used as a multiplier in
the actual calculation. The following code shows the implementation of the inlined timer-
load (LDTIMER) instruction:rdts
 -- read 
y
le 
ounter into edx:eaxmove %edx, %tmp -- save high bitsmul glob_
pufa
tor -- multiply eax by fa
tor into edx:eaxmove %tmp, %eax -- restore high bits into eaxmove %edx, %tmp -- save high bits of multipli
ation resultmul glob_
pufa
tor -- multiply eax by fa
tor into edx:eaxadd %tmp, %eax, %eax -- add high bits of first to low bits-- of se
ond result

This leaves the resultant 32-bit time in micro-seconds in the ‘EAX’ register. Implied ar-
guments to ‘rdts
’ (read time-stamp counter) and ‘mul’ (unsigned multiply) are not shown.
Although the registers shown are physical registers (with the exception of ‘%tmp’), the inter-
mediate code holds them as virtual registers, constrained to the physical registers shown.

Without the CPU timers, we use a kernel timeout signal and poll a status flag for handling
timeouts (timeout guards inALTs and delayed timer inputs, e.g. in “tim ? AFTER t”). With
CPU timers, it is much quicker to poll the CPU timer value (instead of polling the timeout
flag set by the timeout signal handler – which is expensive). Dispite the differences in the
implementation, theoccam world still interacts with both in the same way, i.e. an ordered
queue of processes waiting for timeouts called ‘Tptr’ and some timer-related instructions.

4 Performance

To gauge the performance oftranx86 (and associated optimisations in CCSP) we use a
variety of benchmarking programs. The first, ‘grantest’ tests the ability of the system to
execute fine-grained processes. This program shown in figure9 and was taken from [20].
‘grantest’ takes three parameters, defined in an include file (“params.in
”). The results
of this benchmark for an array-size (‘s’) of 216 (64k) are shown in figure 10.#INCLUDE "params.in
"-- s is the array size-- g is the pro
ess granularity (
omp/
omms ratio)-- l is the length of ea
h individual pro
ess (no. of 
omp phases)PROC main (CHAN OF BYTE in, out, err)[s℄INT a:PAR i = 0 FOR s/gCHAN OF INT 
han:SEQ j = 0 FOR lPARSEQSEQ k = 0 FOR ga[(g * i) + k℄ := a[(g * i) + k℄ + 1
han ! iINT t:
han ? t:

Figure 9:occam benchmark to test KRoC’s ability to execute fine-grained programs
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Figure 10: KRoC scheduling overheads for fine-grained processes. The results for the new translator
(‘tranx86’), with inlining enabled, are shown in the top graph and those for the old translator (‘tranp
’)
in the bottom graph. The curves take the same shape – but the vertical (time) scales are different.

These graphs (figure 10) show that the KRoC/Linux system using the new translator han-
dles fine-grained processes relatively well when compared with the old translator, especially
at very small granularities. Figure 11 shows the percentageincreases in execution speed
for the new translator over the old one. A reasonable amount of this (especially at lower
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Figure 11: ‘grantest’ execution time speedup between the old (‘tranp
’) and new (‘tranx86’) translators.
(This is the percentage speedup of the curves in the bottom graph of figure 10 over those in the top.

granularaties) is attributable to an optimisation in the CCSP run-time kernel, which reduced
communication from two context switches to one (at the pointwhere the second process en-
gages in the communication) – the previous behaviour was to put both processes on the run
queue and reschedule. The new implementation puts the invoking process on the run-queue
and immediately schedules the blocked one.

4.1 Commstime

A common benchmark for KRoC systems is ‘
ommstime’ (the code and network illustration
for which can be found in [21]), which measures the overhead in channel communication (of
one integer) between parallel processes. Table 2 shows the results obtained for the old and
new translators. ‘tranx86’ is measured twice, once with inlining enabled and once without.

Channel cost Process startup/
Translator (SEQ delta) shutdown cost

‘tranp
’ 233 49
‘tranx86’ 104 19

‘tranx86’ (inlining) 67 15

Table 2: Commstime benchmark results for new and old translators measured on an 800 MHz Pentium-3. The
times are given in nano-seconds.

Again, a large proportion of the reduction in overheads is attributable to the removal
of a context-switch on communication. However, when inlining is enabled the cost of a
communication is reduced even further (a 35% gain for the inlined version over the non-
inlined version).
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5 Conclusions and Further Worktranx86, although still relatively young, provides an efficient translation from ETC gener-
ated by theoccam compiler into IA32 machine code. With the emergance of IA32 processors
as a common computing platform, efficient delivery of CSP (asencompassed by theoccam
language) is important.

The construction of Networks of Workstations (NoWs) using IA32 based machines opens
the door to potential mass distribution ofoccam programs, to build scalable server farms for
example. Whilst the UNIX socket interface is available for building the logical connectiv-
ity infrastructure [22], work is in progress to bind a low-level communications architecture
into KRoC/Linux directly. This uses the low-level ethernet driversfrom MESH [13], which
provides direct access to the hardware from user-space for the Intel EEPro-10/100b (fast-
ethernet) and Alteon AceNIC (gigabit) cards. Interaction with theoccam world is handled
usingmobiles [11, 23], which are allocated inside the low-level communication buffers, as
opposed tomobile-space.tranx86 is still largely work in progress. There is much scope for additional optimi-
sations, such as handling loops more efficiently. Currentlyno effort is made to perform
loop-unrolling, cycle reduction [24] or common sub-expression elimination, which would
improve performance for many programs. The introduction ofsupport for SIMD and MMX
instructions (section 2.6) would probably speed up array data-processing operations consid-
erably. This is currently work-in-progress. An additionalapproach to optimisation would be
to improve the (ETC code) output of theoccam compiler itself, as has been done in [25] (but
which is unfortunately not available to the community because of commercial licensing costs
of the third-party optimiser tool used).

The primary target is currently the i386 family of processors, with a large amount oftranx86 being tied to it – this includes some dependent code intranx86 itself, used to auto-
matically discover the CPU capabilities (for code-generation) at run-time using the ‘
puid’
instruction [2]. Work is in progress however to move more of the IA32 dependent code into
the code-generation stage (which is still relatively primative), and provide an additional MIPS
target for SGI/Indy hardware running Linux/MIPS [26].

As noted in section 2.3,tranx86 is designed to support different thread schedulers, even
though CCSP is currently the only fully supported one. Having this choice makes the job
of porting KRoC to different IA32 environments much simpler – the current development
release reportedly works correctly on FreeBSD systems. Supporting SMP schedulers also
becomes simpler. Critical locks and other synchronisations can be explicitly pre-programmed
into the generated code, andtranx86 is designed to make such additions relatively simple.
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