Provided by Kent Academic Repository

A multi-national, multi-institutional study of asse

Metadata, citation and similar papers at core.ac.uk

ssment of programming

skills of first-year CS student s

Report by the ITICSE 2001 Working Group on Assessme nt
of Programming Skills of First-year CS Students

Michael McCracken (chair)

Georgia Institute of Technology, USA
mike@cc.gatech.edu

Vicki AlImstrum

University of Texas at Austin, USA
almstrum@cs.utexas.edu

Danny Diaz

Georgia Institute of Technology, USA
ddiaz@cc.gatech.edu

Mark Guzdial

Georgia Institute of Technology, USA
mike@cc.gatech.edu

Dianne Hagan

Monash University, Australia
Dianne.Hagan@infotech.monash.edu.au

ABSTRACT

In computer science, an expected outcome of a silgle
education is programming skill. This working group
investigated the programming competency student® ha
as they complete their first one or two coursesamputer
science. In order to explore options for assessing
students, the working group developed a trial assent

of whether students can program. The underlyingl @d
this work was to initiate dialog in the Computeri&ace
community on how to develop these types of asseatsne
Several universities participated in our trial essBent
and the disappointing results suggest that manglesits

do not know how to program at the conclusion ofithe
introductory courses. For a combined sample of 216
students from four universities, the average scoas
22.89 out of 110 points on the general evaluatidteda
developed for this study. From this trial assessmee
developed a framework of expectations for firstiyea
courses and suggestions for further work to devetape
comprehensive assessments.

LEAVE BLANK THE LAST 2.5 cm (1") OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

Yifat Ben-David Kolikant

Weizmann Institute of Science, Israel
ntifat@wisemail.weizmann.ac.il

Cary Laxer

Rose-Hulman Institute of Technology, USA
Cary.Laxer@rose-hulman.edu

Lynda Thomas

University of Wales, Aberystwyth, UK
ltt@aber.ac.uk

lan Utting

University of Kent, UK
I.A.Utting@ukc.ac.uk

Tadeusz Wilusz

Cracow University of Economics, Poland
eiwilusz@cyf-kr.edu.pl

KEYWORDS

INTRODUCTION

Programming is one of many skills that computerescie
students are expected to master. In addition, most
science, mathematics, engineering, and technology
(SMET) programs expect that their students will aicg
programming skills as a part of their education.heT
question is whether these requirements are beirtg e

the appropriate assessment measures in placed¢ouae

if the students have acquired the necessary progiam
skills? We think not, but wanted to gather evidertbat
would confirm or refute our observations.

This working group arose from concerns expressed by
many computer science educators about their stgdent
lack of programming skills. Quite often these cents
were focused on basic mastery of fundamental skifls
programming. A study by [8] identified similar
deficiencies in programming skill, although theitugdy
focused on the teaching of programming. In sevethér
studies that have considered issues of learnirgragram,
assessment has been a part of their methodologyr F
example, [6] studied students learning Basic; ptikked at
conceptual “bugs” of novice programmers; and [2icsed

https://core.ac.uk/display/91949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

novice programmers’ misconceptions. While the hssu
from these studies can help computer science edtgat
improve the teaching of programming, they do nogwer
this question: Do students in introductory compgtin
courses know how to program at the expected séilel?
This working group collected data from several
universities and found that the students’ levekkill was
not commensurate with their instructors’ expectasio

Two issues are central to our effort:

= Learning to program is a key objective in most
introductory computing courses, yet many computing
educators have voiced concern over whether their
students are learning the necessary programming
skills in those courses.

= The development of CC2001 [1] represents the next
evolutionary cycle of the requirements for compgtin
education. These requirements are slated to become
the new standard for computer science education and
will form the basis for accreditation of computer
science programs in the USA. The requirements for
introductory computing courses in the ironman
version of the CC2001 prescribes the set of exmkcte
programming skills students should acquire but
includes little information on assessment. Thed#
of this working group may contribute to developing
assessments for use by CC2001 implementers.

The remainder of this report is organized into eigiajor
sections. We begin by describing a framework for
learning objectives during the first year of comipgt
courses. The next section explores a variety eéasment
approaches and motivates the choice we made far thi
study. Next we describe the methodology for thialtr
assessment, including the work we did in the months
before the ITICSE conference. In the analysisisectwe
describe what we gleaned from the data during our
working group’s meetings at the conference. The
remaining sections interpret the results, discuss
implications and possibilities for further analysisaise
issues to be addressed in follow-on studies, amppse a
model for driving this work further.

A FRAMEWORK FOR FIRST-YEAR LEARNING
OBJECTIVES

When faced with understanding student performarece,
natural question is “What should be assessed?” The
working group discussed these issues and devel@ped
framework of first-year learning objectives, bothdlarify
what we expected students to have learned duried th
first year and to allow us to evaluate how well the
instruments for this study assessed the learnijgabives.

For first-year computing students, a fairly univars
expectation is that they should learn the procdsotving
problems in the domain of computer science, in oride
produce compilable, executable programs that areect
and in the appropriate form. As the framework fine
learning objectives of the first year, we expectrquting
students to learn to successfully follow these step

Abstract the problem from its description
Generate sub-problems

Transform sub-problems into sub-solutions
Re-compose the sub-solutions into a working
program

5. Evaluate and iterate

PwbpPE

In general, all Computer Science programmes aim to
produce students who can reliably follow these stap
solving discipline-specific problems, independeffittioe
particular programming paradigm being used. Thisoal
remains as a (possibly implicit) goal as studentsgpess
through their programmes, although the domain of
application, as well as the scale and complexity of
problems addressed, changes. The following cksifi
what is involved in each of these problem-solviteps.

1. Abstract the problem from its description — First-
year assessment exercises are generally framexlrrstof

a concrete, usually informal, specification of aoblem
for which students are required to implement a 8ol
Starting from this specification, students mustsffir
identify the relevant aspects of the problem stagtn
Next, students must model those elements in an
appropriate abstraction framework, which is prolyabl
predetermined based on the approach being usetein t
solution space (e.g., procedural, OO, functionakict)
and heavily influenced by the teaching approach.

2. Generate sub-problems— The scope and importance
of this step in the problem-solving process may be
dependent on the design approach adopted. A fonati
decomposition of a structured program often recgiire
further decomposition. In an object-oriented siinf the
previous step has probably designed the classededee
although at this stage, there may be factorizatimi
methods out of others already in the design.

3. Transform sub-problems into sub-solutions— Here,

the student must decide on an implementation gisater
individual classes, procedures, functions, or medulas
well as on appropriate language constructs (satutio
representations). This includes deciding on data
structures and programming techniques. A crucigest

of this step is the implementation (and testing}toé sub-
solutions. The solution should be correct and ire th
appropriate form, that is, it not only produces thght
output but is also modularized, generalized, andfaons

to standards. Some language constructs may be
inappropriate in particular domains or particular
pedagogies; for example, it is not possible to teairsion

in all languages. This step is typically the fipgint in the
process at which significant involvement with tofdsg. a
compiler) is possible.

4. Re-compose— In this step, the student must take the
sub-solutions and put them back together to gdpeettze
solution to the problem. This step probably invedv
creating an algorithm that controls the sequenceveints.

5. Evaluate and iterate — Finally, the student must
determine whether the earlier steps in the prodesse
resulted in a good solution to the problem and take
appropriate action if not. The solution must bestesl
thoroughly, and some of the earlier steps may hisited

if the solution fails any tests. The solution musé
debugged to correct runtime and logic errors.

While the above framework of learning objectives
represents an ideal and generalized situation,ettsee
some problems with this abstraction. Particulargggatjic
approaches and tool-chain support might changeldeth
the sequence. For instance, an approach basedtmex
programming (XP) [2] would make the testing actyvi
much more central, so work on that aspect woulditeg
much earlier in the process. The availability obk® such
as BlueJ [3] would enable testing to be perfornmedre
easily at step 3, rather than waiting until stepUse of
design tools and notations can encourage studemts t
check submissions at an earlier stage in the pmces
Whatever the variations, however, all of the stépshe
process should still take place.

ASSESSMENT INSTRUMENTS FOR FIRST-YEAR CS

This section reviews general requirements for asresit
and describes types of assessment frequently ustibt-
year computing courses. In reviewing these stiategve
discuss how well each meets the general requiresrient
assessment. We emphasize that assessment mustiite ti
the educational objectives discussed in the prexedi
section on the learning objectives framework. We
conclude this section by evaluating how well théaltr
assessment met these assessment requirements.

Two main categories of assessment abgective testing
and performance-based assessmem@bjective forms of
assessment, such as multiple-choice questions,
provide a cost-effective means for determining stutd
knowledge about areas such as language syntax or
program behavior. Objective testing can providstamt
feedback and can be used for both formative and
summative assessment. On the other hand, multiple-
choice questions cannot directly test studentslitstbio
create working computer programs.

can

In performance-based assessment, students aresedses
for their ability to create programs. Criteria for
performance-based assessments include: fairness,
generalizability, cognitive complexity, content djtya
(depth) and coverage (breadth), meaningfulness,castl
[4,5]. Below, we present three common forms of
performance-based assessment instruments and sliscus
how well they meet the learning objectives framekvor
from the previous section, as well as the severtedd
given earlier in this paragraph.

1. Take-home programming assignments

Typically a number of these assignments are given
during a course. Such assignments tend to be fairly
large scale with a fairly generous maximum

timeframe set for completing them (up to several
weeks). Such assignments tend to cover all five
aspects of the learning objectives framework. They
generally contain a large amount of cognitive
complexity. They are fair, generalizable, and
meaningful in the sense that students are operating
an environment that is close to reality; however,
students are penalized if they are unable to spend
enough time completing the assignment. This type of
assessment is more vulnerable to plagiarism than ar
some of the other assessment approaches.

2. Examinationgshort answer)

These examinations (such as asking students to
generate code fragments) can be used to assess all
five learning objectives, although items on such
examinations often tend to concentrate on stepsd3 a

4 of the Ilearning objectives framework
(decomposition into sub-problems and transformation
into sub-solutions). It is difficult (but not imssible)

to make short-answer examinations meaningful or
generalizable because of the limited time availdbte
students to complete them, but they can provide
cognitive complexity at low cost.

3. Charetteqthe method used in this study)

Charettes are short assignments, typically carded
during a fixed-length laboratory session that oscur
on a regular basis. The closed nature of these
sessions reduces the opportunity for plagiarism.
Charettes provide coverage of the learning objestiv
framework, although in a manner that is more
superficial and less cognitively complex than is
possible with larger take-home assignments. The
experience of completing a charette may not be as
meaningful or generalizable as larger assignments.
Charettes may be unfair to students who have test
anxiety or troubles with time pressure.

Once an assessment instrument is chosen, the gcorin
criteria must be determined. One approach to scpri
would be a raw assessment of whether the progranksvo
(although this is not particularly useful for formnze
assessment). It is common for first-year computing
instructors to examine the source code and othéttemr
materials as part of their assessment strategy.otifer
approach to assessment is to combine one of theeabo
with interviews in which the students describe thei
process and product and thus demonstrate that they
understood what they have presented.

In this study, the form of assessment used was the
charette, a short, lab-based assignment. We selebie
assessment type to foster a fairly uniform enviremm
across universities at a relatively low cost. Qinarette
provided fairness in the sense that all studentgewe
operating in a similar environment, although thgpeoach
can be seen as discriminatory against students igih
taking anxiety. The exercises did offer cognitive

complexity and covered all parts of the learningeaitives
framework reasonably well. In the Methodologydan
Analysis sections, we explain the criteria we used
assessing the students’ programs.

METHODOLOGY

To help determine the programming ability of fingar
computing students, the working group developeeétao$
three related programming exercises that students a
several universities would be asked to solve. The
exercises, which varied in difficulty, were desigheo
that, theoretically, students in any type of Congut
Science programme should be able to solve them.
Students could use any programming language to
implement their solutions; we assumed that they ldou
use the language that they were required to usetter
course they were taking at the time. Students warity
have to complete one exercise of their instructor's
choosing. The opinion of the working group's
participating schools was that a student at the ehthe
first year of study should be able to solve the inos
difficult exercise of the three in about an houdaahalf.

The exercises focused on arithmetic expression
evaluation. The easiest of the three exercises (Ef)ired

a computer program to evaluate a postfix expressibime
second exercise (P2) required a computer program to
evaluate an infix expression with no operator posoece
(the operations were to be performed strictly keftright,

with no parentheses present). The last exercise) (P3
required a computer program to evaluate an infix
expression with parenthesis precedence (operatieis

to be performed left to right, with parenthesescfag sub-
expressions to be evaluated first). Each exercis¢ed
that input tokens (numbers and operation symbolsyild/

be separated by white space to ease the process of
entering data. Infix expressions would contain oniyary
operations €, -, *, /, *); postfix expressions could
contain unary negation~f as well. The exercises are
described in Appendix A.

To enable the work of students from different unisiées
under different instructors to be compared meanithgf
the working group developed the General EvaluafiBk)
Criteria shown in Appendix B. The criteria considdr
whether a student’s program could run without error
process several arithmetic expressions, produceecbr
results, and determine when expressions containedse
These criteria were strictly execution-based. Eeess the
style component of the GE Criteria, the source codes
inspected.

The Degree of Closeness (DoC) Criteria given in
Appendix C provided a subjective evaluation of holase

a student’s source code was to a correct solustadents

at some of the universities were also asked to detepa
questionnaire (see Appendix D) that gathered
demographic information, programming background] an
reactions to the task.

Instructors at four universities administered thealt
assessment as a laboratory-based exercise in their
respective courses. Two used the first exercise, (P1
postfix evaluation), one used the second exerciBg, (
infix evaluation with no parentheses), and one uséd
three exercises, administering a different exeraiseach

of three sections of the same course. Studentsithdr 1
hour (at one university) or 1.5 hours (at threevamsities)

to write a computer program to solve the exerciseyt
were given using the language they were taughthigirt
classes (which happened to be either Java or Céhen
finished, students submitted their executable progr and
printed copies of their source code for assessmahbne
university, the exercise was set up as an exanunati
required of all students, while at the other three
universities, the participants were volunteers wéceived
extra credit points.

The computer programs were evaluated using thereait
in Appendices B and C. The GE Criteria assess how
accurately the students implemented their solutiaml
thus concentrate on the last two learning objectiyes-
composition into a working program and evaluatiohhe
DoC Criteria assess the results of the abstraqgtictess
and thus enabled us to see how well the studentstinee
first three learning objectives (abstraction, deposition,
and transformation into sub-solutions). In additiche
instructor who gave the exercise as an examingjiaded
the programs in the traditional manner in order lie
consistent with the grading criteria for the renden of
the course. Outcomes of the assessments were eepiort
the working group leader for tabulation and cross-
institutional analysis.

40
35
o 30
c
S 25
2
2 20 |
o
8 15
E
3 10 -
. -
o ‘ ‘ ‘ mm = — =
1 8 16 24 32 40 48 56 64 72 80 88 96
Scores
Figure 1: Distribution of GE scores on the combined P1 datgkistogram)
ANALYSIS Analysis of General Evaluation Score

Each instructor who administered the exercise agpihe
General Evaluation (GE) Criteria (Appendix B). All
instructors produced an aggregate score for thee@dn
Evaluation Criteria; most instructors also reportiee four
component scores (execution, verification, validatiand
style). In contrast, the DoC Criteria (Appendix @gre
applied to the source code from all four univeesitiby
evaluators at a single university. The evaluatatso
generated comments to explain their reasons foingiv
each DoC score. In an informal inter-rater relidpitest
on scoring against the DoC Criteria, we found ahhig
degree of correlation between evaluators.

Two of the four universities administered a loca&rsion

of the Student Questionnaire (Appendix D). For fallir
universities, the exercise number (P1, P2, or P3sw
recorded for each student as well as the programmin
language used (Java or C++ in all cases). The four
participating universities were randomly assigndte t
codes School S, School T, School U, and School e T
instructor at School V reported a local grade ore th
exercise (which was given as an examination). We
assigned each student an encoded student ID number
order to ensure anonymity.

Once the raw data from each university were entened
validated, the analysis followed two independenthpa
One path was a quantitative analysis based on tke G
score, the DoC score, and the other data availfavleach
student. The second path was a subjective anatisits
focused on several of the unsuccessful attemptsotee
the assigned exercise, looking at comments embedded
the source code and information from the questiinesa
We present the outcomes of these analyses in thké¢ ne
three subsections.

The average General Evaluation (GE) score (combinin
the execution, verification, validation, and style
components) for all students, all exercises, atsaliools

(n =217) was 22.9 out of 110 (standard deviation 25.2).
The scoring for each of P1 (Schools S, T, and V& P

(Schools U and V), and P3 (School V only) appears i

Table 1. Overall performance was generally faidwl

Average (stdev)
P1Hh=117) 21.0 (24.2)
P2 h=77) 24.1 (27.7)
P3 h=23) 31.0 (20.9)

Table 1: GE average score by exercise

We assumed in this study that we would be ableatfely
combine data from multiple universities in our aysds.
However, there are differences between the studants
different universities (e.g., in raw talent, in preus
experience, in courses completed), between how #ney
taught, in how the exercises were applied (e.g.,
examination grade vs. extra credit points, timeowatd,
hints given), and, especially, in how the GE Ciridewere
applied. We used a statistical test (Student’'sst} to
compare the universities on each of the exerci&shools
S and T didnot differ significantly on P1, but every other
combination (Schools V and T on P1, Schools V anghS
P1, Schools U and V on P2) did differ significan{ly <
0.00001).

Table 2 summarizes the scores for each school aalhs
the exercises. (Only School V used more than one
exercise, P1, P2, and P3.) School V had considgrab
higher scores than the other universities. Notyéver,
that we cannot simply conclude that School V’'s stots
performed better; the differences may be due tddiac
such as how the GE Criteria were applied, what $ypé
students participated, or how motivated studentsewe

do well.

Average (stdev)
School SH=73) — P1 14.0 (18.6)
School T = 21) — P1 12.0 (16.3)
School U o= 47) — P2 8.9 (11.4)
School V (n = 23) — P21 48.7 (25.7)
School V (n = 30) — P2 47.8 (29.1)
School V (n = 23) — P3 309 (20.9)
Totals for School V on P1, P2, P3 43.0 (26.7)

Table 2: GE average score by university

GE Component(and maximum| Average score | As percentage of max
score possible) (stdev) score on component

Execution (maximum: 30) 7.2 (11.8) 23.9%

Verification ~ (maximum: 60) 16 (5.8 2.8%

Validation (maximum: 10) 0.3 (1.8) 3.2%

Style (maximum: 10) 4.6 (3.4) 46.2%

Table 3: Average GE component scores and percentage of@aobonent achieved

Schools S and T are not statistically different®h, so we

can combine those scores

with more confidence W&t

can gain the benefits of an increased sample sk
describing students across multiple universities. tBis
combined P1 dataset (combining Schools S and F 94)
the average General Evaluation score is 14.0 (stahd

deviation 18.0). Figure 1
these scores is bi-modal.

shows that the distribotof
While the majority ofeth

students did very poorly, there is a second “huripthe
distribution, indicating a set of students with serhat

better performance.

Bi-modal distributions (“two humps”) appear throuagtt

this data. Another examp

le is the combined P2 skita

(combining Schools U and V), which has a similar bi

modal profile (Figure 2).

The majority of students working on P2 scored belbdv
points and fewer than ten students earned betw@em
35 points, while over thirty students scored betwes

and 54 points.

With such low scores, we were curious to know whidre

students lost points.

components: execution (did

The GE Criteria had four

the program run?),

verification (did it handle input correctly?)alidation (is

it the right kind of calculator?), andstyle (does it meet
standards?). Though the scores are uniformly las/,a
percentage of possible scores, students did besthen
execution component (implying that, overall, theyote

programs that compiled and ran) and the style camepo
(implying that the source code looked good). Thevést

component scores were on the verification and \adiah

components (Table 3).

ANALYSIS OF DoC SCORES

The Degree of Closeness (DoC) score, a five-podaties
that rates how close a student's program is to ¢pesn
working solution (see Appendix C), is particularly
interesting to study because a single set of ratesigned
the DoC scores for all four universities. Therefpany
differences in universities can be attributed tfedences
among the universities themselves, rather than to
differences in applying the criteria.

We discovered that the GE and DoC Critedi@ameasure
similar phenomena. The correlation between the GE
score and the DoC score was significant (Pearsorgs
0.66).

The overall average DoC score (combining univessiti
and exercises) = 217) was 2.3 out of a possible 5 points

40

35

30

25

20

15

Hambher al SLadenls

1l

0 - T
1

16 24 32 40

Scores

48 56

64 72 80 88 96

Figure 2: Distribution of GE scores on the P2 dataset (fgston)

(standard deviation 1.2). In general, student grnfance
was low by measure of the DoC Criteria. The average
DoC score for each exercise appears in Table 4d&its
did best overall on the simple infix calculator egise
(P2), and next best on the RPN calculator (P1)isThay

be due to students’ familiarity with infix calculats and
notation and their lack of familiarity with RPN
calculators, or perhaps due to mismatches betwaen t
demands of the exercise (e.g., stacks for RPN tailots)
and the curriculum at a particular school.

Average (stdev)
P1 (n=118) 22 (1.2)
P2 h=77) 2.4 (1.2)
P3 (h=23) 2.0 (0.9)

Table 4: DoC score by exercise

The distribution of DoC scores for the universitiés
shown in the first five rows of Table 5, with theserage
score for each university in the final row. Schoslhad

the highest DoC score, with School S second. The
difference between universities is statisticallgrsficant
(on a Student’s t-tesp < 0.01).

At School T, we had the unusual circumstance of two
different programming languages used in the exercis
About half of School T’s students solved P1 using+dQn

= 10) and the rest solved the exercise using Javall).
We calculated the average DoC score for each o$ghe
groups separately, then compared (using a Studetdst)
each group to a comparison group (School S’s sttgjen
who solved P1 using Java. While School T's C++
programmers did significantly better than Schoad Tava
programmers < 0.001), it is striking that the Java
programmers at School T differ significantly fronct®ol
S’s Java programmerp € 0.001), while School S’s Java
programmers and School T's C++ programmers do not
differ significantly. Table 6 gives the average dan
standard deviation for each of these groups.

Average (stdev)
School T's C++ Studentsi(= 10) 1.7 (0.8)
School T's Java Students € 11) 1.0 (0.0)
School S’s Java Students € 73) 2.2 (1.1)

Table 6: Average score on P1 by School T's Java and
C++ programmers and School S’s students

QUALITATIVE ANALYSIS OF SELECTED SOLUTIONS

In our qualitative analysis of the data, our goahswto
better understand some of the outcomes reportethen
previous sections. We investigated the questiorh&V
went wrong?” (from both an instructor and a studpaoint
of view) for the students who produced an unsudtgss
solution. The analysis was based on the studesastce

code as well as their responses to the Student
Questionnaire (Appendix D). The analysis focused o
students from Schools S and V whose DoC score was 1

2 and compared their performance with that of shideat

the same schools whose DoC score was 4 or 5.

First we investigated the data from tiestructor’s point

of view to see how students were approaching the
exercise. For the students whose DoC score was 3, or
we can say that little or nothing went wrong (i.they
produced working solutions that really solved the
exercise). These students can be characterized as
individuals who figured out a solution for the exéese and
either completed the exercise or were in the fiphhses

of implementing a solution. In analyzing what went
wrong for the students who earned a DoC score dhé,
results can be classified into three types:

Type 1 (null result): the student handed in an empty file.

Type 2 (unplanned result): the student’s work showed no
evidence of a plan to solve the problem. One
explanation for this performance is that the studen
followed a heuristic in which they first did whahey
knew how to do, deferring the tasks about whichythe
were uncertain, but were then unable to proceed
beyond that point.

Type 3 (unimplemented plan): there is evidence that the
student had a plan but did not carry it out. These
students apparently understood what they needed to
do and appeared to have a general structure for a
solution. We further subdivide this type into two
subtypes. For type 3a (unimplemented plan with
promising approach), there was evidence that the
student had identified a reasonable structure for
solving the exercise. For type 3b (unimplemented
plan with poor approach), the student apparently ha
a plan, but it was a poor one for the solution.

Next, we investigated the data from teident’spoint of
view to better understand why the process of commuie
the exercise went so well for some students angaarly

for others. We contrasted student attribution of
difficulties for students at School S whose DoC rscwas

1 with the attributions of students at the same osth
whose DoC score was 5. In the Student Questionnaire
(Appendix D), students were asked to rank the diffiy

of the exercise on the scale [easy, difficult, hard
impossible]. None of the School S students whaedra
DoC score of 11f = 25) rated the exercise as easy. Six of
these students did not respond to the questionn&ifehe
remaining nineteen students, six ranked the exereis
difficult, nine ranked the exercise hard, and four ranked
the exercise aBnpossible(and these were not necessarily

School S School T School U School V EP;p
Score of 5 3 0 0 9 e 1
Score of 4 5 0 2 15 stud
Score of 3 22 2 11 19 ents)
Score of 2 18 3 15 18
Score of 1 25 16 19 15
n 73 21 47 76
Average (stdev 22 (11) 1.3 (0.7) 1.9 (0.9) 731.2)

Table 5: DoC score distribution by university

For the three School S students whose DoC scoreSyas
one thought the exercise waasy one thought it was
difficult, and one thought it wasard.

To gain some insights into why, we read the refile@cs
reported by Type 1 students (null result) and studevho
earned a DoC score of 5. We found that the Type 1
students attributed blame for their difficulties tactors
outside of their control. They blamed the amountiofe
available to solve the problem, their unfamilianitith the
computers in the lab, their lack of Java knowledged
other external factors. None of the Type 1 student
mentioned factors related to the process of solving
exercise. In contrast, students whose DoC score ®vas
competently described the difficulties they expeded in
the process of creating a solution. Many of these
explanations illuminated particular aspects of tesign
phase or particularly challenging sub-problems aiples
of comments made by such students were “Simplersrro
got the best of me” (problem difficulty rated aficult),
“Could not solve for error case” (problem difficyltated
as hard), and “Implementation is wrong but easy”
(problem difficulty rated asasy. Most of the students
with DoC scores of 5 included comments in their K@
code that documented the cases for which the progta
not work.

Due to the limited timeframe for the working group
collaboration, this qualitative analysis is prelimary and
incomplete. The Results section includes additiona
observations from the qualitative analysis and sdéar
further qualitative analysis of this data, as swsjgd by
the results to this point.

RESULTS

The first and most significant result was that gtedents

did much more poorly than we expected. There asmyn
possible causes: Our expectations may have been too
high, the problems may have been too hard or a fioty

the students’ background and interests, there noajhave
been enough time given, and so on.

We did answer the question we asked in the Intrdiduc
section: Do students in introductory computing Gas
know how to program at the expected skill level?heT
results from this trial assessment provide the arsw
“No!” and suggest that the problem is fairly unigat.
Many of the solutions would not compile due to syt
errors. This suggests that many students haveereh
acquired the technical skills needed for gettingragram
ready to run. While all the results were poor, 8chV’s
students did significantly better than the otheiversities.
Two important factors that may have contributedthés
difference are: (1) The School V instructor had egivthe
students an example to study, which was a complete
answer to a similar problem, and (2) All studenteres
required to take the exercise, which was given as a
examination. Thus, sources of difference among the
universities in this study could include type of
preparation, motivation on this exercise (e.g.,rexeation

vs. extra credit), student characteristics (e.dunteers or
compulsory participation), and issues such as culum
and teaching style.

The School V instructor, who gave the exercise as a
examination, applied local grading criteria in atitoh to

the criteria defined for this trial assessment. Wdend
that the correlation between the local grade and th
General Evaluation score was high, but not overwiied).
One interpretation of this is that the two scoremsider
somewhat different features. It would be intenegtito
study these differences in order to gain a better
understanding of the way instructors normally grade
programming assignments and to contrast this wité t
criteria we used in this study. Local grades maysider
more than performance on a single assignment.
example, a teacher may wish to reward effort omaatic
improvement, and there are certainly good reasams f
doing so. Assessment in a study such as this one,
however, considers performance at a particularaimst
Give this difference in contexts, it is not surpnig that the
grade and the assessment score may differ.

For

We clearly misjudged the complexity of the exersise
The higher General Evaluation score of the studevite
worked on exercise P2 (infix notation without preeace)
implied that this exercise was in some sense edhigm
exercise P1 (RPN notation). (Before conducting the
study, we had rated P2 as being of “moderate” diffiy
and P1 as being “simplest”). This points out mofevhat

we still do not know about student learning and
performance. P1 was undoubtedly difficult for stote
who had never studied stacks or other basic data
structures.

The result about bi-modality is troubling. Thereedawo
distinct groups of performance in our datasetsisTasult
suggests that our current teaching approach isirgatb
one kind of performance for one sizable group ofdents
and another kind of performance for another sizable
group. We need to keep in mind that different guewof
students have different needs and strengths; wet mus
ensure that the results from one group do not ofesour
view of the other.

While the basis for comparison between programming
languages is small for this trial assessment, vaeutiearth

an interesting contrast. One school of thought sajyava

is better than C++ for education” or "Languages terah
lot—students learn better with X than Y." In thisudy,
Java programmers from School S resembled C++
programmers from School T more than they resembied
Java programmers at School T. This suggests tmat t
difference was not simply due to the programming
language. Issues of how the course is taught ahd thie
students are influence the outcome, rather thamgoei
simply a matter of programming language X vs.
programming language Y. Future investigations nuigt
into how learning differs with different programngn
languages.

The fact that students did well on the style compuatnof
the General Evaluation Criteria indicates that stuid are
responding to their instructors’ admonishments abou
commenting and formatting of code. The other
component scores (execution, verification, anddagion)
indicate that the code that students write does megt
specification; the only way to evaluate this isran the
students’ code. An implication of this is the impamnce of
actuallyexecutingstudent programs.

The significant number of solutions with a DoC seaf 1

or 2 (i.e. students who were “clueless”) raises the
suspicion that those students need additional vehniing
the first-year courses with developing skills inetfirst
learning objective in our framework (abstractingeth
problem from a given description).

Many of the students who failed on this trial assasnt
had no idea how to solve the exercise. On the Sitide
Questionnaire, the last question asked studafitsat was
the most difficult part of this assigned task? Wtshe
timed aspect of the problem, was the problem tdfcdilt,
etc.? The following quotes are responses from students
whose DoC score was 1 or 2:

= ‘I didn’t have enough time”

= “I'm not good with stacks/queues.”

= “Too cold environment, problem was too hard.” [We
believe the first phrase refers to the temperaithe
physical setting.]

The most frequent student complaint was a lack of
sufficient time to complete the exercise. This iap that
these students could not accurately identify theinma
source of their difficulties in solving the exereisand
therefore tended to attribute blame for their laock
success on factors other than themselves, suchaak af
time or the “cold” environment. In a multi-factonalysis,
[11] found that attributing blame to external faddsuch
as “luck”) was not uncommon, but was particularlgrtl
to overcome. Once students attributed their failto
unstable factors that were out of their controkytrarely
succeeded in future attempts.

One implication of this finding is that the implemiation

of first-year courses should make better use ofilaisée
assessment methods and tools. Students shouliveece
accurate feedback that allows them to become awére
their own limitations and difficulties—although duc
feedback alone will not necessarily convince a stidhat
the reason he or she failed is at least partiatifeiinal
rather than purely external.

Students often have the perception that the fodubheir
first-year courses is to learn the syntax of thegé&
programming language. This perception can leadestts
to concentrate on implementation activities, rathiesin
activities such as planning, design, or testingn&ally,
this perception does not come directly from whagith
instructors are telling them and, in fact, this ieélseems
to be robust even in the face of instructors’ sta¢ats to
the contrary. Students often skip the early staigethe

problem-solving process, perhaps because theyhsese t
steps as either difficult or unimportant. It issalpossible
that instruction has focused on the later stagda#h an
implicit assumption that the earlier stages are |wel
understood or easy to understand.

The information from the students’ reflections qanovide
useful information for improving the assessmentqass.
The following two quotes are drawn from the respesio
the same Student Questionnaire item as above lients
whose DoC score was 2:

= “l had a plan, | did not know how to carry it oufi
Java.”

= “The problem was too difficult, | lost a lot of tim
trying to understand how the computer work.”

These quotes are from students who seemed to aetyra
identify their own difficulties and who took respsibility
for their own performance. These students knew they
should go through a process of understanding, pregn
and implementing. The earlier students’ reflecagive
us little information about whether they were folling
these steps of problem-solving; in fact, the eardiidents
appear to have been lost and unable to point ouattviley
do not know, blaming the environment or their poor
understanding of a class of concepts.

The students’ reflections provided useful inforroati
about the influence of the setting on student perniance.
Five School V students who earned a DoC score of 2
complained that they had a plan but could not harttde
environment themselves and therefore could notsleda
their solution into a working computer program. Whee
interviewed the School V instructor, we learnedttivile
the setting was indeed lab-based as specified i th
instructions for how to administer the exerciseyds also
the first time these students had taken a laboyabaised
examination. This helps to explain why these studen
found it difficult to work on their own and perfored
rather poorly. Several students reported in thed&i
Questionnaire that stress played a major role iairth
unsuccessful performance, while others reported ttrey
needed time just to figure out how a postfix caktolr
works. Being aware of such factors can help us as
instructors to refine our assessment tools and geter
guidelines on how to administer the tools. Thestaddso
give us insights into the students’ performance tten be
used to refine our approach to evaluating theinkleaige.

DISCUSSION

In analyzing the data from universities in diffeten
countries, we have found that the problems we olesér
with programming skills seem to be independent of
country and educational system. The most obvious
similarity we observed was that the most difficplrt for
students seemed to be abstracting the problem to be
solved from the exercise description. At all unisiges,

the main student complaint was a lack of time tongbete

the exercise.

In this trial assessment, as in the “real world’may be
that black-box assessment of students’ submissions
reinforces students’ views of implementation anchtay

as the key focus of computer programming. Here we
explore some possible reasons for the observedtgtu

1. Students may have inappropriate (bad) programming
habits When beginning their university studies,
many students have prior experience in computer
programming. Often students with such experience
treat the source code as simple text rather thaanas
executable computer program that is supposed to
accomplish a specific task. Their goal is simpty t
obtain a program that compiles cleanly; often tlaeg
then surprised by what the program really does when
presented with data.

2. Switching to modern (Java) object-oriented
programming tools.Anecdotal evidence and some
research results (e.g. [10]) suggest that teacling
object-oriented approach to computer programming
(for example, using a Java environment) requires
more time before students have sufficient knowledge
about the programming environment to solve
problems on their own (which suggests that lesetim
is required to achieve the needed level of famitjar
with the environment in a procedural or functional
approach). Therefore it is very likely that firsegr
courses using an object-oriented approach do not
have room in the syllabus for fundamental data
structures such as stacks, queues, and trees.

3. Closed lab time constrainin terms of the way this
trial assessment was administered, time pressuge ma
have contributed to the poor results.

The qualitative analysis of selected solutions kdip
explain student performance and therefore hightight
where future studies must improve over this trial
assessment. One direction for further analysisld/be to
give a more in-depth characterization of the natofe
student knowledge and difficulties within each De€bre
(iie. from 1 to 5). We could investigate this by
considering the quality of the source code, theesiinal
documentation, and the data from the Student
Questionnaire. It would be useful to consider thesseies
from both from the instructor’s point of view andhe
student’s point of view. A student’s reflections rca
provide important clues to whether the student
understands his or her own limitations in knowledger
example, the terminology that the student usesawcdbe
his or her difficulties provides glimpses into tstudent’s
processes and problem-solving knowledge. Thesdglits
could help us better understand whether studenés ar
becoming competent in correctly identifying (and
overcoming) their own difficulties.

In general, data analysis using qualitative appheaccan
provide information to help improve educational
processes and refine assessment tools. For exalrgife
aware of the factors revealed by qualitative analygsn

assist us in developing better instructions for
administering this trial assessment. The informatio
generated by the qualitative analysis can also medxe
us aware of aspects of our students’ behavior that
otherwise would not notice. Finally, the informatiérom
qualitative analysis can provide better and moreusate
insights into what students know and how they usatt
knowledge.

To efficiently teach computer programming skills is
difficult. The kinds of assessment that instructarse
throughout their courses must provide appropriate
information for understanding students’ processds o
developing programming skill. This trial assessment
showed that most of the participating studentsefaito
achieve one of the basic goals of a first-year catep
science course: to acquire at least a basic levedkdl
with computer programming. This implies that it wiee
students’ knowledge, rather than their skills, teaabled
them to successfully complete their first-year cms. It is
possible that either performance-based assessrards t
to be improperly implemented or that it is ofterceficed

in order to make assessment more objective.

ISSUES TO BE ADDRESSED IN FOLLOW-ON STUDIES
Several aspects of this study gave us cause focerwnor
raised points that must be addressed in futureistudf
this kind. These areas include the administratdrihe
study, the exercises, and the challenges of multi-
institutional collaboration.

Issues related to administration of the exercise

There are difficulties in comparing the performancg
students with different programming backgroundsn |
some universities, first-year students enter hadhgady
taken a general introduction to programming course,
whereas in others most students are programmingcasv
at the start of their first year of studies. Altlgh some of
the latter group may have prior programming expece
from school, other universities, or self-learninthe
preponderance of novices in the sample would affbet
results from those universities. In future stucies might
specify the level of prior programming experienaetioe
specific programming knowledge that the students ar
assumed to have for each exercise. It would thefaber

to allow instructors to choose the appropriate ejsar to
give to their students. The background questiomai
should also be modified to solicit information otudents’
prior programming knowledge.

Students were expected to solve the problem in elext
language they were learning in their course. As it
happened, in our study all the students were |e&yni
either C++ or Java. The language of implementation
affects the difficulty of the solution. For exangplit is
much easier to read data from a keyboard in C+ew@n

C than in Java. Many courses teach Java usingsetas
supplied to simplify input from keyboard, but it wa
specifically stated in the instructions that stutdemwere
not allowed to use such classes. The exercisesldibe

chosen so that it is not necessary to use a tecteniat is
clearly more difficult in one language than another

These exercises were designed to be done using
computers in a laboratory environment. The labomnat
session must be monitored to ensure that nobodyg use
external means such as email or the Internet taiokbtelp

with the solution. It was unclear from the trialsessment
instructions whether the exercise could be doneaon
open-book basis. It was also unclear whether ircsars
were allowed to prepare the students for doing the
exercise. Such issues should be explicitly addréss the
instructions in future collaborative assessmendistst

In some universities that participated in the studye
students were volunteers. In others, the exereiss
compulsory. If students are asked to volunteer #or
programming exercise, anyone who is weak in
programming is likely to choose not to do it. Thiseans
that, in order to gain a true picture of the prograing
skills of students, the exercise must be compulsiny
students. The only way to ensure that all studemits
attempt an exercise is to make its results coumtarals
their final mark in a course. It must therefore ifito the
assessment strategy of the course in which they are
enrolled, as an examination for which a number afrks
are allocated. In the future, it would help theadysis to
record information about the conditions for each
administration of the exercise, for exampéxamination
vs. extra creditandvolunteersss. compulsory

If the exercise is compulsory, a one-and-a-half thou
laboratory consisting of only one question may lvgair.
This is particularly true if this style of assesamhés so
different from what students have already done heirt
courses that they cannot determine where to stah
assessment of programming skill may need to take in
account the fact that, in the “real world”, a pragnmer
usually does not have such a short time limit for
understanding a problem and writing the required
computer program. In addition, real-world prograsmn
are generally free to refer to books and other ueses if
needed. Students whose primary language is notiging
may need a considerable amount of time to read the
specification in order to understand what is reqdir In
future studies, it may be necessary to allow stislemich
more time than it is likely to take them to solvéet
problem. For example, if a teaching assistant salve
the problem in half an hour, it may be necessaraltow
students up to three or four hours to solve it. nfo
students suffer from examination anxiety. To caurthis,

it would be possible to give students a week, sayo the
exercise, although this introduces more opportasifior
plagiarism, and the assessment strategy would have
take this into account. Another approach wouldd#eat
the topic area for the exercise as a case study ttiea
instructor presents during one or more lecturesasiB
materials for presenting the case study could be
distributed to the participants. This would intkgzk some
consistency in how the case study was introduced to

students and could make it easier for studentsutickdy
understand the requirements of the exercise irctbsed-
lab setting.

This study was not culturally neutral. For some
universities, the exercises and instructions hadb®
translated into a language other than English. e @ay to
minimize the effect of this difference would beeosure a
centralized translation to each language, which idou
ensure that all universities using a particular unak
language use the same specification. Ideally,etsfould
also be a validation step to ensure that the taesl
version of the exercise gives exactly the same
specification as the original English version.

In future studies, instructors must receive suéfitti notice
of the study so that they have time to incorporgteto
their assessment strategies for a particular semeg&this
point was a major factor in why additional univeiss did
not participate in this trial assessment.

Issues related to the exercises

The exercises used in this study were probably
discouraging for students with mathematical anxiety
Such students exist even in Computer Science
programmes and are more likely to exist in otherds of
computing programmes that do not include compulsory
mathematics courses or have strong mathematics
prerequisites, such as a programme focused on
commercial applications of computing. In futureidies,

a set of exercises of equivalent programming difffig
could be devised, and participating instructors ldou
choose the most appropriate exercise for studentleir
programme. Alternatively, students could be alldwe
choose the exercise that they felt most comfortable
attempting.

The exercises in this assessment should have cphiti
that are unlikely to appear in the textbooks tyflicaised
by students in the first year. In this way, stutewho had
used such textbooks would not be at an advantagg ov
those who had not. To address this in future stadia
review panel, consisting of a representative sanifle
instructors, could be asked to provide feedbacktioa
appropriateness of the task, the level studentsldvoeed
to be at to successfully solve the exercises, ahéther
they knew of any resources that would give some&shtus
an unfair advantage in solving any of the exercis@$e
review panel could include instructors from diffate
countries, with different natural languages, teaghin
different kinds of degree programmes, and usinfedént
programming languages.

In our study, the exercises were most easily solvsidg a
procedural approach, and it was not easy for aesttido
decide which classes, attributes, and methods wabeld
required if an object-oriented approach were takdinis
may have confused many students. Given that micst f
year programmes currently seem to be using an t¢bjec
oriented language, the exercises should includéongpt

for which a natural solution can be designed usamy
object-oriented approach.

The specifications of the exercises in this studgluded
details that were not relevant to the solution, ethimade
it difficult for many students to achieve the firlgarning
objective in our framework (abstracting the probléom
the description). As stated earlier, many studdtitese
with DoC scores of 1 or 2) did not get seem to gest
that point in the problem-solving process. In theure,
extra effort should be expended to make each
specification as clear and simple as possible. ®@ag to
achieve this would be to ask the review panel mamed
earlier to suggest changes to the exercise degmngtas
well as to the instructions for administering thesecises.

Issues related to multi-institutional collaboration

This trial assessment is an example of collaboratia a
single project across a variety of universities. ull4
institutional collaboration offers advantages asllvas
challenges. Among the advantages are an increased
experience pool, a larger cumulative pool of studeand
a wider variety of student profiles (increasing phatential
for generalizability of results). At the same tipmulti-
institutional collaboration includes many challesgsome
of which are addressed earlier in this section. inBe
separated physically makes it more difficult to cdimate
protocols for conducting the exercises. It is alvore
difficult to make the data consistent (with respeot
formats, field names, etc.) and complete (one ursite
may collect data that is “lost” at another univayssimply
because the second instructor did not know to aaptioat
information). Another important challenge is makitige
exercises sufficiently general so that they aretrawith
respect to both culture and the university. Expece in
this trial assessment suggests that we did noy fulcceed
in this. Our conclusion is that we must be cautidos
defining general exercises, since we cannot asshateall
first year programs cover the same material in eahor
emphasis, even within the boundaries of established
curriculum standards and accreditation criteria.

Based on the experiences with this trial assessmeat
offer the following advice for doing multi-institignal
collaborations:

1. Appoint one research coordinator, who will beeth
main contact point for making decisions on the enti
project. In our case, the WG leader was the redear
coordinator, who guided the entire process.

2. Do a trial run of the entire study, including aysis,
in order to work out details of data formats and
instruments.

3. Ensure that all source data can be traced to the
interpreted data. For example, ensure that the
printouts and files with the source code are marked
a way that associates each with the coded ID of the
student who completed it.

CONTINUING THE QUEST

Because our preliminary work suggests that the |enols
we have observed are universal, the working grag it

is worthwhile to expand this trial assessment tolude a
broader base of computer science educators and
universities. We envision establishing a central web site
related to assessment of programming skills. Sadite
could provide a gathering spot for links and madési
related to this type of assessment, while at theeséime
being easily usable from throughout the world. Tweb
site could include a registration process in ortteallow
restricted access to various parts of the assedssiten

The programming assessment site must support thege
types of activities:

= Assessment developmentThe system should enable
instructors throughout the world to participatetiis
collaborative project. For example, the web site
should have features to support individuals whohwis
to submit new ideas or produce new assessments
(perhaps following pre-defined templates obtained
from the web site). The web site can also provide
technical forum where individuals developing
assessment tools can discuss personal assessment
experiences with others involved in the project.

= Support for carrying out assessment and self-
assessment This feature can serve two groups of
users: students and instructors. The assessmént we
site can provide both groups of users with ready-to
use assessments and background information. As the
instruments are filled out, the web site can cdilge
results and allow users to submit comments and
feedback. Individual students would be able to use
these tools for self-assessment and tracking patson
progress. The assessment web site could also
establish a worldwide database to accumulate
information about students’ computing knowledge
and programming skills as measured by these
assessments. Such a database would provide a basis
for understanding student attributes within a singl
university, a single country, or even globally.

= Communication environment While much of the

information in the assessment web site will have
strictly controlled access based on an individual's
registered profile, the system could also allow the
general public to access certain information about
assessment. This would allow anyone interested in
any aspect of assessing programming skills to
exchange ideas and comments.

In order to realize the vision of an assessment \si,
several organizational aspects are needed, inaudin

= asteering committee to guide the various efforts;

= a series of meetings, perhaps on an annual basis,
where policy and structure can be defined;

= acommittee devoted to maintaining the system; and

= one or more moderators who track day-to-day
submissions from the public.

In order to foster interaction while establishingida
building the assessment web site, a series of mgeti
could be held at regular intervals to gather indivals
interested in contributing to this project. The etieg
agenda would include developing the philosophy and
strategy of assessment, accepting or rejecting gseg
changes to the whole system, and managerial
responsibilities such as designating the steering
committee. It would make sense for the
conference/workshop to take place in conjunctiothva
major conference such as the SIGCSE Technical
Symposium or the ITIiCSE Conference. The steering
committee would be responsible for guiding the
implementation strategy between the periodic mestin
The system maintenance group would be the profaatso
responsible for maintaining the system. Finallfet
moderators would monitor the content of the systama
day-to-day basis.

The site with information from this working group i
located at the URL:

http://mww.cc.gatech.edu/projects/iticsewg/csamslht

ACKNOWLEDGEMENTS

The chair of this working group thanks each memfwer
her or his individual contributions. The memberere
what made this working group a success. This proje
required a great deal of dedication and effort the t
members before, during and after the conference.

The group would also like to thank the organizefgte
conference, Sally Fincher and Bruce Klein, and the
working group leader, Roger Boyle, for giving useth
opportunity to do this project. Finally, the growpould
like to thank Georgia Tech students Blake Markhamd a
Prashanth Kolli, who helped with a lot of the lotits of
the project.

REFERENCES

1. ACM & IEEE-CS Joint Task Force on Computing
Curricula 2001 (2001).Computing Curricula 2001,
Ironman Draft Association for Computing Machinery
and the Computer Society of the Institute of Elexr
and Electronics Engineers. Available:
http://www.acm.org/sigcse/cc2001 [2001, 5/16/01].

2. Beck, K. (2000). Xtreme Programming Explained:
Embrace the Change The XP Series, Addison-
Wesley, 2000, Boston.

3. BlueJ (2001). BlueJ, the Interactive Java
Environment Available: http://www.bluej.org. [24
July 2001].

4. Hambleton, R.K. (1996). Advances in Assessment
Models, Methods, and Practices. In D.C. Berlineda
R.C. Calfee (Eds.) Handbook of Educational
Psychology New York: Simon & Schuster
Macmillan.

5. Linn, R. L., Baker. E. L., and Dunbar, S. B. (1991
Complex, performance-based

assessment:

Expectations and validation criteria. Educational
Researcher20(8), pp. 15-21.

6. Mayer, R. E. (1981). A psychology of how novices
learn computer programmingcomputing Surveys,, 1
pp. 121-141.

7. Pea, R. (1986). Language independent conceptigd
in novice programming. Educational Computing
Research, @), pp. 25-36.

8. Soloway, E., Ehrlich, K., Bonar, J., & Greenspadn
(1982). What do novices know about programming?
In A. Badre and B. Shneiderman (EdS)rections in
Human-Computer InteractionsNorwood, NJ: Ablex,
pp. 27-54.

9. Spohrer, J., & Soloway, E. (1986). Novice mistak
Are the folk wisdoms correct€ommunications of the
ACM, 297), pp. 624-632.

10.Wiedenbeck, S., Ramalingam, V., Sarasamman&. a
Corritore, C.L. (1999). A comparison of the
comprehension of object-oriented and procedural
programs by novice programmerkteracting With
Computers11(3), March, pp. 255-282.

11.Wilson, B. C., & Shrock, S. (2001). Contribugirto
success in an introductory computer science coukse:
study of twelve factors. In I. Russell (Ed.JThe
Proceedings of the Thirty-second SIGCSE Technical
Symposium on Computer Science Educatidn
SIGCSE Bulletin inroads33(1). pp. 184-188

APPENDICES

The information given in these appendices reflects
updates made after completing the trial assessngoime
changes were introduced to clarify issues and imglete
points that were missed during the initial develapm
The original and modified versions of the exercisesl
the instruments are available via the working greupeb
site at the URL
http://www.cc.gatech.edu/projects/iticsewg/csasl.htm

Appendix A. Overview of the Exercises

The content of three exercises developed for usthim
study was distributed electronically to the partiiing
instructors so they could easily cut and paste tthé in
creating their local versions of the assignment. &s
baseline for difficulty levels, we hypothesized tisecond-
semester computing students should be able to @o th
most difficult exercise of the three, Exercise #8,1.5
hours. To improve consistency, participating instors
received the following guidelines for how to adnstar
the task.

e The students should work individually in a
closed lab setting (proctored, with all work
completed in the allotted time).

e The student’s goal is to produce a working and
tested program in the time allotted.

e This is a programming exercise, so students
should produce a computer program. Any design

documentation, though important to solving the
problem, is not important to this assessment.

The three exercises, referred to in the body ofghper as
P1, P2, and P3, were as follows:

= Exercise #1 (P1): Programming an RPN calculator;
difficulty level: 1 (simplest)
= Exercise #2 (P2): Programming an “infix” calculato

without precedence; difficulty level: Zmoderate
difficulty)

= Exercise #3 (P3): Programming an “infix” calculato
with simple precedence (i.e. precedence determined
by parentheses only; no consideration given to
operator precedence);; difficulty level: Imost
challenging)

The exercise description included a common intrdigdunc
for all three exercises. We suggested that stugesould
need ten minutes to read and understand this backgkr
information. The main ideas in the introductionnee

= An explanation of the two main notations for hand-
held calculators: Reverse Polish Notation (RPN3dal
known as “postfix”, which is generally used by
Hewlett Packard calculators) and “infix” (which is
generally used by Texas Instruments calculators).

“in-fix”

= A description of how “post-fix” and

expressions should be processed.

= A discussion of why RPN is simpler to implement
(i.e. no precedence issues) while at the same ftise
less intuitive for most users.

The individual descriptions of the three exercises
provided the following information:

= User input is to come from the terminal’'s standard
input; output should be directed to standard oufput
the terminal.

= The solution can utilize standard library routines
provided by the language; no proprietary or other
such libraries may be used.

= The operations that the particular calculator can
process include addition, subtraction, multiplioati
division, the power operator, and the inverse, or
negation, operator. The “infix” calculator with
precedence (Exercise #3) also included parenthesis
pairs, which are used to indicate simple precedence

= The description of each calculator shows the redati
format for a line of input. For all of the calculars,
some form of white space will delimit tokens
(numbers and operators).

= User input will be entered non-interactively (saath
the program is not allowed to query the user for
additional information once the expression is
entered), with the exception of the prompt to siblic
the next line of input.

= The program should terminate when the input
contains only the letteq’.

= When an error is detected in the input, the program
should output an informative message and allow the
user to begin entering a new expression.

= At the end of each calculation, the calculator ddou
be cleared so the data structure containing the
intermediate results is empty and ready for proiress
a new expression.

= Floating point arithmetic should be assumed and the
program should allow non-integer expressions as
valid input.

= Through several lines of a sample session, the
description demonstrates a number of expressiods an
the results from the associated calculations far th
specific calculator.

Appendix B. General Evaluation Criteria

Because this was a programming exercise intended to
evaluate the programming skills of the participarttse
evaluation focused on skills. The General Evalomati
Criteria were designed to give reasonably conststen
evaluations while allowing the participating insttars to

still follow their normal grading process.

The total number of marks that a particular progresuld
earn was 110. In the following, we have listed the
allocation of marks immediately after each item.her
style section was optional, since some instructiyhave
not style requirements in their introductory classe

Execution (30 marks) — Does the program execute
without error in its initial form? Does it compileithout
error? Does the program run successfully (no auwmp
or equivalent failure)?

Verification (total of 60 marks, as broken down in the
itemized list) — Does the program correctly produce
answers to the benchmark data set? This incluties t
following issues:

= (10 marks)The program should allow for multiple
inputs of different arithmetic expressions (i.et, i
should clear out the data structure properly betwee
different expressions).

= (10 marks)The program should terminate correctly
(i.e., entering the quit command should termindte t
program).

¢ (30 marks)The program should correctly process
data sets containing expressions typically
evaluated with a calculator. (Some sample
expressions were provided to the instructors. The
samples were not meant to be exhaustive, but to
provide a benchmark.)

= (10 marks) The program should react properly to
erroneous inputs.

Validation (10 marks)— Does the program represent the
calculator type asked for in the exercise speciimz?

Style(10 marks)- Does the style of the program conform DoC score applies to programs that did not work and

to local standards, including naming conventiongd an indicates how close the solution was to working.
indentation? (The style measure was optional.) To assign the DoC score for a student's prograng th
Appendix C. DoC Evaluation Criteria evaluator inspected the source code. The sconegedh
As a more subjective measure of the quality of lson, from 5 to 1, with 5 being the best. Generally, the
the working group developed an indicator that wenedo evaluators added notes to explain the reasons Her t
call the DoC score, for “Degree of Closeness” (aith assigned score.

tongues firmly in cheeks, “Depth of CluelessnessThe

DoC
Score Interpretation

5 Touchdown. The program should have compiledaodked. If it did not work, it could be that
the student simply ran out of time.

4 Close but something missing. While the basiauactiure and functionality is apparent in the
source code, the program is incomplete in some wWeor. example, it might have been missing a
method or a part of a method, but everything elsensed fine.

3 Close but far away. In reading the source catie,outline of a viable solution was apparent,
including meaningful comments, stub code, or a gstadt on the code.

2 Close but even farther away. The outline, comtsgand stub code showed that the student had
some idea about what was needed, but completedliteyof the program.

1 Not even close. The source code shows that tingesit had no idea about how to approach the
problem.

Appendix D. Student Questionnaire

This version of the questionnaire was used at aneAcan university. This questionnaire must be ouostzed for each
participating university to solicit equivalent immation.

Part 1: Personal Information
Name: IDNUM:

(please circle the correct choices below)

Sex: Male Female

Class RankFreshman Sophomore Junior Senior

Overall GPA <2.0 2.0-25 2.5-3.0 3.0-3.5>35

What grade do you expect to make inthecoursé? B C D F

Major:

Part 2: Background

Where did you first learn to program in Java / CHpkase circle one)

BeforeHighSchool HighSchool College Other:

Do you have any experience programming outsideaastbom environment? If so, please explain.

Part 3: Study Reaction

Did you feel that the assigned task was difficutgse circle the level of difficulty)

What level of difficulty would you rank it? Easy Difficult Hard Impossible
Other:

What was the most difficult part of this assignedi? Was it the timed aspect of the problem, wasgioblem too difficult,
etc.? Please try to explain in a way that makeddiffeculties clear for us.

