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Abstract. This paper describesranx86, a program which converts Extended Trans-
puter Code (ETC) from a modified Inmascam compiler, into IA32 code for exe-
cution on the Intel i386 family of processors within the &&Linux system. Several
optimisations are employed in an attempt to maximise peréorce on this family
of processors, including optimisations in the CCSP ruretkarnel. These include a
graph-colouring type register allocation scheme and uarinlining of code. While
tranx86 is mostly architecture dependent, effort has been maddaw #he use of
arbitrary schedulers, although currently CCSP is the anly Supported one.
Various benchmark programs are used to compare the penficeed this transla-
tor with the old system, giving significanttime wins in sonases. For theommstime
benchmark program on an 800 MHz Pentium-3, the olRR.inux system gave 233
ns per communication (2 context switches); the new one, aptimisations and in-
lining, gives 67 ns per communication — more than a 3-foldiotidn in overheads.

1 Introduction and Motivation

The KRoC[1] system, on the Linux/i386 platform, is composed of a benof smaller pro-
grams which are used to produce executables for the ta@ébdwh (in this case the 1A32[2]
— Intel Architecture 32-bit — platfori) from occam[3] sources. A modified Inmosccam
compiler pcc21) is used to generate Extended Transputer Code (ETC) [4] fsooam
sources. ETC can be thought of\dstual Transputer Byte-Code. A translator is then used
to turn ETC into native i386 code, which is then linked witbraries and the CCSP [5]
run-time kernel to produce an executable. Figure 1 shovsslalgout, with routes for two
different translators;ranpc andtranx86.

The original translator used in the KR/Linux system wasranpc. This was written
by Michael Poole iroccam and, to a small extent, based on th&ran translator from the
SPARC port of the KRC systemtranx86 was a complete re-write, this time in C, incorpo-
rating a mixture of ideas fromranpc andoctran. The structure otranx86 andtranpc
are quite differenttranpc took a very direct approach, generating machine-code lajtes
rectly from the ETC. While this worked, developing from ibped to be fairly difficult, thus
a new one emerged.

One obvious problem with translating from one architectaranother, in this case from
ETC to I1A32, is the potential loss of efficiency, since thegararchitecture might have a
largely incompatible instruction set. ETC is effectivetyde for avirtual transputer, a stack
machine with instructions for CSP [6, 7, 8] concurrency apens. The target instruction
set (IA32) is a CISE€ architecture (on the outside only in the Pentium-Pro and@p@nd
is register based. Fortunately the floating-point co-pssoe on the 1A32 can be treated

'more commonly known as the i386 platform
2Complex Instruction Set Computing
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Figure 1: Stages in turningccam sources into i386 executables in the ®RLinux system

as a stack machine, which makes the translation of floatmgtgode relatively painless,
although implementing a register-based approach woult@tdo difficult.

The majority of existing KRC translators are for RISC architecturestran andoc-X
[9] for example. Althoughtranx86 generates CISC code, existing optimisations have been
reused where possible.

1.1 The virtual transputer architecture

The virtual transputer targetted by tbecam compiler is a stack machine, similar to the
T800 transputer. It has a 3-level integer stack and a 3-fyaling-point stack. A special
register exists which provides the workspace address ofdhent process, ‘Wptr'. The
instruction set is based on a combination of T800 and T90&@sputer instructions [10]
(T800 instructions form a subset of T9000 instructions)sTistruction set is complemented
by various additional instructions, for example instrans for dynamic memory allocation
and mobile communication [11]. Figure 2 shows the registgolit of the virtual transputer.
In addition to the workspace-pointer ‘Wptr’, there is albe instruction pointer ‘Iptr’ and
three queue pointers which are used to manage the timeecelirun-queue. There are
also some status registers which are not shown.

~— 32-hits /™ ~*— 64-bits —* ~— 32-hits /™
Areg FPAreg ~— 32-bits —* Fptr
Breg FPBreg Wptr Bptr
Creg FPCreg Iptr Tptr
integer stack floating—point stack workspace and gueue pointers

instruction pointers

Figure 2: Registers in the virtual transputer
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1.2 The IA32 architecture

The IA32 architecture is primarily a register based CISQi#ecture. There are four general-
purpose 32-bit integer registers, stack and frame poiatgsters, index registers, and various
segment registers. The CISC nature of the 1A32 allows coxipkruction encodings to be
used, which greatly enhances the expressive power of theatien set. Figure 3 shows the
register layout of the 1A32 architecture. The layout of ti8_Hfloating-point unit) registers
shows the register view, whereas the translator treatsat stack machine. When treated
like a stack, a top-of-stack pointer (held in part of the FRldtool word) indexes one of the
FPU data registerd?0..R7). The segment-registers are not used at all, although thenBS
GS registers could be utilised (generally they are only usedebuggers). The translator
uses the four general-purpose and base-pointer (EBP})eegmost of the time, and uses the
stack-pointer (ESP) and index registers some of the time.

16-bits ~= 80-bits = ~= 30-bits =

Cs RO R6
= 32-bits = -- 32-bijts ™ DS R1 R7
EAX EBP SS R2
EBX ESP -= 32-bits » ES R3
miscellaneous
ECX ESI EFLAGS FS R4 )
FPU registers
EDX EDI EIP GS R5
general purpose base, stack and flags and segment floating—point registers
registers index registers  instruction—-ptr  registers

Figure 3: Registers in IA32 processors

2 The Structure of tranx86

Figure 4 shows the overall organisationtatanx86, starting from the ETC output from the
compiler. Sections 2.1 through 2.8 describe the varioustional components.

Internally, the code of anccam program is held on one of twechains. Chains in this
context are very much like linked-lists, except that a lotajss-references come into ex-
istence along the way. The first chain is created as the (Bik&rC[4] file is read. After
pre-optimisation, this is either passed to the translat@udput in a textual format. Having
textual output at this point provides a good method for examgi the output of th@ccam
compiler.

The second chain is generated by the translator (sectipa2dXonsists of a sequence of
intermediate-code (IMC) blocks. These blocks break the program up into faghge chunks,
such as program code, program data, global entry-poinds,esgich with its own particular
additional data. On blocks marked as ‘code’ hangs a liststfurctions which represent the
translated program. Figure 5 shows an example of a simpledN&h.

The instruction mnemonics used in the intermediate codaeadhrgely one-to-one with
IA32 instructions. This arose from the specialist natureceftain instructions, such as
‘movzbl’, which zero extends an 8-bit quantity to a 32-bit quantityidg the move. In
some ways, this restricts the ability to target multipldféting) instruction sets. Work is in
progress to replace the more specialist instructions vatjuences of simpler ones, leaving
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Figure 4: Structure ofranx86

generation of the replaced instructions to the assemigleergting stage. On the more posi-
tive side however, the encoding of arguments differs sigauifily compared with IA32 argu-
ments. We split the arguments into two distinct groupput operands andutput operands.
Operands can also take a variety of flags, one of which inelcahimplied operand — for
instructions which use registers not present in the encadgdnents.

Y

IMC block | IMC block |4~ | IMCblock [ | IMCblock [ | IMC block

Y \H\ ] \ﬁ Y \H\ v Y

Y
instruction instruction instruction
data
Y

A
/ Y
[instruction ] i
A

( ) ( )
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[instruction] instruction | [instruction]
Y Y
instruction < instruction <+

Figure 5: Internal program representatiortiranx86

data

Instead of inventing our own intermediate code represimatve could have usegtc’s
RTL (register transfer language) [12], which has a well ldstaed following, and used the
gcc back-end to generate the native code. However, it is eneéséigattranx86 will be
used to generate code for targets whgele does not support (the Intel IXP-1200 network
processor was discussed at one point). In these casesgegtitay tranx86 Is likely to
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be much easier than re-targettiggc. The possibility of usingscc has not been removed
altogether, merely deferred for the future.

2.1 Pre-optimisation

The pre-optimiser performs some simple transformatiorte@&ETC code to make the task of
translation easier. One feature of BR is that theoccam compiler is used to generate code
for a virtual transputer with T800 characteristics. Thidimles a particularly tricky floating-
point remainder (modulo) operation (WiHRREMFIRST andFPREMSTEP), which needs to be
transformed into a more conventional remainder operaiiomhis case the corresponding
instruction for the T9000 transputetPREM).

If CCSP has been selected as the target run-time kernelnehaommunications of 1
and 4 bytes are turned into communication instructionsipéc those lengths. While only
being a minor thing, this allows a significant improvementhia handling oBYTE and INT
channel communications — mostly because the inputting atpliting processes no longer
need to specify the length of the data being communicated.

2.2 Translation

The translator moves along the ETC chain instruction byuesion, putting translated code
onto the IMC chain as it goes. Since ETC is targettedstigk-machine, a mapping between
the virtual transputer stack and virtual target registermaintained, along with information
such as stack depth, floating-point stack depth and anyqare\stacks (stacks can become
nested). A new virtual register is created each time theaitransputer stack is pushed, and
is forgotten when popped from the stack. As well as this state information, which is
present intranpc andoctran, a mapping between virtual registers and any related coissta
is maintained (constant-map).

The virtual-transputer workspace pointer ‘Wptr’ is mappe the 1A32 ‘EBP’ (base-
pointer) register. This is hidden though through the use gpecial virtual register called
REG_WPTR. Along with this areREG_JPTR andREG_LPTR which are mapped into ‘ESI’ and
‘EDI’ respectively. The actual fixing of these registers paps during register allocation
(section 2.7). If it is desired that these registers shoadrapped differently, all that is
required is a small change in the register allocator. Son32 liAstructions use registers im-
plicitly (notably the various divide instructions) whick @ potential cause of problems. The
handling of this is done by inserting special constraintruntions, which link a virtual regis-
ter to an actual target register. The register allocatdiopmis the fixing of these constraints,
as well as resolving any conflicts which may arise from theg.u

The target instruction set is CISC, as opposed to RISC, walldws the majority of
instructions to take a variety of argument types, includiegjsters, constants, indirect ad-
dresses and more exotic variants. The majoritgyaafam variables live in the workspace (as
referenced by ‘Wptr’) which are loaded and stored mostlgtigh the use instructions which
use ‘Wptr’ as a base and provide a constant offset. When aoisstocal-variables and ad-
dresses are loaded into the virtual transputer stack, esonding entry in the constant-map
Is generated which indicates what was loaded. When tramglaértain other instructions
(especially those that pop the stack), the constant mapeiskel to see if what was loaded
onto the stack can be used directly.
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2.3 Interaction with the kernel

Interaction with the run-time kernel, which implementsiréual transputer for communica-
tion and scheduling, is done through the use of kernelta@igpport for two existing kernels
is provided, the original CCSP [5] and a heavily modified i@rsof CCSP which provides
additional kernel calls and supports different calling\amtions. Parts of the framework
are also in place to support ME$H13] and kernel-level schedulers suchldgsp [14] or
pthreads.

The original combination ofranpc and CCSP used a push-pop method (on the C stack)
to pass arguments from the translated program to CCSP. \WWweipc encountered some-
thing requiring a kernel call (process scheduling and comioation instructions), it pushed
the virtual transputer stack onto the C stack then calleddlezant entry-point from a lookup
table (pointed at by the ‘ESI’ register). Figure 6 shows ttalling sequence. Although this
works, it is non optimal — arguments are pushed onto the stalgikto be removed again after
the jump.

translated program C stack CCSP run-time kernel

move %ebp,Wptr

push %breg Breg
pop ReturnAddress
push %areg Creg
""""""""""""" pop argl
call %jptr[n] return—address
""""""""""""" pop arg0
""""""""""""" ESP >
J <num-entries>
-------------------------- - EBP
&kernel_in
""""""""""""" ESI
&kernel_out
&kernel_startp

IA32 registers

occam workspace

jump table

Figure 6: Original run-time kernel calling sequence

The enhanced kernel-call interface for the modified CCS#walifor a variety of calling
conventions which do not require the use of the ‘ESI’ regisigable of kernel entry-points
is held in the translator which holds a named label for eattyguoint, along with how to to
pass arguments and call it. For argument passing, parareatereither be pushed onto the
C stack (old behavior), or the relevant virtual registens ba constrained to specific IA32
registers. The method used depends on how the modified CQ&febahe other half of
the call in C. For the constraint method, the entry-pointhe € world (handled by inline
assembly macros) arranges for certain variables to be mdagzenst the registers used. This
requires the use of certain features in the GNU CC compgder

3our kernel calls (to a user-space kernel) differ signifilyainom traditional kernel-space kernel calls, which
involve privilege-level changes and page-table manijmriat

4The user-level schedulers in both CCSP and MESH were otigithe same, developed by James Moores
and Marcel Boosten.
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For the actual jump to the run-time kernel, the modified fiaiss supports four different
methods, listed in table 1. When aecam process is not being run, it uses workspace
offsets beneath zero to store run-time state informati@w khuch state is required depends
on what the process interacts with. For non-running prasedbe return-address is held at
offset -1. The “storeip-jump” kernel call takes advantagthes by saving the return address
in the workspace before making the kernel call. The “jumptletcall is used for calls which
never return. This includes tIDP (end-process) call and various run-time error handling
calls. Arguments being returned from the kernel to the maogare handled in the same way
as the arguments passed to the kernel. As it hapgegrsseems particularly reluctant to
allow register constraints in the places where we want themly-a handful of kernel-calls
return things, and they do this using the C stack.

Method Mechanics

call regular call (IA32 call instruction), return-address it tn the stack
storeip-jump| place return-address at ‘Wptr[-1]’ and jump to the entryapo
regip-jump | place return-address in a register and jump to the entmtpoi
jump ump directly to the entry-point (return-address is lost)

Table 1: Different methods of entering the run-time kernel

In addition to the kernel interface enhancements, the ‘E&dister is freed up. The
translator generates references to entry-pmnies, and lets the linker resolve the references.

2.4 Run-time errors

The post-mortem debugging implemented in the older KR/Linux system [15] has been re-
implemented intranx86 along with various deficiency fixes and additions, notablypsut
for floating-point debugging. The floating-point unit rursyachronously to the integer unit
in IA32 processors, so the location at which an error is reggbmight not be the same as
where it originated. Care is taken in the implementatiomsuee this is handled correctly.

For more extensive debugging needs,eaecution-trace functionality has been added.
This records the execution position at each point a new seline instruction (generated by
theoccam compiler) is encountered. The source position (and otreraated information)
is stored in special memory locations inside the run-tinra&le When the program exits due
to error, this information is printed. Which not much usedadinary errors (which have their
own debugging information) this is useful for diagnosinges such as segmentation-faults
(from invalid memory accesses), which can arise wtransputer-assembly is inlined into
occam source-code. For memory violations in linked C code [16]reqmorted position will
be the point in th@ccam program at which the external call was made — a C debuggeh (suc
asgdb) can then be used to diagnose further.

2.5 Initial optimisations

The first series of transformations are used to clean-up ukguofrom the translator. The
first of these is dead-code removal, which is done by remoamgcode between uncondi-
tional jumps and the following label. As well as generatingle, theoccam compiler also
generates a reasonable amount of constant data. This isaisedode constants from the
source code. Any constant data considered relocatablé,is@receded by a label, is moved
to the end of the IMC chain. When the output is generated villind up in the ‘. data’
segment, and be cached as such by the CPU.
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The next transformation finds occurrences of labels as aggtsyand replaces them with
a link to the correspondingETLABEL instruction. This makes it easier to re-arrange code
involving labels, since each label knows where its refessrare.

2.6 Optimisations proper

The bulk of optimisations imranx86 deal with re-arranging common sequences of code into
shorter forms. Rather than being generic, these optimisaitare based on finding certain
sequences of instructions and replacing them with shortenare efficient sequences. If
an optimisation has to choose between time or space efficienanx86 will generate for
time efficiency. Modern PCs, which are the primary targeehgenerally are not short of
memory. Figure 7 shows a selection of the transformatiorfepeed bytranx86.

Original code Optimised code
pop 4T

. pop <x>
move %r, <x>

move <x>, %r
or Yr, Yr cmpl $0, <x>
add $N, %r, %r

add $M. e add $(N+M), %r, %r

E:ih <x> jump *<x>

cjump CC, Lx

jmp <y> cjump CC~1, <y>
Lx:

or r, %r, hr
setcc _Z_, %r
and $1, %r, %r

xor $1, %r, %r
and $1, %r, %r

Figure 7: Selection of code transformations#anx86

A large proportion of overhead reduction (compared to thiesystem) has arisen from
the use of a colouring register allocator and constant gaipan. A reasonable number of
IA32 instructions have their input or output operands fixedértain registers (often due to
limitations in the encoding). The old translatarrénpc) handled these by re-writing the
registers in already generated code (and insetiovg instructions if necessary) if there was
a register collision. Although this works, it isn’t ternbhice.

The constant map helps reduce the amount of code generasedbbiyuting constants for
registers if possible. Constants here also include wodespariables at constant offsets from
the workspace pointer. For cases where a constant is lobdrdised once, the constant will
be subsituted, leaving just the initial load instructiohe$e are swept away by the optimiser
— the register is only used in one instruction. Virtual régis help here since the register
is only used just the once — ever! Code involving physicalstegs is unlikely to have this
property.

In some cases, a constant may be subsituted for a registéosg af effiency — if what
was loaded is required to be in a register later on. This iertatare of by a pass in the
optimiser which subsitutes constants for registers, vhth potential additional benefit of
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subsituting other, unrelated constants. Additionallynstants take up more space in the
instruction encoding than registers, hence we try and eethe number of constants in the
generated code.

In an attempt to exploit features of newer 1A32 processoeniidBm, Pentium-II, etc.)
tranx86 attempts to generate new instructions where possible.e@ilyr this is limited to
the ‘cmovc’ (conditional move) instruction. For example, the instrans:

cjump CC, Lx
move <s>, <d>
Lx:

reduce into a singlechovc CC, <s>, <d>"instruction.

Some of the more exotic features, such as MMX (Matrix MathelBgtons) and SIMD
(Single Instruction, Multiple Data) extensions are cutlemot generated. Using MMX
would require more information from theccam compiler about the semantic structure of
the program being translated. SIMD instructions are a piatigmossibility however. These
work by performing single-cycle operations on 128-bit stgiis, which contain packed 16,
32 or 64-bit words, depending on the desired size. Of cotinsee is a cost associated with
the loading and storing of these special registers, butiitety to be more efficient than the
corresponding looping code, especially for multiple opierss on the same data elements
[17].

2.7 Register allocation

Register allocation is performed in order to allocate thieuai registers generated during the
translation into physical registers on the IA32 architeetd’ he majority of the time, we are
only concerned with targetting four common general-puep@gjisters EAX’, ‘ EBX’, ‘ECX’
and EDX’).

The first step is to fix constrained virtual registers intartherresponding physical regis-
ters. In some cases, two overlapping virtual registers neagolstrained to the same physical
register. In these cases, one of the virtual registers isisfd two different registers, and the
constraint moved to resolve the overlap. In a similar way, @ternative real-registers are
fixed to physical registers. Alternative real-registessased in cases where we wish to use a
particular physical register, but wish to avoid any intéi@cwith the register allocation. This
mainly occurs during run-time error handling (section 2wihere walking on the program
state is harmless.

For each intermediate code block, a graph is built desagilie liveness of registers
in relation to each other. When the number of active regsteaches zero, any generated
graph is coloured. In the majority of cases, the graph canohmuced on the first attempt
— thevirtual-transputer stack is only three deep and any graph can be coloured with fou
colours [18]. The colouring algorithm is currently non-uesive, using a jump to resolve
conflicts. A recursive implementation will be used in thaufet, would enable back-tracking
with relative ease

2.8 Code generation

Generating the output code is a relatively simple procedsse ffanslated program, after
optimisation and register allocation is generated in a fatmch the GNU assembler under-

5The current colouring algorithm is sufficient in that it hamkled all the input thrown at it so far. How-
ever, a recursive implementation would allow for betterreleimg of a more efficient solution — some 1A32
instructions execute faster if the input is in certain regis
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stands. The default output is an actual object file. It doesli invoking the assembler
directly, feeding it the assembler code through a pipe.

The code given to the assembler lacks some of the informatatained within the in-
termediate stages however, largely to comply with the abiamsyntax. For example, the
internal add’ instruction has three arguments — two inputs and an outiputhe generated
code, the second input and output are reduced to (and redoitee) the same register. This
is indeed the case for many IA32 instructions, which useglsiargument for both input and
output. For different architecture types, e.g. RtS@is additional information is likely to be
relevant (where there are more registers and4he’ ‘instruction takes three arguments).

2.9 Anexample

To illustate the mechanisms involved during translatitwe, state of a simpleccam pro-
gram is shown as it passes through the translatior, optiraiset register allocator. A simple
(sequential)ntegrate process is used, the code for which is:

PROC integrate (CHAN OF INT in, out)
INITIAL INT v IS O:
WHILE TRUE
INT x:
SEQ
in 7 x
V =V + X
out ! v

After compilation, thisis left as an ETC file. Rather thanwhng the ETC output, figure 8
shows the code after translation and initial optimisatadongside the ETC input (tHer0C
entry/exit related code has been removed for clarity).

The optimiser removes the two instructions which only uséngls register, those be-
ing “move $$x0, %8” and “move 16 (%wptr), ’%12”. Being a simple program, no other
optimisations are performed. The generated code, aftestee@llocation, is:

movl $0, 0(%ebp) -—- ‘v’ :=0
Li:
lea 16 (%iebp) , %ebx —— address of ‘x’
movl 8 (%ebp), %eax -— %in’
movl $0f, -4(%ebp) -- save return address
jmp _Y_in32 -- jump to input
0:
movl 0(%ebp) , %heax -— ‘v
addl 16 (%ebp), %heax -- add ‘x’
into -- interrupt if overflow
movl heax, 0(%ebp) -- store in ‘v’
movl hebp, %hebx -- address of ‘v’
movl 12 (%ebp), %eax -- ‘out’
movl $0f, -4(%ebp) -- save return address
jmp _Y_out32 -- jump to output
0:
jmp L1 loop

5Reduced Instruction Set Computing
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. . register .
ETC code intermediate code lifetimes explanation
LDC O move $$x0, %8 ¢8 load constant 0
STLO move $$x0, 0(%wptr) store in 'V’
L1: L1:

LDLP 4 lea 16(%wptr), %9 load pointer to ‘X’
LDL 2 move 8(%wptr), %10 load channel ‘in’
IN32 move $0f, —4(%wptr) ° 10 32-bit input

jump _Y_in32 jump into kernel

0: saved return—address

LDL O move 0(%wptr), %11 load pointer to ‘v’
LDL 4 move 16(%wptr), %12 :12 load pointer to ‘X’
ADD add 16(%wptr), %11, %11 11 add

into interrupt if overflow
STLO move %11, 0(%wptr) store in 'V’
LDLP O move %wptr, %13 load pointer to ‘v’
LDL 3 move 12(%wptr), %14 load channel ‘out’
ouT32 move $0f, —4(%wptr) e 14 32-bit output

jump _Y_out32 jump into kernel

0: saved return—address

JL1 jump L1 jump (loop)

Figure 8: ETC and intermediate code for thategrate’ process

3 Inlining for Performance

The default implementation for kernel-involving actionsplt, output,ALTernative-wait,
etc.) load the necessary parameters into registers orloaiack, then call an entry-pointin
the run-time kernel (CCSP [5] in the default case) to perftrenaction.

Since these operations are essential building-blocks nfwoent applications, efforts
have been made to improve their performance through iginirhis basically involves im-
plementing parts, or the whole, of a kernel-call in the gatest code.

3.1 Inlined communications and scheduling

The implementations of the input and output instructiorikvo the transputer algorithms
[10], checking the state of the channel word then eithergoeting the communication or
blocking the invoking process.

The default translation of the’ instruction is a call to the relevant kernel entry point,
which implements the transputer algorithm. Ultimatelye thputting process will do one
of two things when called. If the channel-word is empty, tmecgss inserts itself in the
channel word, otherwise it copies the data from the prockeady in the channel word,
before rescheduling it. An inlined version of tHEN* kernel-call is shown, where upon entry
‘%eptr’ holds the channel addres&dest’ holds the destination (data) address dfebunt’
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holds the communication size in bytes:

move $of, -4(%wptr) -- store return-address at Wptr[-1]

cmp $0, (Ycptr) -- process waiting ?

cjump _NZ_, _Y_fastin -- yes, jump into the kernel (for copy)
move IWptr, (heptr) -- otherwise, place process in channel word
move hdest, -12(%4Wptr) -- store destination address at Wptr[-3]
jump _Y_fastscheduler -- call scheduler

There are various possible re-arrangements of the abows baotall result in around the
same execution time. Two new kernel calls are provided tdampnt the different actions
which can be taken by the input (communicate or block). Thefastin’ call copies the
data between the two processes, puts the invoking procegbs onn-queue and returns to the
process which was blocked on the channel. THefastscheduler’ call calls the scheduler
proper if there are no runnable processes left, or picksekeprocess off the run-queue and
runs it. In the case where another process is picked off thejueue, no checks are made
for timeouts, completed blocking system calls [19] or kegttabinput — the process which
completes the input will make these checks.

If the inline-scheduler option is enabled, then the call tor fastscheduler’ above is
replaced with the following code:

cmp $0, Fptr -- run-queue empty ?

cjump _Z_, _X_scheduler -- yes, call scheduler

move Fptr, JWptr -- otherwise, load process from run-queue
move -8(%Wptr), %tmp -- load Wptr[next] (next process on queue)
move htmp, Fptr -- update run-queue

jump -4 (%Wptr) -- continue running new process

Inlining this part of the scheduler improves performangm#icantly (around 20%). To
improve the scheduling performance even further, it wodgbssible to remove checks for
an empty run-queue all together, which would result jpage-fault exception. This could
be wired to call the scheduler, which would either sleep wgifor an event, or report a
deadlock sitation. Note that there would be no need to regof@mation about the faulting
(occam) process — it would be sitting in a channel word.

3.2 Inlined timer operations

The original implementation of timers in KIC/Linux was done using thgéttimeofday’
system-call, which returns the current time in seconds altdorseconds. This meant that
anyTIMER input inoccam caused the Linux kernel to be entered, entailing a relgtieye
overhead (tens of micro-seconds).

Fortunately, the Pentium family of processors provide @i4eal-time clock, which is
incremented at the processor clock speed and set to zero twbgirocessor is reset. An
instruction exists which reads this value into two of theerahpurpose registers, which can
then be used to calculate the current time in micro-secamdhé&occam program. When
the system is built on a pre-pentium architecture, usind ghetimeofday’ system-call is
unavoidable, in the majority of cases however, these CPBErsiwill be available.

In order to use CPU timers, the processor clock speed nedats known. Rather than
attempting to calcuate this each time a program starts (wtaikes a few seconds for an
accurate result), the CPU speed is calculated during tHallstson of KRoC/Linux and
placed in a system-wide file. Rather than dividing the CPletby the clock speed, a small
trick is used to minimise the cost of this calculation (bathithe inlining and in the kernel
implementation). The value dR3? = S,,,.) is calculated initially from the clock speed
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(Smnz) and stored in the global variablgl'ob_cpufactor’, which is used as a multiplier in
the actual calculation. The following code shows the im@atation of the inlined timer-
load CLDTIMER) instruction:

rdtsc -- read cycle counter into edx:eax

move hedx, Jtmp -- save high bits

mul glob_cpufactor -- multiply eax by factor into edx:eax
move htmp, Yeax -- restore high bits into eax

move hedx, %tmp -- save high bits of multiplication result
mul glob_cpufactor -- multiply eax by factor into edx:eax
add htmp, %eax, %heax -- add high bits of first to low bits

-- of second result

This leaves the resultant 32-bit time in micro-seconds eHBAX’ register. Implied ar-
guments tordtsc’ (read time-stamp counter) anghil’ (unsigned multiply) are not shown.
Although the registers shown are physical registers (viighetxception of%tmp’), the inter-
mediate code holds them as virtual registers, constram#tetphysical registers shown.

Without the CPU timers, we use a kernel timeout signal antgostitus flag for handling
timeouts (timeout guards KLTs and delayed timer inputs, e.g. i ? AFTER t”). With
CPU timers, it is much quicker to poll the CPU timer value {@al of polling the timeout
flag set by the timeout signal handler — which is expensivagpile the differences in the
implementation, theccam world still interacts with both in the same way, i.e. an oster
queue of processes waiting for timeouts calfggtr’ and some timer-related instructions.

4 Performance

To gauge the performance otanx86 (and associated optimisations in CCSP) we use a
variety of benchmarking programs. The firgirantest’ tests the ability of the system to
execute fine-grained processes. This program shown in fRyamed was taken from [20].
‘grantest’ takes three parameters, defined in an include fifafams . inc”). The results

of this benchmark for an array-sizes{f of 2'¢ (64k) are shown in figure 10.

#INCLUDE "params.inc'

-— s is the array size
-- g is the process granularity (comp/comms ratio)
-- 1 is the length of each individual process (no. of comp phases)

PROC main (CHAN OF BYTE in, out, err)
[s]1INT a:
PAR i = 0 FOR s/g
CHAN OF INT chan:
SEQ j = 0 FOR 1
PAR
SEQ
SEQ k = 0 FOR g
al(g * 1) + k] := al[(g * 1) + k] + 1
chan ! i
INT t:
chan 7 t

Figure 9:occam benchmark to test K&C's ability to execute fine-grained programs
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Figure 10: KRC scheduling overheads for fine-grained processes. Thdtgdsu the new translator
(‘tranx86’), with inlining enabled, are shown in the top graph and thésr the old translator ¢ranpc’)
in the bottom graph. The curves take the same shape — butttieal/&ime) scales are different.

These graphs (figure 10) show that thed@Linux system using the new translator han-
dles fine-grained processes relatively well when compai#dtihe old translator, especially
at very small granularities. Figure 11 shows the percentageases in execution speed
for the new translator over the old one. A reasonable amolttti® (especially at lower
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Figure 11: grantest’ execution time speedup between the olelrinpc’) and new (tranx86’) translators.
(This is the percentage speedup of the curves in the bottaphgf figure 10 over those in the top.

granularaties) is attributable to an optimisation in theSBGun-time kernel, which reduced
communication from two context switches to one (at the paimtre the second process en-
gages in the communication) — the previous behaviour wasttbgth processes on the run
gueue and reschedule. The new implementation puts theimypkocess on the run-queue
and immediately schedules the blocked one.

4.1 Commstime

A common benchmark for K&C systems iscommstime’ (the code and network illustration
for which can be found in [21]), which measures the overhaaghannel communication (of
one integer) between parallel processes. Table 2 showgshés obtained for the old and
new translators.tranx86’ is measured twice, once with inlining enabled and once ouith

Channel cost Process startup/
Translator (SEQ delta) | shutdown cost
‘tranpc’ 233 49
‘tranx86’ 104 19
‘tranx86’ (inlining) 67 15

Table 2: Commstime benchmark results for new and old treorslaneasured on an 800 MHz Pentium-3. The
times are given in nano-seconds.

Again, a large proportion of the reduction in overheads ishattable to the removal
of a context-switch on communication. However, when imignis enabled the cost of a
communication is reduced even further (a 35% gain for thieedl version over the non-
inlined version).
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5 Conclusions and Further Work

tranx86, although still relatively young, provides an efficientriséation from ETC gener-
ated by theccam compiler into IA32 machine code. With the emergance of IABZpssors
as a common computing platform, efficient delivery of CSPefasompassed by tleecam
language) is important.

The construction of Networks of Workstations (NoWs) usiAg2 based machines opens
the door to potential mass distributionafcam programs, to build scalable server farms for
example. Whilst the UNIX socket interface is available forl@ng the logical connectiv-
ity infrastructure [22], work is in progress to bind a low«#$ communications architecture
into KRoC/Linux directly. This uses the low-level ethernet driveem MESH [13], which
provides direct access to the hardware from user-spacééoimtel EEPro-10/100b (fast-
ethernet) and Alteon AceNIC (gigabit) cards. Interactiathwhe occam world is handled
usingmobiles [11, 23], which are allocated inside the low-level commatien buffers, as
opposed tanobile-space.

tranx86 is still largely work in progress. There is much scope foriaddal optimi-
sations, such as handling loops more efficiently. Currendyeffort is made to perform
loop-unrolling, cycle reduction [24] or common sub-exgiea elimination, which would
improve performance for many programs. The introductiosugfport for SIMD and MMX
instructions (section 2.6) would probably speed up arrag-geocessing operations consid-
erably. This is currently work-in-progress. An additioapgbroach to optimisation would be
to improve the (ETC code) output of tbkecam compiler itself, as has been done in [25] (but
which is unfortunately not available to the community beseaof commercial licensing costs
of the third-party optimiser tool used).

The primary target is currently the i386 family of processawith a large amount of
tranx86 being tied to it — this includes some dependent coderimx86 itself, used to auto-
matically discover the CPU capabilities (for code-genemgtat run-time using thecpuid’
instruction [2]. Work is in progress however to move moreha tA32 dependent code into
the code-generation stage (which is still relatively ptiney, and provide an additional MIPS
target for SGI/Indy hardware running Linux/MIPS [26].

As noted in section 2.3;ranx86 is designed to support different thread schedulers, even
though CCSP is currently the only fully supported one. Hgwims choice makes the job
of porting KRoC to different IA32 environments much simpler — the curreenelopment
release reportedly works correctly on FreeBSD systemsp&@tipg SMP schedulers also
becomes simpler. Critical locks and other synchronisataam be explicitly pre-programmed
into the generated code, andanx86 is designed to make such additions relatively simple.
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