Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

Fermionic quantization of Hopf solitons

S. Krusch*
Institute of Mathematics, University of Kent
Canterbury CT2 7NF, England

J.M. Speight'
Department of Pure Mathematics, University of Leeds
Leeds LS2 9JT, England

Abstract

In this paper we show how to quantize Hopf solitons using the Finkelstein-Rubinstein
approach. Hopf solitons can be quantized as fermions if their Hopf charge is odd. Sym-
metries of classical minimal energy configurations induce loops in configuration space
which give rise to constraints on the wave function. These constraints depend on whether
the given loop is contractible. Our method is to exploit the relationship between the
configuration spaces of the Faddeev-Hopf and Skyrme models provided by the Hopf fi-
bration. We then use recent results in the Skyrme model to determine whether loops are
contractible. We discuss possible quantum ground states up to Hopf charge Q) = 7.

1 Introduction
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The possibility of knot-like solitons in a nonlinear field theory was first proposed by Faddeev
in 1975, [I0]. In 1997, interest in the model was revived by an article by Faddeev and Niemi
[TT]: the advent of larger computer power and a better understanding of the initial conditions
led to a series of papers. In [I5] axially symmetric configurations were studied extensively.
Papers by Battye and Sutcliffe showed that for higher Hopf charge twisted, knotted and linked
configurations occur [7, §]. The most recent results are due to Hietarinta and Salo 16 [I7].
Stable and metastable static solutions have now been explored up to Hopf charge @) = 8.

Quantization of Hopf solitons was first discussed in [I5]. More recently Su described a
collective coordinate quantization in [27] which was motivated by the collective coordinate
quantization of Skyrmions in [I]. However, collective coordinate quantizations can be poten-
tially misleading unless the topology of configuration space is examined carefully [5].
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In this paper we describe the fermionic quantization of Hopf solitons following an old idea
of Finkelstein and Rubinstein [I2]. Solitons in scalar field theories can consistently be quan-
tized as fermions provided the fundamental group of configuration space has a Z, subgroup
generated by a loop in which two identical solitons are exchanged. Loops in configuration
space give rise to so-called Finkelstein-Rubinstein constraints which depend on whether the
loop is contractible. The Skyrme model [28] was the main motivation for this approach; see
[20] for further references. Symmetries of classical configurations induce loops in configuration
space. After quantization these loops give rise to constraints on the wave function. Recently,
a simple formula has been found to determine whether a loop in the configuration space of
Skyrmions is contractible [20]. We shall exploit the fact that Skyrmions and Hopf solitons are
related via the Hopf map to use Skyrmions as a tool to study Hopf solitons.

This paper is organized as follows. In section Pl we discuss the configuration space of
Hopf solitons for general domains. The configuration space of Skyrmions can be related to
Hopf solitons via the Hopf map which is a fibration. This mathematical structure enables us
to prove that the Hopf map induces, in certain circumstances, an isomorphism between the
fundamental groups of the Skyrme and Faddeev-Hopf configuration spaces. In section Bl we
summarize some known facts about Hopf solitons. In section Bl we describe how to quantize
a Hopf soliton as a fermion and calculate possible ground states in the Faddeev-Hopf model.
In the following section, we discuss collective coordinate quantization in this context. We end
with some concluding remarks.

2 The topology of configuration space

Let M be a compact, connected, oriented 3-manifold and py, € M be a marked point. The
case of most interest is M = S?, interpreted as the one point compactification of R? with pg
representing the boundary at infinity. The configuration space we seek to study is (S?)M, the
space of based maps M — S2, that is continuous maps sending the chosen point py to a chosen
point in S2, (0,0,1) say. We also define the space Free(M, S?) of unbased maps M — S? and
similarly (S®)™ and Free(M, S?) where the chosen point is (1,0) € S C C2?, say. All such
spaces are given the compact open topology (equivalent to the C° topology). Our goal in this
section is to relate the topology of (S?)M, the Faddeev-Hopf configuration space, to that of
(S3)M | the standard Skyrme configuration space.

The connected components of (S%)M were enumerated and classified by Pontrjagin [25].
Let p be a generating 2-cocycle for H?(S?;Z) = Z. Then given ¢ € (S?)™ one has an
associated 2-cocycle ¢*u € H?(M;Z) by pullback. No two maps M — S? having nonco-
homologous 2-cocycles can be homotopic, and every 2-cocycle on M is cohomologous to the
pullback of p by some map. Thus, the homotopy classes of maps M — S? fall into disjoint
families labelled by H?(M;Z). Within any such family, the classes are labelled by elements of
H3(M;Z)/2[¢* ) U HY(M;Z). Note that this group varies from family to family and that to
compute it requires knowledge of the ring structure on H*(M;Z). The most important family
is the one with [¢*u] = 0, the so-called algebraically inessential maps. Classes within this
family are labelled by elements of H3(M;Z) = Z, identified with the Hopf charge @, which we
would like to interpret as the soliton number of the configuration, that is, the excess of solitons



over antisolitons. Let us denote the space of algebraically inessential maps by (S?)M c (S2)M.
Note that these sets coincide if H?(M;Z) = 0, for example, when M = S3. Configurations
outside (S%)M wrap some 2-cycle in M nontrivially around S2. They are bound to some topo-
logical defect in physical space and so are arguably not localized topological solitons at all.
We shall not consider their physics in this paper.

Our main tool will be the Hopf map 7 : S® — S?, most conveniently defined by identifying
S3 with the unit sphere in C? and S? with CP!, for then

7 (21, 29) > [21, 22). (2.1)

Note that 7 sends the marked point (1,0) € S? to the marked point [1,0] € S?, corresponding
to the North pole, (0,0,1). The map 7 is a fibration, that is, it has the homotopy lifting
property with respect to all domains. A map ¢ : M — S2 has a lift ¢ : M — $® (where
Tod= ¢) if and only if ¢*p = 0, that is, if and only if ¢ € (S?)M. The integer in H(M;Z)
labelling the class of ¢ is precisely the degree of 5 : M — 83, that is, the baryon number of
the Skyrme configuration ¢. This was shown explicitly for M = S? in [24]. So, given a Skyrme
configuration of degree (), we may produce an algebraically inessential Hopf configuration of
charge Q by composition with the Hopf map. In this way we produce a map 7, : (S*)¥ —
(S?)M. To what extent does the topology of (S%)M determine that of (S2)M?

Theorem 1 The map 7, : (S*)M — (S*)M induced by the Hopf fibration is a Serre fibration.

Proof: We must prove that the map has the homotopy lifting property with respect to all
disks D* [23], that is, that the commutative diagram below left may be completed by a map

H along the diagonal. Here H is a homotopy between two maps fy, f1 : D* — (S?)™ and ﬁ)
is a lift of f;. Using the identification of g : X — YZ with §: Z x X — Y, we produce the

commutative diagram below right. Now the homotopy H certainly does lift to H since 7 is a

fibration. From H we produce a map H : D¥ x I — Free(M, S®) by (H(d,t))(p) = H(p,d,t).
A priori, this is not necessarily the lifted homotopy we seek, however, since there is no reason
why it should respect the basing condition.

~

D* x {0} o, (SHM M x D* x {0} Jo g
HM M x D x [0,1] — S?
i

Let U C S? be a small closed ball centred on (0,0, 1) and choose a local trivialization of the
Hopf bundle S' < S 5 S2 over U. Then by continuity of H and compactness of D* x [0, 1],

there exists a closed ball B C M centred on po so that the restriction H| : B x DF x T — §3
takes values in 71 (U). We may write it, with respect to our local trivialization, as

H|(p, d,t) = (H(p, d, ), \p. d. 1))
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where A : B x D* x [ — S1. In this language, we are done if A| : {po} x D*¥ x I — {1}, for
then the map H does satisfy the basing criteria. Note that we are free to change A to any
continuous map A, we please, provided we do not change it on 9B x D x I, since this just shifts

H along the fibres of S® which does not change 7 o H, so that the altered map is still a lift of
H, and is still continuous. Now since B x D* x I deformation retracts to S? and m(S') = 0,
A : OB x D* x I is nullhomotopic and we may construct the required A, : B x D x [ — S!
by applying the null homotopy radially in B. O

Our main interest is to understand the fundamental group of each connected component
of (S?)M. Given any map p: X — Y, there is a natural homomorphism p, : m(X) — m(Y)
defined by composition of loops in X with p. The fact that m,, which we will henceforth
denote p, is a Serre fibration allows us to obtain a short exact sequence relating m ((S%)M)
and m,((S?)M). In the case M = S3 this reduces to the statement that the homomorphism p,
associated with p is actually an isomorphism. We can therefore determine the homotopy class
of a loop in the Hopf configuration space by lifting it to a loop in the Skyrme configuration
space and applying known results.

Theorem 2 The map p : (S*)M — (S)M obtained from the Hopf fibration induces a short
exact sequence of groups

0 — m(($)M) = m((8%))) — H'(M;Z) — 0.

Proof: Given any Serre fibration F «— E % B, where F, E, B denote the fibre, total space
and base, we have an induced long exact sequence of homotopy groups:

.= m(F)=m(E) % 7(B) — m(F) — mo(E) 2 mo(B) — 0. (2.2)

In the case at hand, £ = (S*)Y, B = (S*)™ and F' = (S')". Using the identification S' =
U(1), we see that F'is a topological group, so all its connected components are homeomorphic.
The components of GM for any Lie group G are enumerated in [3] while 7 (GM) is constructed
in []. The relevant results here are mo(F) = H'(M;Z) and m(F) = 0. Note also that
70(E) = mo(B) = H3*(M;Z) = 7Z by the theorems of Hopf and Pontrjagin. Substituting in
EZ2) gives
0— m(E) % m(B) - H(M;Z) - 7.2 7 — 0. (2.3)

By exactness, the second p, is surjective, and there are only two surjective homomorphisms
Z — 7 (namely 1 +— 1 and 1 — —1), both of which are injective. So we see that the second
px is an isomorphism. Since the second p, has trivial kernel, the image of H'(M) in Z is 0 by
exactness, and the sequence truncates as was claimed. O

We note in passing that this provides an algebraic proof that the Hopf map takes degree
Q Skyrme configurations to Hopf charge @ (or —(Q if the orientation on M or S® is swapped)
Faddeev-Hopf configurations, since this is precisely the statement that p, : mo((S*)Y) —
7o((S?)M) is an isomorphism. By identifying the Hopf degree of ¢ € (S?)M with the degree
of its lift ¢ € (S*)M we adopt the standard convention that the Hopf map 7 € (52)5° itself
has Hopf degree +1.

The short exact sequence does not tell us precisely what 7;((S?)) is in general. One
useful class of domains (which includes M = S3) where we do know the answer is those with
finite fundamental group.



Corollary 3 If m (M) is finite then p, : 1 ((S*)M) — m((S*)M) induced by the Hopf map is
an 1somorphism.

Proof: The result follows once we show that H'(M;Z) = 0. By the Universal Coefficient
Theorem, H'(M;Z) is isomorphic to the free part of H,(M;Z), since Hy(M;Z) = Z has no
torsion. But H;(M;Z) is isomorphic to the abelianization of 71 (M) which, being finite, can
have no free part. O

These results are useful because a lot is known about the topology of (S*) since it can
be identified with the topological group GM where G = SU(2). The canonical identification
is given by

Z oz

S 5 SU(2) < (21, 2) o U = < a 7 ) . (2.4)

This map is well-defined because UTU = UUT =1, and |21]? +|2|* = 1 implies that det U = 1.
Also note that (1,0) — I,. Since (SU(2))M is a topological group all connected components
of (§)M are homeomorphic, and the fundamental group is abelian. A loop in the identity
component of SU(2)M based at the constant map M — {I,} may be thought of as a map
from S' A M to SU(2), where A denotes smash product. If M = S3 then S' A M = S* and
T4(SU(2)) = Zy, so we have that m,((S?)5°) = m,(SU(2)%") = Z, for all components. Using
a similar argument for the vacuum sector (S*)) of the Faddeev-Hopf model, we could very
easily have shown that, for M = S3, m((S?))) = 74(S?) = Z,. Note that we have actually
proved much more than this, however: the fundamental group of every connected component
of the Faddeev-Hopf configuration space is Zs, and crucially, that the map from the Skyrme
configuration space induced by Hopf fibration is an isomorphism.

The above results will suffice for our purposes. In fact, one can say much more about
the algebraic topology of (S?)M, with M a general compact oriented 3-manifold. It turns
out that all components of (S?)# are homeomorphic, though the same fails to be true for
the full space (S?)M. Furthermore, it is possible to compute both the fundamental group
and the whole real cohomology ring (including its cup product structure) of any component
of (S?)M. These results are obtained [4] by exploiting a somewhat less obvious relationship
between (S?)M and the vacuum (degree 0) sector of SU(2)M. Essentially, all Faddeev-Hopf
configurations in a given sector may be obtained from a fixed map in that sector by acting
on the codomain with some degree 0 Skyrme configuration. This gives natural maps from
the vacuum sector of the Skyrme model to each sector of the Faddeev-Hopf model, which
can be shown to have many topologically natural properties. The topological results we
present here are not so powerful as those of [4], but they are also less technical and may be
visualized rather concretely. Most importantly, they are particularly well-suited to the study
of Finkelstein-Rubinstein quantization in the Faddeev-Hopf model.

3 The Faddeev-Hopf model

From now on we consider only the case M = S3, interpreted as the one point compactification
of R? with the point py representing the boundary at infinity. The most extensively studied



model of this kind is due to Faddeev [I0] who suggested the following Lagrangian density
1 " A " 5
L',:iaun-@n—z(ﬁunx&,n)-(anx@n) (3.1)

where the field n = (n;,n9,n3) takes values on the 2-sphere, that is |n|?> = 1, ) is a coupling
constant, and the boundary condition is n(co) = (0,0,1). We have changed notation from ¢
to n for the field so as to fit in with the existing literature on the model. Note that the second
term in (B) stabilizes the solitons against radial rescaling. As discussed in section B the Hopf
charge Q can be identified with the degree of any lift of n to n : R® — S3. The energy E of a
static configuration of Hopf charge () is bounded below by

where ¢ is a constant. For more details see [29, B0)].
The Lagrangian of the model has E(3) x O(3) symmetry. Since spatial translations are
rather trivial we will not discuss them any further. The target space O(3) symmetry is
broken to O(2) symmetry by the boundary condition. Kundu and Rybakov showed in [21]
that topologically nontrivial configurations admit at most an axial (one-parameter) symmetry.
General configurations with axial symmetry are discussed in [I5]. Special configurations with
axial symmetry have been studied recently in [I7] and can be described in the following way.

Introduce toroidal coordinates (1, £, ¢) on R? defined by
sinh 7 cos ¢ _ sinh7nsing B sin &

_ = =q—. 3.3
coshn—cos{’y coshn — cos &’ coshn — cos ¢ (33)

These coordinates form a canonically oriented orthogonal system covering all of R? except the
circle C = {22 + y* = @?, 2z = 0} and the z-axis. Surfaces of constant n € (0,00) are tori of
revolution about the z-axis, but with non-circular generating curves. As 1 — oo these tori
collapse to the circle C' and as n — 0 they collapse to the z-axis. Each torus of constant n
is parametrized by the angular coordinates (¢, &); ¢ is the angle around the z axis, £ is an
angular coordinate around the not quite circular generating curve of the torus. The maps
of interest are most easily written in terms of a complex stereographic coordinate W on S2.
Projecting from (0,0,1), so that W = (ny +in2)/(1 — n3), they take the form'

W= flm)e e, (34)

where f(n) satisfies the boundary conditions f(0) = co and f(co) = 0. Inverting the stereo-
graphic projection yields

2f fF-1
m Sll’l(mg — ngb), m . (35)
This ansatz will be referred to as the toroidal ansatz. Here the word “ansatz” is used rather
loosely, for an approximation which is a good initial guess for the numerically calculated static

n= (]““227—{—1 cos(m& — no),

Note that we have changed the sign of n in [I7].



solution. It is worth mentioning that the toroidal ansatz gives rise to exact solutions for the
Lagrangian density £ = (HWH‘“’)% where H,, =n- (0,n x d,n), [2].

Under rotation by « around the z axis the toroidal coordinates change to (7, £, $+«) which
rotates the vector n by —na around the third axis in target space. Obviously, this rotation
can be undone by a rotation around the third axis in target space.

There is an obvious lift of any map R3 — S? within this ansatz to a Skyrme configuration
R3 — S3, obtained as follows. For given f, m and n, let

~ X 1 )
n:(n¢&)— (21,2) € C? where 2 = Lelmg, Zy = ————e"%.  (3.6)

VAl T R

Then |21|*+|22|> = 1 so that 0 is actually S3-valued, and the composition of this map with the
Hopf map is clearly n, since the stereographic coordinate W coincides with the inhomogeneous
coordinate W = z;/z, under the identification S* = CP!. It is now straightforward to compute
the degree of n, and hence the Hopf degree of n. Since the degree of n is a homotopy invariant,
we may deform f to any convenient function satisfying the boundary conditions, for example,
f(n) = n~1. In this case, (2_%, 2‘%) € 53 is a regular value of n with precisely |mn| preimages,
namely the points with n = exp(im¢) = exp(ing) = 1. At each of these preimages, the image
of the canonically oriented coordinate frame under dn is

N

AR = [0, 06, Dy) — [(—272,0,273,0), (0, —=, 0,0), (0,0,0, —=)]

V3 V2

where we have identified C? = R*. The orientation of the image frame is given by the sign of

the determinant
mn

Hence each of the |mn| preimages has multiplicity +1 if mn > 0 and —1 if mn < 0, so the
Hopf charge of n is mn, in agreement with the calculation in [T5].

Numerical evidence suggests that the energy minimals for () = 1,2 and 4 have axial sym-
metry. In general, minimals are more complicated, having knotted or linked structures with
at most discrete symmetries. In principle any cyclic group Cj is a possible discrete symmetry.
However, in practice only the simplest nontrivial symmetry — the twofold symmetry Cy —
seems to occur. Clearly any nonconstant smooth field configuration cannot be symmetric un-
der a rotation in target space without a compensating spatial rotation. It is possible, however,
for a configuration to be invariant under a spatial rotation without a compensating rotation
in target space. For example, the axial configuration in () with even n has a Cy symmetry
generated by spatial rotation by 7 about the z-axis. We will discuss symmetries further in the
next section when we calculate the constraints they impose on the wave function.

4 Finkelstein-Rubinstein constraints

In this section we describe how to use ideas of Finkelstein and Rubinstein [I2] to quantize a
scalar field theory and obtain fermions. Quantization usually implies replacing the classical
configuration space by wave functions on configuration space. However, if the configuration
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space is not simply connected it is possible to define wave functions on the universal cover
of configuration space. As shown in section I?L the fundamental group of each connected
component of our configuration space Q = (S 2) is Zs. So the universal cover Q is a twofold
cover. We will also assume that the topological charge is conserved in the quantum theory,
as it is in the classical theory, so the wave functions are defined on the covering space of a
component of configuration space Q¢ with fixed Hopf charge (). We shall formally think of the
quantum state of the model as belng Spemﬁed by a wave function ¥ € L2(QQ) with respect
to some measure on QQ Let II : QQ — QQ be the deck transformation, that is, the map
which takes p to the unique point in QQ which differs from p but projects to the same point
in Qg. This induces a linear map II* : L? — L? by pullback: (IT*¥)(p) := \IJ( (p)). Since the
states II*¥ and ¥ are physically indistinguishable, we must have W(p) = e?®1I*¥(p) for all
p E @Q and all . But II*II* = 1, so the only possibilities are II*¥ = \If or [II'V = —V. In
order to allow for fermionic solitons, we must consistently choose the latter possibility: our
wavefunctions must always be odd under II.

Spinoriality then arises as follows. Consider the loop in Qg defined by spatial rotation
about a fixed axis through 27 of a fixed base configuration n. Since m,(Qg) = Zo, this may
not be contractible, and its contractibility is independent of the basepoint n chosen. If it is
noncontractible, both lifts of the loop to Qg fail to close, but are rather paths connecting a
[I-related pair of points (both of which project to n). Having insisted on II-oddness, therefore,
we see that every allowable state in this sector aquires a minus sign under spatial rotation by
27, the hallmark of spinoriality. That this is equivalent to fermionicity (that is, odd exchange
statistics) was proved by Finkelstein and Rubinstein in [T2].

The question of whether Hopf solitons can be consistently quantized as fermions thus
reduces to the question of whether 27 spatial rotation loops in Q¢ are noncontractible when
@ is odd and contractible when @) is even. To answer this, we only need to determine the
contractibility for a representative of each sector. Consider the loop v : [0, 1] — (S%)5 defined
by 4(n, &, ¢,t) = n(n, &, ¢ + 27t), where n : S — S3 is defined in ([FH), and we once again
use the natural identification of g : X — YZ with g : Z x X — Y. This is a 27 spatial
rotation loop (about the z axis) of the degree () = mn Skyrme configuration n. Note that
mo~y:[0,1] — Qg is also a 27 rotation loop, but in the Faddeev-Hopf configuration space.
Corollary Bl states that 7 o 7 is contractible if and only if 7 is contractible, which is true if
and only if the degree @ is odd, by work of Giulini [T4]. Hence imposing IT-oddness on our
quantum states U does indeed produce a consistent fermionic quantization of Hopf solitons.

It is important to realize that, having imposed II-oddness, every noncontractible loop in
Qo must be associated with a sign flip in ¥ : Q5 — C, regardless of whether the loop
is generated by a spatial rotation. Let n be a Hopf degree () # 0 energy minimal of the
Faddeev-Hopf model which is invariant under a simultaneous spatial rotation by « about
some axis e and rotation by § around the third axis in target space (the only axis compatible
with the boundary conditions). Since for () # 0 the maximal symmetry of a configuration is
0(2) x O(2), only one spatial rotation axis e is possible for a given n, and we may choose it,
without loss of generality, to lie along the 2z axis. Let us call such a combined transformation
an (a, §)-rotation. Then we may construct a loop L(c, f)n in Qg based at n which consists of
rotation by 2ta around the z-axis for time ¢ € [0, %], followed by rotation by (2t — 1) around



the third axis in target space for t € (%, 1]. In this language, the fact that n has the specified
symmetry is precisely the statement that L(«, 5)n is a loop, i.e. closed. There are two points
p, 1(p) € QQ corresponding to n, and any physical state must have U(Il(p)) = —¥(p). Now
if L(a, f)n is noncontractible then p and II(p) are connected by the lifts of L(a, 5)n, starting
at p and I1(p), respectively. Hence, evaluated at the specific point p (or II(p)) we must have

(e~ eloe=BRag) (p) = —W(p), (4.1)

for any allowed state, where j/3 is the third component of the spin operator L and K3 is the
third (and only) component of the spin operator in target space (henceforth called isospin).

If L(«, B)n were contractible, however, it would lift to a pair of closed loops in éQ based
at p and I1(p), so that

(e~ Lae=iRag) (p) = W(p), (4.2)

simply by continuity of W. In the spirit of semiclassical quantization we assume that, at least
for low lying states, the symmetry of the classical energy minimal is not broken by quantum
effects. Thus we seek quantum states ¥ which are also invariant under (o, )-rotations, so
that A A

(e7iobs o= g) (1) = 9@ W (), (4.3)

forall z € QQ. But, assuming the («, §)-rotation generates a finite group, there must exist an
integer ¢ such that (e_iaj3e_iﬁf3)q\ll = U, which implies, by continuity, that #(x) must in fact
be constant. But then 6(x) = 0(p) = 7 if L(a, B)n is noncontractible by ), or §(z) = 0
if L(c, B)n is contractible, by (EZ). Hence, we obtain the so-called Finkelstein-Rubinstein
constraints on symmetric quantum states:

(4.4)

ok ik b= P if the ipduced loop is contractible,
— otherwise.

Equation (f4]) imposes constraints on the spin and isospin quantum numbers L, L3 and Kj.
It is worth pausing here to discuss the relationship between body-fixed and space-fixed
angular momentum. The Lagrangian of the Hopf model is invariant under a SO(3) x SO(3)
symmetry group consisting of rotations in space and target space. For these symmetries we
can define left and right actions which are generated by the space-fixed and body-fixed angular
momenta J and L acting on space and by space-fixed and body-fixed angular momenta I and
K acting on target space. The body-fixed and space-fixed angular momentum operators are
related by rotations which implies that J? = L2. For rotations in target space only rotations
around the third axis are compatible with the boundary conditions. This implies I3 = KZ.
When the model is quantized the angular momentum operators J2 = f42, j3, flg, I; and K5 form
a set of commuting observables. The quantum wave function ¢ can then be labelled by the
usual spin quantum number as follows v = |L, L3, Js, K3, I3). Since the Finkelstein-Rubinstein
constraints do not impose any restrictions on the values of J3 and I3, these values will often
be suppressed and the wave function is given as ¢ = |L, L3, K3). In order to make predictions,
we are interested in states with given J and I3. Therefore, we have to consider states with
quantum numbers L = J and K3 = 41I5. Then the Finkelstein-Rubinstein constraints have the
following effect. By restricting the allowed quantum states for given J and I35 the degeneracy



of the states is changed. In the extreme case that the degeneracy is zero, certain combinations
of J and I3 get excluded.

We now return to our discussion of loops in configuration space and Finkelstein-Rubinstein
constraints. Just as for 27 spatial rotation loops, we can use the isomorphism 7 ((52)5") —
71((5)%) induced by the Hopf fibration to calculate whether a given loop L(«, 3)n is con-
tractible. For every configuration n we can choose a configuration n in the configuration space
(5%)5% of Skyrmions. Then L(a, §)g is a loop in (S3)5° which projects to the loop L(a, 3)n
in (52)5” under 7. The action of SO(3) on the target space of 1, that is S, is now identi-
fied with the adjoint action of SU(2) on itself. Once again, Corollary B shows that L(«, 5)n
is contractible if and only if L(«, B)f is contractible. Contractibility of the latter loop can
be determined by means of an explicit formula recently derived for Skyrmions with discrete
symmetries, [20]. This states that the loop L(a, B)p is contractible if and only if

Q

N =—=-
2T

(Qa — ) (4.5)
is even. Note that there is a slight subtlety with the choice of the sign of 3.

We can immediately recover our earlier result that the II-odd quantization is consistently
fermionic from formula ([H). To see this, note that every configuration is symmetric under
(27, 0)-rotation, and substituting o = 27, § = 0 into (EZH) shows that N is odd if and only if
@ is odd. Hence the spin quantum numbers L and J are half integer if and only if @ is odd.
Similarly, considering the case a = 0, § = 27 (pure isorotation by 27) shows that the isospin
quantum numbers K3 and I3 are also half integer if and only if ) is odd.

New constraints on low-lying quantum states ¥ are obtained if we assume that they are
invariant under the symmetry groups of the corresponding classical energy minimals. The
Faddeev-Hopf model has received much less numerical attention than the Skyrme model, so
our understanding of these minimals and their symmetries is comparatively limited. For this
reason, we will discuss the Finkelstein-Rubinstein constraints for general symmetries first, then
apply the analysis to those symmetries which have been observed in numerical experiments.
Since we are interested in symmetries which can be generated by loops in configuration space
we disregard reflections and look only at subgroups of 7% = SO(2) x SO(2). Note that
T?, and hence every subgroup of T2, is abelian. This severely limits the symmetry groups
possible, and accounts in part for the numerical observation that Hopf degree () minimals
tend to possess far less symmetry than degree @ Skyrmions. The symmetry group Gn < T2
of a configuration n is either continuous, in which case Gn = SO(2) corresponding to axial
symmetry, or discrete, hence finite (77 is compact). Every finite abelian group is isomorphic to
a product of finite cyclic groups of coprime order, so it suffices to understand the Finkelstein-
Rubinstein constraints for g-fold cyclic symmetry C,,.

First, we deal with axial symmetry. Consider the axial configurations ([B4]) with Hopf
charge Q = mn. These are invariant under (o, na)-rotations for all @ € R. Since the loop
L(o,na)n exists for all o € R it is homotopic to the constant loop (o = 0). So L(«, na)n is
contractible and gives rise to the following constraint on wave functions:

emiols gminaks gy (4.6)
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Since formula (EZ6) is valid for all @ we can expand the equation in a. The first order term
gives rise to the following constraint for the spin operators:

(L3 4 nk3)¥ = 0. (4.7)

Equation (1) implies for the spin quantum numbers that L3 = —nKj.

If the axial symmetry is broken then the symmetry group must be isomorphic to a product
of finite cyclic groups. Not every cyclic subgroup of T is possible for a given ), however, since
the generator («, 3) of C, < T? must satisfy equation ({LH), that is, N must be an integer.
There are precisely ¢ different C, subgroups of T2 which are candidates for symmetry groups,
generated by (27 /q,2kw/q) where k = 0,1,...,q — 1, since pure isorotation can never leave
a nonconstant configuration invariant. Let us denote these groups C’f. To illustrate, let us
assume that ¢ is prime so that C, is a finite field. Then formula (fI]) applied to the generator
of C'('j implies that Q(Q) —k) = 0 mod ¢q and hence @ =0 mod q or Q =k mod ¢ by the field
property. Hence, unless @ is a multiple of ¢, formula (ZI]) rules out all possible C,, symmetries
except C(? mod ¢ - Gimilar criteria can be derived for ¢ not prime, but they are not so neat. Of
particular interest given the current state of numerics is the case ¢ = 2. The argument above
shows that, for odd Q, only C1 symmetry is possible, not CY.

Given a candidate symmetry group C’g , formula ([@3) gives us a one-dimensional (hence
irreducible) representation of Cj, where ¢ = ¢ if Q(k+1) is even and ¢ = 2¢ if Q(k+1) is odd,
by mapping the generator (27 /q, 2km/q) to (—1)". This representation may also be thought of
as a homomorphism C; — Zy = {1, —1} and is thus necessarily trivial if ¢ is odd and Q(k+1)
is even. We call this the Finkelstein-Rubinstein representation of Cj. There is also a natural
representation of Cj; on the spin-isospin L, K3 quantum state space, defined by the inclusion
Ck < SO(3) x SO(2). A state ¥ with quantum numbers L, K3 is thus compatible with
C’Z“ symmetry if and only if the decomposition of the spin-isospin L, K3 representation of Cj
into irreducible representations contains a copy of the Finkelstein-Rubinstein representation.
Given that we consider only cyclic groups, in practice we need only check compatibility on
the generator («, 3) = (2r/q,27k/q). Thus Lz, K3 must satisfy

o—2mi(Lat+hkKa)/a  _ (—1)N = iTQQ—k)/a (4.8)
1

where / is an integer.

A good candidate for the ground state in the charge @ sector is the state with the lowest
values of L and |K3| (and hence J and |I3|) compatible in this way with the symmetries of
the classical minimal.

To illustrate this symmetry analysis, we compute the quantum ground state for stable
and metastable Hopf solitons of degrees () = 1,...7, using the classical solutions obtained
numerically by Hietarinta et al [I7]. Only axial and Cy symmetries ever arise for these so-
lutions. In the Cy case for even Q, we distinguish between the two possible groups C9 and
C; using the colour coding information in [I7]. The results are presented in table [l The
first entry is the Hopf number (). A star indicates that the state is metastable, that is, the
classical solution is not a global minimal. The next entry is the energy Eg which has been
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calculated in [I7] and corresponds to A = 1/4. The following entry gives the shape of the
Hopf configuration. The entry “symmetry” shows which symmetry has been used to calculate
the Finkelstein-Rubinstein constraints. Here (n,m) corresponds to the axial symmetry of the
corresponding toroidal ansatz ([B4). CY9 is generated by 7 rotation in space whereas C3 is
generated by rotation by m in space followed by rotation by 7 in target space. As a word of
caution, while axial symmetry has been checked numerically, the Cy symmetry is obtained by
inspection from the figures in [I7] and [§]. For low @) the symmetries are apparent. However,
for higher Hopf charge, @) > 4, the symmetries are difficult to guess, if indeed they exist at
all. Where no entry is given, the classical solution has no obvious symmetry and the only
constraint applicable is that of consistent fermionicity.

Q| | Eg shape | symmetry | FR | ground state | excited state (1) | excited state (2)
1 ]135.2 | unknot | (1,1) 1 2,3, %) 2 —2,%) 3,3, 3)
2 | 220.6 | unknot | (2,1) 1 [10,0,0) 11,0,0) 12,—2,1)
2* | 249.6 | unknot | (1,2) 1 [10,0,0) I1,0,0) I1,—1,1)
3 | 308.9 | unknot | CJ -1 |é, %,3%>1 %, %,3%)1 é, —é, %)
3* 311.3 unknot (3,1) 1 |§,—§,§> 5,—§,§> 5,—§,§>
1 | 3855 | unknot | (2,2) 1 [10,0,0) 11,0,0) 2,-2,1)
4* | 392.7 | unknot | CY 1 |0,0,0) 11,0,0) 10,0, 1)
4 | 405.0 | unknot | (4,1) 1 [10,0,0) I1,0,0) 4, —4, 1)
- T 11 3 1 1 T 13
51505 [Tk | — R ES RN ESR) SIES L)
5 479.2 | unknot | C, 1 |5, —5,35) 15,—3:3) 3
6 | 5200 |link | — — 10,0, 0) 11,0,0) 10,0,1)
6" | 5362 [link | — —[10,0,0) I1,0,0) 10,0, 1)
7 | 589.0 | knot — — |13, £3.3) 2, £2,2) =, £2,2)

Table 1: Ground states and excited states for @ =1,...,7.

“FR” gives the Finkelstein-Rubinstein constraints (—1)" where N is calculated with equa-
tion ({L3) for the generator of the discrete symmetries. Note that axial symmetry implies
FR = 1. Then ground states are calculated as explained above. They are given in the form
|LL3K3). The quantum numbers J; and I3 are suppressed. Recall that J = L and |I3] = | K3/
We have also included two excited states. “Excited state (1)”, is obtained from the ground
state by increasing L by 1 and finding the lowest K3 such that all constraints are satisfied.
Similarly, “excited state (2)” is obtained by increasing K3 by 1. Note that changing the sign of
Ly and K5 in the constraints () given by a loop L(«, )n can be interpreted as constraints
for the loop L(—a, —()n. Since the fundamental group is Zs the loop L(«, §)n is contractible
if and only if L(—a, —f)n is contractible. Therefore, whenever |L, L3, K3) satisfies the con-
straints imposed by a symmetry, so does |L,—Ls, —K3). In table [l we only display states

Since no constraints with FR = —1 occur for even Hopf charge @) all the ground states
are given by [0,0,0) and “excited states (1)” are |1,0,0). The influence of the Finkelstein-
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Rubinstein constraints can only be seen for “excited state (2)”. For odd @ the Finkelstein-
Rubinstein constraints influence the ground states and all the excited states.

One might ask why the first and second excited states are expected to have spin and isospin
one unit higher than the ground state, respectively. One reason is that this is consistent with
the collective coordinate quantization of Hopf solitons, to which we turn in the next section.

5 Collective coordinate quantization

The simplest non-trivial quantitative application of our results is the collective coordinate
quantization, [27]. In this case the wave function is only non-vanishing on the space of minimal
energy configurations in a given sector, also called the moduli space. The effective Lagrangian
Leg in this approximation is obtained by restricting the full Lagrangian to fields which, at each
fixed time, lie in the moduli space.? From L.g one can construct an effective Hamiltonian and
canonically quantize the system in the standard manner. For Hopf charge () = 1 the reduced
Hamiltonian is given in [27] using “SU(2) notation”.

The Lagrangian L (BJl) can be split up into kinetic energy 7' and potential energy V,
namely L =T — V where

1 2 A 2
T = /R 510m| +§zi:|0tn><8in| : (5.1)

1 2 )\ 2
Vo /R 5;@{1\ +1;|&'n x O;n. (5.2)

Now let M C Qg be the moduli space of charge () energy minimizers, and n(t) be a trajectory
in M. Since n(¢) is a critical point of V' for all ¢, V' must remain constant, V[n(t)] = M, say,
interpreted as the classical mass of the Hopf soliton. It follows that the effective Lagrangian
is Leg = T|m — My, so the reduced dynamics is determined purely by the kinetic energy
restricted to M. This has a natural geometric interpretation: being quadratic in first time
derivatives, T" defines a positive quadratic form and hence a unique Riemannian metric v on
M, and the classical dynamics descending from L.g is nothing other than geodesic motion in
(M, ). Since the Faddeev-Hopf model is not of Bogomol'nyi type, M is just the orbit of any
energy minimizer under the symmetry group of the model, that is, all zero modes arise due
to symmetry. The centre of mass motion decouples, so we may, without loss of generality,
assume that the centre of mass is fixed at the origin, so that M is the orbit of some minimizer
ny under G = SO(3) x SO(2), acting as described in section Bl So (M, ) is a homogeneous
space, diffeomorphic to G/K where K < G is the isotropy group of ny. It follows that v is
uniquely determined by its value on Tn,M.

Generically, as we have described, K is discrete, so M has dimension 4, and -y is specified by
6 constants, which may be interpreted as the components of the Hopf soliton’s inertia tensor.
However, we shall concentrate on the case where n has axial symmetry. Then

K = {k(a) = ([diag(e'*/?,e7/2)],e™) : o € R} (5.3)

2As has been discussed in the Skyrme model, [6, [, this approximation breaks down if centrifugal effects
are taken into account. This problem can be avoided by introducing a (sufficiently large) mass term for the
vector n so that the fields decay fast enough at infinity.
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for some divisor n of @), where we have used the standard isomorphisms SO(3) = PU(2)
and SO(2) = U(1) to identify SO(3) matrices with projective equivalence classes of U(2)
matrices, and SO(2) matrices with complex phases. Let 601,05, 603 be the usual basis of left
invariant vector fields on SO(3) and 6, = J¢ on SO(2) = {€** : £ € R}. Let (- --) denote linear
span. Then the Lie algebra of G, is g = (1, ...,04), and the Lie algebra of K is ¢ = (34 nb,).
We may identify Th,M with the complementary space p = (01, 6,05). Note g = £ @ p since
n # 0. So 7 is equivalent to a positive symmetric bilinear form 7 : p & p — R, and this must
be invariant under the adjoint action of K on p. Relative to the basis {6y, 6,65} this is

cosaa —sina 0
Adpy = | sina cosa 0 |. (5.4)
0 0 1

Let p* denote the dual space to p, so that ¥ € p* © p*, where © denotes the symmetric
tensor product. The induced action of K on p* ® p* may be decomposed into irreducible
representations, whence one finds that the dimension of the space of invariant symmetric
bilinear forms on p @ p is [19]

[ 1

gy do 5 [(tr Adgay)® + tr (Adi(a))] = 2. (5.5)
0

Hence there exist positive constants a, b such that
¥ = a(o} + 03) + bo (5.6)

where {0;} are the one forms dual to {6;}. Thus the metric v on M is determined by just two
constants.

The static solution ng, and hence its classical mass My and moments of inertia a, b, all
depend parametrically on the coupling A. In fact, this dependence is quite simple, as we shall
now show. Let us temporarily denote all A dependence explicitly, so that T}, V) are the kinetic
and potential energy functionals at coupling A, n, is the static solution, My(A) is its mass,
and a(A), b(A) its moments of inertia. A simple rescaling of the integration variables in (.2)
shows that, for any fixed map n : R?* — S?,

Viln(x)] = VAVin(vVAx)). (5.7)

Hence, given an extremal n, of Vj (here and henceforth, the subscript * will indicate that a
quantity refers to the A = 1 model), n)(x) = n,(A\"2x) is an extremal of Vy, and furthermore
its energy is

My(\) = Valny] = VA Vi[n,] = VA M. (5.8)

So the classical soliton masses scale as AZ. A similar argument works for the moments of
inertia too. The coefficients a(\), b(A) are, by definition, twice the kinetic energies of the
time-dependent fields, n(;) (x,t) say, obtained from n, by subjecting it to spatial rotation at
unit angular velocity about the z;-axis with ¢ = 1,3 respectively. Let R;(t) denote rotation
through angle ¢t about the x;-axis. Then

0l (x,t) = ny(Ri(1)x) = n, (A2 R,(1)x) = 0, (R,()A"2x) = n"(A\“2x,1),  (5.9)

*
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by linearity of R;. Rescaling the integration variables in (B.1]) as before, one sees that T) [ng\i)] =

ATy [ng)], and so the moments of inertia scale as A?:

(M3

a(\) =A2a,,  b(\) =A\2b,. (5.10)
Note that neither of these arguments appealed to axial symmetry, so the same scaling be-
haviour applies to solitons with only discrete (for example, trivial) symmetry groups, also.
This includes the scaling behaviour of the moment of inertia associated with isorotation (where
this no longer coincides with spatial rotation) because

nf™ (x,1) = Ry()n(x) = Ry(hn.(A"2x) = nf (A73x, 1), (5.11)

From now on, we will no longer denote the A dependence explicitly, but will retain the x
subscript for quantities associated with the A = 1 model.

We wish to quantize geodesic motion on M, which may be formulated as a Hamiltonian
flow on T*M, within the framework of Finkelstein and Rubinstein. As it stands, there is a
problem with this, however. As shown above, the fundamental group of Qg, the topological
sector containing M, is Zy, whereas (M) = Zo,, where n is the divisor of () appearing in
(E3). A proof of this is presented in the appendix. So m (M) # 7 (Qg) unless n = 1, and
this type of axial symmetry occurs only for () = 1 and the metastable () = 2 state, according
to Hieterinta et al [I7]. Nevertheless, a fermionic collective coordinate approximation is still
possible, the key point being that in all cases the 27 spatial rotation loop has order 2 in 71 (M).
It is slightly unfortunate that this is true independent of (), that is, whether ) is odd or even.
For consistency we must thus choose bosonic quantization for () even, it is not imposed on
us by the topology of M. This illustrates that collective coordinate quantization can be quite
treacherous in the absence of a good understanding of the topology of the full configuration
space.

To construct the collective coordinate quantization it is convenient to exploit the n-fold
covering map o : SO(3) — G/K which maps g € SO(3) to the coset (g, 1)K, that is, the left
coset of K containing (g,1) € G. Note that ¢ commutes with the natural SO(3) left actions
on SO(3) and M. Geodesics in (M, ) are the images of geodesics in (SO(3), 0*v), where the
lifted metric p*v is precisely (B.8), but with o; now interpreted as (global) left invariant one
forms on SO(3), rather than basis vectors in p*. The Hamiltonian generating geodesic flow in
(SO(3),0™y) is 1 1 1

H:%(L§+L§)+%L§= %L|2+ (———a) Ly (5.12)
where L; : T*SO(3) — R are the angular momenta corresponding to the vector fields 6; (the
components of the moment map for the Hamiltonian action of SO(3) on 7*SO(3)). Their
Poisson bracket algebra is well known: {L;, Lo} = Lz and cyclic permutations. We may
now quantize in the usual way, replacing classical angular momenta by Li, self-adjoint linear
operators on L%(SO(3)) and Poisson brackets by commutators. Note that {H,L2, Ls} is a
compatible set of observables. In this set-up, we are thinking of the wavefunction as defined
on the covering space, ¢ : SO(3) — C; it is important to note that for () odd (even) only
those functions which are double-valued (single-valued) under the projection ¢ make physical
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sense. The deck transformation group for g is generated by exp(276s/n), so we find that the
eigenvalues of Ls must be integer multiples of n/2. This conclusion may be reached another
way. Note that 65+ n6, € € vanishes on M, so the corresponding classical momenta are linearly
dependent: Ls+nK3 = 0. Hence the quantum operators must satisfy (izg +nf(3)¢ = (0 on any
physical state, and the conclusion follows because K3 has half-integer spectrum. Of course,
this is nothing other than the FR constraint for axial symmetry @:_ZI) We may use the linear
dependence of the third components of spin and isospin to rewrite H in terms of K 3, or both
L3 and Kj if we wish. A convenient way to write the quantum hamiltonian is

- I L 1Y 4
H_MO+2aL +<2b 2a)L3. (5.13)

It is now trivial to express the quantum energy spectrum in terms of the quantum numbers
L? and Kj:

B [L(L+1) 1 1
E=vV\M, — — °K3 5.14
VA J\[ 20, \2p, 24, ) (5.14)
where we have used the constraint L3 = —nKj3 to eliminate L3, and the scaling behaviour

obtained in (.8),([E10) to render all A dependence explicit. Recall that x-subscript quantities
refer to the A = 1 soliton. As discussed in the previous section, the body-fixed and space-fixed
angular momenta satisfy J> = L? and I2 = K2. Therefore, we can also express the energy
in terms of the space-fixed angular momentum quantum numbers, which are the quantities
measured in a physical experiment, by replacing L(L+1) by J(J+1) and K2 by IZ in formula
(BT,
We would like to order these states by increasing energy. Clearly, this order depends on
n and the relative size of the constants a, and b,. As discussed above, to determine these
constants, one must compute the kinetic energy of time dependent fields n(t) = (exp(t6;),1) -
ny and n(t) = (exp(tfs),1) - ny respectively, where - denotes the action of G on M. This
is computationally very expensive if one uses for ng the genuine axially symmetric energy
minimizers found in [I7], since even to construct n, requires one to solve nonlinear PDEs.
Instead, we shall again exploit the Hopf fibration and assume that ng is well approximated
by the image under the Hopf map p of a Skyrme configuration U : R® — SU(2) within the
rational map ansatz of Houghton, Manton and Sutcliffe [I8]. This idea was introduced in
[8].> The rational map ansatz may be described as follows. Using exp : su(2) — SU(2), one
may identify SU(2) with the closed ball of radius 7 in su(2) = R3. The entire boundary of
this ball gets mapped to —I,. Partition physical space R? into concentric 2-spheres of radius
€ [0,00). Choose a fixed holomorphic map R : S? — S? C R? of degree @ and a smooth
decreasing surjection f : [0, 00) — (0, 7] (the profile function). Then the corresponding degree
@ Skyrme configuration is

U(r,x1,22) = exp (f(r)R(zq, 22)) (5.15)

where 1, 75 is any coordinate system on S?. With respect to stereographic coordinates z, R
on its domain and codomain, R is the eponymous rational map R(z). We may then write

3Su has also discussed the rational map ansatz for Hopf solitons, using a different notation, [26].
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Q| M, | M¥ | MS | MB | a. b,

1| 275.0 | 270.4 | 278.6 | 252.5 | 418.8 | 369.7

2 14629 | 441.2 | 446.9 | 418.0 | 1265.0 | 1309.4

3" 1665.5|622.6 | — |590.5 | 3272.7 | 3556.1

Table 2: Classical energy M, and moments of inertia a,, b, of various axially symmetric
solitons, at A = 1, within the rational map ansatz. For comparison, we also quote the classical
energies of the corresponding numerical solutions found in the literature (M: Hietarinta and
Salo [T7], ME: Gladikowski and Hellmund [T5], MZ: Battye and Sutcliffe [7]). Note that M
and MY have been inferred using the scaling rule (B:5).

U(r, z) more explicitly as

U(r, z)

) ( e~ 4 |R2eH 2iRsin f ) (5.16)

T 1+|RP 2iRsinf e + |R|?e™

The corresponding Faddeev-Hopf configuration m o U can easily be calculated with equations

E1) and £.4),

|R(Z) |2eif(7‘) + e_if(r)
2iR(z)sin f(r)

where again we choose stereographic coordinates on S2. The idea is to approximate the true
energy minimizer ny by a configuration of this form and minimize over all possible R and f.
In fact, to obtain axial symmetry, we must assume R(z) = 29 (note this assumes the divisor
n of Q) is simply n = @), so our results apply only to ) = 1,2 and the metastable () = 3*, 4*
solitons). We then minimize the potential energy V' over all possible profile functions f. This
yields a nonlinear second order ODE for f(r) which is easily solved numerically. We may,
without loss of generality, set A\ to unity.

Having constructed our approximate energy minimizer, W (r, z), we must compute the
kinetic energy at t = 0 of

Wir,z) = (5.17)

[RE(E )P 4 il

Wit,r z) = 2iR(Z(t,z)) sin f(r)

(5.18)

where o
zcost/2+isint/2

d Z(t,2) = ze" 5.19
izsint/2 + cost/2’ and - 2(t, 2) = ze', (5.19)

Z(t,z) =

yielding a,/2 and b,/2 respectively. The calculations are elementary, but lengthy, and all
reduce to radial integrals of expressions involving f(r) and f’(r). The results for @ = 1, 2 and
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@ | groundstate Ey excited state (1) Ey excited state (2) Es

1| 15 -5h [ 663Tev | 3,14 | 967Tev | [3,-3.3) | 9.93 Tev
2| 10,0,0) | 9.82Tev 11,0,0) 1049 TeV | [2,-2,1) | 1179 TeV
3| 13,30y |1458Tev | [3,-3,1) | 1523Tev | [5,-95.3) | 1712 TeV

Table 3: Groundstates and first excited states, and their energies, of super heavy smoke ring
solitons in the collective coordinate approximation, using the rational map ansatz.

the metastable () = 3" are summarized in table 2l These data, along with formula ([E14) give
the complete quantum energy spectrum for these solitons, at arbitrary coupling.

To illustrate our approach we shall interpret the Hopf solitons as super heavy fermion states
in the strongly coupled pure Higgs sector of the standard model, as advocated by Gipson and
Tze [13]. To make contact with their work, we must take the unit of energy to be ey = 300
GeV, h = 1, and the coupling constant to be A\ = In(mg/ey)/247%, where my is the Higgs
mass. In this model, the Higgs sector is strongly coupled, so the Higgs mass assumes the rather
large value my ~ 1 TeV, so that A ~ 0.005. The unit of length is the Compton wavelength
of a particle of rest energy ey, namely dy = hic/ey ~ 0.66 1073 fm. Then the Q = 1 ground
state represents what Gipson and Tze call a “smoke ring soliton” of energy 6.63 TeV which
is compatible with the lower bound of 5.5 TeV given in [I3]. A sensible measure for the size
of the Hopf soliton is the value of the radius in the rational map ansatz at which the profile
function takes the value 7/2. We find that our Hopf soliton has a radius of 0.08 1073 fm
which is comparable with the lower bound of 0.2 1073 fm in [I3] where the radius is defined
in a slightly different way. We display the groundstates and the first two excited states in the
collective coordinate approximation in table Bl The energies of the states are dominated by
the classical contribution. As anticipated in table [, the groundstate has the lowest energy
followed by excited state (1) and excited state (2). The energy of the states increases with
the Hopf charge Q. The size of the Hopf solitons also increases with the charge; 0.08 1073 fm
for Q =1, 0.09 1073 fm for @ = 2 and 0.13 1073 fm for Q = 3.

Clearly, the relative size of the quantum excitation energy of an excited state to the ground
state energy depends on the coupling A. If A is small, as in the application above, the quantum
corrections become significant. In an application where the solitons are taken to model real
physical structures, whose energies and sizes are known experimentally (rather than hypo-
thetical exotic matter states as in the current case), one would tune the energy and length
scales independently so as to fit some reference data as well as possible. This amounts to
tuning both A and the value of A, which is why we retained explicit h dependence in equation
(ET4). In the case of the Skyrme system as a model of nucleons, for example, one finds that
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h =~ 46.8 in natural units [22]. Even if X is large, therefore, quantum corrections may still be
significant, provided A/\ remains large. So the relative importance of quantum corrections
depends strongly on the physical interpretation of the model under consideration.

6 Conclusion

We have described how to quantize Hopf solitons using the Finkelstein-Rubinstein construction
and thereby demonstrated that Hopf solitons can be quantized as fermions when their Hopf
charge Q is odd. An important ingredient of the proof is the fact that the Hopf map S® —
S?% induces a Serre fibration (S*) — (S?)M. Using this fibration we could show that the
fundamental group of Skyrmions is isomorphic to the fundamental group of Hopf solitons,
when physical space has finite fundamental group, and this isomorphism is induced by the
Hopf map. This enabled us to use results which have been derived for the Skyrme model.

In a semiclassical quantization we expect that classical symmetries are not broken by quan-
tum effects. Then the symmetries of the classical configurations induce non-trivial constraints
on the wave function. We calculated possible ground states of Hopf solitons for Q =1,...,7
from the minimal energy configurations given in [I7]. Since Hopf solitons do not have many
symmetries, the constraints on the wave functions are quite weak. Often, only the degeneracy
of a state changes, rather than the state being excluded completely. Excited states have been
included to better illustrate the influence of the Finkelstein-Rubinstein constraints.

In order to get quantitative predictions of the quantum energy spectrum of Hopf solitons,
we resorted to a collective coordinate approximation. In general, naive collective coordinate
quantization can give spurious results if the topology of the moduli space is incompatible with
that of the full configuration space. We concentrated on the case where the moduli space
consists of axially symmetric configurations, which provides a good example of this difficulty.
As discussed in the previous section, such a moduli space allows for fermionic quantization for
both odd and even Hopf charge. In order to describe the physics correctly, we have to impose
bosonic quantization for even () and fermionic quantization for odd (). In other words, we
must impose some of the Finkelstein-Rubinstein constraints arising from the topology of the
full configuration space “by hand” on the wave function on the moduli space. They do not
arise from the topology of the moduli space itself.

The Faddeev-Hopf model contains a single coupling constant A. By simple rescaling argu-
ments, we derived the scaling behaviour of the classical energy and moments of inertia of a
soliton as A varies. This allowed us to find a formula for the quantum energy spectrum of axi-
ally symmetric solitons, within the collective coordinate approximation, with all A dependence
explicit. The numerical constants M,, a, and b, in this formula were approximated, for three
such axially symmetric solitons, by constructing approximate energy minimizers within the
rational map ansatz. Our aim in this paper was to illustrate the general approach of fermionic
soliton quantization within the Faddeev-Hopf model. This can now be applied to a variety of
physical models that admit Hopf solitons.
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Appendix: The fundamental group of the moduli space

We wish to compute the fundamental group of M, the orbit of a configuration n : R? —
S% under G = SO(3) x SO(2), when n is invariant under the axial symmetry group K =
{(R3(c),e™) : a € R} < G, where R3(«) denotes rotation through o about the z3 axis.
Since M 2 G/K and p : G — G/K is a fibration, we have the associated homotopy exact

sequence
L

K < G % G/K
= 7T1(K) N 7T1(G) ﬁ 7T1(M) — WQ(K)
Z 5 Z,eZ B m(M) — 0.

Hence p, surjects, so m1 (M) = m1(G)/ ker p, by the Isomorphism Theorem. But ker p, is, by
exactness, the image of 7 (K) under inclusion, clearly the infinite cyclic group generated by
1@ n € m(G). This group has precisely 2n cosets in m1(G), labelled by the elements

060,001, ...,08 (2n—1),

for example. Let us denote the coset g+ ker p, by [g]. It follows immediately that the quotient
group 71 (G)/ ker p, is cyclic of order 2n, generated by [0 @ 1]. Note also that the 27 spatial
rotation loop lies in 1 @ 0 € 7 (G), which projects to [0 ® n] = n[0 ® 1] in m (G)/ ker p,, since
140=0&n—1®n. Hence the 27 spatial rotation loop in M is noncontractible of order 2,
independent of n (and Q).
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