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JN-METD2, A FORTRAN-IV PROGRAMME FOR SOLVING NEUTRON TRANSPORT PROBLEMS 
WITH ISOTROPIC SCATTERING IN MULTILAYER SLABS BY THE j METHOD 

N 

1. Introduction 

Under the assumption that the scattering of neutrons is spherically symmetric 
in the laboratory system, the newly developed j method has already yielded 
accurate solutions to space-energy time-dependent transport problems in bare 
spheres (ASAOKA, 1968-1) and space-angle energy-time dependent problems in 
homogeneous slabs (ASAOKA, 1968-2). The neutron flux for a stationary state 
has also been obtained as a simple limiting case of time-dependent problems. 
For dealing with these problems, a computer code JN-METD1 has been developed 
within the context of the multigroup and (up to) j approximation (ASAOKA,1971), 

As already shown by several authors, the approach can easily be extended to 
take into account anisotropic scattering of neutrons (KSCHWENDT, 1971) or to 
treat multilayer slab systems (MANGIAROTTI, 1971). For the description of 
time-dependent neutron transport in multilayer slabs with anisotropic scat­
tering, a general formalism has been developed by the present authors (ASAOKA 
and CAGLIOTI, 1969 and 1972) and applied to an optimization study of moderators 
in pulsed reactors. Furthermore, the application of the method to convex geo­
metries has been demonstrated for a homogeneous medium in which the neutron 
scattering is isotropic (HEMBD, 1970). 

The present report is concerned with the computer code JN-METD2 designed to 
solve transport problems in multilayer slab systems with isotropic scattering 
of neutrons. By the use of a multigroup model and the j (N^7) approximation, 
the computer code calculates : 

(a) The space, angle and energy dependent neutron flux due to a stationary 
point-isotropic boundary source, as well as the first and second time 
moments of the time-dependent flux resulting from a point-isotropic 
delta function source on one boundary. 

(b) The value of the effective multiplication factor k of a multilayer 
slab reactor and the stationary flux distribution as a function of 
space, angle and energy. 
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(c) The asymptotic decay constant of the fundamental neutron distribution 

in a multilayer slab system. 

2. Mathematical Formulae 

Since a general formulation for time­dependent transport in multilayer slabs 

with anisotropic scattering has already been shown in a previous paper (ASAOKA 

and CAGLIOTI, 1972), we only summarize here the mathematical formulae for the 

description of neutron transport in a M­region slab within the context of a 

G­energy­group model and the j approximation (scattering being assumed sphe­

rically symmetric). 

Let X be the space coordinate, JU the direction cosine of the neutron velo­

city, 2Γ«
1
 and I/, the macroscopic total cross section of the i­th region (ex­

tending from 3C=s d^^ to d¿ ) and the speed of neutrons in the g­th group, re­

spectively, and Ci C3­>?) the mean number of secondary neutrons produced in 

the g­th group as a result of collisions in the g'­th group and i­th region. 

The number of the g­th group neutrons in tne j­tn region resulting from a 

point­isotropic delta function source Sa {fXM,^)= 2$aJA %(%) $l~tl can 

be written as 

ti 

+ ^ ) ^ a r ^ ­ r v 4 ¿ 2 >+^F,(## få* ,/,x/tA­zv^; |*­*­

(1) 

where 0f?­¿= ζ * ^ * ^ " ^ ) ΐ ?^-\' {^VcA)/(T^V* ) } , Z V stands for the 
value of 2«*1Λ for all g and k, and minimum 
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The function Γρ
 is

 equal to Fp£ with /=£? evaluated previously (ASAOKA and 

CALGIOTI, 1972). The explicit expression for rp in the j approximation 

( p £ 7 ) is given in the Appendix 1, Section 2. In addition, À^T^^JÍJk and 

υ_
ι
(^7 -AJÍ") i n

 equation (1) are respectively a pole and the residue of 

'Vpi
 (?; A") which satisfies the following linear equation: 

+
 | W>|0té, *r(#f' ^-¿«ΆΦ·1 )VAM>* 

where 

( 4 ) 

χ fajufi-rjt'ifaMtf ( ÍPJ^) . (5) 

The explicit expressions for the integrals £<«# and Je«, are respectively 
shown in the Appendix 1, Sections 4 and 1. 

For a stationary state, only one largest pole <4=2'/Ί^ OX -Λ, (.9, Λ ) is of 
importance. Hence, by multiplying ^-2Τ/ΐΛ on both sides of equation (3) and 
taking the limit ^-^-Z^Vf > w e ëet {[assuming a boundary source $ò(2,iM)= 



Upon integrating equation (7) over β. from ­1 to 1, the scalar flux is ob­

tained in the form 

* 

in which 

(9) 

the expression for Cr» being given in the Appendix 1, Section 3. 

It is seen from equation (6) that the critical condition for a system with­

out extraneous source Sa = O is to be obtained by solving the determinantal 

equation: 

^ - i < M ) u^M»**·-«**^ > ) = 0. 

hV
s
M,"-jÇ', %tr-oJ,—À'> j>t-U/"jM. (10) 
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In order to get the value of the effective multiplication factor k ̂ Λ for a 

eff 

given reactor, Ci Of­^fO *­
s
 divided into two parts. These are the scat­

tering part Çii(j->1')=zJc3->3/)/JSj* and
 t h e

 fission part Cf'Cg­^g'^s 

= X./(V2f)e^/JS·^ where %« stands for the proportion of fission neutrons 

born in the $~th group. By the use of this separation, the value of k is 

obtained by solving equation (10) with 

The ratios between By (9") S can now be obtained, under the condition (10), 

from equation (6) with Sa=0 and Cl(9->3') given by equation (11) for calcula­

ting the flux distribution in a multilayer slab reactor according to equation 

(7) or (8) with Sa~0 . In addition, equation (10) with ¿d-XjtyJj instead 

of Zy'lfy gives the asymptotic decay constant \ = jtftyU'Jf) which governs 

the asymptotic behaviour of neutrons as t­>&) {"see equation (1)J . 

It is also easy to get the time moments of the time­dependent flux resulting 

from the incidence of an external delta function source on one boundary: 

$»(X,IÅjtl~ 2SiU%iX)S(.'t^ ·
 T h e

 first three time moments of the angu­

lar flux (1) are written as follows: 

/^^α,/,Ο^^α,/ο, 
­00 

(12) 

which i s given by equation (7) with R, (*p= -Vp (f/2f*lfy} £ compare equation 

(3) with ( 6 ) J . 

*&&£&*^^Η'*»}1Λ.^
 <13) 
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)o<tt i*v.nêkz,ju} t )=2 S%xxs4f [­(¡g za%-^+^hx-ßj^l^l^^jif+ 

Φ>& % ψ, ̂ ^-4^)V<^> W,. (14 

According to equation (3), the first and second derivatives of ­#. (í}>>¿)
 at 

•4
 =
 2"/

/
lfy

 a r e
 obtained by solving respectively the following equations: 

^!*(ΐ«ί*-*^*·'))Λ^)ΐ}. 
* (16) 

For a non-multiplying system in which there is no up-scattering of neutrons, 
equations (3) [or (6)} , (15) and (16) can be simplified to those which are 
solved in the same way as for a one-group model. For example, equation (3) can 
be reduced to 

(17) 
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From equations (12)-(14), the first three time moments of the total flux can 
be obtained as follows: 

given by equation (8), (18) 

(19) 

(20) 

3. JN-METD2 Computer Code 

3.1 Input data_(see the Appendix 3) 

After a title card with a 20A4 format, 16 integers are read with a 2513 for­
mat. These input integers are defined as follows: 

H O 3, 5 or 7 for the j , j or j approximation (0 to stop the execu-
tion; see the Appendix 2, Section 1) 

IIII 0 for solving a new problem or 1 for restarting a problem for 
which punched cards for the residues RES are available (see below) 
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NSOUCE 

NSLOWD 

IGRP 

IHT 

IHS 

JHL 

NSPH 

NNNN 

LLL 

IAA 

NENRGY 

NTFLUX 

­1, 0 or 1 for the problem to obtain the asymptotic decay constant 

(NSPH=1 and LLL=0; if NSL0WD=1 the decay constant of neutrons be­

longing to the lowest energy­group being calculated), to compute 

the value of the effective multiplication factor (NSLOWD=0 and 

NSPH=1) or to deal with a subcriticai system with an external 

source for obtaining the flux distribution 

1 for non­multiplying system without up­scattering of neutrons 

(0 otherwise) 

Total number of energy groups 

Arrangement of reaction type of the cross section (XSEC) for the 

g­th group and i­th region; XSEC (l,g,i) = ΣΑ*1
 ,..., XSEC(IHT­1, 

g,i) = Xu , XSEC (IHT>3,g,i) = Ztrf > XSEC (IHT+l,g,i) = 

Z'<g+IHS­IHT­>g),,..., XSEC (IHS­l,g,i) = ZL
l
(g+l­»g), XSEC 

(IHS^IHT,g,i) = Z*(g­>­g), XSEC (IHS+l,g,i) = 2¡'(g­l­^g), , 

XSEC (JHL^IHS,g,i) = .Z'Cg­JHL+IHS^g) £Ztye is used for Σα 

for taking into account the anisotropic scattering of neutrons and 

Σ-ta is for calculating c(g­>.g*) = 21 (g­>g*)/2Tt|. 

3 for obtaining the first and second time moments of the flux due 

to a §(t) source in addition to the stationary flux (1 otherwise) 

Total number of homogeneous regions in the multilayer slab system 

1 for computing the flux distribution (0 otherwise) 

Total number of input cards for the present problem 

Number of energy groups for which the flux distributions are to be 

calculated (see the array NGRUP mentioned below) 

1 for computing the total flux (0 otherwise) 
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NTSPAC Number of space points at which the angular and/or total flux are 

to be obtained (see the array NSPACE mentioned below) 

NANGL Number of angular points at which the angular flux is to be cal­

culated (total range of JJL from ­1 to 1 is divided into NANGL­1 to 

have an equal spacing, and only IX- 1 if NANGL=1) 

Next, in the subroutine JNMETD, the following data depending on the input in­

teger NSOUCE are read with 7F10.6 (energy­dependent quantities are ordered 

respectively by energy­group beginning with the first or highest group): 

NS0UCE=1 

NSOUCE=0 

NS0UCE=1 

SOCE; boundary source intensity ¡5* 

VG; speed of neutrons Vi 

CK1,CK2,EPSK; the first and second guess 

the required relative accuracy when 1111= 

for the value of k Λ. and 

eff 

=0 (CK1 = k __ if IIII=1) 

. . eff 

VG; fission spectrum Pf­

CK1,CK2,EPSK; the first and second guess 

constant \—ji\ and the required relative 

for the asymptotic time 

accuracy 

VG; speed of neutrons 'V* 

The following data are then read with 7F10.6 (or 8F9.6, F8.5 for XSEC) in the 

order of space region, the total number of cards being NNNN*A l+£(IGRP+6)/72+ 

+rCJHL*IGRP+8)/9j+(if NS0UCE=0, C(IGRP+6)/73 )]·: 

Thickness of the region 
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BUCLG Buckling for taking into account the finite extention of the 
system in y and ζ directions, (ffy+By2)* , ordered by group g 

XSEC Nuclear cross sections for all types of reactions arranged as 
mentioned above in the first group, then for those in the se­
cond group and so on 

If NSOUCE=0, 
XFSEC 

(yZf")a order by g 

For the case where IIII=1 (NSOUCE>0), a punched card dump with a (5D15.8) 
format for the residue (RES) Sp (5) is then read in the same order.as in the 
punched output or output print: For NSL0WD=1 (NS0UCE=1), it reads first 
Ββ1(ΐ) S » P=°»l» r · · > HO, for i=l and g=l, then those for i=2 and g=l and 
so on until those for i=NNNN and g=l. These are followed, if any (NSPH=3), 

d 
» · · · > 

All these data are 
by
 'á"^p

l (
f"

i
^^=2<

,
v/

S
 ' P

=
°-

II0
>
 for i=1 axld

 ε
=1
>
 i=2 and

 g
=1 

i=NNNN and g=l, and then by i L B p ^ J ^ I ^ x V 's ·
 A 1 1

 these 

repeated for g=2, g=3,..., g=IGRP. For other cases (NSLOWD=0 and NSOUCEà>0), 

it reads first Bp^^'ô , P=0­IIO, for g=l and 1=1, g=2 and i=l,..., g=IGRP 

and i=l, which are followed by those for i=2 and so on till i=NNNN. Then, if 

any, 4τ­ R>
1
( %,J )3j=2^Vi $ a r e r e a d i n

 the same order as Be'C^p's and 

Α. ρ ira A~\\ . </ii
J
S follow them. The total number of cards is there­

fore always NSPH*NNNN*IGRP*n(IIO+5)/5}. 

Finally, if LLL=1, the following data are read with a 2513 format in the sub­

routine FLUXCA: 

NGRUP Energy­group indices of NENRGY groups for which the flux distribu­

tions are to be calculated (in increasing order) 

NSPACE NNNN numbers of space points at which the flux is to be calculated. 

(The first integer is the number of space points for the first re­

gion, the second integer is for the second region and so on). If 

NSPACE(I)>1 the I­th region is divided into NSPACE(I)­i; to have 

an equal spacing and if NSPACE(I)=1 one space point is selected at 

the boundary between the I­th and (I+l)­th region. 
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3.2 Çomputer_grogramme 

The JN-METD2 package consists of 15 programmes: MAIN, JNMETD, FLUXCA, FCAL, 
FSCAL, FSCON, SGMOD, CCALC, DET, ITRTON, SOLEQ, GCAL, FMCAL, EP and VARIAC. 
In addition, the code makes use of the library subprogrammes, MAXO, DEXP, 
DLOG, DATAN, DSIN and DCOS. 

Almost all subscript variables and their dimension informations are stored 
in a blank COMMON for the use of the adjustable dimensioning. The present 
size of the COMMON for subscript variables is 64 K bytes so that the pro­
gramme requires the core storage less than 300 K bytes in the Fortran -IV, 
Version G on the IBM-360/65. For altering the dimension of the COMMON to 
fit core storage, the 12 statements should be adjusted. (All 15 programme 
decks are respectively numbered.) These are 5 cards in the MAIN programme: 
the 30th (dimension of ACOM), 31st (dimension of ICOM), 32nd (dimension of 
BCOM), 43rd (clear COMMON) and 132nd card (available ^required storage?), 
and 7 COMMON statements (dimension of ACOM) which are the 20th card of JNMETD, 
13th of FLUXCA, 14th of FCAL, 10th of CCALC, 5th of ITRTON, 12th of GCAL and 
5th of EP. 

In the MAIN programme, as can be seen from the flow chart shown in the Appen­
dix 2, Section 1, sizes of the required arrays are computed based on input 
parameters and then first-word addresses are calculated for these arrays. 
The locations of these pointers and the associated arrays with their dummy 
dimensions are given in Table I which shows also the fact that the storage 
locations bigger than IA(38) are used in two different ways, once in JNMETD 
and then again in FLUXCA. The actual values of the integer variables speci­
fying the sizes of arrays are summarized in Table II. The first-word addresses 
and the dimension informations are transferred through a call statement and 
a part of vector in the blank COMMON is treated as a multi-dimensional array 
in subprogrammes. 

The subroutine JNMETD computes: 

(a) The residue 3%*(%") according to equation (6) £" or (17) for a non-multi­
plying system without up-scattering of neutrons ~J and if NSPH=3 ^jJJifyA) 
and -jPn -$q~(%£) at J^^Jty by solving respectively equations (15) and 
(16) (or the corresponding equations for a non-multiplying system with­
out up-scattering),for a multilayer slab system with a stationary (or 
for the derivatives, a delta function) point-isotropic boundary source 
(NS0UCE=1). 
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(b) The value of k for a multilayer slab reactor (NSOUCE=0, NSLOWD=0 

and NSPH=1) and if LLL>0 the ratios between Βγ.
ι
(4)'$ from equations 

(10) and (6) with S» =0 and Qítf­^í') given by equation (11). 

(c) The asymptotic time constant i-<Å\ for obtaining the asymptotic decay 

constant Σ^{Α"Λ() for a multilayer slab (LLL=0 and NSPH=1) or if 

NSL0WD=1 the asymptotic decay constant of neutrons belonging to the 

lowest energy group. 

For the problems (b) and (c), the values of Çfa(Î->ï) are first modified ac­

cording to the guess of k .. or 4~ÂA > and for the problem (c) the values of 

eff 

flf¿*= R*Xi (4n~̂ £-ƒ) are calculated (see the flow diagram. shown in the Ap­
pendix 2, Section 2). With these values of Çg(£~*j) and (xfi , the matrix 
elements for equation (6) or (17) Calso for equations (15) and (16) ~\ are 
then calculated by calling the subroutine FCAL (fl̂ /Ofr ,&, 110, MM. XHíjfÜx 
*Μφΐ%%ΦΐΡ/£·<1, y(*ft?ÍM?*e that^}*=y/(Zj^p^) and £a<X,*=ol 

which computes the value fàQR*(4r) Jey (flfÅOíj', Λ J d ) f o r
 η=0Λ/ΜΜ+1 by the 

use of their explicit expressions shown in the Appendix 1, Section 1 £see for­

mulae (A14)­(A]8) . In the case­where ftjJ+ ft^­f |¿lj < 5 > it calls the subrou­

tine F I Ç A L ^ ^ ^ ^ I I O , JIIj ̂ V j P j V t ^ P j ^ ^VjP^flt ) in which the series 

expansion shown by the formulae (A23) and (A24) are used for the calculation 

depending on the values of parameters (XJ¿ (X* and JL (JII stands for the para­

meter range). For computing the first and second derivatives of J»ywith %~\—Ί 
and γ=7 > t n e FSCAL calls another subroutine FSCQN. In addition, the FCAL and 
FSCAL use the subroutine SGMOD (SSI,I,....) in which when I>0 Xnm,n WÌJOÌÌS i ) 
is modified to Kj+nt4 n+i £ s e e equation (All) in the Appendix 1J , when 
1=0 the summation of (A16) is performed or when K O a multiplication is car­
ried out for calculating the derivatives of J«y by using their series expan­
sions. The exponential integral EfiOO appeared on the right hand side of equa­
tion (A12) is evaluated by the function subprogramme EP(fl3 X) which comes from 
the subprogramme EP(n,x,b,....) in the computer code JN-METD1 (ASAOKA, 1971). 
At the end of the FCAL, the recurrence relation (A7) given in the Appendix 1 
is adopted for computing the functions Jay with q = 2-7 and r = 1-6 (and 
their derivatives if NSPH = 3) from the values of Je~and J^with r = 0-7 and 
Jjø and Jeij with q = 2-7. 
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After having been obtained the matrix elements, the JNMETD calls, for the 

problems (b) and (c), the subroutine PET to evaluate the determinant (10) 

C with ­ j s y ^ i j for the problem (c) ~] or the corresponding equation for 

the problem (c) with NSL0WD=1. The subroutine ITRTON is then used for iter­

ating the process to make the value of the determinant zero until the rela­

tive difference between two successive values of k ._ or /­,¿/ becomes smaller 

than EPSK. For the problem (b) with ,LLL>0, after obtained the converged 

value of k , the ratios between the residues are calculated by evaluating 

the cofactors of the determinant by the use of the subroutine SOLEQ which 

solves a system of simultaneous linear equations. 

For the problem (a), in addition to the matrix elements, the first term on 

the right hand side of equation (3) fand if NSPH=3, the right hand sides of 

equations (15) and (16)J or if NSL0WD=1 the right hand side of equation (17) 

fand the expressions corresponding respectively to the right hand sides of 

equations (15) and (16)J is evaluated with the help of the subroutine CCALCCtfJ 

* M IIQ, MMMM, *fa&4rtyth (Φη^^-Μ ) ■
 The CCALC c o m

P
u t e s 

(-t)2Cf^K^j^^)
MMMM+

^^
J
t-4^jft'/)

 with mm=1
'° or

"
1 b
y
 usin

e
 their 

explicit expressions if tfj+ofi-l·\¡J[j^3 or the series expansions otherwise. 

As is seen from the expression (A43) it uses the function subprogramme EP 

for evaluating E . The residues (and their derivatives, for NSPH=3) are thus 

obtain in the JNMETD by calling the SOLEQ to solve equation (6) fand equa­

tions (15) and (16) J if NSL0WD=0 or (17) fand the equations corresponding 

respectively to (15) and (16)J if NSL0WD=1. 

The subroutine FLUXCA computes for NTFLUX>0 the total flux and/or for 

NANGL>0 the angular flux by using the values of the residues (or the ratios 

between them) obtained as mentioned above in the JNMETD. As is seen from the 

flow diagram. . of the FLUXCA shown in the Appendix 2, Section 3, after having 

calculated the angle points (the values of JUL ) at which the angular fluxes 

are to be computed if NANGL>­0, the space points ( 0 < 5 < f ) are determined 

in each region and the total fluxes are calculated at these points with the 

help of the subroutine GCAL ((X.K tt.ktt-iì-A} ITO, M M M M , ̂ fyffi¿­fa^C^H)­¿ 3 > 

(Zfypai-¿rf&(iHa5-0-¿'} ) if NTFLUX>0. The GCAL computes (¿>(Γ}^Ρ,'^­^
ΜΜΜ+

χ 

*GA<X*\0(lK2$-ÅjÅjtV) for
 MMMM=1, O or­1 f see equations (8) and (17)­(20)3 

by adopting the explicit expressions with the help of the function EP when 
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ftj
l
+l0(j^(2J'­^)­íí I >*5

 o r
 the series expansions otherwise (see the Appendix 1, 

Section 3). For NANGL>0, the FLUXCA calls the subroutine FMCAL (ocÀç/Jpf-j'yjL 

μ, HO, MMMM, ZjV-PJ-føia.hs-O-Jil, (^P&fteífW-iMJ ) which comput 

UXTJ^P.^^^Fpía^OC.ijJjJÁjJiJi) with MMMM=1, Oor­l for calculating the 

second term on the right hand side of equation (7), (13) or (14). The FMCAL 

uses the series expansions given in the Appendix 1, Section 2, if (0(»L-+ 

In the case where NSOUCE=l, the FLUXCA evaluates also the contribution of un­

collided source neutrons to the total or/and angular flux according to the 

first term on the right hand side of equation (8), (19) or (20), with the 

help of the function EP, or/and equation (7), (13) or (14). If NSPH=3, the 

above­mentioned calculations are followed by the evaluation of the mean emis­

sion time t and the variance ^­
a
 of the time­dependent flux due to the delta 

function boundary source. For the angular flux, these are written as follows 

[see equations (12)­(14)J: 

0 

which are calculated in the subroutine VAR'IAC. 

4. Remarks 

Since we have already developed a general formulation of the j„ method for 

Ν 

dealing with time­dependent transport in a multilayer slab system with aniso­

tropic scattering of neutrons (ASAOKA and CAGLIOTI, 1969 and 1972), it is 

hoped that the present computer programme can easily be extended to treat 

anisotropic scattering as well as to obtain a detailed time evolution of neu­

trons. However, as having been seen in the Appendix 1, the analytical expres­

sions for the functions appeared in the formulation are already rather com­

plicated and hence the programming of the computer code needs care upon 

keeping always the rounding error reasonably small. In the present code JN­

METD2, the'functions are evaluated on the basis of either their explicit ex­
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pressions or series expansions obtained under the assumption that the values 

of all arguments of the function are small. Therefore, in the case where the 

ratio between the arguments is very: large, it is possible that the function 

is evaluated with a large rounding error. In such a case,it will be a crucial 

point for obtaining an accurate result which order of the j approximation 

should be applied to the calculation, because more complex functions are re­

quired for the higher order approximation. Generally speaking, the j approxi­

O 

mation gives a reasonably accurate result for almost all physical problems. 

It saves also execution time of the computation by about 30% compared to the 

j calculation. 

Typical running time on the IBM­360/65 is nearly 1.5 min. to obtain, in the 

context of a 7­group j approximation, the total and angular flux of the 

lowest group neutrons at 3 angle and 6 space points in a 3­region slab with 

a stationary boundary source. However, the calculation of the time moments 

of the time­dependent flux requires a rather long time. A 7­group j cal­

D 

culation takes about 10 min. to obtain the first three time moments of the 

7th group angular flux, resulting from a delta function boundary source, at 

3 angle and 6 space points in a 3­region slab. The j approximation requires 
«5 

nearly 7 min. for solving this problem. All three sample problems shown in 

the Appendix 3 take only about 10 sec. 

It remains to note that, in the present code, the introduction of the lateral 

buckling (Prf + Bo )« to account for the finite extension of a slab system in 

two directions leads to modify only the values of C(9­>9
/
) as if the absorption 

cross section increases by (&+Β$*}β/(32Ttr$)
 b u t

 not the value of Σ-tri 

which replaces Σ« to take into consideration the anisotropic scattering of 

neutrons. It will therefore be necessary in some cases to modify also ­2»trî 

to increase the value by (Bu + Bj% )%/(3Σ-ft-a) , though the contribution of un­

collided source neutrons to the flux is given always in terms of ZTf·« with­

out the buckling correction. 
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Table I Location of the first elements of Real*8 ( · Real*4 or <§> Integer) 
arrays stored in the blank COMMON and their dimensions^ 

Location 

IA(31) 

IA(51) 

IA(32) 

| IA(33) 

IA(34) 

IA(35) 

IA(36) 

IA(37) 

IA(38) 

IA(39) 

IA(52) 

IA(40) 

IA(53) 

IA(41) 

IA(42) 

IA(43) 

IA(44) 

IA(45) 

Array name (dimension) 

ALPHA(IGRP,NNNN) 

XV(IA(11),NNNN) 

RES(IIO,IGRP,NNNN,IA(IO)) 

• A(NNNN) 

• SOCE(IA(16)) 

• XSEC(JHL,IGRP,NNNN) 

• V G ( I A ( 3 ) ) 

• X F S E C ( I A ( 3 ) , I A ( 4 ) ) 

E D ( I G O , I A ( l ) , I A ( 1 5 ) ) 

E ( I G O , I A ( 2 ) ) 

E l ( I G O , I A ( 1 4 ) ) 

C 1 ( I A ( 3 ) , I A ( 3 ) , I A ( 6 ) ) 

ALS( IGRP, IA(12) ) 

C 2 ( I A ( 5 ) , I A ( 5 ) , I A ( 6 ) ) 

S C ( I A ( 7 ) , I A ( 8 ) , I A ( 1 5 ) ) 

• BUCLG(IGRP,NNNN) 

• CS(IGRP,IGRP,NNNN) 

• C F ( I A ( 3 ) , I A ( 3 ) , I A ( 4 ) ) 

I A ( 3 8 ) 

I A ( 4 6 ) 

IA(47) 

I A ( 4 8 ) 

IA(49) 

I A ( 5 0 ) 

X(NTSPAC) 

• ANGL(NANGL) 

• TFLUX(IA(9),NENRGY,IA(13)) 

• VFLUX(NANGL,NTSPAC,NENRGY, 

I A ( I O ) ) 

<§> NGRUP(NENRGY) 

(§> NSPACE(NNNN) 

IGO=IIOxIGRPxNNNN or IIOfcNNNN for NSLOWD=0 or 1. 



Table II Computed integers for specifying the array dimensions (LFF=IIO*IGRP*NNNN) 

NSLOWD 

NSOUCE 

NSPH 

IA(1) 

IA(2) 

IA(3) 

IA(4) 

IA(5) 

IA(6) 

IA(7) 

IA(8) 

IA(9) 

IA(10) 

IA(ll) 

IA(12) 

IA(13) 

IA(14) 

IA(15) 

IA(16) 
I 

0 

­1 0 1 

1 

LFF 

LFF 

LFF+1 

φ LFF 

0 

3 

LFF 

φ LFF+2 

1 

­1 
1 

1 3 

IIO*NNNN 

IIO*NNNN Φ IIO*NNNN+2 

IGRP 

0 

0 

NNNN 

NNNN 

φ IGRP 

NNNN 

0 

0 

0 

0 

0 

LFF 

1 

0 

0 

NNNN 

0 

0 

0 

IIO±NNNN 

IGRP 

A NTSPAC 

0 

IGRP 

NNNN 

. 1 j 1 

0 0 

0 ' 0 

A 1 

0 

1 Φι ¡ o 

3 

IGRP 

0 

A 3 

φ LFF 

Φ 2 

0 [ IGRP 

0 

IGRP 

NNNN 

1 

0 

0 

A 1 

0 

1 

0 

Φ 1 

3 

IGRP 

0 

A 3 

Φ IICHcNNNN 

φ 3 

IGRP 

I 

CO 

φ Only i f 1111=0, · only i f LLL>0 and only i f NTSPAOO, 
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Appendix 1. Analytical Expressions of Functions 

Since the general formulae of the functions appeared in the present formula­
tion have been developed in a previous paper (ASAOKA and CAGLIOTI, 1972), we 
show here only the final expressions and then summarize the explicit expres­
sions and series expansions for the functions in the solution of the j ap­
proximation. 

1. Jl.iWiiOdx&ji) 

We consider here JLy. (0(;}0iij Å J cL") with fty>ft¿?»O because 

The parameter range is divided into five: 

(a) -arai-ji>oJ 

(b) -<Xr(Xi-¿<Q ana - t f j+aW>0 , 

(c) -^+or¿-flí.<o and ft}-or¿-<¿^o, 

(d) ίΧ|-^-οί<θ aW tff+tfi­öt^o, 

(e) «j+or¿­cl<o. 

Since Jo-fíOÍijtti )¿'j Q.*) for the parameter range (d) or (e) is equal to 

(-tf Jfoy ((Xiι(Χί M' ~èS) f o r t h e ran
ge (b) or (a), we show only the general 

expressions for the range (a), (b) and (c): 

* Yunt-fijjXhai-i-tf+iyunWjrnja')!, ­for ( α ) ; 

X ^ Í X j * ( ^ , ­ f f ¡ r ¿ ) + H Í X i f t ( ^ ^ ^ 

-IrrtYun&jM.ti-wyirHtWjrKijJiilj i o r (b )^ 

(Al) 

(A2) 
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|[X4«(-fljrff¿/J)+ H ƒ XinC-flJiflTi W )+ H#Xi*(-fyflr¿, AÍ )+ 

- H > * ì i « ( ^ * o ¿ ) - ( - « * > ^ - φ " * < Λ ) J, íor Cc),
 CA3) 

where 

(A4) 

» 7 <
A 5

> 

Ν/ -ƒ ^ (Of+iX'+J.'ï1* 
lun ^&><ί)=ψϊ?ίψ*Η4£0 (¿4)L+¿A)l 

^ ^ ^ £ / ¿ ) = Y/^C^^^)-Xjf iC-«/,-AíW).
 CA6) 

The functions which we have to evaluate in the j approximation (which re­

quires Je γ S with q=0,1,...,7 and r=0,l,...,7) are J0y and J^ywith r=0,l,...,7, 

and J»Q and J·» with q=2,3,...,7, because, due to the recurrence formula of 

the spherical Bessel function, we have the following relation: 

The explicit expressions for the Yyterin of these functions, £(0 (fj/^j/ 

ĴjY(ftjŷ £/­4víí)S;are written as follows f see equations (A1)­(A3)J : 
V' * 

for r=0» for r=0; (A9) 
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fcÁ
 l
 *' -4Í C M ) ! éj,

c
 " CWOH (1^! * · * * ' * V*¿**I* + >, 

(AIO) 

for r=7 (All) 

The expression on the right hand side of equation (A8) leads 

^^|j4/ir^x^(^^)= 

^Xi(z)-e
x
+z

a
E4(-z^ . y=o, 

(X^«-4X;( i ) ] /+i i -^ .x)^^w) ; r=0 

[Χ^χ)-^χ^α)+^χ3α)-^3λ4(χ)+^Χ5^)]^4. 

t(< 
-JO x+ 45 

lXi«)-|IXatt)+4|kX9«)-^)CfaH^Ätt)-^X4(ö3€
ac

+ 

c ■ * 

W«>-áfXa«H|^xaw-^iX fw+^x5(x)-^X í«)+ 

+_33_ γ ηΛίΛ/Ί -Χ-Μ--^ r»-¿LT3+M ^12.^5·+ 

+¿H¿ X
e
) *

a
 £<(-*>, r=6, 

[XY (x)- |^X j î (x)+^X3Cz)-^X f fz)+|^X5cx)-^rsX6 (X)t 

+
^ ^ « " ^ Λ

α )
Ι

Λ
^ Α

χ +
^

χ Ι
^

Λ (Α12) 

+ ML· yf- . i l r
5
+^î ,x

é
-^>7X

7
 )X

a
E/-X), y= 7, 

+ w * 4 ^ χ ¿w* mat*· J * > ' h 
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IHM 

where Χ^ΟΟ­ΧΧ,*,«)­*«!, W>=M Γογ X«(X)rJ¡C«*HO!Χ ^3 a*i Χ­flfWMÌ. 

The XJ­Μ,Ι term on the right hand side of equation (AIO), ­flffi % (~Λ*Α\ (Y-AV * 

* XHSHC°í ' f r i ' f lO ' r = 0 ~ 7 ' c a n e a s i ly b e written down by replacing Χ^,(Χ) 

in equation (A12) and %** in the coefficient of %*%&) by ­X*rø OO/f («+­2)0$ 3 

and ­3C^(«H*5Äp , respectively. In the same manner, (~tftfjOfc Í ('JY }\{f-¿\? 

* ΧΜΛ n(0(¡,tí¿Jcl') of equation (All).for n=2­7 can be obtained from the 

last equation of (A12) by replacing repeatedly Χ« (Χ) and X in the 

expression for Χ^4ί,η ^ ~X*H&ViU&X)CCI and -Χ*/ί(4»«)θζ[ 3 , 

respectively, to get that for Xi-MĤ fl+4 f compare (All) with (A28) J „: 

The extra terms consisting of ^ ^ o r Ύχ^γι on the right hand side of equations 

(A1)-(A3) give the following expression: 

+N)^YiiA(-^^¿;oi)+H)r+íYí^C-^-ar¿,úl)l = 0̂  -for all cases. 
(A13) 

l=o, 1=2, 

< 
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For q=l­7 and r=0, the expressions are the same as those for r=l­7 and q=0 

shown in equation (A14) except for interchanging OC.· with 0f¿ (and vice versa). 

The expressions for q=l and r=l­7 are obtained by taking respectively the 

sum of those for q=0 and r=l­7 and the following formulae for q=l and r=l­7: 

\Α15) 
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Similarly to equation (Al l ) , the expressions for q=2-7 and r=7 can be wr i t ­
ten as 

a 
Expression for f | , 7 > £ cjgjgsg, IM>, , t*ie) 

in which ( 0 , 7 ) 4 i s t h e e x P r e s s i ° n for (0,7) given by the l a s t equation of (A14), 
(1,7) stands for the l a s t formula of (A15) and (n,7) for n=2-7 are 

+ ypo(?+100101, 

rtígc<^/-|¿c^^^ 

^(4,7), = - ^ - ^ ° ^ 
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- nio (ocj+jL?tf+ ίψα?+ *ψΖ(ψ<ΐ)2+Χψϊφm39S5o i+5ioai
í+ 

+45í7¿oar¿4+57"5350Oaf-f 31213100 } } 

«fri» ̂ 'Í2^-m^-2J&22- m ^ -^ m+M»¡-«+¿> 

«^Ί,η^-Μο-®^-'^^ 

+1ψ£(^{ίψ5^ 

+ éooh^mnVOO(i4i-72037350oai
:i^ni72.4?êO-^0(i

H } . 

(Α17) 
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The extra terms on the right hand side of equation (A3), 0(\0(:Σ Η ) Σ 

~(-Ό* ¡24ifi{~^i~ML )d-*)~l are always equal to zero except for the 
cases where they give the following expressions: 

-fdod/^, P4,r=0; 

- -f «i {orf*itf-3d-2yo(f, tø r=0; 

4<*d í3tf-5Q(?-5d?-Jio V (tf, \*3, Y=0, 

aifrctf-ioyW+loftesd^ofâ 

- Odd O5af-j0tíftíí*+24O(Xtt'-l00<fdJ+L3(f+ 
\ή20(Χ*+\5\2 y (tf, î=5, Y=0, 

- (ψ*?- M50fat+V§mt)t- 35<xfr2W(Xfô-23W?-iï55d*+ 

Hi30cf-23W(Xftd*+lSÍO(¡-2moíi-nUd-moJ/o(f} £=é,Y=0, 

αιΙ{ψ{-ψο<*φψο(ΐΦ^ 

-í^^4-^K^+^^4)¿a-3í5^+23/O^a-3OO3«^-30o3A 

(AIS) 

In t h e case where Ctt+ufi+lcU i s sma l l , we can ob t a in the fo l lowing s e r i e s 

expansion for t h e parameter range (a ) £ s e e equat ion (A l )7 : 
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+ <rtfY3Á tobrKi,ly*\-&Yu <*}>M)+ <rrf+iY*A <r*¡r*c,m ­

-ΜΫΥ+ί-η,^ΛίΜ-ί-^ 

­W^^^(­^,flf i /flt)(­fl}+flf (+ íl)*t 

where 

À< 
($W)l{r+À-/rï)! Y «Xì,o(; d")- (er+fif+jJ+2 7* LÍÍñ2üIt£^2i í 

(A20) 

^^ / / f l r i^ )=Z(­ j ) ~ ^ , Yw(ef,flr£„0, CA21) 

Y5«^«U)= Ζ (47«asÕ| YtfCtyO )̂;, (A22) 

and y is the Euler­Mascheroni constant. For the parameter range (b), 

(tfi'tOCi+d ") ö_> the argument of a logarithmic function multiplied by 

ΥΛ. (Mi/ Od j d ) and the variable of a series expansion multiplied by Y¡mWfO(i¡d') 

on the right hand side of equation (A19) are replaced by —(uC;+OÍ¿+d^>^ · ̂ o r 

the range (c), in addition to these replacements, two (ofj—OifidYs > *ke ar­

gument of a logarithmic function and the variable of a series expansion, are 

replaced by ­(GU­tfi+tfO S . 

The summation Of four Y$¿ terms and four Y* terms with logarithmic functions 

on the right hand side of equation (A19) gives the following expressions: 
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u- fV-fø. iloita f Jk c­ i«F*&l >) +φξ {*ì ' ^ f** (-Wf*^ » f 

Ì_(v ufi? i £ w f ( W ^ X - « j - ^ t l ) I fen γ=Λ 

3*W3De+a¡l?*¿$t ΛοΤϊ+π· ¿ti?) at Λ oft r 

oft\3 f gp f S ? ; + # i a ? W « * ar Jot?+?tf£*Jx 

ΐ=0,Υ=3, 

^Γ4ΐ,.0ο^ -fifi4./.» „ . S í f ^ ^ i í i+f.l.tS.âJÎ-l£îi43.ûif+ 

x ^ - 3 5 Ä L + ¿ 3 £ T S J £ ƒ35 4o5o£WÍ + 2Í.iÍlx 

XM4^)(­4^ÍΛ «¡ W^Mlώ^φ^φί, WIS, 

,23\d(> d <S 352L_L¿3ft£ 33ftL6 /J¿_i250¿. 22iftV?^^i+ 



33 

AH agi^N g re d[ 7 /■ r(g$ioii4^£^±o^ -r, oa [ L vUg 
+
 U TW'W * ftcO^il(4j-¿42)(-a]V+¿) * *r ** net? 

¿rm ffl3C<i2 .M51X* Μ3#£ (1313 5225a2\iM#¿)d* + (Ma_ 

a^Wo 6o W^TW "Top \ ¿ο 3ΓΦ ί or+Jc(r[*F 

Kr j í . i i 2 u l á l í [(Μ#άα2ί#ίιΧά£> 71 2(tdfJ(*i*Kiïh(-*j+*L+d)·, 

XMU4-0¡ldX-%+¿+d) 1 ' *<>'* 

cji ¿ + t ^ tofr+V3 Ύ7&)Ή τα?*+αΐ\4 ofc 3K?) 

IjlT 7 3p+ é ft? 13 3 cfc)oí*+6 al· ̂  olí1 * *o<? +W [* 2Wtr 

, ^ .¿.eg 35£Χ,^·Λ^ ./j , 7af ^ , LiÍ7^r^fega¿2fcetfi¿3 i 
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d<ym3o£ Mg¿xío5oc¿.(£L 23*5κ*2ΗΑο£\£ (¿s mo£\£, 
Ύ^π+-2ΐο^'Ψ^+^^+\ψΐ2Τφ*^ΤοΓ*)ο(?"Ur-tf α? V 4 

0(ii-jL±mü£ 4?Π tf > 2531/¿ ^«L?^riL-517^+£25jÄjl_€223flSx •^ί Èõ+2fo%*-wÍfr+W&-ltot*(™ Χ«? 60 W MljfJ* 

^Õf~ÍSo 72 ^ + >?0 ft?/ft? W5 120 0!?)W 4røfti*i+^pX 

H3 d4°-\ç f(*¡+l)(adX-XrWd)i q.i y=7 
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iWaí±22BÍ«íiAf^iÆaf, 7/?af
4
 55JS?af

é
>> ¿

4
 (M i 

+
w í

a +
w ^ ^ f t \

é +
Í 3 F r

+
^ õ f t ? / ã ? 3no^°yo^

ì
^ -2 3? 

3 «i* Í _ u ¿ 35 ft¿ ,2íáAí? j?3̂  AÍ·» , ¿go/ ftî'
a
 ι r 3 . ¿5£fr? , 

% c? Mofc'orf \m*mffî mffî
+
mw)al· ™ war 
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* itä Off 3οο3 Ofiio \d3 , (35 , 35 Off ΜθΦΛ 23JQ(¿, 3P?3Ê£ \ dl· 

\3f4+ί^+ί#α?+7^^^+\5«+:ι##» 1 « ^ apriste4 

+ilft¿SÜ0
4JL_if i tf^Mi¿2í^í^iá2l £=4 r=7 

4SS ft·-/1 A¿<°4/53é ί ^ ΐ φ ρ ^ J J *~^r h 
°<*C3 5 o£ m ftj4 i£La¿£ 31 .«£ + ^Λ±ί° ääQ(£ .(Χ,+ΑΙ&Α. 

õflss Sfap-äsö^F-ftb^ w ^
+
3 ^ ^ - H " ^

+
w

+
3 ^ ä ?

+ 

f2i , ¿ Igg ι 75 ftf* , 35 ft1,·6 , ?J5 ft/ , ¿93 Oft4* 3θθ3θή42\ d* .(Í3..+ 

4 ifê<4A)^^ 
4^ft^ft^4 lW4wÆ/ft7* mw+}x™l (¿^^(-¿¡WM)*> 

^d^o*m^iipo^^wo^^mo^+ù2iow> 3WX?2 w*w 

,St3i o¿,m_oc¿JJ]i off, ^301 off, 3533 ff*S d\(UÆÆ2Xtfx 

^iuõoal· Mocfc+moo(*)c(l· \mtrZftõofc^Wootcr M a? Jap* 
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\Wo wfforri2foo(fJa-i \W> ftoött'<x¿° moixp-ï 115&¡i* 

^l(­sWix^rfj)i ν ι Í3475^4 ^MU άΓθ(ίφ(-«Γκ+ύ r 
,Oftd< 33 af ftf J l Ai4 2¿L«íí ^5. «if üLftii? ^ ft/3,42l off* , 
+ ÛJ­7 r wpf im off ion ofr ~ nv*t W ~ ̂ ixf /«* 3?"" Tmwx v&ofp 
i ^77 , g ftjf , J75 tf, 115 Off. 3/5 flf , 23\ ft¿° , ¿goffi? Ν ¿ / ^2 + 
4
V7fø

4
5fra?

4
w^

4
Wa^ 

χ3ηθ£.245θ£_χ 345 fri', ¿f3 ¿if, 3003<°^4 ,^ .Vg5ft í a .3f5af f
l *1θΛίφ+512ψ + 5&ψ 4 / ^ ^ 4 W ^ 0 / ^ 4 \ 7 õ 5 ? 4 ã 5 ? ^ 3 4 « 5 « ? + 

+ i É 5 ^ + 4 2 i a í í i i í táS. ,3j5 0ff + 3?5 0ff 715. offsjf (J3_ 
*M <ΧΓΐ024ψ)(xr\3o12+TmKÍl+imW^3oT2^Jßff+\lo2f+ 

,Jä-Qls1\ Off\di0 (234 ,2j_</f^dí2 4i ¿«In ffo+afr¿X­tt­ft+¿)7 

^512 ar 1024 al· )W m& ionWfJoip*5120 Οί^ίΜ^φ (-¿.^φh 

<£< dtèl+izLítxâsL °ú?4.2M.9¿ (2pm. WH off, ¿woj*, ggggg.gi.Sv 
apCiõu^ionW'¿Wow îffîfow ^¿mõ'30720cfrmõψ +2Wfo¡χ*)* 

y<t* ,(34113 ,32m off''MolapAJ? (31451 mi Off. 10251 rfu' 
*(xf\imo^3ëmoff 30720of+Jotil· \M*o Wfô af 102400 ofria?4 

+ MM+Í2222£íf.if (άΜ + 2 ] 2 Σ ^ ^ ^ + ΐ4η^_α3Α^-ι, 

+ ¡(ff f 421 33_tíf 2j_tf ã-Of£ 25 Off ■ (421 , 231 off ■ Jrø <*, 
i^llÎm~2oit^-4o%W~2oi^~1(>3Hc(i^ \2¡F$*2<nXCff2oTtal· 

,m of¿\j£ (iooj , 613 a£,45]5tf, Í2250¿\J+ , (ml±åiP50ff , 

■ 135 Off \¿ (2H5im5jfi\2mtf-sd*(ÅQQi,]å3-0ff\di0 (213 , 

(Λ23) 
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where Tja< > b J stands for the fact that the expression is the same as 

shown just before except for interchanging a with b (and vice versa). In 

addition, the expressions for q=l­7 and r=0 are respectively the same as 

those for q=0 and r=l­7 except for interchanging Of/ with 0f¿ . 

The coefficient of the series expansion on the right hand side of (A19), 

Ysm^i'Ofijdy (.Ofj+Ofi+d) , is written as follows (by the use of abbre­

v i a t i o n X-Ofj+Ofi+d ) : 

WÕ\ ? Tff-Oj 

2 2 Τ β_η ν i 

WfttO! (<mx)\ Ob > *~v' '"^ 
X 4 _ i IL %=0,Y=2, 

m m m+2·) ¡ or¿ cm+3) ι ofâ > 
-2— ­_¿L_ JL + _30_ X* 30_ X¿ ï = ö v=3 
(«ΦΙ (m+2-)ÌCKL

 +(W+3)!Oca WH)!a¿3> * ' ■> 

(îTîtO! ( » 2 ) ! β ί + ( « + 3 ) ! ^ (WH>! ft¿
3
 tørøi 0 ? ,

 r υ 

CffHOi («Ι+Λ! a¿ fw-3)'.^ cimi! afm5)iofl· muy.apj B 

2 42 X ,420 X* 2520 X3 , 9450 X* 20ll0 j £ .2oll0 ¿ 

w+oC m+2)i ofc ^(mrtV. off ctn+inã? (m+sv.af cw+¿)( a¿
5
 <m*v\ off; 

_2 Sí X , 75¿ X* Í30O X3 . 3­f¿50 X* 424740 Xs ■ 
(«WÍ! (W2)ÍOÍÍ (w+35!a;·3 õwiJíârt8 («f5?!fl^ cm+oiar 

270210 X<> 210270 Χη t=0,Y=7 

(A24) 

The coefficients for q=l­7 and r=0 can be obtained respectively from the 

above­mentioned formulae for q=0 and r=l­7 by replacing 0(L by Oii · The 

expressions for q=l and r=l­7 are respectively equal to the formulae (A24) 

for q=0 and r=l­7 plus those obtained by replacing (m+p)! in the expression 

for q=0 and r=l­7 by (m+p+1)! and by multiplying them by -X/Ofi. Furthermore, 

the coefficients for q=2­7 and r=7 can be written by equation (A16) where 

the expression (n,7) is obtained by replacing (m+p)! in (n­1,7) by (m+p+1)! 

and by multiplying the resulting formula by — (24l
_
0X/fo > (°>

7
)·, being the 

coefficient for q=0 and r=7 shown at the end of (A24). 
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(A25) 

2. F,íofiA>fjMj¿)(í) 

We have obtained the following general expressions for three different para­

meter ranges £ β st Ofi (­2Jf~­J )­fll J · 

(a) /3­or¡>o; 

rZftøiftp-wfZfl'crif,/.·), μ>0, 

(b) p-0fi<0 and p+tf¿>O; 

(c) |3+íX¿<0; 

4* iFf \-%<ίΧι,ρ,ρΗ'ΰΖι{-*ιφρ, J**0' 

4KiYM. . V — - - — - «'« CA26) 

(A27) 

where 

(A28) 

Tp(^/()=(¿/|oí-o
r
(f) '-feõírepST'""·

 <A29) 

The explicit expressions for J?p(Q(,ß,U')yfrft0Hß)ßA.] with ρ = 0­7 are as fol­

lows: 
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i {W%*31t{%¿43^f#)%473^5(^^370(^^35ffA 
+^35(&)7J, f=7. 

(A30) 

The expressions for T» (OfjBjM·) with p=0-7 are 

CA31) 

,3 + 



41 -

In the case where the value (θί+\β]}/\Μ\ is small, 

Ζγ(<Χ,ρ,ρ4ΐ?(ο(,^ρ= 

+1-10(ífH°s$? J (-"fi?, Mj 

(A32) 

The series expansions for the expressions (A25) and (A27) can be obtained 

by regarding the formula (A32) as the series expansion for the function 

Zr (of, β,/-). 
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3. GF(C(Í)O(ÍJ~5;Á;¿') 

From the expression for pi (OfijOfi, %,M,J'jJii shown in the Section 2, we get 

(a) (3-(Xc>0; 

*X¿Cr(Ofi,Ofy$/J-Jd>'Up(0fL,p-HÍ'Uf(-Ofi,pj (A33) 

(b) p-aL<o arid (3+cfc^û, 

WiGf = Up-(cfL,pw-47Up(0fii-p+Vf (#£,p, < A 3 4 > 

(C) pO(L<0; 

W¿Gf=H7Ur Wi-p-Uf l-ti-p, CA35) 

where 

UfC^p>t0^4wff^,(^tgV^-^'H^pn 

Χί-^Ρ+ΠοίψΤ^Έ,Μψί, (A36) 

ν ω e^-tdfU aamu 'f__täH^___ 
Vf 'P' £ 11'0ï)!i (Ä)r-ir -<£ o¿+f-#f/¿])¡«rpAHr-ijtO · (A37) 

The explicit expressions for IJ» (#,0) and ^>(#/ß) , p=0-7, are as follows: 

U, W p)=-i" mP+ («-+(3) F, W+|3 ) , 
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Ut=-[|(^-f(#r+f|(#/x<-#)-o-^l(#A^?^-^^ár-

CA38) 

VoW,p,=2j 

%=-4í.*-5($T-f*j, 
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Η»π-ι°°Φ)&-ψΐ < Α 3 9 ) 
For small values of #+1/31 , we can obtain the following series expansions 
for Up C tf, β ) with p=0-7: 

" '% Hrdfm\ ^ (wairí-iWHO^fêfW3- (50-405%-

^5(H4^f42i{êY)(4-hl(^pmí 

^U^^-^mm^i^ (w%y*?- w+io5%-2io&f)rtl·-
-(420-345§-ï4D(ffi44ofâf)^ ì3+ 
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+f725 $f )<rf+ (3Η-ίοΐ£-5ϊϊθ{£?Η130 (fefr WO (£fr W(&ft«l-

- §T{W5-n50(&f44o315(fej1) (<-&)] V+pf? 

-3W(£fj11lS~(245-1l0%-W0(£fa 

-42loo(§)\47325 ($f)<m?+ m-3mjr-3o24o{§f4W5o(&f45im(&f-
- ¿2?7θ(#/)0ΐ - [225^ol1^-2{35l{^r\o14^442m5[^442414o (M-

-4W5fëf)flL-315[5-Jta@fa (A40) 

The series expansion for the expression (A34) can easily be obtained from (A40) 

by regarding "\/„ (#,0)= 0 f o r a 1 1
 P« 

4. Cupial é±É2 

Since 

Cu.te¿,rj¿,cr4> H/Pp^dji/iY^a^^ fo, 
the use of the expression for J­l gives the following from (B=Ofj¡-d~) '· 

(a) arof^>¿j 

^^j/^^'^0=W?(«¡­,(3)­H^Wj(­^P^ (A41) 

<b> ^+ftj>ít>ft ' r^·; 

(Χ^0μ = ̂ (^·./3)+5^(^)3), CA42) 

(c) d>0(i40fj, #¡^$¿-0; 

where 

xiq>(-mp')+H<**-p)
i
~

m2
Eti<**pi,

 (A43) 
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StoBÏ-litâfïtf tat­ar­Oí! ψ 4 ,ßfl 

(Α44) 

The expression j? IVy (06ß)/( 0 is the same as that shown in (A12) with 

X-~(0f-+ß') and 0(¿:z­p( . The explicit expressions for $t(&S0) with 

q=0­7 are 

For small values of tf+|j3| , the series expansions for 2 iWjCflG/3)+S'eC«'/ß)3x 

X­f/ííO(tf
+
/3)3 with q=0­7 can be obtained as follows: 
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4
fKHw-lí^)

í
íw)J}(-^p^ *=

5
, 

^(^Ì^>^4)%mì} Π«Φ f, (A46) 

where fÄ(fl)s­f (fl)+efl!/(fl*»t).' W "f4 tølXfl+iVrøH).' . 

The ser ies expansion for the expression (A41) can be obtained by regarding 

the formulae (A46) as the ser ies expansions for .2.1V* (OfjBi/ííQ^ÍOÍ+B)3 

with q=0­7. 
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Appendix 2. Flow Diagrams of Computer Programmes 

1. MAIN 

( START y READ title and input integers (see § 3.1) 

I 
( ν

 No
 J

 >
\ 

l The first integer >· 0 J >l STOP J 

Yes 

WRITE problem classification and title 

Clear COMMON 

Dimension assignment for arrays (see Table II) 

Ì 
Calculation of storage locations of arrays 

(see Table I) 

WRITE required storage 

I Requi red storage^available storage 

I Yes 
J 

No 

CALL JNMETD 

i 
J LLL > 0 J Κ

 Νθ
 ( LLL> 

READ all input data left 

for the present problem 

Clear a part of COMMON 

for the flux calculations 

CALL FLUXCA 

For the next problem 
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2. JNMETD 

Γ ENTER J ^Γ NSOUCE > O J 
No 

Yes 

■^\ WRITE problem classification 

READ & WRITE SOCE READ CK1, CK2, EPSK 

READ VG, A, BUCLG, XSEC 

( NSOUCE = 0 J 
Yes 

READ XFSEC 

No 

2't=B/ /(3Ztr­)+Zt , ALPHA =Ztr*A 

( NSPH = 3 V 
Yes 

No 

­5»j xv = 2 t r U 

Λ 

NSOUCE < ZJ Xes 
ALS = ALPHA 

No 

£S*U+p=^*( i ­»p /2 t i * * 

Yes ^* ■■ ι . ^ γ rtg ■■■" '■■■ 

( NSOUCE = Q ) Ζ] gTj (¿­» j> X¿(V%)¿yXtc 

No 

WRITE A, CS; J P I = 1 

C NSOUCE > U No 
^ CK = CK1 

Yes 

(NSOUCE = O ­ ) &\ NSLOWD > O ) 

( I III > O J^ 

Yes 

Yes 

READ & 

WRITE RES 

No 

Cl = CS+CF/CKl, 

WRITE CF 

Yes 

J P I = IGRP 

i=j=IGRP 

No 

ALPHA^ALSiM^/Vi + C l ^ U M ) ) , 

cha^p=cs^¡V(4-^v^c¡V(^M^ 

Γ RETURN ) Next page 
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Ο­ Ι 
^ NSLOWD = 1 

> 
Yes 

J = M = JPI 

No 

Matrix elements E = (XfrOCj ( J -*M)X 

["see equa t ions ( 3 ) , (15) - ( 1 7 ) ] , 

ED = ( 2 & - M ) ^ ( ^ - ) M K H J j r , m = l^NSPH 
or ΙΛ/NSPH-I, by c a l l i n g FCAL 

( NSOUCE > Q V Yes "^ Next page 

ED = E 

I 
E = C2 * E/Cl 

ι— 
DELTA = det | ED | by calling 
DET ["see equation (10) } 

WRITE CK, DELTA C2 = CS + CF/CK2 
JK 

CALL ITRTON 
Further 
iteration 

Yes 

Converged 

WRITE CK 

( LLL>0 V 

W NSOUCE = O } 
Not 
converged No 

© 
RETURN 

Yes 
RES = cofactor of the 
matrix E by calling SOLEQ 

WRITE & PUNCH RES 

" ) 
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-^\ NSPH = 3 ) 
Yes 

ι No 
¿ζ 

KK = 1 

c 

E l = E 

NSLOWD = 1 

C 

} 
Yes 

J = J P I 

No 

S O C E j > 0 
Yes 

No 

so = o 

so ­ W O S j K j P / ^ f C%ir 

by calling CCALC 

EJJJ. = right hand side of equation like (15), (16) or (17) 

by adding SO term and summing up over energy­groups 

CALL SOLEQ for obtaining (­gj­) ­fJ(T, Λ) at A=Z\kV\ 

by solving ( £ ) * ( ^ ' U ) = ( E L F ) 

i 
Γ NSLOWD > O y Yes 

C 
No 

NSPH = 3) 
No 

The last term on the right hand 

side of equation like (17) 

Yes 

■$■ o r / a n d ·4Ί*$ t e r m s on RHS 

of e q u a t i o n s ( 1 5 ) & ( 1 6 ) 

WRITE & PUNCH 
jck-4 

a t A=2i% 

Yes 
< 

KK = K K + 1 < NSPH 3 
No 

f77 j< Y e S f J P I = J P I + 1 < IGRP J < ( NSLOWD>0 j 

No ψ γ No 
( RETURN ) 



52 -

3. FLUXCA 

Γ ENTER V READ NGRUP, NSPACE 

NNNN 
X NS PACE < NTS PAC 
k = 1 K 

No WRITE Σ NS PACE K 
Yes 

( NANGL > O ƒ Yes 

No 
K = 1 

Angle points 
ANGL 

RETURN 

ψ TYes 
( NSPACEK>0 J >^K = K + l ^ NNNN. fjfc 

) 

Yes 
Space points X 

WRITE Κ,Χ 

If NANGL>O, WRITE ANGL 

J =1 

Yes No 
J = NGRUP 

\ f Yes 

WRITE J 

> ' 

J ^( J = J+l S. IGRP ) 

Next page 
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i 
KK = 1 

No 
( NTFLUX> 0 Ì 

jYes 

^ Ρ \<0") Go by ca l l ing GCAL, 

calculat ion of Q ­terms on RHS of 

equation(s) (18) f, (19) and (20) ] 

$\ NANGL>0 y 
No 

Yes 

I Yes 

­$»i KK = KK+1<NSPH ) 

R 0 p = ( ^ ­ ) Fp by ca l l ing FMCAL, 

calculat ion of Fl ­terms on RHS of 

equation(s) (12) f, (13) and (14)3 

Yes 
­^ SOCEj=Q. QR NSOUCE < O 

| No 

No 

) 

If NTFLUX>0, the calculation of the source term 

on RHS of equation(s) (18) f, (19) and (20)] 

IF NANGL>0, the calculation of the source term 

on RHS of equation(s) (12) X, (13) and (14)] 

If NANGL>0, WRITE X, CALL VARIAC and WRITE the values 

of equation(s) (12) f, (21) and (22)] 

IF NTFLUX>0, CALL VARIAC and WRITE the value of equa­

tion (18) fand t and fra
 of the total flux ] 



1 . CALCULATION OF THb VALUI: OF k e f f , ANGULAR AND TOTAL FLU> IN THF SECOND SLAB OF A 

2~RfcGION SLAB REACTOR BY THF USE OF A 1 bNFRGY-GRCUP MDDfcL AND THE J 5 APPROXIMATION 

T i t l e 

L J_ 

k
eff euess 

Χ 

1st slab 

2nd slab 

5 

1.1 

I. 

f ·
5 

Å 
• 1 

[.8 

Γ • 1 

• 8 

TFST CASF 1 

1 .2 

1 . 

1 . 

20 

_L 

40 

_L 

60 

__L 
80 

_ J 

1-GRCUP (II I I=C,NSOUCE=C,NSLOWD=0) 

1 3 A 4 1 2 1 14 1 1 έ 3 

. 0 0 0 0 1 

1 . 

o9 

. 9 

l> 
ö 
c 
CD 

Β 

α 

ω 

α 
c 
r+ 

α 
C+ 

Ρ 

l-b 

ο 

4 

CD 

CD 

U I 

1st group flux at 

6 space points 
T " 
20 40 60 80 

o 
σ 
M 

CD 

3 
M 



2 . CALCULATION OF THE FUNDAMENTAL OFCAY CONSTANT CF A 1-REC-ION POLYETHYLENE SLAB 

T i t l e 

Guess 4-Jbk 

Veloc i t y 

Thickness 

Buckl ing 

BY THF USE OF A 7-GROUP MODEL AND THE j APPROXIMATION 
7 

L J_ 
20 

_JL i 
40 

_L_ _L 
60 

_ L _ 

TEST CASE 2 

. 0 0 0 0 3 8 

2 8 5 . 

7 . 

. 0 3 

1 J 

. 0 0 0 0 3 9 

1 7 1 . 2 

. 0 4 8 

POLYETHYLENE 

7 3 A 9 1 

. 0 0 0 0 0 1 

8 2 . 2 4 

( 7 = G R 0 U P , I I Ï I = 0 t N S 0 U C E = ­ l , N S L O W D = l } 

1 13 

1 8 . 45 2 . 1 1 8 . 2 4 0 2 . 0 2 4 4 8 4 

Cross s e c t i o n 

. 3 1 3 4 0 6 

. 6 5 9 0 0 1 

. 0 0 0 3 1 2 2 2 . 8 6 5 2 9 6 4 

.0024435 .916863 

[ . 0 2 4 0 4 3 3 . 1 6 5 8 5 

1 

« 048 .026 .015 .007 .007 

.0970411 .0910411 ­=.0425304 

.154504 .154504 ­.0423623.104429 

.313406 .0641604 .177199 

.659001 .2904332 .241389 

. 8 6 5 2 9 6 4 . 6 0 0 5 4 9 8 . 3 6 7 0 0 2 5 . 0 0 7 8 5 6 6 . 0 0 0 3 6 6 

. 9 1 6 8 8 3 . 6 0 5 9 5 6 7 . 2 6 2 6 0 9 7 . 0 0 1 5 6 5 3 

3 . 1 6 5 8 5 3 . 1 4 1 8 C 7 . 3 1 0 4 8 2 8 5 . 0 0 1 8 2 4 7 

1 1 Γ 

• 031 94 87 

. 0 1 9 3 0 1 3 . 0 0 3 1 9 4 8 

Τ 
20 40 

- Γ 
60 

80 

αϊ 
en 

~Ι 
80 



3 . CALCULATION OF THF 7TH GROUP STATIONARY ANGULAR FLUX I N A 1-REGION WATER SLAB DUE TO 

A POINT- ISOTROPIC BOUNDARY SOURCE AND THE 1ST AND 2ND TIMb MCMENT OF THE FLUX RESULTING 

FROM THE S l t H S O U R C t BY THE USE OF A 7-GROLP MODEL AND THF j 5 APPROXIMATION 

(USING THF PREVIOUSLY OBTAINED CARDS FOR THE RESIDUES) 

T i t l e 

Source 

V e l o c i t y 

Thickness 

Buckl ing 

L _L 
20 

_J_ X 

40 
_ L _ 

60 

_ L 

80 

Τ 

TFST CASF 3 

5 1 1 1 

VsATER ( 7 = G R 0 U P , I I I I = l ,NS0UCF = l,NSL0VsC = l , N S P E = 3 ) 

. 1 0 7 5 7 

2 Ô 5 . 

4 . 

. 0 0 9 

7 3 

. 3 6 2 7 8 

1 7 1 . 2 

. 0 1 2 

4 9 3 

• 50403 

8 2 . 2 4 

1 1 57 

. 0 2 5 5 9 

1 8 . 4 5 

. 0 1 8 

1 6 3 

. 0 0 0 0 3 

2 . 1 1 6 

. 0 1 9 

. 2 4 0 2 

. 0 1 9 

• 0244&4 

. 0 2 1 

Cross section 

Residues 

. 0 1 6 

' . 00133721 .06457 866 . 08457866™. 0305552 

. 1 2 7 7 5 0 1 . 1 2 7 7 5 0 1 ­ . 0 3 7 7 5 6 2 . 0 8 4 3 7 8 0 3 

. 2 7 6 6 6 9 4 . 2 7 6 6 6 9 4 . 0 6 9 7 0 7 5 6 . 1 4 9 0 4 2 3 3 . 0 2 6 7 4 4 2 1 

. 5 1 9 7 5 1 6 6 . 5 1 9 7 5 1 6 6 . 2 1 3 5 0 7 5 6 . 2 0 0 3 8 4 8 9 . 0 1 6 1 5 7 6 . 0 0 2 6 7 4 4 2 

. 0 0 0 2 6 1 3 7 . 7 0096002.7 0096002 .48070889 .3049 33 76 .00657692 .00030642 

. 0 0 2 0 4 5 5 1 . 7 4 5 6 1 8 6 2 . 7 4 ^ 6 1 8 6 2 . 4 8 5 4 4 6 8 9 . 2 1 8 4 6 2 2 2 . 0 0 1 3 1 0 3 2 

. 0 1 9 4 7 2 .11599 2 .11599 2 . 0 9 6 5 2 . 2 5 8 3 2 6 2 2 . 0 0 1 5 2 7 5 4 

­ 0 . 109092G1D=01 0 .45695801D­02 0 . 12926113D=02<=0o 3 9 4 3 6 3 6 1 D ­ 0 3 ­ 0 . 185052050­03 

0 .68904446D­04 
0 . I2910933D­Ö3 0 .83106157D­04 0 . 3 7 6 6 4 9 8 8 0 = 0 4 ­ 0 . 1 5 2 3 8 1 5 1 D ­ 0 4 ­ 0 . 6 3 3 9 7 1 7 2 D ­ 0 5 
0 .35434387D­05 

­ 0 . 2 8 4 2 1 0 4 3 D ­ 0 5 ­ 0 « 369 6 9 0 2 3 D ­ 0 5 ­ 0 . 390322540­06 0 .5599 202 9 D­ 0 7 ­ 0 . 26603924D­08 
■=0.51706} 900=08 
­ 0 · 16677956D­01 0 .13059422D­01 0 .43515942D­02 ­0 .16Q74608D­Û2­0 .684815640­03 

0.372O8512D­O3 

Ol 
Oi 

( t o be con t inued) 



0 .482692970­Û3 0 . 163347160­03 0 . 1 6 2 3 4 1 2 Ó D ­ 0 3 ­ 0 . 7 2 5 2 6 9 8 6 D ­ 0 4 ­
0 . 1 7 6 1 9 9 5 3 0 ­ 0 4 

­ 0 . 1 9 3 9 7 7 1 1 0 ­ 0 4 = 0 . 1 6 6 3 8 8 5 7 0 = 0 4 ­ 0 . 3 6 6 4 8 3 6 7 0 = 0 5 0 .46603169D­06 
­ 0 . 2 1 2 1 2 1 3 1 D ­ 0 7 

0.340921O6D 00=0.212480540 0 0 = 0 . 6 3 0 0 2 6 6 0 0 ­ 0 1 0 .232864010=01 
­ 0 . 5 3 4 6 3 4 4 1 0 ­ 0 2 
­ 0 . 8 9 2 4 7 0 0 4 0 = 0 2 = 0 . 1 8 0 9 0 4 6 0 0 ­ 0 2 = 0 . 2 7 8 4 8 3 5 2 0 = 0 2 0 .11268896D­02 
= 0 . 2 6 5 8 9 0 1 7 0 = 0 3 

0 .474389040=03 0 . 2 0 9 6 7 2 9 8 0 ­ 0 3 0 . 103531 8 7 D ­ 0 3 ­ 0 . 6 5 9 5656ÓD­05­
­ 0 . 8 0 6 253780=06 

0.65451502D 00­0 .41327290D 0 0 ­ 0 . 5 3 6 6 2 4 4 1 D ­ 0 1 0 . 2 0 1 4 9 5 4 7 0 = 0 1 ­
= 0 .398938740=02 
­ 0 . 4 8 0 2 2 8 0 9 D ­ Q 1 0 .389828330=02=0 .14804995D­01 0 .37914989D­02 

Residues =Q.57094964D­03 
C.879229990­02 0.744720G6D­Q5 0 .23553678D­O2­O.12371200D­O3­

­ 0 . 1 3 1 4 0 9 7 6 D ­ 0 4 
0.73456505D 00=0.24Û11050D 00 0.22150039D 0 0 = 0 . 6 1 4 0 2 0 8 1 0 ­ 0 1 ­
0 .10303566D­01 

­ 0 . 6 3 5 5 2 0 5 4 D 00 0 . 6 5 3 11414D­01­0 .256454730 00 0 .27272359D­01 
0 . 165505220=03 
0 .150497640 01=0 .620270310­01 0.58199240D 00­0 .232719330=01= 

­ 0 . 8 3 5 3 5 5 2 5 D ­ 0 3 
0.42520784D ÖÖ­0.73203951D­01 0 .191524150 0 0 = 0 . 3 2 7 9 3 4 5 6 0 = 0 1 ­
0 .221809370=02 

= 0 . 2 9 7 1 1 4 1 6 0 Ql 0.18522176D 0 0 ­ 0 . 1 2 9 7 6 0 7 6 0 01 0 .83874297D­01 
0.350629080=02 
0.55712041D 0 2 ­ 0 . 1 4 6 2 9 7 3 4 0 01 0 .222698070 02 ­0 .57448172D 0 0 ­

­ 0 . 2 6 7 0 8 3 8 3 0 = 0 1 
0.28750003D 01=0.123641120 00 0 .204356560 0 1 ­ 0 . 8 4 8 9 0 1 2 2 0 = 0 1 
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