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The bubble field in a two-phase flow shows inherent statistical 
properties which can be described by properly defined correlation 
functions. These correlation functions represent the whole physics of 
the two-phase flow in the sense that (a) the space-time flow pattern 
and (b) the physical interactions between the bubbles, which may be 
partly induced by the carrier fluid, show up in the detailed structure 
of this function. In this paper we develop general expressions relating 
experimental results (measured in an experiment suggested in [1]) 
to the correlation function and to the individual items (a), (b) 
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ABSTRACT 

The bubble field in a two-phase flow shows inherent statistical 
properties which can be described by properly defined correlation 
functions. These correlation functions represent the whole physics cf 
the two-phase flow in the sense that (a) the space-time flow pattern 
and (b) the physical interactions between the bubbles, which may be 
partly induced by the carrier fluid, show up in the detailed structure 
of this function. In this paper we develop general expressions relating 
experimental results (measured in an experiment suggested in [1]) 
to the correlation function and to the individual items (a), (b) 
mentioned above. 

KEYWORDS 

TWO-PHASE FLOW 
BUBBLES 
HYDRODYNAMICS 
CORRELATION FUNCTION 
SPACE DEPENDENCE 
TIME DEPENDENCE 



- 3 

Introduction 

In 1970 we suggested in a short note (see [1 ƒ ) an experimental method for 
the measurement of the velocity of gas bubbles in a two phase flow. A com­
parison of the experimental curves reported in £l7 with the expected be­
haviour shows discrepancies which are also found in all measurements made 
in the meantime. The expected behaviour was based on the assumption that 
the bubbles in a two-phase flow are in no way correlated and perform their 
motion statistically independent from each other. The discrepancies men­
tioned above however show that this assumption cannot be true and asked 
for a detailed investigation of this point. This investigation led to the 
introduction of the statistical point of view in the description of the 
properties of the bubble field and to a general theory for the experiment 
in question. 

General Theory 

To simplify the investigation we consider a stationary two-phase flow with 
an embedded bubble field of point-like bubbles. The motion of the two-phase 
mixture in space and time will be described relative to a space fixed co­
ordinate system. Due to the assumption of the stationarity of the two-phase 
flow we may describe the statistical properties of the bubble field by the 
density GitTpd) and the correlation function G(f <>* /#'*> o ) 

where: 

G(tT*, 10 )d»r dO is the mean number of bubbles in drf" at if- with velo­
cities in the range du> around \0 , and 

G(.>r >oZ /*■ O'o )d(f- dø is the mean number of bubbles in dc d*> at /*f, <oj 

at time Ύ if there was a bubble at / » ^ j at time 0. 

Derived quantities are for instance: 

a) the density G(TT ), given by: 



(G(K"")dic­ is the mean number of bubbles in d»f at tC ). 

b) the mean velocity ^O(t-)^ at *" defined by: 

c) the correlation function G(f*T* /f"o ) defined by: 

G (^/¿o ) = s^s<*/c*w<rVo ; ¿¿rv; 

G(^C­^­/«~0 )d/f is the mean number of bubbles in diC­ at «Í
­
and time f 

if there was a bubble at <C* at time 0. 

d) the velocity correlation function v̂.(*C­̂ * )v (V o )} defined by: 

where v. (*{­■£­ ) (v («TO )) is the component of the velocity of a bubble 

at i't's'Zj (l'r)0j) in a n
 arbitrarily chosen direction i (k). 

The correlation function 0(<ί·ΟΪ/<"βΟ) may be broken into two parts (see 
hj ), a self part G (*C Ό Ϊ /*Γ*>Ό) which denotes the probability that the 
bubble to be found at time t at if with velocity <* is the same bubble 
that was at time O at v' with </ , and a distinct part G (<Cor /¿r«> Ô ) 
which specifies that the bubble at [tttotrj is different from the bubble 
at fit-'*€>ol . Since the two events are mutually exclusive, we have ; 

(2) 

(3) 

(4) 



GtfOZrWoo) = Gs(x~io?:/ΗΤ'Ό'Ο) ■+ G>(¡C-iCC /it''to o) (5) 

The same separation can be made for G( t - £" /¿C O ) : 

GCvt Ι*Ό)= G órel*'o)+ G^ört/vO) 

where for instance: 

(6) 

Q Otti*1·) = S ^ ^ ^ ^ ^ / ^ V SOM (7) 

Analog to (4) we define: 

and similar for ( τ ( r f W o ) ^ , replacing Gg by Gd in (8). 

Combining (3), (4), (5), (7) and (8) we obtain 

The correlation functions G{if-iO "£»/** *> O ) and G ( ^ / f O ) have to satisfy 

some boundary conditions. 

For ·£· = O we have obviously: 

Gemo/*-'«'!,)** S6r-*V<too-*crJ ■/ ζ , fr«AW (10) 

where 

G (ίΓ"Α3/*"Ίο ) is the space pair correlation function which gives the bubble d 
density at /^OW with respect to an arbitrarily chosen 
bubble at ƒ*-'*>V 
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For large «£­ on the other hand we expect that the bubbles at ff,ioi are 

statistically independent of the bubble at /^*>'/ at time zero and put 

X x ^ G(^>o7:/¡r'v'o) = G^io) 
(11) 

KyK'
1
 KJ c / *· "** ° / —~ IJ7V"\***j 

where G(/C/o ) is the time independent bubble density at /¿Q­fc?/ . 

Similarly we assume statistical independence between bubbles separated by 

large distances from each other, considered at the same time, that means: 

(12) 

/ ^ ë//r*M>V= Gôr») 
of ' 

Now we turn to the description of our experiment. The underlying principle 

is this: Consider two arbitrary (space­fixed) surfaces F and F crossing 

the bubble field (see Fig. 1). If a bubble crosses F or F an electric pulse 

will be produced. The pulse from a bubble crossing F (trigger­surface) is 

used to trigger a multichannel time analyzer. The pulses from F (detector­

surface), due to bubbles crossing F , are fed into the time channels and 

stored corresponding to their time delay relative to the trigger pulse. At 

the end of an analyzing cycle the analyzer stops and a new triggering count 

from F is necessary to start the next cycle. The measurements performed 

over some Time T, after which we have Ν trigger­counts from F and N. counts 

stored in the i­th channel which is characterized by its width Af and delay 

time *£*­ . 

If P(t )<3f is the probability for a pulse from F within A7j at X 

after a trigger pulse from F at t = O we have 

A/C< « Ν V(T¿)4V 
(13) 

and the problem consits in constructing an expression for P(f). This can be 

done in the following steps: 

1) 

(14) 
cJo(iO^) GCriOt/iC-'to'o] 



­ 7 

is the mean number of bubbles with a velocity in the range d<0 around 

JO which cross at time γ the area element d£ at U^ per unit time if 

there was a bubble at £ic\κ>1 at time 0. 

2) 

(15) 
S io/OfvrfQGOcvT/icWo) 

is the mean number of bubbles crossing the detector surface F at time ■£· 

per unit time (mean crossing rate or counting rate) if there was a bubble 

at (*f'}t>'l at time 0. 

3) 

o/«Y«'V/') G<*'*>') is the (16) 

/ / n. ' 

number of bubbles with velocity in ato around io which cross dv' at <T" 

per unit time. 

4) 

c « S *> M (+'-**/) GC*W) 
(17) 

is the mean number of bubbles crossing F per unit time. 

5) 

(18) 

is the probability that a bubble crossing F crossed this surface through 

d£' at ic' with *>' in dto' . 

Combining (15) with (18) we obtain finally: 

τ> τ 

(19) 
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If we deno te by 

ν t h e component of IO on df, and by 

v ' t h e component of to on df' 

we can write for (19): 

2> V 
Inserting the decomposition (5) in (19) we obtain 

7>(τ)~ Ιξίτ) + -Q Cf J (2i) 

with 

ψτ)^^. ^ { y^u^w/^v^^^t/^j^'^ (22) 
τ> τ 

and a s i m i l a r express ion fo r P ^ f ) with G replaced by G , . 
d s d 
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To prepare the general theory for a practical situation we make some simpli­

fications. At first we assume the two­phase flow to move in one direction ■fø' 

such that a bubble which has the velocity «o = vV^at ¿r·' keeps this velo­

city and moves within the time interval f from κ- to the point f + t o 

The self correlation function G has in this case the form: 

s 

£, 6r*>τ 1χ·'ο'*)= <?(ν-Ό') fCtc-tc'-tO') (23) 

From (22) we obtain: 

■qc*) = JL 4 . \*f\*f' X; XK Gì«) %) (24) 

2> — 

with Λ = Χ~—*τ' 

Ay = (Τ~­Τ)η; η = normal direction of df at if~ 

^ = (if-tc )n'; n*= normal direction of df· at ttr' 

Secondly we choose the flow direction ~7Z to be the z­direction and take the 

two surfaces F and F as parallel planes at a distance D, and vertically 

to the z­direction (see Fig. 2). 

ι ι 
The density G(ÍC~,Í¿>) is then given by 

GO*)»') - GC*'> v?) S(v) <T(vy) (25) 

and (24) gives us: 

where the integration extends only over the overlap part Β of the two sur­

faces F and F (see Fig. 2). Ρ (t) can be made to disappear if B is made 

Í ¡J s 

equal to zero (no overlap between F and F n). 
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If we plot Ρ (τ) not as a function of f but directly as a function of s J 

the velocity ν = Ό/γ and use the relation 

ç^-;«/r-£6/M/
 (27) 

we obtain from (26): 

CT 8 

For a very small overlap region AB around the point ^ this gives; 

(28) 

(29) 
-ξγν ; ^ -AS-, v. GC^j v) 

Cr­

in Fig. 3 we sketch for this special case the general structure of Ρ (f) as 

s 
derived from Ρ (ν). Ρ ( 7* ) will be difierent from zero only within a very 

s s 

small interval AX around X0 which corresponds to the average velocity of 

bubbles at ­£ . The sharp peak of Ρ (Y) within AV reflects the fluctuations 

of the velocity around its mean value ν (= D/f ) as described by G(^S,v). 

o o 

Recall that for our model we made the assumption that a bubble crossing F 

at yto with velocity ν continues its straight­line motion with this constant 

velocity. A fluctuation of the velocity implies therefore that the indivi­

dual bubbles crossing F at *> have different velocities. This distribution 

of velocities among different bubbles is described by G(·» ,v). 

The Ρ part of the correlation function contains therefore the complete in­

formation about the velocity distribution of the flow pattern of the two­

phase flow. 
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The next point we have to investigate is the P.C. χ) part of (21). To simpli­

fy the consideration we introduce some further approximations. At first we 

make the convolution approximation (see £*3_7 ): 

G^ (iriot/roO) =» ^ o¿£> S
0
^**

0
 Gs Orv τ fa '

u
<>

e>
jG/tø suo/r'io'J

 ( 3 0 ) 

This reduces the investigation of GXVö'Ï'/'rC o) to the discussion of the 

d 

space pair correlation function G (¿C"<0/**«» ). Applying the model (23) for 

the bubble motion we obtain from (30) 

(31) 

Gj (τ** /r'*> Ό) -s Gj (f- tO) to ¡κτΊο') 

The meaning is obvious:a particle which moves with constant velocity 40 and 
is at time X at position lC~ was at time O at position *C— Ζ"Ώ, 

We insert this result in (19) and write the expression for the above men­
tioned experimental conditions: 

£><W= Λ. ic/fUf'fc/vßv'w'Q<îr-rv,v/rV,)S<W/ «2> τ 
Ί> 7 

As a second approximation we neglect the fluctuations in the velocity from 
bubble to bubble (at the same place) and assume a deterministic velocity 
field v(»{^). This assumption means 

and a similar relation for G so that we arrive finally at: 

>(X) = JL fo/f'fo/f vurivWojft-Wt*)/*')&&) 
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For a statistically homogeneous bubble field this G ( Wjf* ) function will 

I 

a) be a function of the distance r = /* ­IT/ only, and 

b) will tend to the average density G of the homogeneous field for 

large r. 

The general appearance of G (r) will be as sketched in Fig. 4. The "hole" in 

the pair­distribution function is due: first to the finite size of a bubble 

and second to physical forces ( see ΓΑ\ ) which act between the bubbles 

and which may be partly induced by the carrier­fluid. The peaks at larger radii 

represent the local ordering of the bubbles established under the action of 

these forces. This ordering disappears with increasing distance. 

Introducing the variable 

^f=s /Γ­ Τ ip(ur) (35) 

we write for (34): 

(<*)~-¿- fcif' fa V(Î)V(IC') GJ (t/**) GÔrO 

T>Cx) 

where the integration over F is transformed in an integration over the sur­

face D(f) which is obtained from F by shifting each point it" of F to 

if^­tr v(iT­) (See Fig. 5). 

For small X , that is for large distances between the points of F and D(t), 

the pair correlation function G can be replaced by G(­£) and we obtain from 

(36): 

T> (t;) = ƒ rf V(4)GC*) (37) 
7>(X) 

— mean crossing rate of bubbles through DCJ* ) 
(counting rate) which is independent of χ . 
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Ρ {Χ ) is therefore for small X (the same holds for large f ) equal to 
d 

the average constant counting rate of F (which is just the constant back­

ground of P( V) . As soon as the moving integration surface D(t) comes near 

enough to F to feel the correlation with the trigger bubble (at "C« t*­f 

lets say), Ρ (t) will obtain a structure as suggested by the behaviour of 

G,(r) in Fig. 4. This fact is also indicated in Fig. 5. 
d 

If we restrict the detector surface F to within a region with constant 

velocity ν , then all D ( "C)­surf aces are parallel (see Fig. 6) and (36) 

reads : 

<%&) =
 Vo

 fotfóc'ìfolfte) VM GjtelsSÌGC**) <
38

> 

V 
7f- ¿Χτ) 

The general behaviour of P.(f­) in this case is also indicated in Fig. 5. 

A remarkable feature of Ρ (f ) is the symmetry around the value X0 = Ό/ν , 
The actually measured distribution P(f) is finally the superposition of 
Ρ (χ) and P^(.X) as given in (21). s d 
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Experiment 

In our actual experiment (see Fig. 7 and 1) use for F and F two small 
rectangles of width H and length 2L iH« L) parallel to each other, 
separated by a distance D and vertical to the flow velocity. These rect­
angular shapes for F and F are realized in the experiment by two thin 
light beams crossing the two phase flow. A bubble crossing a light beam 
leads to an intensity variation of the light beam due to scattering and re­
fraction and gives rise to an electric pulse in a photo-diode which is ir­
radiated by the light beam. Measurements were done mainly for two special 
arrangements (see Figs. 8a and 8b). 

Case a) F parallel to the y-axis, F parallel to the x-axis (Fig. 8a), 

Case b) F and F both parallel to the y-axis (Fig. 8b). 
2 

For case a) we have the simplest case with a small overlap region Δ F = H . 
The Ρ (Ύ ) part for this situation is given by (29) and has the general 
structure shown in Fig. 3. The Ρ .(f) part has the structure shown in Fig. 6 

d 
if F covers a region of the two-phase flow in which the velocity is constant, 
This was achieved by using a two-phase flow with a rectangular cross-section 
with sides R and S such that R « S and taking F //S and F //R. The measured 
Ρ (χ ) and Ρ (f ) will have a general shape as shown in Fig. 9. 
To discuss the case b) above (F and F both //S) we assume a complete over­
lap of F and F and use expression (26) for Ρ (χ). As Η is very small we 
may consider G(xy,v) as a function of y only and have: 

+ L 

Ç(x) ~ -± ¿R fey GO, 4-) (39) 
T r -L 

Neglecting for the moment the fluctuations of the velocity at a fixed point 

and assuming a deterministic space­dependent velocity field we have: 

. Λ/ ι (40) 

Gfy,vJ = &(y) cfCv - ^(y)J 
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If we recall the general relation for the o -function: 

where the x. are the roots of GXx) = O we obtain from (39) and (40): 

?>(x) - * 'ÉJL ίίΟΩ. 
' oiy/\ 

c,. r3 ¡¿v. <
42

> 

¿s'y* 

where y is the solution of 

£> = r v f y j 
(43) 

The construction of the general shape of Ρ (f) is sketched in Fig. 10. The 

sharp peak of Ρ (.X ) at ­ç­ defined by D = χ· v(0) will of course be rounded 
S *ƒ ^ 

off due to the fluctuations of velocity which we have neglected. As Ρ ÁX" ) 
in this case will behave as shown in Fig. 5 we find for P(T ) the expected 
shape in 13. 
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Conclusion 

In this paper we presented a general theory for an experiment to measure 
the statistical properties of a bubble field in stationary two-phase flow. 
Correlation functions were introduced which have a simple physical meaning 
and which describe the different aspects of the two-phase flow in a proper 
way. The overall flow-pattern (denstity-velocity distribution in space) of the 
two-phase mixture is represented by the self-correlation function. The inter­
nal structure of the bubble field, due to physical interactions between the 
bubbles and the carrier fluid, is described by the G -correlation function. 
General expressions are derived relating experimental results to these corre­
lation functions. 

Only part of the information stored in the self-correlation function was used 
up to now in actually performed measurements (determination of the average 
velocity in ill ). Physical models for the interactions between neighbouring 
bubbles have to be constructed to make full use of the power of this corre­
lation experiment. 

A first step in this direction will be the investigation of the influence 
on the space-pair correlation function due to the hydrodynamic forces acting 
between bubbles. The theory of these forces is presented in detail for in­
stance in the book by L.M. Milne-Thomson (see ¡Jíj ). 
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Figure Captions 

Fig. 1: General arrangement for the trigger­surface F and detector­surface 

F in the two­phase flow. 

Fig. 2: Trigger­surface F and detector­surface F are both plane areas 

parallel to each other and vertical to the flow direction. 

Fig. 3: Construction of the Ρ (T')­Peak out of the Ρ (ν) distribution. 

s s 

Fig. 4: General shape for the space­pair correlation function G (T ) for a 

statistically homogeneous bubble field. 

Fig. 5: Expected behaviour of P.i'Z' ) due to the moving integration surface 

/ ' 

D(f ) scanning the G ,(.«~ A­ ) function ( *f~ on Fm, f on O(.f )). 

d Τ 

Fig. 6: Expected behaviour of PÃZ) if D(?r) covers a region of the two­

d 

phase flow within which the flow velocity is constant. 

Fig. 7: Special choice for F and F in the actual experiment. F and F 

are small rectangles of width H and length 2L (H«L) parallel to 

each other, separated by a distance D and both vertical to the 

flow velocity. 

Fig. 8: Orientations of F and F for most of the experiments. 

a) F and F both parallel to they­axis 

b) F parallel to the y­axis, F parallel to the x­axis 

Fig. 9: Behaviour of the PC?" ) distribution for the situation of Fig. 8a. 

Fig. 10 Construction of the general shape of Ρ (f) for the situation of 

Fig. 8b under the assumption of a deterministic space dependence 

of the velocity: y = v(y) . 

Fig. 11: Behaviour of the PCC ) distribution for the situation of Fig. 8b. 
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