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ABSTRACT

The method, developed in an earlicr paper (EUR 4834), of solving Fourier’s
cquation for locally selected temperatures by Laplace transform techniques is
extended and applied to the case of a three layer hollow cylinder. The middle,
heat-generating cylinder is canned internally and externally by non-producing
layers resp., before the heat is carried away by convection, on both sides. The
effect of small gaps between the layers is considered. Both coolant bulk temper-
atures as well as the heat source density are arbitrary input functions of the
time. They may also be the outputs of some other programme (neutron kinctics
cquations, c.g.) so that the systems may be treated simultaneously.

The time behaviour of the interesting temperatures is presented explicitly;
only some auxiliary functions must be generated by integration of very simple
ordinary differential equations. In this sense, the solution is not yet ,,complete”,
but preparcd for a digital programmation, which will certainly be much time-
saving against conventional integration mecthods.
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INTRODUCTION *)

In the frame of reactor dynamics, the spatio-temporal tempera-
ture distribution in fuel elements must be followed up simulta-
‘neously with the evolution of the neutron flux, because tempera-
ture changes feedback on reactivity. It is therefore not suffi-
cient to integrate the heat conduction equation for the respec-
tive configuration by any method which cannot be coupled with the
integration‘procedure of the reactor-kinetic equations, |

In most cases the point model is good enough for the neutron ki-
netics, This means that one has to deal a priori‘with ordinary
differential equations. Against this, the transient heat conduc-
tion equation contains at least two independent variables, the
time and (mostly) one space coordinate. However, of practical in-
terest are only temperatures at some selected points and, for the
feedback on the reactivity, averaged temperatures over homogene-
ous regions.

It is therefore obvious to develop a solution method of the heat
conduction equation which reduces the partial differential equa-
tions to ordinary ones by arpropriate elimination of the space
variable. Such a reduced system is then suitable to be treated
simultaneously with the reactor kinetic equations, by analog as
well as by digital computers. The coupling with the kinetic equa-
tions is however not necessary. The method rather provides solu-
tions also for the conduction equation sevparately, whereby the
heat source density and the ambient temperature may be considered
as free, i.e. not otherwise guided, perturbation inputs as func-
tions of the time,

The method has been developed in an earlier report [1] for one-
and two-layer problems in plane, cylindrical and spherical geome-
try simultaneously. In this paper, the method will be extended

to & hollow-cylindrical fuel element, the heat producing layer of
which 1s canned internally as well as externally by a further
layer. The convective coling is, from these canning layers, at
the same time irmwards and outwards.

*) Manuscript received on May 23, 1972
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form heat production in the fuel cylinder per unit time and vo-
lume is W(t). These three time . functions are arbitrary system
inputs, or may possibly be furnished by other systems counled
with the present problem,

As the temperature gradients in axial and tangential direc-
tions are negligible against that in radial direction (towards
the cooling surface), the space coordinates z and ¢ are disre-
garded,

The materisl values which may be different only from layer to
layer are denoted by

~

A -~ thermal conductivity,
a? - thermal diffusivity,

pc - specific heat per unit volume.

There are gaps between the layers i and u, and between u and
a, respectively, the widths dz2 and ds of which are negligible
against the layer thicknesses. The gap widths, as well as the
material values, must be assumed to be constant in order to avoid
non-linearities,

The FOURIER equations of the three layer temperatures are

2H
~s 9t ~ 2 r oOr ’ .
ai or

2
1 a@u _ 0 @u . 1 a@u +W(t) (1.2)
~a 0t ~ 2 r or N ! ‘
a or A
u 1
4y 90, az®a 4 9@ ( )
— = + = 5= . 1.3
~2 0t 2 r or o
ag or

The two boundary conditions across a gap between the media 1
and 2 are

h1§%% = XQQ%% (heat flux condition; gap without heat capacity)



and

@ = @2 + A® (A® = temperature step across the gap).

We assume neither radiation nor convection, but conduction
only. The temperature gradient across the gap is then constant
so that '

2@
A0 = —£ , a

3p * , with 4 = gap width.

In order to evaluate the gradient a@g/ar, we consider the
heat flux condition at one of the surfaces (the other one lead-
ing to the same result):

~ 00 0Bg
A g %
& 3¢ ~ A2 or °?

hence, by substitation

A

The temperature ®;: at the gap surface is a linear combination
of the temperature €z of the opvosite surface and its inward gra-
dient.

For the cooling surfaces R and psR (pg,pa,p* being the radii
ratios with resrvect to the inner radius (R1 = R), we assume the
usual convective boundary conditions of the third kind with heat
transfer coefficients ai and aa, respectively.

Paying attention to the correct signs, the following six
boundary conditions may be establiShed:

r = R: - iiE%% = oy [0, (t) - @(R,t)], (1.00)
r=R
20, . 99,
r = paR: u ar = Ki—gg R (105)
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7‘1 20,
®u(P2R,t) = ®1(P2R,t) + dz-%; T ’ (1.6)
r=pz2R
- - ia 20
r = psR: ®u(P3R’t) = ®a(P3R,t) - da.i- I3 ’ (1.7)
‘ r=psR
- a@u . a®a ,
Ay BT =N 3Rl s (1.8)
r=paR r=paR
. a@a
r = peRi+ A —2 = a [0, (t) - 6 (psR,t)] . (1.9)
r=p4R
The equations and the boundary conditions are LAPLACE-trans-
formed with respect to the time, The initial state is surposed
to be the stationary state (all temperatures being then only de-
viations from this state) so that initial values ®(0) do not ex-
plicitly occur. With ¢ =x{@} and W =£{ w} we have
s a%s as
2y =0 1T 1110
a:zl i dr2 r dr ’ ( ¢ )
s _ %, 1 % Afis)
— § = — + = + = ) (1.11)
32 U ar? r dr X
u u
aé as
:—S~ea=—i+%——% . (1.12)
a2 dr?
a
We now make the variable transformation
2
—“;/—S-r,ag-z',g-—z=',andx=%§-ra. (1.13)
a, dx a, :
The coefficients are made dimensionless by defining
2 ~2 by £y by )
a a A A A
_ll_:az.’_tl_:az’_l_l_:)\.’_l}_:)\’_g_:)\ ’
a2 17 32 a X i X i X a
i a i a a > (1.14)
X X X
Bi = '—i og& B = ;}i{— g——d‘ a = "-)\-—L a = 2
X R > "a 7( ] ’ - ai ’ e O(aR y
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With the abbreviation

P(s) = 82 A‘fosl - g‘ggi
u

the FOURIER equations read

1

2 - I .V,
aiﬁi = ei + xai ’
u u X u s ’
828 = 87 4+ ~o¢
a a a xa °?

with the boundary conditions
- . ’ = -
X =X qixei(x,s) = aik(s) ei(x,s) ,

x = p2X @ A9 (peX,s) = 8)(p2X,s) )

8 (peX,s) = 8,(p2X,s) + B;X8!(p2X,s)

H

»
]

psX : eu(PaX,S) Ga(an,S) - Baxeé(PsX,S) ’
?‘ae{l(P3xys) = Gé(pax,S) ’

X = paX t + q X8 (peX,s) = 8 ,(s) - 9, (paX,s) .

2. The General Solution in the Complex Domain

The general solution of equations (1.16) to (1.18) is:

8,(x,9) = 1o(s).F(agx) + Ta(s).0(ax)
8 (x,8) = Us(s).F(x) + Ua(s).a(x) + EL2)
Oa(x.s) = Ai(s).F(aax) + Az(s).é(aax)

(1.15).

(1.16)
(1.17)

(1.18)

(1.19)
(1.20)
(1.21)
(1.22)
(1,23)

(1.24)

2.,1)
(2.2)

(2.3)

with coefficients I, U, A to determine from the boundary condi-

tions. The functions F and & form a system of linearly Indepen-
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dent fundamental solutions of reduced eq. (1.17).

F(x) =+ I (x) &(x) =-K(x)-1F I (x) (2.4)
Fl(x) = + Io(x) @ (x) = + Ka(x) = 15 Ta(x) . (2.5)

For the choice of these combinations of BESSEL functions, see
[1]. Do not confuse the BESSEL function Ii(x) with the above coef-
ficient I:(s).

The coefficients ai and aZ in (1.16) and (1.18), resvectively,

reappear in a simple way in the arguments of F and & (Egs., 2.1
and 2.3).

All coefficients I1 to Az from (2.1) to (2.3) depend on the
parameter s only, not on x. When substituting the solutions (2.1)
into the boundary conditions (1.19) to (1.24), we get the follow-
ing system of linear ecquations in matrix notation:



Qi NF! 4T P
- & MRS <o, [
| i i i
_.3\" —q\'l
C:.'b’“ aiT)Q
1
oy T/ ! r !
-p.XE -5 -B X -&
1 a.phe a.Pe i aipg aipp
0 o
o o
o o

N !

iP=

P2

D3

1

i
i Pe

o
pa

A D!
a Ps

1,

Ui

Us

Ay

(2.6)
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The index notation is an abbreviation of the arguments to be
applied, e.g., Fé ps = F'(aap3X). All matrix elements depend
upon X .only, but 2" not directly on s, The s-dependency enters
the system through the inhomogeneous terms'eik, eak’ and P, res-

pectively, the true perturbation functions,

The determinant of the matrix shall be called A(X); it has
the infinitely many single zeros X (n=1,2,...). This func-
tion-theoretical behaviour is known from [1], no matter how
large are the parameter values q, B, A, a, p.

From here, the computational expense becomes apparent - con-
tinuous necessity to develop 6-row determinants., Therefore, we
denote the matrix elements briefly with << ik >> (i = line index,
k = column index).

E.g., the coefficient Ii1(s) results to be Ii(s) = Aii , where
the determinant AI; is built from A by exchanging (in this case)
the first column by the vector of the inhomogeneous terms,

The tedious work to develop all these determinants is not re-
mroduced; we give directly the results:

11 12 0 0 0 0

24 22 23 24 o) o)

3 32 33 34 0 0

A= 0O 0 L3 L4 L5 L6
0O 0 53 54 55 56

0 0 0] 0O 65 66

11 412 o |44 L5 L6) |11 12 O 113 45 L6
21 22 23|-15L 55 56|=|21 22 24 -153 55 56| (2,7)
3 32 33 ) 0 65 661 {31 32 3u 0 65 66

i

This relatively simple representation by products of 3-row
determinants only is obviously due to the particular zero-ele-
ment distribution in the main determinant only.

When developing the determinants AT, etc., we arrange the re-
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sults according to the three inputs % k(s) k(s), and P(s)/s,
multiplied respectively with certain conglomerates 7 (X), which,

divided by A(X), are just the transfer functions to anply on these
inputs.

L 45 L6 43 L5 L6
22 23 cl- 22 24 ¢ .
ATy = + eik(s). 5 33 54 55 5 _— 53 55 5
' 0 65 66 0 65 66/
b \/
ZI1i
B 23 24| |23 2ul] |s5 56| |23 2] [us u6l]
P —
+ g ('12 [{ L3 LL|7|33 uu‘]°65 66’ 53 5u|"65 66]] ) *
— N /
ZI1p

. | =12,
+ 9oy () ( 33 34| |55 56 (2.8)

N : 7/

Va

Zlia

2l )

Of course, none of these elements except "O", also not "12"
as a factor, means the number itself, but the respective element

to be identified from the main matrix in (2.6), with the aid of
(2 .7)-

Ly 45 U6 | 43 L5 L6 |
21 23 ) 121 o4 )
Al = + alk(s)' - 21 33 . |54 55 50|+ 31 3, . 53 | 55 5 ”"‘
0 65 66 0 65 66 ,/
ZIzi | |
. B(s) 211 H 23 2] 123 2u]] |55 _|23 PL L5 u6 ,
> fus wl {32 sul["les es| |65 66| |65 66
\

Z
Izp
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23 24

L5 46" | |
+ Gak(s). + 11 . 2 (2.9)
33 34 55 56 |
N Ve 7 ‘
ZIza

AIz results from AIl41 by replacing always the rear index 2 by
1 and by changing the sign in the respective terms,

I Lh 45 U6
MUy = + 85, (s). |5y 55 56 || 4
31 32
0 65 66
zU1i
" 1 L 45 U4é 6. 11 12 O
P 55 5
LEs) 54 55 56| + ‘. 21 22 2L
21 22 65 66
0 65 66 3 32 3y
3\ v . ”
ZU1P
11 12 0
5 (s) l L5 u6|
+ 8) « |~ . |21 22 24 .10
ok 55 56 (2.10)
31 32 3L
\ V /
ZUia
L3 L5 L6
21 22
AUz = + &, (s). |- 53 55 561 | +
31 32
0 65 66
Z

Uzi
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1ol L3 45 L6 ; 11 12 0
P : 55 5 -
+_éﬂ . . 153 55 56 —l 121 22 23 +
21 22 65
0 65 661 31 32 33
A\ Vv J
ZU2p
11 12 0
(s) U5 U6
+ 8 . (s) . 21 22 2 11
31 32 33
AN ~ /
ZUza

AUz results from AUis by replacing the rear index 4 by 3 and bv
changing the sign in the respective terms.

L3 L4 21 22
My = +eik(s). + 66 , . +
|53 50| |31 32
\ vV J
ZA1i
. h] )
+Pés) e [ 35 3l pu3 o u|l o2l jes e | 12]
11153 54 53 54 J 21 22 53 54 31 32
- \/ 4
Zp 0o
11 12 o© 11 12 .0
o (o), || u6] L 43 ue‘ 1 N
+ s). . |2 22 23|+ .12 22 4 2,12
ak 51 56 5% 56 (2.12)
3 2 33 31 0% 3l
\ v —
ZA1a
L3 L4] |21 22
Mz = +95(s), - 65 . . +
53 54 31 321
AN v i J
7

Agi
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: 11
LB(s) 6. 33 3u_ 43l ‘1 2 ;23 a4 |11 22
8 53 su| {53 sull “l21 22| |53 54 T{31- 32
LY v ’
ZAzp
11 12 0 11 12 0
L L5 s L3 L5 :
+9_,.(s). .21 22 23]~ 21 22 24 (2.13)
+154 55 53 55
31 32 33 31 32 3
\ \ £
ZAza

A2 results from AA; by replacing the rear index 6 bv 5 and
by changing the sign in the respective terms,

Moreover, AIi changes into AAs, Al into AAs4, and AU; into

B£§l by itself, and by

changing all determinant elements into their commnlement numbers

AUz, by replacing +6ik(s) by +6ak(s) and
to 7. Possible 1line exchanges always cancel,

The determinant development has been stopped at this stage,
because the further treatment must anyhow be performed W g com-

puter, For this purpose, the presentation is sufficiently lucid.

3, The Selected Temperatures

The following temperatures are selected to be treated further:

Internal cylinder - internsl surface : ei(X,s)
" " - mean temperature 31(s)
" " ~ external surface ei(pzx,s)
Fuel cylinder - internal surface Su(pgx,s)
" " - mean temperature ﬁh(s)

1 " - external surface Gu(pax,s)
External cyl inder - internal surface ga(pax,s)
" " - mean temperature 3 (s)

" " -~ external surface % (peX,s)
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It would be interesting to know also the maximum temperature
of the heat producing middle cylinder, This computation is how-
ever not feasible, as the position of the maximum is not known
but should be evaluated from d%ﬁ/dx = 0, The locus of X oy (epends
tre refore on s (i.e. on the time) that makes the inverse transfor-
mation impossible,

The needed averaging rules are (see [I]):

pa2X
internal cylinder: Fz??‘%%"‘_/'F(aix)Y dx= 22 (p2F! _ -F! ) (3.1)
, X“ (p2-1)" aX(pz-1) = 2iP2 21
- X
psX
. . = 2
middle eylinder: F:j;—7?—7?—‘/ F(x)r dX=—-—%——§—(paF’ -p=F’ ) (%.2)
X” (p3-p2) X(p3~-p3) 8 ®
paX
_ PaX
= 2 ; )
external cylinder: F= ‘/ Fla_x)x dx= —(paF! —paF’ )
X2 (p%-p3 ) 2 a X(pe-ps)  “aPt  BgP?
X 2 =
| P (3.3)
and correspondingly for &, &, &,

For the functions G and V¥, to be defined in chapter 5, one has

5. =2 ' _ s
G = (PQG a Ga ) ’

. P2 .
a,o(p3-1) ' *

and so on (always with minus sign).

L, Solution for the Selected Temperatures in the Complex Domain

When writing down the solutions (2.1) to (2.3) for the selected
temperatures and arranging the coefficients according to the three
input functions Sik(s), ﬁak(s) and P(s)/s, one obtains by using

the notation Zlii’ seey defined in chapter 2:



C y o J— 1 Q . B{il 1 .
01(4’“)" Z[kZIii'Fai+zlif®aj)”ik(s)+(zlip'Faj+ZIzn¢éi) s +(ZIia'P I a aL (g):] U.1)

il 7 3 F 7)P(s) 7 7
% (s) = 5 [(zhj.mzhi@)aik(s) + (ZIip'F+lep'¢) =+ (2115F+7’12a'@)‘9ak(5):| . (4,2)
21 P(s) :
‘91(P2X’S)‘ A [:(ZIii'Faipz ®Tod aipz)e (S)+(Z Iip® aipz+ZIzp’®aipz) s (Zlia‘Faipz+zlza'qaipz){}ak(s)]
(4.7)
-1 o YB(s)
5, (paX,8)= % l:(zuii.FP;ng]..@Pz)eik(s)+(zU1P.FP2+zU2p<pP2) ==+ (ZUia.F zUaaerp
- - — — ' — : . . 1
3 - = ' - ~\P(s) P( ) -
9 (c,)— _[:(ZU 1'F+ZU2‘1@)Bik(s)+(zU1p'F+Zng'q)) =+ (Z F+Z CD)\‘} (s)] (4.5) clo
_1[n | yEls) | +2le)
9,(paX,s)= A[(ZUii'Fp3+ZU21'(I)pa)%ik(s)+(ZU1p°Fpa+ZU2p'Qp - (zUia F zUza o ak(s)]
(h.6)
. _(__l
ea(pax’s)" A [EZAii'Faapa+ZAzi'®aapa)eik(s)+(ZA1p'FaaPa+zAzp ) +(2 A a’ aa?a+zAza‘¢éaPa)Sék(s{]
(L.7)
- 1 = = = = =
ea(s)= X [:(ZA1j F+ )9, k( s) + (7 F+Z @)—(—l Apa T+ q:)a (S)—l (4.8)
_f_z [a).
b (PJ S)-— l:( Ay d° Fa D 7A25 )811{( s)+(2 A P Faap4+ZA2p a_Ps ) +(z Aia ap4+ZA2a'q)aape)eak 5)

(L.9)
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The expressions in curved brackets, divided by A, are the
transfer functions acting on the inputs Sik(s), PSS , or Gak(s),
respectively.

These transfer functions are now developed into partial frac-
tion series, whereby it is known that only single poles occur,
because A has only single zeros, Numerator and denomina tor have
never common Zzeros,

After multiplication with s, one puts:

s&i(X;s) = (aio }[é+—_)sﬁlk(s) + (a 2{: )P(s) + (aao j{;+——)sﬁak(s)
(4.10)
SB(s) = (b + Z D)as, (s) + (b 0+ }j—%n:(s) v (b, o+ y _8Dygs_ (s)
s+—— +5

(4.11)

59, (pa¥,5)= (c; o+ Z —LB)se,, (s) + (e, 7—:)1»( ) + (e, Z—ﬂs%k(S)

s+

Vv V V
(L.12)
s8_(paX,s)= (d, + Z 2)505,(8) + (dpqr Z SE(e) + (g z —§)05 (o)
V
(u.13)
szu(s) = (e, }j )s&lk(s) + (e }i}—gv)P(s) + (eao Ej )sﬁ k(s )
V
(L)
r
- in
58, (paX,8)= (£, +Z:;—;>s%k<s> + (£por ZS+_>P<S) + (Fot ZS+_>sa ()
| (L4.15)
0 (02%,2)= (8150) —I)s0p(e) + (g ) —BRVP(s) + (gg%) —5F)as, (o)
a §£;+V ik ;ﬁ % ao §£;+v_ S
Y

(L. 16)
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56 (s) = (hlo+jgj D)sy () + (s }:%—Ez)P(s) + (hao+§: Blooy (s

S+v
(u.17)
s%_(paX,s)= (] +§~_—\'j )se (s) + (j -EEE)P<S) + (3 +§Tlié%)sﬁ (s)
a\ Pt 87= Llyg Z_ o,". ik . n ao’ / , O’ Tak
S+-‘;— . S+T S+v—-
(4.18)
R® . . Ns _
where v = ~g 1S the time constant to be chosen because of X = —— R,
a a
u : u

o=+ Avs, X = + i0, All summations go from n = 1 to infinity.

5. The Modified Functions and the Discriminant Equation

As the zeros of F and of G lie all on the imaginary axis, we
pass over to the modified functions G and V¥, whose zeros are all
real. So instead of considering e.g. the zeros of F(X) = F(io),
cons ider the zeros of G(o) that is more simple.

The original and the modified functions must satisfy the func-
tional relations (see [1]):

F(+io) =+ G(o) F(-ic) = + G(o) (5.1)
F! (+ic) = - iG'(0) F'(-ic) = + iG'(0) (5.2)
@(+ib) =+ Y’ (o) &(-1i0) =+ Y(o) - ix G(o) (5.3)
¢! (+10) = - 1y’ (o) ' (-i0) = = 1y’ (0) + =G'(0) (5.4)

so that the modified functions are simply (as desired):

G( o)

il
+

NIA A

+ JO(O) y( o)
- J.(0) ¥ (o)

Y _(0) - (5.5)
Y (o) . (5.6)

1l
i
|

G’ (o)

By substituting into (2.6) X = +ioc, we get (for argument -io,
the additional terms with G and G’ in (5.3) and (5.4) create an
addi tional separable determinant which however vanishes so that
no new zeros occur for X = -io):



A( O): -

*) N.B.
From each of the lines 2 and 5, a factor of

A sz

NG/
a Pa

the minus sign before the determlnant

*#%) The indices mean anew the arguments to apply, e.g. G’

A !
1 P2

P2
Psa

A
a ’'pa

a
aP3

C 0
0 0

'+B OG' -G +B oy’ -y
a_Pa a,Pa a aapa aa‘

-G’ .. it

a Ps ‘Ila aP3

+o, OG +G +0_o’ +)
D aD4 a aap4 aa

*) **)(5.7)

-1 has been extracted, giving together

— ’
=G (aaPaU).
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This "discriminant equation", which may be developed Jjust ac-
cording to the general rule of (2.7), has the infinitely many
single zeros on (n=1,...,w).

They must be determined for the given set of parameters q,B,
a, A, p by computer., All elements are then known numerical va-
lues if the function values of the G, G', ¥, V' are furnished
from elsewhere or are directly furnished by the computer through
a BESSEL function subroutine,

0 =0 is in no case a zero. There is the special (pathologi-
cal) case q; =q, =05 a; =a, =1; A, =N =1; B, =B, =0,

] -3
Here, factors szw - szwpz (or with ps or ps, resp.) occur

which apparently give further zeros. However, these expressions

are the WRONSKIan determinants which are zeroless in the finite
1 1

P20’ P30’ peOC’

domain; they have the values respectively.

6. Computation of the Residues

The coefficients of the partial fraction series (u.1o) to
(l4,18) are the residues at the poles of the resrective transfer
functions.

Generally, we compute these residues according to the rule

a5 = T41 aéA Jo1i®"ai , (6.1)
ds o2
s=-s=

and corresvondingly also the other coefficients A preres ete,,
by comparison of the respective terms from (L.1) to (4.,5) with

(L.10) to (4.18).

The derivative of the system determinant (5.7) is, because of
C = + idvs:

da(o) _dAdo _ .M 4 j—— _ .dA ANV _  dA _v __  dA v
ds - do as - *'3c @sVVS T £ds 505 T+ d0 54vs = T 0 5.:4vs
aA

v
= - 3535 (no sign ambiguity),



hence
.d.“_é ' = - -L. M = AI
ds g2 2on do n
__n o=0 ‘
S=-3 T n

A determinant is differentiated with respect to a parameter
(here ©) by successively replacing the first column by its deri-
vate (the vector of the differentiated elements) and evaluating
the so resulting determinant, then by doing so for the second co-
lumn, etc., and by finally adding all fesults. This work can auto-
ﬁatically be performed by the computer as soon as the parameters
are numerically fixed. Otherwise the preparative work in a multi-
dimensional parameter space would be quite boundless.

When differentiating the elements of (5.7), the occurring se-
cond derivatives can be eliminated by means of the differential

. ’ - - ] /
equations for G and w, EeLe Gaip2 = Gaipz aisz aipz’

etc,

Thus, the differentiated column vectors are:
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\
k = 1 ] o k =2
i
Y but G rerlaced by
+_CSGaiP2+a szaipg ¢ vy
(-By-ayp2+1)G’ +8350200_
1744 a4p2 iD2 84p2
0
0
0
k=3 . k=4
0 idem as for k = 3,
1
'liBGéz‘lipész but G replaced by ¥ -
(6.2)
+p2G! P
jo¥-]
+n3G’
pa Ps

1
-A '
D.BGpa la..pa(}pa

0
k:iv k=6
0 ‘ idem as for k = 5,
0 but G replaced by V¥
0
+B_-a -1)G! -
( 631 aPa ) aapa aapaoGaapa
_GI
578, ps"%a?2% p,
+q_+a -1)G! -
(+q,+a_De-1) 2, pa %P+ % p,

/

For 0, one must always put O also in the arguments of G and V;
i,e. all elements are numerically known values,

The terms containing 31 are proportional to the corresponding

elements in A. Therefore,nthe factor pertaining to 31 in the de-

’ : n
velopment of A7 is just -A(On) which vanishes. One can thus omit
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all terms with L and write more simply:

o
n \
4k:_1 k=2
- ' idem as for k = 1
( qi+ai+1)Gai+aioGai ’
+8,p2G but G replaced by V¥
i aip2
-B.-a,pa+1)G! '
( Bl iP2 )Gaip2+aip20Gaip2
0
0
0]
k=3 ‘. k=4 \
0 idem as for k = 3, >
' 6.3
-Kingpz but G replaced by V¥ ( )
+ '
szPz
+paG!
FPa Da
-A G
aP? Ps
0.
k=5 | x = 6
0 idem as for k = 5,
0 but G renlaced by W
0]
- - ' -
(+Ba a_Pa 1)Gaap3_aapacGaap8
+aap3Gaapa
(+q_+a pa-1)G’ -2 p4OG
a “a a_Ps a a_Ps /

AN

In order to pass over in the transfer function numerators from
the functions F and & to the modified functions G and V¥, and at
the same time in the arguments from X to o, we give the behaviour
for all matrix elements of (2.6) or (2.7) in the following list:



1x(x) -
2k(xX) -~
3k(x) -
Lk(x) -
Sk(X) -
6x(X) -
Only the
that
AX) -
Z..(X)-

and hence
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1%( o)

- i.2k(0)
3k(o)
Lk(o)

- 1.5k(o)
6k( o) 'i.

secord and fifth line furnish a factor -i, each, so

- Ao) (see footnote to 5.7) "

- Z2.,.(0) (for all Z..) ,

z..(x) + 2..(0) (no change).

A(X) (o)
Furthermore:
F(X) - + a(o) a(x) - + ¥(o)
FI(X) » - ic’(o) 3’ (x) » - 1y’ (o)
F(x) ~ - 8(0) 3(x) - - ¥o)
P(X) - - 6(o) o(x) = - ¥(o)
F(X) - - ¢(o) ®(x) - - y(o) .

By considering all these rules, one is now prepared to trans-

pose the transfer functions into the modified function notation

with argument On’ and gets for the residues:

a.
in

pn -

an

1

o

Zlii(on).G(a.o ) + le(on).w(aion)

_ ZIip(On)'G(aion) t ngpKOn)'w(aicn) 5

. ZI1a<On)'G(aion) + ZIza(on).w(aion)

Ze

37 (6.4)

A! /
n



in

Pn

an

in

n

an

in

dpn

an

in

pn

an

in

n

an

-2

Zlii(on)‘G(on) + ZIal

8 -

(5,).%(3,)

Zlip(on).ﬁ(on) + 7

Al
n

1,p(%) ¥(a,)

AI
n

Zlia(on).G(on) + 2y g

(o). ¥(c,)

[
An

Zlii(on)'G(aipzon) +

ZIzi(On)'W(aipzon)

Al
.n

Zlip(on)'G(aipzon) +

20,5(%) W22 0.)

A'
n

Zlia(on).G(aipzon) +

lea(on).W(aipzon)

Al

n
Zy,1(9y)+G(p20,) + Zy (0 )« ¥(p20)
B
2y, p( %) - 0(p20,) + Zy (0)).¥(p20,)
A
Zy, a( %) &(p20,) + Zy (9 ).¥(p20))
A
Zuii(on).a(on) + ZUzi(on).;(on)
A -
ZU1p(On)'E(On)'+ zUzp(on).E(on)
ZUia(on)'E(on) + ZUza(On)'E(Oh)

ZUii(On).G(paOn) + zU2

Al
n

Al
n

zUip(on).G(paon) + Ty

__i_( On) .\Il(pa On)

gp<oﬁ>fw<paon>

ZUia(on).G(pson) + Ty

7
’n

a(on)-W(Paon)

AI
n

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)
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ZAii( o ).G(a_pso ) + 2, (0 ).¥(a psc )

g = -
in Aﬁ | |
L ZAip(on).G(aapaon) + Z@(on).w(aapaon) > (6.10)
&n = A; .
o ZAia(on)'G(aapaon) + ZAga(on)°W(aapaon)
€an = Al ‘
n
h . ZAii(on).G(on) + ZAgi(on).W(on)
in 7 A?
n
7, (6).G(c ) + 2, (o ).y(c_)
hpn = 4 Asp* n nA' Aopt n n > (6.11)
n
L. Zp,a(0).6(0 ) + ZAga“n)-‘”("n)
an - Alfl p
. _ ZA11(On)'G(aaP*On) + ZAgi(on)'qI(aap*on)
Jin ¥ 7 A!
n
Lo Zp,p( %) -G8 pe0) + 2, (9)).¥(a psc) > (6.12)
Pn - AI o | £
. n
%y, p(0)).e(ape0)) + 2, (0)).¥(a,pe0))
’jan - A;l r

7. The Inverse Transformation

When transforming back the equations (4.10) to (L4.18), one
obtains

o? o2
n t
® (X,t) = a ® (t) + \ e—;— ® (t)e V_wa
1\ B = 83074k / 2in ik *
0
%t +°2
AWt v NG —T
a +Ya_ _ e v
* sofee, *) %on fwiﬁ o +
02 2
o o
. -V— +TT
+ aao®ak(t) + a n © /'® k(t) e at (7.1)
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etc.,where the convolution integrals are called:

o3 Pl
-nt SR o W
eV [ o (ty e Y at =7, (t) (7.2)
ik in ’ *
0
02 02 .
nt -
v AW(T v
e ./ TB%Ti eV atmr (1), | (7.3)
0
02 02
-nt +—Dr :
v e v _
e ./ © (7) e av =T (t) . (7.4)
| 0 |

Obviously, the so-defined "transient complement functions"
obey the differential equations:

02

Tin(t) + 520, (8) = 04, () 5 Ty (0) = 0 (7.5)
. a? :

Ton(t) + 52T (t) = Foayl 5 Tpp(0) = 0 (7.6)
fan(t) + ;ﬂran(t) = éak(t) ; ran(o) =0, (7.7)

with the pseudo-solutions (needed later on):

ra(8) = L [h (8) - T, (6)] (7.8)
(o]
n

a8 = 5[ - e ] (7.9)
n

Tan() = %5 [0,(8) - T ()] (7.10)
n

Note that only these three functions T can occur, and no other
ones,

Hence, one has:



*079

(02°L) .
u _ u
B oc od od HELOF o, UB _3e e od
@ B+ O @.V B+{ I @; T FN> +~H ,ml W™ MMN> + ﬁnﬂmluﬂ@u ﬂmmwxp = prxvﬁ@
quv.Nv 03 (g°L) suolssaadxa ayj 93n3[3sqns i .mpmmv
ye_os o 7
Amv.m,v A‘:H oo nipvxﬁ Hn+Apvcw Cm. r%ipvﬁgpcm_. Wipvﬁﬁ cﬁn w (3° x«.mv ®
o B8_o® od jou AF 0T ue_ue. ud _ud utr ur. -/ B
(gL°L) (1) e u~ 4" U+ (3) U+(3) 0 U (+(3) 1 U {(+(3) a1 ngu A,i_r@
Iy 1 xa oty U od ocm+ uﬁ omm+ ue cmm cm ca Ut :H _ cved )&
_ (Li'L) (3) B (3) ()08 (+(2) +(3) = (3%°0)%
2 n
_ . B od d by a_’ up utr ' .
(9v°2) (31)%0°%1 + Ay (4+° .Hvii @ “Tre(3)*0"% rwipvcppc 3 Wii 1°d W = (3°x2d)%

n b

(61°L) vam@.cmm .\ om,\ (1+° mviiﬁ OT ou () UE%%, .Imiicmpqgm Niiﬁpﬁmw _ stm
(eL) (3)%%%% + wﬁ%?,&s;sﬁ @ o+(3) o r%Eﬁa@ N:tﬁ “ N (3*x24)%
(€100)  (3)™%0%%0 {20 (2o Tou(3) T M:tﬁao N% ) UT w
(2v°2) ()0 % dm%&p:ii@gpiv% e N:t& ue N:tﬁ . N =)'

(b°L) A«vxw S d%wmpo@m+ﬁpvxﬁ oﬁm+Apvcwp mmHmW+Apvcm ud, HMM+APVCH Ul HW _ Ap.Noﬂ@

(2¢x2d) ‘g



When integrating once these equations to obtain the temmeratures themselves, it is not allowed

to get integrals over A\’\éct , because such expressions would not fulfill FOURI®R's equation. There-
fore, certain sums must u vanish, e.g. (a otV apn) = 0, which are to be enumerated at once.
D 5
n
3 ' (\ t)+n t)+a t)]
o, (X, t) = ‘Z AMe, (t)+(a, ”L 02 Yo (t)- ‘L a ] m( anlan( 8)+2, T
n \_‘ :
with a WL 0, (7.21)

® (t\ = (b WZOZ )@ (t)+(b WZ )n (t) VZOQ[b (t)+bp T (f)+‘ban an(t)

b ..
™n NN
rvith bT)O+v ;—2—- = O’ (7or r.)
n
@i(pgx,t) = (c +vZ )@ik(t)+(c +vz )@ (t) vz-0—2-[0inI‘in(t)+cpnI‘pn(t)+canI‘an( t)]
. :
n—
with ChotV _LOZ =0, (7.23)
n

a
o, (paX,t) = (d;, Z I)ep(1)4(agv) Ognmak(t)-vZOP[% in(t)ea_ T (£)ed_ T ()]
n .

‘ vy pno_
with.dpo+1+vzc€ o, (7.21)

o (1) = (e, +vT:21n)oik<t)+<e +vz “2m)e_ (t)- vz?[einrin(t)+epnrpn<t)+ean<t)]

withe.+1+vL/—-— = ? - (7.25)



@, (ps, 1) = (fio+vz %ﬂ)@ik(t)+(fao+v )@al(‘() VZ——[fmrm 40, T (8)ee, 7 (1))
2 ,
. T
with fPO+1+VZ Ogn =0 , (7-26)

= (p‘ +vi—~ln)® (t)+ (g +VZ ogn)ﬁb k(t) vzoz

® (paz
A |
Wlth gDO ZL =0 , (7.27)

(t)+h  Ton(t)+h, T ()]

- €8 - .

. h
(1) = (hioH)Z Ej_n)®ik(t)+(hao+vz ?@)@ak(t) vZ OZ[hinFin

@a 02
n n
with h +vzo2 =0 |, (7.28)
' v I
x _ —1NYq s
Oa(P‘tX,t) = (jio+vzo.2 )Oik(t)+(aao+v o? O (t) VL OP (t) dnn nn(t)'*"jqn an( t)]
n
Y_.\
with '] 2 _ o . (7.29)
Y7 |
We substitute once more the exvnressions (7.8) to (7.10)
AVV .
oc T Tpn) an(eak an)]

0, (X,t) = (a +v7 —m)@) (t)+(a WZ )@ (t) Vv Zl,r[aik(éik-f‘in)mpn(
J :
(7.30)
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Therefore, by writing directly R instead of X in thg tempe-
2 AW(t by vAWLtZR

pc
u hu

ratures' argument and by replacing v

a. a 2 a
0.(R,t) = (a. +v) —D)e, (t) - vy oo AWCR® o N7 Tanyg (),
i io o2 ik ot Y a0 o2 ak

n n u n

+v2§z:ﬁ:{%in[fin(t)—éik(t)] + apnfpn(t) +
+ aan[fan(t)jéak(t)]} - (7.31)

etc., by simply exchanging a by b, ..., for the respective other
temperatures.

When taking the initial values ®ik,o’wo’ and ®ak,o for the in-
puts, the first line of expression (7.31) represents just the sta-
tionary solution ®i,stat<R)’ and correspondingly for the other
temperatures, because all dotted quantities of the second line
vanish for this state,

As the coefficients a ot jpo are still free, the conditions
mentioned with (7.21) to (7.29) can always be fulfilled, It is how-

ever not necessary to compute them because they do not appear af-
terwards.

a J.
in . in
The factors of ®ik(t), namely (aio+v§ ;;—),..., (Jio+vé ;;—),

a J
; _an - N\ Yan
and those of Oak(t), namely (aao+v}£:OZ ) IR (3a0+v = ) are
n
obtained by comparison with the stationary solution, to be com-
puted in the next chapter directly. The CYPRREY jio and a
J

ao’uoo’
being still free, this evaluation is always possible without

ao
contradiction,
WRZ " Zpn N jpn’
However, the factors of ——, namely -v) yeoey =V ’
. : L/CS; ./_/CSf1

must also correspond with those of the stationary solution.
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We have here no degree of freedom, as the single coefficients
apn,..., jpn as well as their infinite sums are known. This leads
to certain summation formulas which may be checked numerically.

8. The Stationary Solution

In this chapter, we omit the subscript "stat'"; the tempera-
tures in question are always the stationary ones,

The stationary part of the basic equations (1.1) to (1.3) is

d%e. ae
i1 4
a%e 4ae
dr a
a%e de
a 1 a _
ar? +rvas =0 ’ (8.3)

with the boundary conditions (ef, 1.4 to 1.9 or 1.12 to 1.24):

ae,
r=R: -qR gz =0, - 6I(R) , (8.4)
r=R
a® ae,
r = p2R: Kia;g = EFi , (8.5)
r=p2R r=p2R
ae,
@,(p2R) = @, (p2R) + ByRz== , (8.6)
r=pzR .
a®
r = psR: @ (psR) = @_(paR) - B RzZ| , (8.7)
r=psR
ae, ae, _
e = a5 ’ (8.8)
r=psR r=paR
a®
r = peR:  + QR—7 = 6, - @ (psR) . (8.9)

r=p4+R
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We introduce the dimensionless variable y = % and denote

g_. - ! Q_z; _
=1, =
dy dy>
4 1nl = '
®f + yoi =0 , (8.10)
2
e + 1@, + TR =0 , (8.11)
y u bY
u
.o 3o -

with the boundary conditions:

y = 1: - qi®£(t) = @ik-®i(i) , (8.13)
Yy = pa: A0 (p2) = ©j(p=) ; (8.14)
0,(p2) = 0,(p2) + B, (p2) , (8.15)

Yy = pa: Cﬁ(pé) = 0.(ps) - B0 (ps) , (8.16)
A 8l(pa) = ®;(p§) ' (8.17)

y =pa:  + .0 (ps) = €, - 0 (ps) . (8.18)

The general form of the solutions being known, we try, with
unknown coefficients A,, A, A , B.,, B, B :
i u a i u

o
@, (y) = A, Iny + B, , (8.19)
2
o (y) =A, Iny+ B - By, (8.20)
TR
u .
e (y) =A, Iny + B, , ' (8.21)

with the derivatives

@/( ) _ Al @//( ) - Ai 8
i\ =5 y O;y) =-— ’ (8.,22)
y
A 2 A 2
W , WR
o (y) = 5 - B’y o, enly)=--2- (8.23)
. 2Ku Z 2Ku
OU — a k) —
6! (y) = -2 , @ (y) =- 2 ) (8.24)
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Hence, the selected stationary temperatures assume the follow-

ing form:

@, (R) = + By , (8.25)
5, =+ Ai<?2 1n pe BENERS , (8.26)
2 .

pa-1

®1(P2R) =+ A, Inpz + B , (8.27)
WR2

@u(sz) =+ A, lnpz + B - -§T-p§ . (8.28)
LA, |

= 2 _ A2 2 .2 .2

2 =+ Au<P31npa P2 P2 _ %> + B, - WE 32D2:(8.29)

p3 - p3 TV S
_ o

@, (psR) =+A_ 1nps + B - lR)f_ p} . (8.30)
LI' u

®_(psR) =+ A_ 1n ps + B, , (8.31)

; =+ A PZ 1n pse - D3 in ps _ 1 + B (8.32)

a B a pi _ pg 2 a? .

©,(p<R) =+ A_ In ps + B, . (8.33)

In this case, also the maximum temperature is computable, but
it is not very useful because the comparison with the non-sta-
tionary solution is not possible:

= _ WR? o -
®u,max = + Au lnp .+ By s Drax (8.34)
Ha

= u
with p .y =+ e (8.35)

2 oo

LA,

so that

= - - z
®u,max =+ Au(:l'rl pmax 2) + Bu i (8.30)
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The boundary conditions give now the following linear equa-

tion system to determine the six coefficients Ai, Au, A

and Ba:
- aAy = O - By
Au WR? _ Al
+ ——— — D2 = 4+ —=
ez 5% Pz
u
WR® o
+A Inpz + B, - —p3 =+ A, In p2 + B, + B,
u u Mx i i
u
A1 B ~UYR 2 _ . A Inps + B -8
+ n ps + U Mx Pa = a ok} a
u
Au WR* _ Aa
+ —= = ——— D3 = 4+ —=
a\ps 2'X Ps
u
Aa

or in matrix notation:

a!

B.
i

, By

(8.37)

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)



~q, +1 0 0 0 0 A, ®.: \\
A pg WR2 \
2jxe 2
5 n
_i%-lnpg -1 +1npe +1 0 0 A, % WwR?
' A
Ba 2 :
0 0 -1npa +1 +5o-lnps -1 B, |= ps WR™ (8.u43)
Lo7s
2 u
0 0 + 0 -1 0 A L
. q 2 " X
0 0 0 0 +==+1nps  +1 B ®. -
P2 a ak
Omitting all intermediate calculations, we get for the system determinant:
A=A Bs + lnpz2+q. ) + A 9—8- - 1lnps + 3% + 1lnps ) + inpa - 1npz (8.44)
i Pz i a\ps P4+ ’
and for the coefficients the lengthy expressions:
S ' & q 2
] i 2 2 a a 2 2 2 WR
Afz {-KiGikﬁL 2Ka(pa-pg)(1-)—8-1npa+-p—‘-¥+lnp4>¢(pa—pz)-2pz(1npa-1npz):] 5 + Ki@ak} (8.45)
. , : "

B == {| A P, A s Pa ( ) | @
i=h i(Pz lnpz>+ a<p_a -lnpa+€;+1np4>» Inpa-1np:2 ik *+
. N, A » V4
= A~Aiqi A .
MO (02-02) (o8 1npa e i1 (0212 )-po2 WR>
'JEJ" Mg P>-p2) (5, ~1nPa+g~+1nps )+ P3-D2)-2p2(1npa~-1npz) 'X_— + T‘iqi®ak} (8.46).
. : u

—68-



° i ﬂmﬁ + @ 3 (8.47)

2/ a e
nps3 Da ps X 3134

B.
1 1 2 2 2/ 1
R {"@ik‘“[‘_‘ [(Pa—P2)+2 7\iP2<5;+1T1P2+Q i>+2 Kapa<m
_ u
! 7\63 3 y ot [R(-on (B1q Y (22 1 npgsaaiy 1
B - a<5; “1UP3f5;+1nP4 Inps ix'h P2 f2 i\ 2 npa+q 4 A a PS- npa+§;+ nps plnns ) +
. B q 2 B .
2 B a a WR
+p3<hi<5§+1np2+qi>—1npg><2Ra<5;-1npa+5:+1np4>+1>:]ﬁf— +[}j<§§ +1np2+qi> -lnpz:FEk} (8.48)
‘ u
. A > 2,(B 5 2y 2 wg?
Aa:K [~—7xa®ik+l_L —2hi(pa-pg)<5§+1npz+qj>+(pa-p2)-2pa(1npa-1npz) §__ + hachk (8.49)
u
B o I (=2 41 ® +33 —541 2N ( 2- 2) fﬁ%ln + (03— 2)+2 2(1 ~-1nns2) WBE +
a™% | "alps T77P%) Pik*l \pa P* 1(p3-p2) (5 +1npe+q, - (ps-v2)+2pa(lnpa-inre) | o
) . : u
+ | A Py 1npa+ A Eg-1rm + (1nps-1nvz) | ® (8.50)
' ‘i P2 P2 qi_ a\Da '? Ps3 _21 ak .
av
= A—Ra<%;+1npe>

With given parameters, all these coefficients are of course simnle numerical values,

When subftituting the coefficients into the formulas (8.25) to (8.33), one gets

(for A, see 8.44):

. N. Q. 7\.‘q d 2
®1(R):<1’—JEJ>@ik + —JKJ{:2Ra(p%-p%)<E% -1nPa+6%+1n94> + (P%—P%)—2p%(1npa-1np9:]g%— +
' u

(8.51)
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i inn, 1 2 24/ = a 2 2 2
N A<M _2—'qi>[2 A, (pS _P?‘)(P-—a _]npa+1-§;- +]np4) +(p3_p2)-2pa(1npa-1nl>z):l iR +
u

®u(P2R)=

WR

(8.52)

—‘[?-

N, . B 9 | 2\ .2 WR®
+ =3 (1npas+q i) 2)\a(p23-p%)<£- —1npa+§+1np4> +(P%-'P2)—Zpg(lnPa-lnpz)]L—Ex‘— +
u

A
+ —Al (lnp2+qi)@ak (8.53)

By U
[7\ <—— —lnpa+i-)-;+1np4> +(1npa—1np2)] Oik +

1
A a\pa

. /B. 5] a 2
, 2 2 : 2
+ —g (—li-ln'p2+g i>l:2 7\a(‘p3—p2)<TT§- -1npa+p—i +1npe> +(P%-p%)-ZPZ(].np:a-lnm):]g— +
. u

Pe

(8.54%)
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?1 21 1
Painhs=P=21inNp»- -
+ 2:]®jk +

1[7\ <Ba InpatBel 1
— =Inpa+—+ np4> + nps-
A a\Ds Pe p%—p%
4 B I\ 1npa-1n 2 92—'132
E__E_>.;x <5— —1npa+——+1np4>(5p __EQ___BZ -p5 32 2> +
pa-p9

1 (%%*1“”*%)( ool _?:p_a;nlmz p2+
3—D2

AL
B q
+ 2k A (Ds‘Pz)(El +1npo+q, ><—2 —1nna+—§+1npe> (1npa—1npg)(p2+ﬂa) (PS‘“?)—}
Ps .Pé uk
(8.55)

p%lnna-nglnnz Lle
2 ak
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+ x1<€l+1npz+q.> -1lnpe+
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7\a Ba qa
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' o
A /B: q By
(8.56)
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@ (paR)=—"2 (-1 Ein ®
o (PaR)=—7F (-1npa+s+1nps JO4,

. |
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(8.57)
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+ ] 12/ 2
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= A 2 2
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® = = + 5 +— +1lnps +
A )
& A 22 2 e
Aé p%lnnefpglnna 1 Yq r WR
-2 + 5 +—= +Inps J 21 (pa-pz) —+1npz+q ~(va- D2)+?Da(1m>a 1npz)
A > 2 7 *Ps i i
P4-D3 1L7\
7\'a p%lnn4ﬁp%1npa 1 %
+ (H-—Z<; 55 Y3 Yo. +1np4>:]cgk (8.58)
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A Eﬁ A 32 A gﬁ
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P2 i ak
A A ‘ LR, A
' . (8.59)
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9., The final nresentation of the solutions

By substituting the stationary solutions (8.51) to (8.59) - the input being again
time-dependent - into (7.31) etc., one gets the final presentation of the search~d solutions

6, (R ts ®ik(t)+ { k(t) -0 k(t)+[%K (Pa—p2)<E— _1nP3+E—+]nP4> + (PS-P?)—2P?(1npa -1lnps ):]E~EIE—}

o F) g [ R (D-b () e B (0)va, o g (£)-8,,(£)1] (9.1)
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P2~ 2 :
(9.2)
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A
@(psl, t) 0”(1)+—~(1npn+qj){curvcd bracket equal to the first one in ®.(R 1)}

‘ \P‘Xi (o0 [P ()=, () Jiep T (vyve, T (4)-6 MO (9.%)
p q
(pa]\ t)= —[ u(ﬁﬁ -ilnpa+p—+]np4> +(]hpa—-]np2):l SNCHE |
t. R2'+

B q
2 A ‘
)<ch _1npa+p——+: 1n;p;> +(Pg-P?9;)—2P.2?(],npa_1np2) ’w}ﬁ\

A
i/"71 2
+ ——-A<:—2&-1npg+qi>[2 7\3(]_)3..._-92
t)—@ik( t) ]+dPn

A
. 2% 1 .
+——1A‘<$)12“!-1npz+qi> @ak(t) + v Zgj {din[rin( N
n - AY
| (o.n)

. . N
. - I
rpa(t)man[r (t) o:v?f(t')"j

-vb—

= B Q 2 o
1 a a 1 -nal 1
® - AL _ Painps=-n21lnps 1 _
(t) ‘{ a\pa 1npa+p—+4 1np4> + ],nPa P%_P% + 5 @ik(t) +

I $1nps-n31 1
N e o - Dalnps-valnns _ 1 (.
* Z[ ilpe lnp“+qi> npz +755"5 2] Carc(t) +
P3-P=2
lnpa Inps 2, ~’02 i i L1 pa-1 i 2-12
>+7\ <n_ —1nn3+—+1rm4>(2n§ OPs= ND2 n3;n9> +
ha—hz

<El+1npg+q )(épu 5

pa-pz
Ba _1np3+:%p1nyi_> (lnpa 1npp)(p?+p3) (-pa_p?) W(T)R
y 2

B.
2
+ 22 ?\ (na-p2)<—§+1np2+q )(pa

(t)—éak(t)J} (9.5)

2 1 [ .
+tv E—“ Ti(t :
I inl 1n( )- @1k(t)]+e pn pn(t)+eanrran



Gh(PaR’t)z %[ij(gi-+1np2+qi>+(1npe-1npz):]Cgk(t) +

+ E%_<§§ —1npa+—— +1np4>[?K (Pa—p2)<—1+1npp+q ) —(Pa—p2)+2pa(1npa IHP )-]W(t)R
+ 7(% _1np3+;_+1nP4> e (B) v2z4{ [rm(t) ®ik_<t)]+f 1“ (t)+f [1“ a(t)- @ (t)J}
| (9.6)
(paR,t) (t)+—=({-1npa+==+1nps )| ®;, (t)-6_ (t)+ 7\~(%-%)Ei+1 2+q. )-(pa-p2)+2p3 (1npa-1nps) |HCERE
e (psR,t)=0_, (t <1p 1np>{kt kt£211?P<p2 nn ql>PP 2ps(1np Pz] .
: VQEE;P E OO ()] 5 BonTpn(¥) + Ban [T (1)-85 ()] (9.7)

>{curved bracket equal to the first one in ©_(psR t)}

2 2
P2lnps-psinps | % + 1npa

;(t) ®, (t)+ A( R
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A is here always defined by (8.4lt) and must not be confused
with the A_ in (2.7), (5.7), and in Chapter 6.
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