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The goal of the present study is to obtain information which facilitates the treating of 
practical problems with satisfactory results and low computer cost. 

A comparison of different computer programs, when applied to a series of discrete 
models of a cantilever beam, is given in paragraph number 1. 

In paragraph 2 the calculated results are also used to study the influence of the 
mesh orientation and refinement on the convergence of the discrete model to the actual 
situation. The finite element used in the discretisation is the simple plane stress triangle. 

In paragraph 3, different types of elements (triangle with midside nodes, quadri­
lateral and quadrilateral with midside nodes) are investigated and the obtained displace­
ments and stresses are compared. 

Finally some considerations on the required computer time arc presented in paragraph 4. 
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ABSTRACT 

The goal of the present study is to obtain information which facilitates the treating of 
practical problems with satisfactory results and low computer cost. 

A comparison of different computer programs, when applied to a series of discrete 
models of a cantilever beam, is given in paragraph number 1. 

In paragraph 2 the calculated results arc also used to study the influence of the 
mesh orientation and refinement on the convergence of the discrete model to the actual 
situation. The finite element used in the discretisation is the simple plane stress triangle. 

In paragraph 3, different types of elements (triangle with midside nodes, quadri­
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ON THE SOLUTION OF PLANE STRESS PROBLEMS BY FTNTTE 

ELEMENTS COMPUTER PROGRAMS *) 

INTRODUCTION 

The finite-element method is based on the idea of approximating a conti­
nuous field (e.g. displacement field in elastic continua) bv a discrete mode] 
which consists of a set of values of the field (e.g. displacements^ at a 
finite number of points (called nodes^ and of piecewise approximations 
(shape functions) of the field over a finite number of subdomaines ("called 
finite elements). 

The local approximation of the field is uniquely defined in terms 
of the discrete values of the field at the nodes of each finite element. 

The continuum with infinite degrees of freedom 1s thus represented 
by a discrete model with finite degrees of freedom. 

It has been demonstrated that the behaviour of the discrete system 
converges to that of the continuous system, if certain completeness 
conditions are satisfied, when: 

1) the number of finite elements is increased: 
2) the size of finite elements is decreased. 

It has also been recognized that a closer approximation of the real 
situation may be obtained not only by increasing the number of finite 
elements but by using more sofisticated types of finite elements (i.e. 
higher order approximations). 

In practice, the accuracy of the results obtained v>y using computer 
programs based on the finite-element method is limited by the core stora­
ge capacity of the comnuter (i.e. by the number of finite elements), and/ 
or by the cost of the computation (computer time increases with the number 
of finite elements and their complexity). 

From these preliminary remarks it appears of primary importance the 
necessity of finding practical rules for an optimum (with respect to 
accuracy and cost) choice of the type and number of finite-elements to 
be used in constructing the deserete model. 

On the other hand, once the deserete model has been set up, one has 
to face the problem of solving the resulting system of linear equations. 

*) Manuscript received on November 14» 1972 



Numerical analysis provides different techniques (e.g. iterative and 
direct methods) and it is important to assess that the obtained results 
are not affected, in the limits of the required accuracy, bv the choice 
of the solution method. 

The goal of the present study is to obtain information which faci­
litates the treating of practical problems with satisfactory results 
and low computer cost. 

A comparison of different computer programs, when applied to a 
series of discrete models of a cantilever beam, is presented In 
paragraph 1. 

Tn paragraph 2, the calculated results are also used to study the 
influence of the mesh orientation and refinement on the convergence of 
the discrete model to the actual situation. The finite element used in 
the discretization is the simple plane stress triangle. 

In paragraph 3, different type of elements (triangle, triangle with 
midside nodes, quadrilateral and quadrilateral with midside nodes) are 
investigated and the obtained displacements and stresses are comparated. 

Finally some considerations on the required computer time are 
presented in paragraph h. 

COMPARISON OF DIFFFPFNT COMPUTEF_PROGRAMS 

At first one has undertaken a comparative study, for detecting the 
influence of the mesh refinement and the mesh orientation on the mathe­
matical solution of the linear equations system, whose coefficients 
represent t n e terms of the stiffness matrix. 

The following four programs have been considered: 

1) Safe Plane / A /: iterative method (Gauss-Seidel, accelerated with 
successive over-relation or S.O.R.). 

2) Safe - 2D /~B_/: direct method (tridiagonalization in blocks). 
3) Zienkiewicz / C /; same method as Safe - 2D. 
4) Bersafe / D_/; direct method (front-solution). 

By these programs some easy sample problems have been solved and the 
results compared. 

The developed example is a cantilever beam shear loaded at the 
free end face. 
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Eight different types of subdivision in finite elements have been 
applied to this structure, changing the number of nodes and elements or 
simply the orientation of the last ones: for explanation see Fig. 1-1. 
This simple case has been chosen because the theoretical calculation 
of the deflection and stresses is easy to perform and sufficiently 
accurate and also in good agreement with the experiments. 

In appendix I, theoretical formulae and results are reported rela­
tive to: 

1) the deflection of the beam centre line; 
2) the axial stress along the top edge of the beam, σ, and the shear 

stress, τ relative to a generic beam section, xy 
The deflection values computed by the above mentioned programs are 

nearly identical, differing only in the fourth significant digit (see 
Table I). Concerning the stress values there is a good agreement between 
the various programs. 

TABLE I 

Case 

1 
2 
3 
Λ 
5 
6 
7 
R 

Safe 2D 

Π.05257 
0.05547 
0.05287 
0.05607 
0.06372 
0.06624 
0.07051 
0.07292 

Safe Plane 

0.05254 
0.05544 
0.05282 
0.05602 
0.06363 
0.06617 
0.07040 
0.07283 

Zienkiewicz 

0.05263 
0.05555 
0.05285 
0.05612 
0.06368 
0.06623 
0.07047 
0.07289 

Bersafe 

0.05265 
Ο.Π5555 
0.05284 
0.05604 
0.06370 
Π.06620 
0.07050 
0.07290 

a) Beam center line maximum computed deflection (theoretical value 
s 0.0933 inch). 

Case 

Error 
7. 

1 

44 

2 

40 

3 

43 

4 

3Q 

5 

32 

6 

29 

7 

24 

8 

22 

b) Relative spread between theoretical and calculated maximum deflection 
values. 
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From these results it appears that, at least for small problems, 
the computed displacements are practically indipendent from the nume­
rical method used to solve the resulting system of linear equations. 

Furthermore it is clear that the difference, which exists hetween 
the programs which use a different numerical technique is of the same 
order of magnitude of the difference between programs using the same 
technique. 

INFLUENCE OF THE ORIENTATION AND REFINEMENT OF THE MESH 

The above calculated results are also used to study the influence 
of the mesh orientation and refinement on the convergence of the discrete 
model to the actual situation. 

Fig. 1-2 represents the centre line deflections as obtained with the 
eight considered discretizations. Pith increasing number of nodes and 
elements, improved approximations are obtained, even if the deflection 
values still remain below of the theoretical one (dot and dash). In par­
ticular, the two kinds of lines, dashed (cases 1-3-5-7) and continuous 
(cases 2-4-6-8), refer to subdivisions with a different orientation of 
the elements: one can see that also this simple difference has an appre­
ciable influence on the accuracy of the results. 

For the eight different types of meshes considered a comparison has 
been also made, which regards the axial stress along the top edge of the 
beam (see Fig. 1-3). To do such a comparison the element stress values 
rather than the averaged nodal stress values have been considered because 
these values were directly available from Bersafe and Safe-2D programs 
only. 

In Fig. 1-3 it is possible to see that a mesh refinement near the 
constrained face improves only the local stress values, but it does not 
transmit any influence towards the free end of the beam: or rather, 
while this mesh refinement improves the displacements along the whole 
beam, stresses are only locally affected. 

Concerning the shear stress behaviour, the nodal stress values 
produced by Safe-2D program have been considered. To obtain the maximum 
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number of points, the section X ■ 2 inch, in which the meshes are more 

dense has been considered. 

The behaviour is not very satisfactory and expecially the type 

of element orientation which proved to be the most convenient for 

displacements now appears unsatisfactory for shear stresses, 

(see Fig. 1­4). 

INFLUENCE OF THE TYPE OF ELEMENTS 

The present study may be considered a supplement to the work reported 

in RD/B/N1848 by K. Fullärd and T.K. Hellen /~F_7. It has been already 

pointed out that not only the mesh refinement improves the results, but 

also the choice of an appropriate type of element, which is able to describe 

with sufficient accuracy the actual deformation field. 

Fig. 1­5 illustrates this fact in a limit case. A discretization with 

only two elements of the EP16 type (quadrilateral element with mid­side nodes) 

gives a quite accurate beam center line deflection, even better than the one 

obtained by using a subdivision with 46 elements of the EP6 type (simple 

triangles). 

This result may be generalized and one can say that the use of elements 

with more complex shape functions (e.g. with mid­side nodes) produces 

better results also in cases with a considerably lower number of nodes and 

elements. 

Referring to the subdivisions of the Fig. 1­6, one can see that regar­

ding the displacements (see Fig. 1­5), the following two element patterns 

are equivalent. 

Concerning the axial stresses along 

the top edge of the beam (Fig. 1­7), 

those calculated by using quadrila­

teral elements with mid­side nodes 

are more accurate not withstanding 

one has only half the number of ele­

ments and one node less for each 

quadrilateral element. 

In addition we must point out that both the discretization are less 
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accurate near the constrained and the free beam faces than in the 

central portion of the beam. To obtain accurate results also in these 

two regions, it appears necessary to introduce a local mesh refinement. 

A comparison based either on the deflection (Fig. 1­5) or on the 

axial stresses (Fig. 1­8) has been also made between the following types 

of elements: 

1) EP6 (simple triangles) 

2) FP8 (simple quadrilateral) 

The adopted subdivisions are illustrated in Fig. 1­6 (cases 10­11). 

In these conditions the beam center line deflection is far away from 

the exact one although the deflection given by the FP8 elements is the 

less accurate. Regarding the stresses, one can see (Fig. 1­8) that while 

the FP8 elements give acceptable values, the EPfi elements give a consi­

derable deviation which in some zones achieve the values of 40 or 50 %. 

Using subdivisions with FP12 and EP16 elements (Fig. 1­6, cases 12­

13) one obtains a very good approximation relative to beam deflection 

(see Fig. 1­5). 

Tt is interesting to see how much are different the theoretical 

and calculated values, when are comparated the displacements or the 

stresses for the same type of element. This comparison is illustrated 

in Table TT, for six different values of the X coordinate and for the 

above four cases in to 13. 

TABLE IT 

X 

inch 

2 

6 

10 

14 

18 

22 

EPfi 

Error on 

Deflect. 

7. 

♦ 2.9. 

­ 2.3. 

­ 3.Ä. 

­ 38. 

­ 39. 

­ 40. 

Error on 

Stress c¿ 

% 

­ 42. 

­ 44. 

­ 44. 

­ 44. 

­ 44. 

­ 35. 

EP8 

Error on 

Deflect. 

7c 

♦ 50. 

­ 2. 

­ 9. 

­ 10. 

­ 10. 

­ 10. 

Error ( 

Stress 

7c 

­ 8. 

­ 8. 

­ 8. 

­ 8. 

­ 8. 

­ 11 

Dn 

• 

EP1? 

Error on 

Deflect. 

% 

♦ 2<>. 

♦ 5. 

+ 0.5 

♦ 0.0 

·» 0.5 

+ 0.6 

Error 

Stress 

X 

♦ 3. 

♦ 1. 

♦ 2. 

­ n.1 

­ 1. 

­ 2o. 

an 

EP16 

?rror on 

Deflect. 

X 

♦ 36. 

♦ 5. 

♦ 0.5 

♦ 0.2 

♦ 0.6 

­ 0.6 

Error on 

Stress Ov 

­ 3. 

­ 0.2 

♦ 0.1 

♦ 0.0 

­ 0.4 

­ 46 

Relative spreads between calculated and theoretical deflections and stresses. 
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It may be noted that deflections are in general determined with 

a greater accuracy than stresses by the displacement formulation of 

the finite element method. 

For a more detailed analysis of the performances of the different 

element types, the following discretizations involving further mesh 

refinements were studied: 

1) EP6; 86Λ Elements, 481 nodes (case 14) 

2) EP8: 432 Elements, 481 nodes (case 15) 

3) FP16;432 Elements,13^3 nodes (case 16) 

The diagram in Fig. 1­9 relative to the sections X = 2 inch and 

X ■ 12 inch, shows the axial stresses as a function of the Y coordinate. 

The calculate results are very closed to the theoretical ones, in the 

EP16 case they are even coincident. 

The only zone in which there is some deviation is the one near the 

top and bottom edges of the beam. For better understanding this fact let us 

consider the diagram in Fig. 1­10. This diagram reproduces the σ 

max 

behaviour along the whole beam for cases 14 and 15 (EP6 and F.P8 elments) . 

Here the triangular and quadrilateral elements are compared taking the 

stresses values in each element before any averaging procedure. 

One can see from the diagram, that the values relative to the section 

X = 12 inch are better than those of the section X s 2 inch. 

This is due to the fact that such a section is near the constrained 

face of the beam and that it is affected by the approximative representation 

of the boundary conditions. Indeed such a deviation takes place also for 

the sections between X ■ 0 and X s 2,5 inches. 

Concerning the case 16 there is an excellent agreement between theore­

tical and calculated values along the whole beam (Fig. 1­11). Also the 

discontinuity of the stress between adjacent elements is reduced to small 

values and goes to zero for X ■ à inch. 

The above examples show, that with the exception of the zones near the 

faces of the beam, very satisfactory results may be obtained also with a 

limited mesh refinement or simply by using higher order elements. 

Shear stresses have been analysed for the three types of subdivisions 

already mentioned, i.e. EP6, EP8, EP16. Only these cases have a sufficient 

number of points to describe a reasonable detailed behaviour of the shear 

stress. 
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One can see in Fig. 1­12, that at least for the section X « 12 inch, 

a good approximation, which in the EP1fi case is a perfect coincidence, may be 

obtained. Besides the FPfi discretization gives better results than the FP8 

case, except for the zones near the center line and the edges of the beam. 

Indeed it must be noted that the shear stress does not remain strictly 

constant in every section as anticipated by the beam theory. 

This is caused by the imperfect simulation of both the constraints 

and the loads. 

The shear stress becomes constant at a distance from the constrained 

face equal to the half height of the beam in the EP8 case and to a quater 

in the F.Pfi case. Near the loaded face of the beam the distance becomes 

about the half of the previous values. 

Regarding the influence of the mesh orientation on the results it is 

possible to observe (see Fig. 1­12) that a triangular mesh of the herring­

bone kind, orientated like in case 1; presents some points which do not 

respect the theoretical behaviour. More precisely, the shear stress curve 

shows a depression on the beam center line, while, near the edges of the 

beam, it mantains values far from zero. 

On the contrary if one uses a mesh like in case 2 (i.e. orientated in 

the opposite sense): the maximum value is overextimated and the shear stress 

on the edge of the beam reaches a value which is less than half the one of 

the previous case. 

On the other hand, one must 

consider that the first type 

of mesh gives more satisfactory 

deflection values than the 

second type. 

For better understanding the 

behaviour of the shear stress 

in the neighbourhood of the 

constrained section one may observe the diagram in Fig. 1­13, related to cases 

14­15. 

One can see that in the constrained section the quadrilateral elements 

give values deviating from the theoretical ones. For X r 2 inch the curve 

begins to approximate considerably the theoretical shape. The triangular 

elements are less disturbed by the boundary, and for X ■ 2 inch the shear 

case 1 case 2 
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stress behaviour is realy satisfactory and is very close to the theoretical 

one. 

In Fig. 1­4 the τ distribution, calculated with the discretization 
xy 

of case 16, is shown for different sections along the beam axis. 

For the constrained section, X : 0 inch the curve has the less satis­

factory behaviour but on the section at X : 2 inch, the behaviour begins 

to be good. From X ■ 4 inch to X s 6 inch the τ curve arrives to a defini­

xy 

tive shape, which is maintained almost till the loaded section. For 

X ■ 22 inch the deviation starts to become significant, and for the loaded 

section X r 24 inch there are some little obscillations around the exact 

value. 

CONSIDERATION ON THE REQUIRED COMPUTER TIME 

The computer used for the above described calculations was an IRM 

360/65 and all the values of time referred in this paragraph are relative 

to this machine. 

Following the analysis on the reliability of the finite element approach 

we proceeded to examine the computer time necessary for the solution of the 

previously considered problems. 

The Zienkiewicz program for a single run spent 17 seconds, the Safe­

Plane program about 28 seconds and the Bereafe and the Safe­2D programs 

both 31 seconds. 

One can conclude that the Zienkiewicz program is the faster one, hut 

the other three are equivalent also with respect to computer time. 

These four programs have very different capabilities concerning the 

type and size of thé problems they can solve. 

The limits with respect to the size of the problem are on the total 

number of nodes and elements. The Safe­2D and the Zienkiewicz programs 

have also limits on the number of elements for each partition and Bersafe 

has a limit on the matrix band­width. All the four programs can solve two 

dimensional cases with simple triangular elements. The Bersafe program can 

solve two and three­dimensional problems with various types of elements. 

The required storage space on the IBM 360/65 computer is the following: 



146 K RYTES 

208 K BYTES 

324 F RYTES 

352 K RYTES 

12 ­

for the Zienkiewicz 

for the Safe­Plane 

for the Safe­20 

for the Rersafe 

Running by the last program the four cases 10 to 13 of the Fig. 1­6, 

needed the following execution times: 

Case 

10 

11 

12 

13 

Element tvpe 

EPfi 

EP8 

EP1? 

EP16 

Number of 

elements 

24 

12 

2¿ 

12 

Number of 

nodes 

21 

21 

65 

63 

Total time 

34 sec 

33 sec 

47 sec 

43 sec 

Time to calculate 

stiffnes matrix 

and to solve the 

system 

4 sec 

5 sec 

11 sec 

0 sec 

*rom this series of data we may conclude that the increase of the 

execution time Is more a consequence of the number of nodes than of the 

use of higher order elements. 

For better seeing the influence of these two different factors, it 

is useful to consider the three cases above analvsed: 

Case 

14 

15 

16 

Element type 

EPfi 

EP8 

EP16 

Number of 

elements 

86Δ 

432 

432 

Number of 

nodes 

481 

481 

1393 

Calculation time 

(min) 

4.36 

3.27 

24.15 

Total time 

(min) 

11.31 

7.04 

34.47 

From these values and considering also the numerical results, one can 

see that the EP8 element is the more convenient to solve plane problems. 

It gives fairly good values and the results which can be obtained by using 

the EP16 element does not justify the involved increase of execution time. 

One can note that for the problem solved the EP8 elements needs less time 

than the same EP 6. 
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A P P E N D I X I 

For the theoretical calculation of the deflection relative to the 
centre line of a cantilever beam and of the axial and tangential stresses 
we have used the formula of the beam theory valid in the elastic field. 
The deflection equation is the following: 

f : 1 ( Ρ χ
3 2_ 3 PI χ PI , 

E I 
S (1-x) 
GA 

where the first term between square brackets accounts for bending only, while 
the other one considers the shearing stresses. The orientation of the X axis 
must be taken like in Fig. 1, with the origin at the free end.The notations which 

appear in the equation have the 
following signification and value. 

fi -' Young's modulus; E ; 10 lb in ̂ . 
Concentrated load: Ρ : 8on lb 
Beam lenght; 1 = 24 in 
Momentum of Inertia; I : 42,66 in 

F Shear modulus; G 
2(1*v) 

Poisson's modulus: ν ; 0.2 
Shear factor; β = - s 1,2 

Cross-sectional area; A ; 8 in^ 
The calculated values are the following, (x = 1 - X): 

O.0304in f = O.ooOOin x=o 
f 0 r 0.0014in X"2 
f . 0.0044in xs4 " 
f , s 0.0081 in X"6 
f 0 s 0.0148in Xso 

x=12 

x=16 0.0494in 

fx-20 = n- 0 7 0 7 i n 

f _. r 0.0933in x=24 

We did the same for the calculation of σ 

4 P.b 
max (1 - x) 

max 

b = 1 inch 

The used formula is: 
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The applied notation have the same signification and the same values 

of those used in the previous calculation. The obtained results are the 

following: 

σ = 18on lb/in
2
 σ Λ. ζ 750 lb/in2 

x«o χ·14 

σ _ » 1650 lb/in
2
 σ Λ, ζ 600 lb/in2 

χ:2 χ=16 

σ . ­ 15Ο0 lb/1n2 σ . 450 lb/in2 

x;4 χ«18 

σ , =1350 lb/In
2
 σ _Λ r 300 lb/in

2 

χ:0 χ»20 

σ _ . 1200 ]b/ln2 σ ._ = 150 lb/in
2 

χ«8 χ=22 

σ Λη m loso lb/in2 σ „, = 0 lb/in
2 

XrlO χ=24 

σ ,„ οοη lb/in
2 

Χ­1? a 

One can see clearly that the behaviour is linear with the maximum 

value in the constrained section which decrease with decreasing abscissa 

and becomes zero for X = 0 inch. 

We calculated the tangential stresses also with the beam theory. 

They stay constant for each section of the beam, which means it is inde­

pendent from the fixed section distance. Tt has a parabolic behaviour 

with respect to the beam height. The used formula for this theoretical 

calculation is: 

p ru2 , 2 Y τ = (h ­ 4 ν ) 
x v
 8 τ 

One can see immediately that it is zero on the outline, indeed 

h : 2v. The found values are: 

T
y=1.75 " 

T
y.1.50 "

 1 2 8
· '

9 0 lb ln
"
2 

Vl.25
 s 1 3 5

·
3 5 lb ln

"
2 

Vi.no ' u ° · 6 2 l b in"2 

T y=0 .75 = m · 7 2 l b i n " 2 
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CONCLUDTNC REMARKS, 

The analysis performed on the accuracy of the computer programs based 
on the finite element method allows the following remarks: 

A) The considered computer programs are equivalent in the limit of the 
''engineering accuracy''. 

B) All the programs converge to the ''exact'' solution when the number 
of finite elements used in the discrete models is increased. 

C) However a satisfactory and cheaper (with respect to the computer time) 
solution may be obtained by the choice of elements of a suitable type. 
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