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ABSTRACT

The goal of the present study is to obtain information which facilitates the treating of
practical problems with satisfactory results and low computer cost.

A comparison of different computer programs, when applied 1o a series of discrete
models of a cantilever beam, is given in paragraph number 1.

In paragraph 2 the calculated results are also used to study the influence of the
mesh orientation and refinement on the convergence of the discrete model to the actual
situation. The finite element used in the discretisation is the simple plane stress triangle.

In paragraph 3, different types of elements (triangle with midside nodcs, quadri-
lateral and quadrilateral with midside nodes) are investigated and the obtained displace-
ments and stresscs arc compared.

Finally some considerations on the required computer time arc presented in paragraph 4.
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ON THE SOLUTION OF PLANE STRESS PROBLEMS BY FINITE

ELEMENTS COMPUTER PROGRAMS *)

INTRODUCTTON

The finite-element method is based on the idea of approximating a conti-
nuous field (e.g. displacement field in elastic continua) hv a discrete model
which consists of a set of values of the field (e.g. displacements) at a
finite number of points (called nodes) and of piecewise apnroximations
(shape functions) of the field over a finite number of subdomaines (called
finite elements).

The local approximation of the field is uniquely defined in terms
of the discrete values of the field at the nodes of each finite element.

The continuum with infinite degrees of freedom is thus represented
by a discrete model with finite degrees of freedom.

It has been demonstrated that the behaviour of the discrete system
converges to that of the continuous system, if certain completeness

conditions are satisfied, when:

1) the number of finite elements is increased:

2) the size of finite elements is decreased,

It has also been recognized that a closer approximation of the real
situation may be obtained not only by increasing the number of finite
elements but bv using more sofisticated types of finite elements (i.e.
higher order approximations).

Tn practice, the accuracy of the results obtained hy using computer
programs based on the finite-element method is limited hy the core stora-
ge capacity of the comnuter ({i.e. by the number of finite elements), and/
or by the cost of the computation (computer time increases with the number
of finite elements and their complexity).

From these preliminary remarks it appears of primary importance the
necessity of finding practical rules for an optimum (with respect to
accuracy and cost) choice of the type and number of finite-elements to
be used in constructing the descrete model.

On the other hand, once the descrete model has been set up, one has

to face the prohlem of solving the resulting system of linear equations.

*) Manuscript received on November 14, 1972



Numerical analvsis nrovides different techniques (e.g. iterative and
direct methods) and it is important to assess that the obtained results
are not affected, in the limits of the required accuracy, by the choice
of the solution method.

The goal of the present study is to obtain information which faci-
litates the treating of pnractical problems with satisfactory results
and low computer cost.

A comparison of different computer programs, when applied to a
series of discrete models of a cantilever heam, is presented in
paragraph 1,

Tn pararraph 2, the calculated results are also used to study the
influence of the mesh orientation and refinement on the convergence of
the discrete model to the actual situation. The finite element used in
the discretization is the simple plane stress triangle,

Tn paragraph 3, different type of elements (triangle, triangle with
midside nodes, quadrilateral and quadrilateral with midside nodes) are
investicated and the obtained displacements and stresses are comparated.

Finally some considerations on the required computer time are

presented in paragraph 4,

COMPARTSON OF DIFFFRENT COMPUTER PROGRAMS

At first one has undertaken a comparative study, for detecting the
influence of the mesb refinement and the mesh orientation on the mathe-
matical solution of the linear equations system, whose coefficients
represent the terms of the stiffness matrix.

The fcllowing four programs have heen considered:

1) Safe P]aﬁe Z-A_7: iterative method (Gauss=-Seidel, accelerated with
successive over-relation or S.0.R.).

2) Safe - 2D [-3_7: direct method (tridiagonalization in blocks).

3) Zienkiewicz / C_7:

4) Bersafe Z-D_7; dir

same method as Safe - 2D,

ect method (front-solution).

By these programs some easy sample problems have been solved and the
results compared.
The developed example 1s a cantilever heam shear loaded at the

free end face.



Fight different types of subhdivision in finite elements have been
applied to this structure, changing the number of nodes and elements or
simply the orientation of the last ones: for explanation see Fig. 1-1.
This simple case has been chosen because the theoretical calculation
of the deflection and stresses is easy to perform and sufficiently
accurate and also in good agreement with the experiments.

In appendix I, theoretical formulae and results are reported rela-

tive to:

1) the deflection of the beam centre line;
2) the axial stress along the top edge of the beam, o, and the shear

stress, txy relative to a generic heam section,

The deflection values computed by the ahove mentioned programs are
nearly identical, differing only in the fourth significant digit (see
Table I). Concerning the stress values there is a good agreement hetween

the various programs.

TABLE 1
Case Safe 2D Safe Plane Zienkiewicz Rersafe
1 n.n5257 Nn.N5254 N.N5263 N.05265
2 N.05547 N,N5544 0.05555 N.N5555
3 n.05287 n.05282 0.05285 0.05284
4 0.05607. n.05602 0.05612 N.N5604
5 n,06372 0.06363 0.06368 n.n637n0
6 0.06624 N.06617 0.06623 N.06620
7 0.n7051 0.07040 Nn.n7047 n.n7050
8 n.07292 0.07283 0.07289 0.N7290

a) Ream center line maximum computed deflection (theoretical value =

= 0.0933 inch).

Case 1 2 3 4 5 6 7 8
Error
o 44 40 43 39 32 29 24 22

b) Relative spread between theoretical and calculated maximum deflection

values.



From these results it appears that, at least for small problems,
the comnuted displacements are practically indipendent from the nume-
rical method used to solve the resulting system of linear equations.

Furthermore it is clear that the difference, which exists hetween
the proerams which use a different numerical technique is of the same
order of magnitude of the difference hetween programs using the same

technique.

INFLUENCE OF THF ORTENTATION AND REFINEMENT OF THE MESH

The above calculated results are also used to study the influence
of the mesh orientation and refinement on the convergence of the discrete
mndel to the actual situation.

Fig. 1-2 represents the centre line deflections as obtained with the
eight considered discretizations. With increasing numher of nodes and
elements, improved approximations are ohtained, even if the deflection
values still remain helow of the theoretical one (dot and dash). Tn par-
ticular, the two kinds of lines, dashed (cases 1-3-5-7) and continuous
(cases 2-4-6-8), refer to subdivisions with a-different orientation of
the elements: one can see that also this simple difference has an appre-
ciahle influence on the accuracy of the results.

For the eicht different types of meshes considered a comparison has
heen also made, which repards the axial stress along the top edge of the
beam (see Fig. 1-3). To do such a comparison the element stress values
rather than the averaged nodal stress values have heen considered because
these values were directly available from Bersafe and Safe-2D programs
only. ,

Tn Fig; 1-3 it is possible to see that a mesh refinement near the
constrained face improves only the local stress values, but it does not
transmit any influence towards the free end of the beam: or rather,
while this mesh refinement improves the displacements along the whole
beam, stresses are only locally affected.

Concerning the shear stress behaviour, the nodal stress values

produced by Safe-2D orogram have been considered. To obtain the maximum



number of points, the section X = 2 inch, in which the meshes are more
dense has been considered.

The behaviour is not very satisfactory zand expecially the type
of element orientation which proved to be the most convenient for
displacements now appears unsatisfactory for shear stresses.

(see Fig. 1-4),

INFLUENCE OF THE TYPE OF ELFMENTS

The present study may be considered a supplement to the work reported
in RD/R/N1848 by K. Fullard and T.K. Hellen Z-F_7. It has been already
pointed out that not only the mesh refinement improves the results, but
also the choice of an apnpropriate type of element, which is able to describe
with sufficient accuracy the actual deformation field.

Fig, 1-5 illustrates this fact in a limit case. A discretiz ation with
only two elements of the EP16 type (quadrilateral element with mid-side nodes)
gives a quite accurate beam center line deflection, even better than the one
obtained by using a subdivision with 46 elements of the EPA type (simple
triangles).

This result may be peneralized and one can say that the use of elements
with more complex shape functions (e.g. with mid-side nodes) produces
better results also in cases with a considerably lower number of nodes and
elements.

Referring to the subdivisions of the Fig. 1-6, one can see that regar-
ding the displacements (see Fig. 1-5), the following two element patterns
are equivalent.

Concerning the axial stresses along

the top edge of the beam (Fipg. 1-7),
those calculated by using quadrila-
teral elements with mid-side nodes

are more accurate not withstanding

one has only half the number of ele-
ments and one node less for each
quadrilateral element.

In addition we must point out that both the discretization are less



accurate near the constrained and the free beam faces than in the
central portion of the beam. To ohtailn accurate results also in these
two regions, it appears necessary to introduce a local mesh refinement.
A comparison based either on the deflection (Fig. 1-5) or on the
axial stresses (Fig. 1-8) has been also made between the following types

of elements:

1) FP6 (simple triangles)
2) FP8 (simple quadrilateral)

The adopted subdivisions are illustrated in Fig. 1-6 (cases 10-11),
In these conditions the beam center line deflection is far away from
the exact one althoueh the deflection eiven by the FP8 elements is the
less accurate. Reparding the stresses, one can see (Fig, 1-8) that while
the FP8 elements give acceptable values, the EPA elements give a consi-
derable deviation which in some zones achieve the values of 40 or 50 %.

Using suhdivisions with FP12 and EP16 elements (Fig, 1-6, cases 12-
13) one obtains a very good approximation relative to beam deflection
1-5).

Tt 1{s interesting to see how much are different the theoretical

(see Flgo.

and calculated values, when are comparated the displacements or the
stresses for the same type of element. This comparison is illustrated
in Table TI, for six different values of the X coordinate and for the

above four cases 10 to 13,

TABLE 1I7T
EPF FEP8 EP12 FP1A
X Error on | Error on|Error on|Error on|Error on | Error on |Frror on VErrdr on
inch Deflect. Stress q|Deflect.|Stress g|Peflect. | Stress g|Peflect.| Stress Gﬂ
h / & 4 A A A %
2 + 2.9, - 42, ||+ 50, - 8. + 29, + 3. + 36, - 3.
6 - 2.3. - 44, || - 2. - 8, + 5, £ 1, + 5. -Nn.2
10 - 3.4, - 44, || - 9. - 8, + 0.5 v 2, ¢+ 0.5 + 0.1
14 - 38, - 44, || - 10, - 8. + 0.0 - 0.1 + 0.2 + 0.0
18 - 39, - 44, || - 10. - 8. + 0.5 | - 1. + 0.6 - N.4
22 - 4n, - 35. - 10. - 11, + N6 - 2n, - N,k - 46
Relative spreads between calculated and theoretical deflections and stresses.



It may be noted that deflections are ir general determined with
a greater accuracy than stresses by the displacement formulation of
the finite element method.

For a more detailed analysis of the performances of the different
element types, the following discretizations involving further mesh

refinements were studied:

1) EP6:; 864 Flements, 4B1 nodes (case 14)
2) EP8: 432 Elements, 481 nodes (case 15)
3) FP16:432 Elements,1393 nodes (case 16)

The diagram in Fig. 1-9 relative to the sections X = 2 inch and
X s 12 inch, shows the axial stresses as a function of the Y coordinate.

The calculate results are very closed to the theoretical ones, in the
FP16 case theyv are even coincident.

The only zone in which there is some deviation is the one near the
top and bottom edges of the heam. For hetter undrstanding this fact let us
consider the diagram in Fig. 1-10, This diagram reproduces the Umax
behaviour along the whole beam for cases 14 and 15 (EP6 and FP8 elments),
Pere the triangular and quadrilateral elements are compared taking the
stresses values in each element before any averaging procedure.

One can see from the diagram, that the values relative to the section
X =z 12 inch are better than those of the section X = 2 inch.

This is due to the fact that such a section is near the constrained
face of the beam and that it is affected by the approximative representation
of the boundary conditions. Indeed such a deviation takes place also for
the sections between X = 0 and X = 2,5 inches.

Concerning the case 16 there is an excellent agreement hetween theore-
tical and calculated values along the whole beam (Fig. 1-11). Also the
discontinuity of the stress between adjacent elements is reduced to small
values and goes to zero for X = 4 inch.

The above examples show, that with the exception of the zones near the
faces of the beam, very satisfactory results may be obtained also with a
limited mesh refinement or simply by using higher order elements.

Shear stresses have been analysed for the three types of suhdivisions
already mentioned, i.e. EP6, EP8, EP16. Only these cases have a sufficient
number of points to describe a reasonable detailed behaviour of the shear

stress.
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One can see in Fig. 1-12, that at least for the section X = 12 inch,

a pood approximation, which in the EP16 case is a perfect coincidence, méy he
obtained. Besides the FPh discretization gives hetter results than the FPR
case, except for the zones near the center line and the edpes of the heam.

Tndeed it must be noted that the shear stress does not remain strictly
constant in every section as anticipated by the heam theory,

This is caused by the imperfect simulation of both the constraints
and the loads.

The shear stress hecomes constant at a distance from the constrained
face equal to the half height of the beam in the EP8 case and to a quater
in the FPA case. Near the loaded face of the heam the distance hecomes
ahout the half of the previous values,

Recarding the influence of the mesh orientation on the results it is
possible to ohserve (see Fig. 1-12) that a triangular mesh of the herring-
bone kind, orientated like in case 1: presents some points which do not
respect the theoretical behaviour. More precisely, the shear stress curve
shows a depression on the heam center line, while, near the edpes of the
beam, it mantains values far from zero.

On the contrary if one uses a mesh like in case 2 (i.e. orientated in
the opposite sense): the maximum value 1is overextimated and the shear stress

on the edge of the heam reaches a value which is less than half the one of

7

case 1 case ?

the previous case.

On the other hand, one must

consider that the first type
of mesh gives more satisfactory
deflection values than the

second type.

For better understanding the
behaviour of the shear stress
in the neipghhourhood of the
constrained section one may observe the diagram in Fig. 1-13, related to cases
14-15,

 One can see that in the constrained section the quadrilateral elements
give values deviating from the theoretical ones. For X = 2 inch the curve
begins to approximate considerably the theoretical shape. The triangular

elements are less disturbed by the boundary, and for X = 2 inch the shear
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stress behaviour is realy satisfactory and is very close to the theoretical
one. ‘

In Fig. 1-4 the Txy distribution, calculated with the discretization
of case 16, is shown for different sectiors aloneg the beam axis.

For the constrained section, X = N inch the curve has the less satis-
factory behaviour bhut 6n the section at X =z 2 inch, the behaviour begins
to be good, From X = 4 inch to X = 6 inch the Txy curve arrives to a defini-
tive shape, which is maintained almost till the loaded section. For
X = 22 inch the deviation starts to become significant, and for the loaded
section X = 24 inch there are some little obscillations around the exact

value,

CONSTIDERATION ON THE RENUIRED COMPUTER TIME

The computer used for the above described calculations was an IRM
360/65 and all the values of time referred in this paragraph are relative
to this machine,.

Following the analysis on the reliahility of the finite element approach
we proceeded to examine the computer time necessary for the solution of the
previocusly considered problems.

The Zienkiewicz program for a single run spent 17 seconds, the Safe-
Plane program about 28 seconds and the Rersafe and the Safe-2D programs
both 31 seconds.

One can conclude that the Zienkiewicz program is the faster one, bhut
the other three are equivalent also with respect to computer time.

These four programs have very different capabilities concerning the
type and size of the problems they can solve.

The limits with respect to the size of the problem are on the total
number of nodes and elements. The Safe=2D and the Zienkiewicz programs
have also limits on the number of elements for each partition and Rersafe
has a limit on the matrix band-width, All the four programs can solve two
dimensional cases with simple triangular elements. The Bersafe program can
solve two and three-dimensional problems with various types of elements.

The required storage space on the IBM 36N/65 computer is the following:



146
208
324
352

=

~

K
K

RYTES
RYTES
BYTFES
RYTES
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for the Zienkiewicz

for the Safe-Plane
for the Safe-2D

for the Bersafe

Running by the last program the four cases 10 to 13 of the Fig. 1-4,

needed the following execution times:

c £ tt Mumber of Number of Total time Time to calculate

‘ase | niement tupe elements nodes stiffnes matrix
and to solve the

system

1N EPF 24 21 34 sec 4 sec

11 FP8 12 21 33 sec 5 sec

12 EP12 24 65 47 sec 11 sec

13 FP16 12 63 43 sec Q9 sec

From this series of data we may eonclude

use of hicher order elements.

execution time is more a consequence of the number of nodes than

that the increase

of the
of the

For better seeiny the influence of these two different factors, it

is useful to consider the three cases above analvsed:

Number of Number of | Caleculation time Total time
Case Element type etements nodes {min) (min)
14 EPA R64 481 4,3A 11.31
15 FP8 432 481 3.27 7.04
16 EP16 432 1393 24.15 34,47

From these values and considering also the numerical results, one can

~ see that the EP8 element is the more convenient to solve plane problems,

It gives fairlv good values and the results which can be obtained by using

the EP16 element does not justify the involved increase of execution time,

One can note that for the problem solved the FP8 elements needs less time

than the same EP A,
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The applied notation have the same signification and the same values

of those used in the previous calculation. The obtained results are the

followine:

Ovao = 18nn
ox:2 2 165N
cxlel = 150N
cx;6 = 1350
Ovag " 1200
910 * 1nsn
%12 = ann

One can

value in the

1b/1n2 o - 750 1b/in2
X-14
1b/1in> o = 600 1b/in2
x=16
1b/1n2 o = 450 1b/in2
Xl18
2 . 2
1b/4in ox-20 = 300 1b/1in
1b/in2 o = 150 1b/in2
x=22
/in2 = N 2
1b/in cx=24 1b/4in
1b/in2

see clearly that the tehaviour is linear with the maximum

constrained section which decrease with decreasinge abscissa

and becomes zero for X = 0 inch.

e calculated the tangential stresses also with the bheam theory.

Thev stay constant for each section of the beam, which means it is inde-

rendent from the fixed section distance. Tt has a parabolic behaviour

with respect

to the beam heieht. The used formula for this theoretical

calculation 1s:

One can

see immediately that it is zero on the outline, indeed

W =z 2v. The found values are:

Tgahon = 0.0 T in”? Tyer.75 ® 121.28 1b in~2
T % 18.16 1b in~” T = 128.90 1b in 2
y=3.75 ’ ya=1,50 :

Tyz3.5n " 35.15 1h in"? Touq.25 = 135.35 1n in~2
TV=3-25 50,07 1b 1n-2 ry_1.00 s 14N.62 1b in"?
Tyz3.an * 65.621b in" Toen.75 = 144.72 1b in"2
Tyap.ys = 70.10 1b in"2 Toen.sn = 167.65 1b in2
Tyap.sn = 91.47 Th 1n”? Ton.ps = 149.41 b in~
Toa2.25 = 102.52 1b in"2 Town.on * 150.25 1b 12

Tynz.ﬁﬂ

112.50 1h 1n'_

2
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CONCLUDTNC REMARKS.

The analysis performed on the accuracy of the computer programs bhased

on the finite element method allows the following remarks:

A) The considered compufer programs are equivalent in the limit of the
‘‘engineering accuracy’’.
R) All the programs converge to the ‘‘exact’’ solution when the number
of finite elements used in the discrete models is increased.
C) However a satisfactory and cheaper (with respect to the computer time)

solution may he obtained by the choice of elements of a suitable type.
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