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for every given set of geometrical and material data, i.e. independently of the proper
temporal integration. The method is therefore particularly suitable for a code.

The advantage of this method over known codes with intermeshed direct inte-
gration of the partial differential equation is that it can be coupled with other
systems of ordinary differential equations. This is extremely important for nuclear
reactor dynamics, where this other system is the neutron kinetics and where tem-
peratures feedback on reactivity. Moreover, if desired, accuracy can be improved
by simply taking more series terms, without destroying the previously obtained
results, in full contrast to usual difference techniques.

In this paper one- and two-layer problems are treated for plane, cylindrical
and spherical geometries and for boundary conditions of the third kind.

A certain amount of mathematics is unavoidable. Heat engineers need only
use the summarized set of solutions. On the other hand, mathematicians will find,
as a by-product, a number of interesting summation-formulas in an Appendix.
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ABSTRACT
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Introduction

The problem of calculating transient temperature distributions
in adjacent layers, one of which is heat producing, and which
may have different material properties, is freauently encoun-
tered in technology. An example is the heat transfer through
cladded nuclear fuel elements during load changes.

The physical behaviour of such a system is described by the
well-known FOURIER equation. We are interested in two kinds of
disturbances, namely in temporal changes of the heat source
strength and of the ambient temperature with time, These two

given time functions serve as inputs in our system, possibly
simul taneously.

We assume a preponderant direction of heat conduction towards

the cooling surface and neglect the heat conduction in the other
two directions in the absence of essential temperature gradients,
Under these circumstances, FOURIER's ecuation contains two inde-
pendent variables, a spatial coordinate r, and the time t.

The solution of such a partial differential egustion offers no
difficulty in principle. Nevertheless, finding the analytical
solution of the transient problem as a sum of eigenfunctions can
become very tedious, if not impossible, for auite arbitrary innut
functions. On the other hand, a digital computer treatment by in-
termeshed RUNGE-KUTTA integrations in both variahles is slways
possible but yields a particular solution only, without anv in-
formation on the structure of general solutions. Finally, an ana-
log computation is not possible without first eliminating one of
the independent variables,

This last remark suggests the method to be developed in this pa-
per. Normally, the whole two-dimensional temperature field need
not be known, but only the time evolution of the temperature at
some selected or space-averaged positions, i.e. a set of functions
depending on the time only,
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The partial differential equation is LAPLACE-transformed with
respect to time. The remaining ordinary differential equation is
solved with respect to the space coordinate, treating the LA-
PLACE variable s as a parameter in the comvlex domain. Then the
space coordinate is eliminated by spatial averaging or by select-
ing certain points, The inverse transformation is performed by
partial fraction development of the transfer functione acting on
the two given inputs. The solution is therefore an infinite se-
ries of convolution integrals that converges quite ranidly in
general.,

Each convolution integral involves only one input function as a
factor, so that only a few types exist., Following original ideas
of PALINSKI [1], they may be generated by "transient temperature
complement functions T" which obey simple first order ordinary
linear differential equations each with an input function as
source term, and with coefficients in ascending order derived
from the "characteristic equation" of the problem,

Thus, the final form of the solution is the sum of the corres-
ponding stationery solution and an infinite series of these T-
functions with coefficients calculated from the previous partial
fraction development., This form is particularly instructive as it
clearly shows the actual transient deviations from the steady
state. In every case, the series may be truncated after 2 few
terms, depending on the input perturbations.

Moreover, the computation of these "conditional' solutions (con-
ditional because the auxiliary differential equations for the T's
must first be solved) can be programmed advantageously. This is
why the general problem is treated for all three main geometries
simultaneously.

Several non-dimensional parameters allow for the material proper-
ties and for the heat transfer coefficient at the boundary.

The structure of our solution is such that accuracy is easily im-
proved by simply taking more summation terms without destroying
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the previous computation work, in full contrast to what happens
when reducing the stepwidth in usual integration methods for
boundary value problems.

The theoretical derivation of the final solution might appear
rather complex, Nevertheless, all proofs and most intermediate
steps may be forgotten afterwards by the user, All the necessary
formulas can be digitally programmed so as to ensure convergence,
Then, by simply choosing a few appropriate parameters, and by
specifying the perturbation inputs, the answers are immediately
obtainable,

To make the reader familiar with the procedure, we first treat
the one-layer-problem in Part A. Moreover, this imnortant case
cannot simply be extracted from the subseguent two-lay:r solu-
tion. The reader can then follow the two-layer-problem in Part B,
which is much more complex. We must moreover consider whether the
"internal" layer (around the symmetry axis) or the "external" layer
is heat producing. For convenience we treat these two problems
simultaneously.

The sequence of operations is often very similar so that the ex-
planatory text need not be repeated. The formulas are simply gi-
ven in sequence with only the equation numbers as source refer-
ences, We ask the reader to excuse this condensed notation.



Part A

TRANSIENT HEAT CONDUCTION THROUGH ONE HEAT PRODUCING LAYER

This part prepares for the study of the two-layer problem in
Part B, The text in Part B is more concise, so in the interests
of better understanding it is recommended that Part A should not
be passed over,

1. Formulation of the protlem

FOURIER's equation of heat conduction through a heat producing

layer 1s
2 Hj
%% &% ket %% w(e) (1.1)
g2 0t ar? r or A

with ©(r,t) (required) temperature,

w(t) - (given) heat source per unit time and volume,
A - thermal conductivity,

pc - heat capacity ner unit volume,

a®= Mpe - thermal diffusivity.

N.B. In this article, W depends upon t but not on r (uniform heat
source).

k is the "geometric index" which assumes the values 1,2 or 3 only,
according to

k
k
k = 3 - spherical geometry.

1 - plane geometry,

2 - cylindrical geometry,

Let r = O be the symmetry axis of the layer, and r = R its boun-
dary., Then the boundary conditions are

at r = O: @, en even function (1.2)
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at r = R: -

)
A 535 = a [ (R,t) - €, (t)] (1.3)

r=R

a is the heat transfer coefficient; Ch(t) is the given ambient
temperature.

(1.3) is the boundary condition of the third kind. Nevertheless,
the boundary condition of the first kind (given boundary tempe-
rature) is the special case & = « of (1.3). Because of the non-
vanishing temperature gradient at the boundary (the temperature
would otherwise be identically constant), the sguare bracket in
(1.3) must then be zero.

The boundary condition of the second kind (given boundary tempe-
rature gradient) is not treated here. This case is so simple that
the solution can be found immediately in practice.

As the initial condition, we take the steady state temperature
distribution, to be calculated later on.

,
The two "inputs" of the system are W(t) and @u(t); they may vary
simultaneously. It does not matter that one comes in through the
differential equation itself, the other through the boundary con-
dition only. |

We transform the equation and the boundary conditions according
to LAPLACE with respect to the time:

a2s. as.

8 o _ % k-1 %% Ai(s)
o2 B = ap? A TR N (1.0)
ek(o,s) even, (1.5)
d6k
- A -—a? = ['&k(R,B) - 'au(s)] . (1 06)
r=R

4 18 the transformed temperature, AV the transformed source, and
8 the complex LAPLACE variable which acts as a parameter only in
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(1.4). The equation is ordinary with resvect to r.

As no initial value @; occurs in (1.4), the initial stationary
temperature field is the reference distribution from which tem-
peratures are counted, and AV is the excess above the initial

stationary value.

We now make the usual variable transformation

s s

x=-—7r,and X=-+R. (1.7)

The problem may be written:

8, = 0 + k=1 o o Eé§l- (1.8)

where the dash means derivation with respect to x, and

P(s) = a® A”&S) = Nﬁgsl . (1.9)
If q = éﬁ (dimensionless, reciprocal NUSSWLT number), (1.,10)

the boundary condition (1.6) at x = X becomes:
- qX%i{(X,s) = &k(X’S) - &u(s) . (1-11)

The 1limit case a@ = « (boundary condition of first kind) reduces
to the case q = O,

2. The solutions by means of "fundamental functions"

T.et Fk(x) and @k(x) be pairs of (linearly indevpendent) fundamen-
tal solutions of reduced eq. (1.8). Then the general solution is

ek(x,s) = Ak1(s)Fk(x) + Ak2(s)¢k(x) + 3é§l . (2.1)

The functions Fk and @k are taken as
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Fi(x) = cosh x ®:(x) = sinh x
Fa(x) = Io(x) 82(x) = Ko(x)
_ sinh x _ cosh x
Fa(x) = T ®a(x) = EEa—
The F

)

tively. Thus, because of condition (1.5), Ak2 = 0,

The other boundary condition, (1.11), yields
P§32
A, = Gu(s) T s
g =

qXFi(X) + Fk(X)

so that the solution assumes the form

F (x)
8, (x,8) = ﬁ-x—)- 8 (s) - P(Sa)]+ Pgs)

with

Ak(X) = qXFl’{(X) + Fk(X) .

/

x are even, the @k are odd or asymmetric functions, respec-

(2.5)

For reasons that hecome clear in Fart B, we c¢all this important

-9

quantity the system discriminant.

(2.4) still represents the complete temperature field in the com-

plex domain. To eliminate the space coordinate x, we choose the

following three temperatures of particular interest:

- the mean temperature @k(s),
- the central temperature Bk(o,s),

- the boundary temperature Gk(X,s).

In the last two cases, Fk(x) simply assumes the arguments O or X

e
) In Part B, different @k are used for reasons explained below,
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respectively, but fkmust be defined:
X

F o= /.Fk(x) < Tax .

k Xk

0
For these and only for these fundamental functions:
-— _ l_{- '
Fp = % Fk(X) .

ﬁk is even about the origin,

Hence, the three selected temperatures are

~ T Fr(X) .
1" 1" . — 1 ]
central ek(o,s) = Ak(x) [}u(s) _ Pgs)——+ Pgs) ,
F, (X) _
"boundary" : & (X,s) = Ai(X) 8,(s) - Pgs):]+ Pgsl

3. Partial fraction development of the transfer functions

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

The fractions involving Ak(X) in (2.8), (2.9) and (2.10) are the

. D
transfer functions acting on the input Su(s) - A8 i.e.

P{s) S ’

the

transfer functions on Gﬁ(s) and on S differ only in sign. In

Part B, entirely different transfer functions occur.

It is obvious that the inverse transforms of rather complex trans-
fer functions can only occasionally be found in tables; moreover,
there would be no general method to programme them. The straight-
forward method is to develop the transfer functions into partial

fraction series which can be transformed back term by term.

It can easily be checked that all our transfer functions are me-
romorphic i,e. have only isolated and single poles in the finite
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domain. These poles are Just the zeros of the denominator Ak,
the corresponding numerator does not vanish simultaneously. A
common zero would eliminate the corresponding X-value as a pole,
but this never occurs throughout this article,

This being assumed, and Nﬁe) being any numerator, the fraction
series development may be written:

(8) 00
N X .
_1.{___(.__).= % ._8..1511_.2__. + ako(s) . (3.1)
Ak(X) 0kn '

where

Rz e
v = %= 8o that X = ' vs . (3.2)
a

v is the "time constant" of the system.

02
The poles Sin of every transfer function are at s::.-%?i, i.e.
at X = J—o;n = tio (n =1, 2,...0), because of their common
denominator Ak. The coefficlents Skn are the residues at these

poles.

The notation oin has been chosen because the fundamental func-
tions Fk have no poles on the real axis of X, but only at purely
imaginary arguments,

Even if the sum in (3.1) converges, one cannot be sure that it
truly represents the function at the left hand side. Only the
singularities in each finite domain need be identical. The two
functions can still differ by an integral (poleless) function
eko(s). We expect this ak to vanish in most of our cases, but it
is difficult to prove this in general ) A solution obtained by
omitting ako provisionally must be checked to see if it still sa-
tisfies the differential equation as well as the boundary condi-

) A necessary but not sufficient condition is lim ¢ (x) =
X0 XO
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tions. If not, as is sometimes the case in Part B, the necessary
sko can easily be evaluated from these checks,

In order to evaluate the okn we must solve the transcendental
equation

8,(%10) = * qioR(*i0) + F (*i0) = 0O . (3.3)

Now, for purely imaginary arguments:

Fi(2ix) = cosh ix = cos x = G1(x)
Fo( ix) = Io(ix) = Jo(x) = Ga(x) S (3.4)
Fa(tix) - sinh ix - sin x _ Ga(x) -

ix X

Fi(*ix) = * sinh ix = * 1 sin x =% 1 G{(x)

Fo(xix) = + T4(ix) = * 1 Ji(x) = : i Gh(x)
5
Fh(+ix) = i<cosh ix _ sinh ix> -+ i<— cos x . sin x> - (3.5)
ix (ix)? X %2
=¥ i G4(x) )

These formulas define the so-called "modified" functions Gk(x).
The relationships can be summarized

Fi(#1x) = @ (x) ; Fi(%x) =+ i Gy (x) . (3.6)
Similar relationships play an important role in Part B.

It is now possible to write the "discriminant equation" (3.3) in
the convenient form

A (*i0) = qOGI'{(O) + G (o) =0| = % (3.7)

Note that the double sign drops out when the modified functions
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are used. Since both OGQ(O) and Gk(O) are even functions, - o
is e1so a root, if + %en is a root. Both * %en yield the same

pole Skn of the transfer function as only qﬁn appears,

For convenience, we give this equation explicitly for the three
geometries:

- q 0 8in 0+ cos 0 =20 (3.8)

- q o J1(0) * Jo(o) =0 | (3.9)

- q o<— cos O sin20> fBID O L 0s 04 (1-q) 8D O _
o o o o

=0 . (3.10)

In all three cases 0 = 0 is not a root,
In order to calculate the residues € at these poles

kn we
proceed as follows:

QKn’

Let N(s)/A(s) be any meromorphic function, the poles of which 1lie

at sn:
[ } 2 €
Ns = Z I + 6O(S)- ' (3-11)
A(s) ' 8=8,
n=1

We multiply both sides by s-si and note that %%%%%: 0; hence

o

1 S—-84
= 81 + E & + € . (s-
A s _ A Sq n S_Sn O(S) (S si) . (3.12)
N(s N(s1 n=2

8-81

In the limit s — si1, the denominator at the left hand side be-
comes



- 16 -

comes

QFL
o

2>
55

€4 = , and similarly

The derivative is in general

da(s) Als) dNé:}

s8) _ ds
S

N(s) N%(s)

=>4

a_
ds

but as A(si) = O,

dAfs)
a_ A(sg ds
ds N(s B *
5=81 N(s) S=S1

It is essential that N(si) # O.

Hence
T ae)
=— A(s _
ds s-sn

even if there is an additional integral function eo(s).

As

by substituting from (2.5), we get

P _ v
ds

=gz [(a+1) FLX) + axFp(X)] .

(3.13)

(%.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Fk(X) satisfies the reduced dif ferential equation (1.8) at
X

Fp(X) = F (X) - x FL(X) . (3.19)

8

ahy
—x _v[ 1+ g(e-k) o
=5 = 2 [ = FL(X) + qu(x):l (3.20)
and
aA
_—k. = 2 ____g-(_l ! 1
- 5 [- 6 () + Oy (G) | - (3.21)
5=-'v—
(X= iiokn)
By considering the discriminant equation (3.7), this can further
be simplified:
an, a¢!(c )
—X - _Y _k___ = A?
ds o2 "7 27 [t + al2-x) + a®0% (1 = AL . (3.22)
n kn
S=———"
v
N.B. This expression has no double sign.
The development coefficients for the various transfer functions
in (2.8), (2.9) and (2.10) can now be evaluated by the rule (3.16).

The

coefficients for the mean temperature are
X Fy (X)
8.y a3 . o< =
ds Ak(X) X=*i0
T 7kn
k
- =— ¢/ (o )
_ ( ) Okn k' 'kn _
= GI =
v 'k %n 2 .2
5 —— [1 + a(2-k) + o®of ]

0kn
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g e 7 . L=
v 1 + q(z_k) + q2 012(1'1 ckn Akn

N

= +

For the central temperature, we have simply

1 *)
e - ——
kn d (
(S X)
ds Ak 4+
X__iokn
2 QKn 1 1
= = TeRT . = 14 9 (3.2Ll')
R ACTS AN q(2-k) + qzo;n ben
and the boundary temperature yields
j - Fk(X) *)
knodo s (x)
ds 'k X=+i0
kn
_ 2 %n Gk(czkn) - Gk(?kn)
= =,° ! L]
v Gk(okn) 1 + q(2-k) + qzo;n Aen
Qo
= +% 0 —— (by apolying 3.7) . (2.25)
1 + q(2-k) + q of

L4, Inverse transformation for the selected temperatures

We begin with the mean temperature, Eq. (2.8) may be written

s T(s) = ) = [ag,(5) - B(s)] + B(s) . (1.1)

G,
S+—-—kn
v

N.B. Henceforward, summations go fromn = 1 to n infinite, The
omission of ako(s) must eventually be justified.

According to known rules, the inverse transform of (4,1) is:
02

. -_kn .
8, (t) = [Zakn e V t}* [@Du(t) - A"ggt) + Awgg) (4.2)

—

%* .
) The notation ekn and jkn for the coefficients corresronds to
the systematic notation of Part B, chavnter 8.
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where * is the convolution integral operator. Exvlicitly, one has

%n, t %

n n

-, 4 ——T

= _ Y : M(T) v AN(t

C&(t) = Eakn e / [éu(T) - T :]e at + =55 .
0]

(L.3)
Now we define "transient temperature complement functions"
_ vn t_ + 5n .
e Y [Em e Y armr (6 L) ()
0
kn .
W(T
/—i—l ar =Ty (8) , ) (4.5)
so that
> _ w(t
B(8) = ) oy [T() = Ty (901 4 mis) (4.6)

It 1s easy to see that the transient complement functions obey
the equations

o2 .
Toen(t) + 52 Tn(t) = ©,(¢) (4.7)
. ain AW(t
Pbkn(t) Ty Pbkn(t) = Tpe (L.8)

with initial conditions I‘akn(o) 0 and Ty (o)

These equations may be solved formally for Fakn(t) and T . (t):

bkn
Tarn(8) = o [8,(8) = Ty (0], (4.9)
T - _V_Vm
oxn T) = [ (t):l (.10)

*x
) Obviously, the splitting of the convolution integral into two
separate functions T is not essential but accords with the
systematic notation of Part B.



- 20 =

Substitution into (4.6) yields:
I _ v . m(t) e . AN(t)
®k(t) = E: o2 8xn [Fh(t) T T pe T I‘akn(t) + I‘bkn(t)-_-]"' pc °
kn

(L4.11)

As the first two terms in the parenthesis have no index n, these

can be taken outside the summation. We therefore need the value

of ;f— 81en; which, by (3.1), can be found from the limits of
kn

the transfer functions for s -+ 0, or X - 0. This corresvonds to

the asymptotic state t — oo,

The best way to obtain the limits is to consider the first terms
of the TAYLOR expansions of the functions Fk(X) and F}’c(X). Be-
sides Fk(O) = 1, one finds Fﬁ(+0)w + X

k L]
Therefore
1im A (X) = $X® + 1 >+ 1 (ef. 2.5) , (L.12)
X-0
1lim i*'k(x) = + 1 (ef. 2.7) . (L4h.13)
X-0

All three transfer functions in (2.8), (2.9) and (2.10) respec-
tively, tend to unity as s -+ O,
But so must the partial fraction's sum for s = 0, so that

a a
1im y }ég = v Z }:n=+1 , (L.1h)
s-0 L"s+—;£ ckn
e e
1imz——3—§‘—=vz xn ooy (L.15)
s-0 S+ckn q;n
v
J J *
11mZ——k’§-—=vZ _::_n=+1. ) (4.16)
g0 s+ckn QKn
v

*
) An important result for this summation is given in Appendix III
for the case q = O,



We emphasize that these expressions lead to many interesting sum
formulas in special cases given in Appendix III, In some cases,
known sum formulas are obtained for a specific q in the discri-
minant equation for the an'
If the sum in (4.14) is indeed unity, the troublesome additive
integral function ako(s) (cf. 3.1) is zero,

(4.14) is now substituted into (L4.11) to yield:

B(0) = 8(0) - v ) ER L (o) - By (0] (4.17)
kn
On integration:
B(t) = g (t) - v Z?;Tn [r, (t) = Ty (£)] . (1.18)
Kn

The constant of integration is zero, since E&(O) = @u(O) = 0, as
the temperatures are the excesses over the initial steady values.

Substitution from (4.9) and (L4.10):

8.(t) = o(t) - vzz% OEE "SR MO SONP
kn

(4.19)
If we omit the time derivatives and teke constant Wo’ (4.19) re-

duces to the stationary solution. We must therefore evaluate the

stationary solution of (1.1) directly to determine the value of
8xn
* L)
okn

This elementary computation shows that

o _ Wore _ WoRR 1
O, stat(T) = & - sf + P (a+3) . (L.20)

The average temperature is according to rule (2.6):

_ w _R® ]
®k,stat = ®u * T (q * k+2> * (L4.21)
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As

W W
v .‘%— v__QB'._ (Ll-o22)

the stationary part of (L.19) is

= NoR2 akn
- fnaed H
Ck,stat =%t R -V ok ‘ (4.23)

Comparing of (L4L.21) and (L.23) yields

S %n 1 1
VLJ';-;— = E<q + k+2> . (L.24)
n

This type of formula is very interesting, too; examnles are given
in Appendix I1I.

Substituting from (4.24) into (L4.19) gives the final form of so-
lution

8.(t) = 0,(t) + Hargs) [ o (t:'+v Z—@[ () = Ty (tﬂ

(4.25)
This form is most instructive; the stationary solution is shown
explicitly, and the terms in the summation give the transient com-
plements., The only integrations still to perform are those of eq,
(4.7), (4.8), to generate the TI-functions. It is to be noted that
C) (t) in the first term comes in through the boundary and initial
condltions, whereas —O (t) represents a perturbation input equi-
valent to W(t)/pc.

The "central" and "boundary" temperatures are treated correspon-
dingly, with the coefficilents 81n replaced by the e
pectively. (ef. 3.23, 3.24, 3.25).

xn and jknres

We can therefore omit the whole analysis up eq. (4.19) and put

e(0,t) = € (t) - v'Ef‘ek” @ () - wit) _ akn(t) + bkn(t):}

Okn —_ pe
(L .26)
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o pe bk

e(R, ) = g,(t) - v*) A g (o) LB b4y L a0 ]

(4.27)

Note in particular that no new functions T appear, because the
inputs on which the new transfer functions operate, are still
the same, and eqs. (4.7) and (4.8) still aopply.

However, the subsequent analysis differs, The direct stationary
solutions for the central and the boundary temperatures are res-
pectively:

S (0) = W R 1

%,stat O, + o (o + 5)s (L4.28)
- @ WoR? 2

C&,stat(R) B Ou + EK I (4.29)

A comparison with the respective stationary parts of (L4.26) and
(4.27) yields:

ekn _ 1 1
v ot, K (e +3). (L.30)
vy oo : (1.31)
‘ OKn

Hence the final form of the solutions is:

-

oK (0,t)=0 (t)+&(a+2) ﬂ%%l —'éu(t)] + vajriiﬂ ffakn(t)-ibkn(t)]

(4,32)

o (R 1), (.22 BB _ ¢ Tikn [ ()
ez, 1) (1) L - § (o) | s e I:raknu)—rbkn(t)]

(L.33)
In practice, the sums in all three solutions (4.25), (L.32) and

(L.33) must be truncated, according to the desired accuracy.
This means that whenever an improved accuracy is needed, the pre-
vious computations remain valid and utilizable. In contrast, the
intermeshed direct integration of FOURIER's equation must be
fully repeated when the stepwidth is reduced to improve accuracy.



- 24 -

Part B

TRANS TENT HEAT CONDUCTION THROUGH TWO ADJACENT LAYERS ONE CF
WHICH IS HEAT PRODUCING

Though the reasoning in Part B is just the same as in A, a tho-
rough treatment of new specific difficulties is necessary at
some points,

We must distinguish between two problems:

(I) internal layer with heat source / external layer without

heat source,
(II) internal layer without heat source / external layer with

heat source.

5. Formulation of the problem

We now assign quantities with san upver index w2 to the first

2)'1

problem and those with upper index " to the second. Quanti-

ties without such an index pertain to both vproblems.

We treat both problems simultaneously as they show many common

features.
The lower indices 1 or e mean internal or external layer, res-

pectively.
The general FOURIER equation (1,1) is then snlit up as follows:

Problem (I):

(1) 2 (1) (1)
I A T T R T 16D
! -k ke ‘ : (5.1)
ai ot or or hi
a®(1) aZ@(i) a@(i)
1 ek ek k-1 ek
— = + (5.2)
2 2 r ’
ae ot or or

and
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Problem (II):

(2) 2g(2) (2)
T S I S s R (5.3)
-— ’ L]
ai ot or? T ar
(2) 2o(2) (2)
A 9%ex - 0" Ok . k= 90k L () (5.1)
a: 9t or? T or A

In order to formulate the boundary conditions, we define

Re -
4 =R R, = DR so that p = 7, _ (5.5)
where R; and Re are the "radii" of the layers, both measured
from the system axis, Thus, p 2 1; e.g. P = 2 means equal layer

thicknesses,

Then the boundary conditions, applying to both problems, are:

at r = O: ®,, an even function (5.6)
at r = R: 0, (R, t) = O, (R,t) (5.7)
Q) oe
ik ek
N B = N B2 (5.8)
r=R r=R ,
at r = pR: - A "EF'l = a [@ek(pR,t) - Ch(t)] . (5.9)
r=pR

The initial conditions are: start from the steady state.

With the ratios

a; Ay (pc) A |
LI . | e i *
a o = —)\e.-(—pF)—i' and A = 're ’ ) (5.10)
e

|
) Do not confuse these dimensionless quantities with a® and A

of Part A: the latter material properties correspond to a

i
and Ki.
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the LAPLACE-transformed equations are (cf. 1.8):

Probliem (I):

(1) _ gla)", k=1 g(1)', B(s)
S = YHpT T YT T

2q(1) _ o(1)", k=1 (1)’
a8y = Vg’ + T ek

and

Problem (II):

(2) _ a(2)", k=1 (2)’
Sk = Yt T YT o

2g(2)_ g(2)", k=1 g(2)', \B(s)
a Gek - aek R 6ek + N s 4

where the new independent variable x (cf. 1.7) involves ay!

X = Js r, and X = g§ R .
83 i
The transformed common boundary conditions are (cf. 1.11):
at x = 0: eik an even function

at X = X: Gik(X,s) = ﬁek(X,s)

? — ?
xeik(x,s) = eek(x,s)

at x = pX: - ax 8/, (pX,8) = 9_, (pX,s) - 9,(s)
The new g involves M, but the internal radius:
A
a =z .

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

As in Part A, q = O corresponds to the boundary condition of the

first kind a = co,
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6. The solution by means of "fundamental functions"

The solutions of the two-layer problem involve of course Just the
same fundamental functions we encountered in Part A, The only 4if-
ference is that the 8 (egs. 5.12 and 5.14) have the argument

ax instead of simply x, as can easily be checked.

Thus, the general solutions are:

Problem (I):

o{t)(x,s) = 1{*)(s) p (x) + BLed | (6.1)

8{x)(x,5) = B{1)(s) P (ax) + B{2)(s) 8, (ax) (6.2)
Problem (II):

e< )(x s) = Iiz)(s) Fk(x) , | (6.3)

8{2)(x,5) = 5(2)(s) ¥ (ax) + (2)(s) g (ax) + LD | (5.)

The boundary condition (5.16) has already been considered by
omitting any @  in (6.1) and (6.3).

The coefficients Ik’ Ek1 and Ek2 must be determined from the re-
maining three boundary conditlons. The corresponding system of
three linear algebraic equatlons reads in matrix notation:

-F . .o \ : _u\ | e |

a a S
! + Fé + @ Ba | = 0 ,0r = 0 , PESD
] P(s)
) ? _s _K 3
O +QXFy +F +qX¢ap+¢épJ\ Ea +8ﬁ(S)J & L (8)=M |
Prob.(I) Prob.(II) (6.5)

Only the inhomogeneous parts differ for the two problems.
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We have introduced the following condensed notation: The geome-

tric index k is omitted whenever possible without confusion. The
arguments of F ard & are written as subscripts omitting X, e.g.

Fk(apX) = Fap’ and so0 on.

The solution of (6.5) is:

I(i)= JA_{[FaQ;—Fé¢a]\9u(s) + [Fé(q}(@ép+¢ap)—@é(qXFép+Fap)] ESL?-)-} (6.6)
E£1)= %([F@é-m'oa]eu(s) + [\ (axe) +o )] %ﬂ} (6.7)
E£1)= %{-[FFé-m'Fa]eu(s) - [KF'(qXFép+Fap)] Eéi)-} (6.8)
I( 2 )= 13{ [Facb’a_Féd?a] (eu(s)-xlig—s—l> - [Fé(qx ‘I’ép“pap)‘q’é(qmép*l"'ap) ]xlisﬁl}

(6.9)

(2) 2

2)
E-,(2 = 1&(‘ [FFé—)\F'Fa]G}u(s)— ?ls—sl> + [KF’(qXFép+Fap)] )\E-gi)-} (6.11)

with the common system determinant

- r_ ] ] - - ’ -
b = (Fe,-WF' 8, )(aXFy +F, ) - (FF-N'F, ) (X0, +a, ) . (6.12)

It corresponds to the quantity A of (2.5).

If one considers two inputs + Qu(s) and + Eéﬁl for problem (I),
XPSS and - K2é§l for problem (II), the
transfer functions (expressions in square brackéts divided by A)
are identical,

and inputs + Gﬁ(s) -

Ve must now consider the "fundamental functions" Fk and ¢k and

their "modified" functions Gk and wk' The Gk have already been
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defined in chapter 3; the Wk should be related to the & as the

k
Gk are to the Fk‘

We call the fundamental functions with purely imaginary argu-
ment the "modified" functions, thus (cf. also 3.4):

Fo(ix) = + 6.(x), @ (*ix) = + ¥ (x) ) (6.13)

The Gk and wk are a fundamental system for the '"modified" equa-
tion

e (s ) 5.

i.e. x is replaced by ix in the homogeneous part of eq. (5.11) and
(5.13).

It follows immediately that
Gk(—ix) = Fk(x), and wk(-ix) = cpk(x) . (6.15)

In order to choose our functions suitably, the following two
properties of the Gk and wk must be postulated:

- both functions Gk and Wk are real for real arguments,

- the zeros of Gk and ¥, , lie on the respective real =xes ex-
clusively.

The reason for this is obvious from the analysis in chapter 3,
and a discriminant equation like eq. (3.7) must be found invol-

ving the Gk and wk. We therefore choose the following modified
func tions

*
) Except for the special case ®2(-ix) = + Y2(x) - imJo(x). The
effect of the extra term 1s considered in chapter 7.
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k Gy (x) (x)
1 + CcOSs X + sin x
= "
2 + Jo(x) + 5Yo(x) )
3 , sin x _cos X *)
X X

(6.16)

Hence, by applying (6.15), the original fundamental functions
Fk and ¢k are respectively:

X Fy (x) By (x)

1 + cosh x - 1 sinh x

2 | + To(x) | - Ko(x) - 1JTo(x)
3 + si;h X - i coih X

The frequently needed first derivatives are:

k Fi(x) @i(x)
1 + 8inh x - 1 cosh x
2 + I1(x) + Ka(x) - igli(x)
3 ||, cosh x _ sinh x | _ i<sinh x _ cosh x
X 2 X
X
k G (x) Uy (x)
1 - sin x + COS X
2 - J1(x) - gYi(x)
3 4 S08 X _ sin x + sin x + COB X
x x2 X X

(6.17)

(6.18)

*
) The coefficients of the wk are chosen to ensure similar func-
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The functions Fk(x) and Gk(x) are the same as in Part A, The
complex-valued Qkare however unexpected and are unavoidable., The
functions ®; and & are odd, whereas ®z(-x) is not the negative
of ®2(x) but its conjugate-complex value. As Yo(x) is the only
zero'th order BESSEL function which is singular ir the origin
and has only real zeros, the choice of ®g(x) is enforced by re-
lation (6.15). One can no longer take Ko(x) as the second funda-

mental solution.

Finglly, we compile the functional relationships between all these
functions (cf, also Appendix I):

Fk(tix) = + Gk(x) R Gk(—ix) = + Fk(x) ,
Fl'{(iix) =1 Gl'{(x) , Gl'{(-ix) =+ i Fl'{(x) ,
7 (6.19)
o (tix) = = ¥ (x) , B (ix) = + o (x) ,
@'k(tix) = -1 wi(x) , wi(—ix) =+ 1 @i(x) ,

/

except for
Pa(-1ix) = + Va(x) - imJo(x) , ¥4(-ix) = + 1 Vi(x) - =JT1(x) .

The relations between pairs Fk H-Gk and ¢k G*wk respectively,

are thus almost equivalent.

In order to eliminate the variable x from the general solutions

(6.1) to (6.4), we choose the following particular temperatures
for both problems:

- the internal layer averaged temperature §ik(s),
- the external layer averaged temperature Zek(s)’
- the central temperature Gik(o,s),

- the interface temperature 6ik(X,s) = Gek(X,s),

- the boundary temperature &ek(px,s).

tion behaviour at the origin; see Appendix II,
**) See Appendix I on BESSEL functiors.
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We define the averages for the intermal layer:

i
ol

X

- _i{_ k"j Y N4

Fl .xk /Fk(x) x ax Fk\X) , (6.20)
0

X
k
e, = }-{%/i’k(X) 1 ax = }1% & (X) + k@-) (6.21)
0

(not needed in the subsequent analysis),

and for the external layer:

X k-1
= .k /p x P FlapX) - F(eX)

k-1
—— | P (ax)x" 4dx = , (6.22)
k Xk(pk-1) k aX pk_1
X
X k—1 ! !
= . /P - K P q:k(apx) - @k(aX)
= —=—— [ ¢ (ax)x 'dx = = . (6.23)
k Xk(pk_1)x k aX pk_1

The Fk and @k behave similarly with respect to the averaging mr o-
cedure for the external layer, Note that the right hand sides of

the above equations are valid for our fundamental functions ohly.

In dealing with the transfer functions occurring in equations
(6.6) to (6.11) for the coefficients I, E1 and Bz, we denote the
square bracket numerators by:

Zry(X) = F 8, - Foo, (6.24)
Zpoyp(X) = Fi(axe, + & ) - o (aXF, + F_ ), (6.25)
Zg, qx(X) = FO, - W'e (6.26)
Zgaox(X) = N (axoy + ), (6.27)
zE21k(x) = - FFé + Ms"Fa , (6.28)
Zg o (X) = - KF'(qXF;p + Fap) , (6.29)

so that
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gii)(x) = -Ek’— (20 (K)8,(8) + 215, () EL=d 1, (6.30)

r}:)( ) = 5 2, i (3)8,(5) + 25 (%) Bsl 1y, (6.31)

Ei;)(x) = Zi‘r g, 1k (X) 8 (8) + Zg o (X) —Lﬁl 1, (6.32)
and | .

If:)(x) = 5 [2rg() (eau(s> - A liéél> - 20, () A B8y (6.33)

Eij)(x) = Zi (25,1 (X) (8, (s) - 2 2%§l> 25,0k (X2 “L"l]’(6.3u)

E;Z)(x) - 5 [ZE21k(x)<eu(s) - x?igil>- iEan(x)x sy, (6.35)

On substituting these expressions into the general solutions (6.1)
to (6.4), we get the following "selected" temperatures, now in-
dependent of the space coordinate X.

Problem (I):

iy _ Ik I2k Py P(sl P(s)
e (s) = b o 8 (s) + = s - (6.%6)
"mean" ( ) 2 F + 7 ¢
— ‘_, 1 . L]
ek (s) - Bi1k kAk Ka1k*® "k s (s) +
. ZB2kFx * Zrooke %k P(s) (6.37)
A 8
k
( ) Z11x 210k P(s) . P(s)
"ecentral" (O 8) = -5 ¢® (s) + % = (6.38)
k k
(1) 7y oF 2 oF
"interface" &y (X,8) = -l%i—— &u(s) + .Iii Pgs),+ Pgél (6.39)



- 34 -

.F + .
ZE11k EQA ZE 1k*® “ap F (B) +
k

(6.40)
Zp, ok Fap * %m0k %ap P(s)

8

1" —
"houndary &ek(px,s) =

Problem (II):

, 2 o I
%2)(s) = LUK k<e (s)-)~P(S)> - Bk i)
(6.41)
"mean" \ k( s) = s kAk ZE21k k<& (s)- _é§l> B
L _ ZEiQk.F - ZEng‘ P(s) ngs) (6.12)
"central" Sgi)(o,s) = E%i£<6u(s)—K£é§l> - Zﬁik . XPgs) (6.43)
"interface" &( )(X 8) = lei 8. (s)- _é§l> - El%ilg . XB§§1
(6 ..L4l)
"boundary" 6( )(pX s) = ZE11k'FaPA; Zﬁajk'@ag <&u(s)-x£é§l> -
Tk Tan * Tmaon%ap | B(s) , j2(s)
Ak ¢ S s
(6.45)

7. The system discriminant and its derivative

All of the above transfer functions must be developed into partial
fraction series for reasons given in chapter 3,

The first task is to establish and solve the discriminant equa-
tion Ak(tio) = 0. Equation (6.12) for arguments X = *i0, and re-
lationships (6.19) show that the discriminant equation is

a (tic) = - i[(Gwé-xG'wa)(qOG'

ap+Gap) - (GGé-xG'Ga)(qowép+¢ép):]= 0

(7.1)
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In this condensed notation for G and V¥, the arguments are writ-

+
ten as subscripts omitting *o, , e.g. Gk(_apokn) - Gap, and so on.

Note that the double sign drops out when the modified functions
are used. Moreover, a relatively simple computation shows that
the additional terms in ®2(-ix) and ®4(-ix) cancel in the excep-
tional case Az(-1i0). Thus, the discriminant equation (7.1) is
quite universal and furnishes a series of isolated and simple

roots Gkn’ in ascending order. In no case is O = O a root.

Equation (7.1) for the three geometries:

qo sin(ap-a+1)oc - cos(ap-a+1)0 +

+ (M1)sinoc [qo cos(p-1)ac + sin(p-1)aoc] = 0 (7.2)

[J0(0)Y1(ac) - M1(0)Yo(a0)][qaTi(apo) - Jo(apo)] -

- [Jo(0)Ti(ao) - NT1(0)To(ao)]lqors(apc) - Yo(lapo)] =0
(7.3)

[sin o (sin ao + -c%@—o) + Mcos O - §l%—c-’) cos aod] x
x [qo (cos apo - §l§4299) + sin apo] +
apo
5 .
+ [~ sin o (cos ao - §l§éi—) + Mcos o - §l%—9) sin ao] x

x [ag (sin apg + S°S Doy _
apo

(7.4)

The derivative of A with respect to s at s = -oin/v *),

*) Eq. (5.15) shows that v must now be teken as v = Rz/a%.

cos apol = 0O



- 36 -

i.e. X = ‘l’idkn,

chapter 3 and is computed as follows:

is needed for calculating the residues as in

4d 4d
v
-—i—ls{ = —j-kf 5% (eq. 3,17 unchanged) ’
4d
= d;;k- .-2—:-, where X = io (7.5)
Substituting from equation (7.1) and setting o© =tg, , we obtain
'y = 412,V [aGy” - A3 Y. + (1-ra)a'y’ J[ao G’ +G. ] +
ds o2 2'0kn a a 2" ' %%n"ap” “ap

+ |:G‘l'(a - )\G,‘l’a][.(ap+q)G!’3p * apqoknGa'm] -

s _ 4 - ¥e ¥4 ’ -
- [e08* - Ae7e  + (1-2e)ateyllao v! + v, ]

- Taog - 26,)[(ap + @)¥g, + epag ez 1] . (7.6)

The second derivatives are el iminated by means of the respective
differential equations

'] k_1 ’ " k-1 1) ” k—1 ’
G’ = =G -=-=—7G" : G" =-=06G_ - G! : G = - G -=—0a',
Okn ’ Ta a ag., a > Tap ap ap okn ap
(7.7)
end correspondingly for V.
aa 1 A T ’ ’ . ’
k y ' - ) - F 221Gy - NP G ¢ I+
“ds 2 +12.°kn{i[(7\ a)GJa+(1 ra)e ‘a Gbm(GJa " Ta)“'qokn ap” aP]
o
S=_——l;n ' ' ’
+ [ov,-2 v, 1[(ap+a(2-k))G, -apaounG, ] -
(r2)6G_+(1-2a)6 6 -5 ae -2 G.) '
- [ -8 GGa+ - a—olcn GGa- a ][qcknwap.g.wap] -

[GG;-hG'Ga][(ap+q(2-k))w;p-apqckmyap]} . (7.8)
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As the terms with factor %;i cancel because of equation (7.1), we
obtain:

"
s

(eag-ra'c ) [(ap + a(2-x))V¥. - apag, v, 1+

+

[(A_a)ewa + (1—Ka)G’¢é][qoknGép + Gap] -

[(*a)ea, + (1-Mm)e’c) oo v +wap]} = A .

(7.9)

This expression, which we call for brevity Ain’ corresnonds to

(3.22) of Part A, It is emphasized that no sign ambiguity apvears

fOI‘ X = iiokne

In certain cases Ain and Akn have a common flactor, apparently in-
dicating multiple roots. In the particular case ¢ = 0, a =1, A =
this common factor is the WRONSKIan GY¥’ - G’V which cannot vanish

to G;;k in the three geometries that does not vanish in any finite
domain; no multiple roots therefore occur.

8. The residues of the partial fraction series development

Equation (3.16) gives the residues of the partial fraction series
developments of all transfer functions for problems (I) and (II)
in the solutions (6.36) to (6.45).

We begin with the "mean" temperatures,
Z F
I1k*
8 = A'_kn— ’ (8.1)
X=iiokn

" - P [ 1_{_'1I )
ZI1k’Fk - (FaQa Faéé) X L (8.2)

v 1
- . 15.5;;{(G¢;-xe'¢a)[(ap + a(2-k))e], - apaqy, G -
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Substituting from (6.19), we obtain

= ik
F - ==
I1k okn

—_+3
X—-len

’—r,| l.
z (Gawa Caua)G

(8.3)

Note that the double sign has dropped out; this is slso true for

all following residues,
r _ : '
(Gawa Gawa)G

akn = jék (8.LL)
kn Aﬁn
Correspondingly:
o) -
kn Al
kn
X:iCkn
! ' - ! ! Ta?
_ ik [Ga(qcknwap+wan) Ilra(qcl«:nGaer Gan)JG , (8.5)
%n Aﬁn
S V) S S PR
kn Aﬂ
n .
X—lokh
t_y\n? k-1l_l_ ! k—1l_l
_ ik (GWa AG Wa)(P Gap Ga) (GGa A\G Ga)(P Wap Wa)
k ’
ao, (p"-1) A
2 F 2 z (8.6)
L] + L]
4 = Ei2k' 'k © “Eg2k° "k
i By
n —
X—iokn
' k-1.¢ _ary_ ' k=-1,, _
] ik.xg' (agy ¥f +v, ) (07 67 ~Gl)-(aq 6! +6, )(p*" ¥ -
aq (p -1)

The residues for the central temperature are:

_ 211k

ben

ekn

X=iokn

(8.7)
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Gy - Gy

- -y 22 a'a , (8.8)
Ben
VA
I2k
R
X=19,
' ’ - ’ ’
_ Ga(qokn*an+wap) wa(qqknGaD+GaD) .
= -1 ; ; (8.9)
and for the interface temperature:
S O
YR
Xziokn
(G_¥! - 6'v )G
= - i a'a a a , (8.10)
Ben
VA F
- 12K
hkn Al'{
n -
X-iokn

ap kn ap

o b,
n
and finally for the boundary témperature:

+ ZEiﬂk'QaD

%n

Z .F
L “Bi1k"ap

Jyn

X=iokn

r_ !’ - r_ ’
(Gwa \G %)Gab (GGa \G Ga)wap
By
n
B2k Tap * ZE.0k° %ap

Yn

= -1

2

n =

X=1 Okn

. (6, (ag v, +¥,) - ¥ (ag 0] +6 )le

; (8.11)

, | (8.12)



- 40 -

? ’ - '
-1 AG qckn(wngap Gaﬂaﬁ (8.13)

A .

9, Inverse transformation for the selected temperatures

The procedure is the same as in chapter L.

The partial fraction developments of the various temperatures
(6.36) to (6.45) may be written:

Problem (I):

4 1 'b
sﬁik)(s) = Tik%— s8¢ (s) + z kn2 P(s) + P(s),

L. o u

kn 0kn

S+_—V S+_V (9.1)
"mean" : <
=( ) C

58 (s) = Z KD 55 (s) + Zd-lm—— P(s) , (9.2)

q;n ! o;n

L S+T S+ v

"central : segﬁ)(o,s) = }Z:ekn s® (s) + };\—EEE— P(s) + P(s),

2 u 2
e o
kn kn
s+—— S+—= (9.3)
(1) T &
"interface": sd,, (X,s) = ) Kn__ <8 (s) +
ik /. o2 u
S+

"boundary" : sﬁgi)(pX,s) = }E: " sﬁﬁ(S) + 37\ kkz P(s) .
%en —  %n
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Problem (II):

e b
ssik)(s) = Eitakzﬁn (s&u(s) - RP(s)> - EZ:—K%E; \P(s),
S+T S+‘-v_
"mean" : (9.6)
< s?}ik)(s) - Z—c%- (s8,(2) - () - y—f‘l%- N(s)
5+ %n s+g%£

+ NP(s), (9.7)

"central" : sﬁgi)(o,s)

H
-]
[
5
N
4]
<P
E
|
%
Z
S—

-} 2R e(s), (9.8)

A C
kn
S+
g
"interface": segi)(x,s) = E{:——Kf- <s%u(s) - lP(s)) -

- <hko(s)+§;:—25§— >KP(S), (9.9)

o}
kn
8+—

"boundary" : 56(2)(pX,s) = :T‘ Jen <seu(s) - kP(s)>.-
%en

S+

- }Z: e AP(s) + P(s) . (9.10)
%n

s+

As already stated in chapter 3, the partial fraction series re-
presentation of a function is not unambiguous as, in principle,
an additive integral function may occur in all the above sums,
We subsequently show that this occurs only in the case of h,
Whe ther we Introduce it or not, it drops out of the subseguent
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computation, Only when establishing the summation formulas in Apnen-
dix III, must it be known whether the respective additional term
is zero or not.

The inverse transforms of the above expressions are:

Problem (I):

o2 o?
2(1) - —%gt £, + —%2¢
;1 (t) = 8. © / ®u(¢) e at +
0

o;n ¢ o2
kn
- —=t + == W
N h e Y ‘/ M(T) T v aT o+ %E%%l ,  (9.11)
/. kn Pc)y i
0
and correspondingly for the other temperatures.,

Problem (II):

2
Okn

®£;)(t) = }Z:ckn e-

2
t %%n
t + ===
v g AW( T v
/[@u(‘t)—l'(ag-yi]e at -
0
n

o2 2
- e__"kﬂt tx (—LYHW W) o}‘t’ at + A QL) g 40)
dkn Pc) pc)y P\
0o
and correspondingly for the other temperatures.

N.B. Corresponding to the s-dependent inputs in extression (9.1)
to (9.10), there are only four different types of convolution in-
tegrals, two for each problem. Therefore, we need to define only
four different types of "transient temperature complement func-
tions I, namely:

02

o2
- —th t. + —T
e Y [@u(»c) e Y gt = I‘a(;lz(t) , (9.13)
0
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n

2 .
t
t + —
AW( © v = 1)
/ (3%7% e dv rb;n(t) , (9.14)
0

as in Part A, egs. (4.4) and (4.5).

The T's for problem (II) are:

0; t cﬁn
n
- t + 7T (2)
v pd AW(~T v
./ [@u(x) - A (E§7%:] e at = rakn(t) , (9.15)
0

_ oﬁn t + c’]:’int ( )
v AW(~T Y
e - A (—Lyl e av (t) , (9.16)
./ PC/4
0

They obey the di fferential equations

( )(t) ¥ c?n ék:(t) = Tee)u ’ (9.18)
for Problem (I), and

(2 )m + i’iﬂ r Kn(t) = ,(¢) - AL (9.19)

i"x(a:r),(t) * g%ﬂ I‘éi:(t)'z - KTA‘::Lc(‘)tT) ’ (9.20)

for Problem (II) with the same initial conditions ra(o) = rb(o) = 0.

We frequently need

(1)
) - 2 ey - B, (9.21)

Okn
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r{2)(e) - "AW 0-il) o], (9.22)
gkz(t) - Y ‘—® (t) - Aw t akn('c)] (9.23)

Pékz(t) - [' %%%%l bkn(t):] (9.24)

With the T''s, the solutions assume the form:

Problem (I):

2(1) (1) (1)
©4 (t) = Zakn Ton(t) + y;bkn Ty, (t) + p'c" f) »  (9.25)

ek

=(1) (1) 1)
B, () = ) ckn Town (E) + /,Y\dkn rékn (t) (9.26)

; ]
R

(1) () o (2 -
G (0,8) = ) exn T (6) + ) By Tn(6) + FE) L (0.27)

[

(2 (1) (1) .
b (X,8) = 5 BN Ty (1) % Y Bk Typep () + (ot oy
(9.28)
(1 (1) 1
@eksz,t) = zjkn Toxn(t) + N kien I‘ékr)l(t) . (9.29)
Problem (II):
2 (2) (2) (2)
By (t) = ngn Toen(t) + Zbkn Topn(t) (9.30)
-.- 2 " (2) 2
2 (2)
cgk)(o t) = zekn I‘;kr)l(t) + kan Torn(t) » (9.72)



égﬁ)(x’t) = }Z%kn Pgﬁg(t) + }E}kn Pé;g(t) - by A Aﬁcti ’

(9.33)
Cﬁ;)(pX,t) = }:ﬁkn Pgig(t) + EZ%kn né;%(t) + A %%%%% . (9.34)

According to the procedure explained in Part A, chapter Ly, we sub-

stitute from (9.21) - (9.24) into (9.25) - (9.34) and integrate
once. Simplifications are then possible as soon as the numerical

\ \J
values of } — a — b,.» ¢eo, and so on, are known.
/.. o2 kn A2 kn
" "kn “ %en

We again compute the 1limits of the transfer functions in question
for s -0, or X - 0. To avoid delaying the analysis we simply state
the results derived in Appendix II. We consider all the transfer
functions in (6.36) to (6.40), as the transfer functions of ™o-
blems (I) and (II) are identical.

1im ZI1k'Fk

X0 K

Zor o F
1m 2Ry (2.36)

k

X-=0

Z o_ + Z—\ 0— *

Talk

1im 211k ik 2k k. (9.37)
X-0

7 ._ + 2 .E:
1im “Fi2k FkA B2k K _ o (9.38)
X-0 k

Z .,
lim =41, (9.39)
70 K

Z
lim —IA—ii‘- = -1, (0.10)
X-=0

7. oF
1im E— =1, (9.11)

X0 k



oI
1im Iii =-1 , (9.42)

X-0

ZE . F + ZE 0

L1k an Aﬂk ap _

1lim A =+ 1 , (9.)_1_3)
X-0 k

ZE12k'Fap + ZE22k°¢gp
By

1im
X-0

=0 , (9.44)

But these values must be jdentical with the respective partial
fpraction's sum for s = O, provided that there is no additional
integral function.

Hence,
a a
1im S;\ %2 = v S;\—%E.: + 1 (9.45)
g-0 L”Js+—%g L"}akn 4
b
vy U kD L g, (9.L6)
L, a2
kn
c
vZ-—Eﬁzi-JI ’ (9o)-|-7)
" Ogn
. a
vz—'@:o ’ (9-L|-8)
o2 '
kn
e
VZ—%E=+1 . (9.49)
%n
f
VZ—ISQ=—1 ’ (9-50)
02
kn
g
vz_ﬂ—;.p‘l , (9051)
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he, + V$T‘E§Q =-1, (9.52)
— n
Jyn
vz—— =+ 1, (9.53)
' %n
vzlf—zkﬂ -0 . (9.54)
" %%n

The only special case, i.e. the one with hko’ is explained in the
example B of Appendix III.

Substituting (9.21) and (9.22) into (9.25) yields

a0 = v) 2 ra(w) - 1{)(6)] +

akn
okn

Byn [aw(t) AN ¢
rvy R - wldeo |- 2R (9.55)

kn

This equation corresponds to (4.11). The terms independent of the
index n are taken outside the summation, and the sum formulas
(9.45) and (9.46) are applied.

5(2)(5) = &,(v) - v>j [oen (0 + v, HEd(0) ] (9.56)

We now show what would havpen if there were addi tional constant

terms &, and b, . The last term of (9.25) would be a.__® (t) +

ko u
Aw(t) AW(t
(bko+1) .(TPE); instead of simply oC R .

Substitution of (9.21) and (9.22) into this new (9.25) yields

8(2)(¢) - Zakn 6,00 - 20 ]+
+ v}j (%%%%l k;(t):‘+ 8, u(t) + (b, _+1) chti . (9.57)
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a

But by considering modified sum formulas (9.45): vsr‘—fg = + 1—ako,
b

and (9.46): v —%Q = - 1-b , eq. (9.57) becomes

okn

®(1)(t) = o (t) - vg:cé—n ‘—akn rgkr)l(t) £ b rt()kr)l(t)] . (9.58)

This interesting result shows that (9.56) applies even if the coef-
ficients 810 and bko are not zero, and their possible existence is
irrelevant to the subsequent treatment. Avplying (9.45) and (9.46)
on particular examples (see Appendix III) shows whether a,, and

bko are zero or not. All the other coefficients behave in the same
way and do not enter the subsequent treatment. The corresponding

equation (4.17) in Part A is similarly valid when a, , # O, and the

subsequent analysis is not changed.

It can easily be shown that the other temperatures have the same
form as ®(1)(t) in (9.56). On integrating these equations, the fol-
lowing list is obtained:

o (t) - vz;; [akn rgir)l(t)

+

B T (8) ] (9.59)

®( )(t) = o, (t) - vz °:in i Ta pls )(t) +a r( )(t) ], (9.60)
o{)(0,t) = 6 (t) - VZ€ :ekn ey o g rlt)(e) :l, (9.61)
@( )(x t) = o,(t) - VZ °:in :gkn réliq)l(t,) + by r (t) :, (9.62)
o) (o, ) = 6,(6) = v) [, Tlad(6) + gy TRd0) | (0.63)

For problem II, we simply change the superscript (1) to (2).

Going back to equations (9.59) etc., we substitute once more the
T''s from (9.21) to (9.24):
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@\1)(t) = @ (t)-v*) gl—rakn@ (t)- r( )(t>¢ <€ﬂp§§% r( )(t)>]

Ja,
(9.6L)
and similarly fcr the other fcur tenperatures.
( ) g\ _1 " AWt “(z2)
®; (t) = ©, (t)-v Pl Ou(t) A o) - rakn(t)
L_.JOk Lo 1
n
‘ Av(t (2)
+ bkn<_ A pely - Pbkn(t)>:]’ (9:65)

and similarly for the other four temperatuies.

N.B. The various temperatures and the vpower input are all measured
from the initial steady state values.

The stationary parts of' the above solutions obtained by omitting
the dotted quantities and teking constant Wo must theref'ore be
compared with the direect solutions of the stationary problem.
This gives sum formulas for the _hg etc.,, as in Part A.

kn
10. The stationary solutions

The stationary solutions of both mroblems (I) and (II) can be eva-
luated easily., In this chapter only, we denote stationary tempera-
tures by ©, without an extra index. In most cases, a uniform nota-

tion for all three geometries is not convenient because of the lo-

garithm for k = 2 that Ieplaces the powers for k = 1, 3,
FOURIER's equation is: Problem (I):
ol » K d®5(“1‘) LA (10.1)
ap? r dr ki - * g
o) + 52 o =0 . (10.2)

dr* dr
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Problem §II!:

2,4(2) H(B)
S P _
>~ * 7 ~4r =0, (10.3)
dr
2(2) o(2)
4" Bk k-1 3Oex + % _o0 (10.4)
ir? T 1 dr A B ! *

with common boundary conditions (5.6) to (5.9); (5.9) may also be
written as

- qur I = 8., (PR) - . (10.5)

=pR

The general solutions are

Problem (1)

)y _ o L WER-r?) w2 1 N\2-xk 1 1) (106
O () = O + % 2kh, kAo T 2=k P T 5k | (10.6)
?k =1,3
k _2-k 2
(1) e MR wrT/g . 1\ 2-k 4
Ogx (r) = € kKA 2-K *k“r(;p*z-k ’ J (10.7)
and
2 2 2 |
( ) tn) o 1 W(R®-r WR” /g
O (r) = €, * % L% + NG +1lnp), (10.8)
>k = 2
‘ o2
( ) > — M - “r-sz N . 1“"’R g
057 (1) = @ T 1n 1 +27‘ep+1n DR ) . (10.9)
) |
Problem (II):
) ) . (10.10)
2 P ] p__(a, 1 \2-k Xk
O (1) = @y + kA, [ P23 <p ¥ 2-k>P + 5(a-xy |(= const.)
k=1,3
o k -k 2 2
(a) oy . o _Wrd  wgE A WR P2 /9. 1\ 2-k
®e (r)-ou“zﬁe’*kxe'z-k*kxe A+ 3= \p*2x)? ’

and
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2 2 1
®( )(r) = 0, gﬁ (ﬁq + 25 - % -lnp- 3 (=const.),
Wr? 2 WR? =
®( )(r) =, - ui + W& ln r + ;77-[?q + 25 -

a. 1n
P

1(10.12)

pR]

7 k=2
(10.13)

By applying the averaging rules (6.20) and (6.22), left hand sides
only, or by specifying to the selected fixed coordinates r=0,R,pR,
respectively, one obtains the following set:

Problem (I):

=(1)_
®1k = @u +

WR2 1—.7‘\(l{+27 <

=(1) WR2 k 2.9 1
® _ D q
ek = O * kX [ 32x) K, * <§ * 5k
(1) WR? [ 1 a, 1.\ 2k
Oj  (0) = @ + o |2x Y (p Y Ex
(1) wR® [/q 1 2~k 1
®ﬂ<(R)"@u*'kxe \p* =% 5%
(1) _ WR® 1-k
®ek (oR) = ®u + kle - ap ’
5(1) _ WR*® ['_1_ q
®12 _®u+§7\-;.)-l-)\+ + Inpl,
@(1) - @ + WLQ g- + 1_ - ILR ’
e2 u 27\6 | D 2 P2'1
(1) WR? 1
8557(0) =8 + - |5x+%+ 1np |,
e D
WR? ]
@( )(R) = 0 + rg + Inpl.
u 2Ke D B
( ) @ . WRZ
(oR)= €t .% .
e

(10.14)

(10.15)

(10.16)
7 k=1,3

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)
{ k=2

(10.22)

(10.23)
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Problem (II):

=(2) _ ( ) _ al2 ) _ WR?
®1§ = ® (0) = ® (R) = ®, + EX; x
2
3, 1\ 2k, _x
x [?q + 25 - <p + 2-k> D + ETEZETJ ’
= k+2
(2) _ WR? 2 (9, 2 \2-k _ __k _p -1
O = @ * KA, | PL* 5 p t o P 2(ke2) K,
N k p”—1:]
2(2-k) k_y |’
Céi)(pR) = @, + 13— a(p p' ),
5(2) _ g(2) (2) . WR® ]
®j5° = 8;5°(0) = 8;;°(R) = @ tox X
P _4g 1
x[pq+ 2- —1np—§]’
®§§)=®u+ﬁl}’q+ - p = 5(2%+1) %’f;—?jf
( )(pR) (ﬁq 9]

11, The final form of the solutions

(10.24)

+

1,3

(10.25)

(10.26)

(10.27)

, 7 k=2 (10,28)

(10.29)

Comparing the stationary parts of the sets (9.64) and (9.65) with

the corresponding solutions of chapter 10 shows that

b
() - 2 W kn
®ik,stat = % 7 Y Tpel] Ei,oZ'
kn
- WR? 1 a, 1\, 2-k_ _1_
=0, ¢ K\ [&(k+2) + <§ + 2—k> P 2—k] ’
ol1) _ Pon WR2
12 stat (pc) Srt s - ux

%n

dk=1,3

(11.1)

+ 1ln p] . k=2

(11.2)
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W 2
By setting v? = v , we obtain
(pe)y M
° 1 A 1
V:k—k'g:"‘—'ir@‘*m)P
A“,oin k(k+2) \P

ot 8 2 \p *
2n

al1) :
Similarly from ®ek,stat :

Zik_a _L[_ K p2-1
. ot k 2({2-k) Pk_1

kn

, a2 g+1_1_n_3>;
04 2 D 2 p2_1
2n

from ®§1) (0)

]

+<9+
P

1 2-k
5x)2 |

ik,stat
f
v\ -kn _ _ 1 _Ay/g T\ . o-k 1
e - "%k "kx|\ptix)P ok |
o
kn
v:?\f2n - -1t -2 + 1lnp
/ot - L 2 \p ’
2n
(1)
from Oy giat(R)
Den _ O A[/a, 1) 2k _ 1
V) & Tk ((é ¥ 2—k> P 5k |
2+ O
kn
v‘;‘?&& - -2 (9 + 1n p> ’
L/-_}O* 2 p
2n
(1) L ]
and from ®ek,stat(PR)
k
y) Koo _ A -k
vo* k
kn

k=1,3 (11.3)

k=2 (11.4)
k=1’3 (1105)
k=2 (11.6)
k=1,3 (11.7)
k=2 (11.8)
k=1,3 (11.9)
k=2 (11.10)
k=1,2,3

(11.11)

The corresponding summation formulas from problem (II) are:



a, _+b 2

kn kn _ 1 p° _ (4 1 2-k k _

VT ~ s Tk ‘_pq + 53 (p + 2—_k> * 5o % ] , k=1,3 (11.12)
e kn -

T %nP2n _ 12,2l _ g 1

v - =5lq* 3 p—lnp-2 . k=2 (11.13)
L o z

Now, by subtracting (11.3) or (11.4) respectively:

T 8n 1 { p2 "g 1 2k _1
v" v-c;-*—— X |Pa+ 2+(7\—1) <p+2—_-—->p - 5% }_
- kn - ——

1

- 5TE+2) ! k=1,3 (11.14)

Vv:a%l' %‘{PQ+PTZ'+(7\-1)<%+1np>}—%. k=2 (11.15)

JE o)
2n

This linking between problems (1) end (II) justifies the simulta-
neous treatment of the two problems.

=(2)

Similarly from ek, stat :

li

¢, + 2 i
VS;‘ kn*dkn %[PQ+E§ _<%+_01k 2-k_‘(§ D§+2_1 .k p?-lj ,
Lo om 2 2(k+2) K_, 2(2-k) %_,

k=1,3 (11.16)

Cc,_ +0,. 2
v};‘ on*%n _ % pa + BE - % - & (p%+1) - % + lE_Ei], k=2  (11.17)
=)

4 : 2_4
02n — P
c 1 C 2 k+2 .
_kn _ ) p___K P =1 _ g , A\ 2"k _
V; . - KT T2 T2(k+2) K + 1)\:<p =
J Okn ~ p -1 /
- K “2‘1:B k=1,3 (14.,18)
=S 1 [} = 17 o
2(2-Xk) pk—1 ’
L ot = 5 Pd 2 uP+1 +UATE LP+-2—- P y k=2 (11.19)
2n - p -1
from ®(2) (0)

ik,stat



e, +f 2
kn "kn _ 1 P~ _/a 1 \.2-k k ‘] _
V; 4 Tk [pq T3 (p + 2—k>p + 2(2_1{5_' ’ k=1,3 (11.20)

kn
e, +f 2
2n 2n _ 1 P__4a._ -1 -
vy " = 3 [pq t 55 in p 2] , k=2 (11.21)
A G, L
2n
e
Zkn _ 1 ( D_ - a 1\ 2-k_ 1 = 14,22
kn ~ —
e 2 .
vT%ﬂ=%qu+P§+(x—1)<ﬂ+ in p>:‘; k= (11.23)
JARN AN o)
2
(2)
from ©;y ctat(R)
&en*Pien 2
Zkn kn _ 1 P _/a, 1.\ 2k k -
VZ 4 -k [pq + 2 _<p + 2"k> Y + >5(o-x ] ’ k=1,3 (11.214-)
%n
2
T Sty g R _1 - 11,2
VL' —-OT-—— = 5 l—pq + 5 D in P 5 ’ k=2 ( . 5)
: 2n
v 5191_1{ +:L2_1+(7\1)9_ 1 \2o-k 1 .
ot =i (P4 2 2 B D t 5% )P -5k b k=1,3 (11.26)
kn h -
&n 1 [ ~ 4 3 N\
v —_= = = pq+”—-—+(7\—1)<='-+ inr~: ., =2 (11,27
. ot 2 2 2 D /i )
2n
(2) L]
and from ®ek,stat(pR) :
J.+K - 1
vy LI (-t (11.28)
&~ O%n S k=1,2,3
J -
v\ KR g, (1) pT R (11.29)
7y k y

i

5

So we are able to compile the 1list of final solutlions:

Problem (I):

for k=1,3:



(1) " 2 -
@k (£)=6, (8] JS‘?{x(klz) +<%+21k>p? - 31“] :
ZY_\ 1 0(1) :\
i ,) oy akn<rakn(t)-"u(t)> * ®xn ‘31\11( ):l 1.30)
L OF

=(1) - -
€ (t) ® (t)+ —-(%Ri{t'z(zlfk) :i_: +<%+§i_;z>p2 k]+
+V V——{—ckn< (t) e (t)> +3yn bkn(t):‘ (11.34)
@i;)(o,t)=®u(t)+ %—%?}2{5% +<%+ ﬁ)pz_li-z-}-l;] +
(e) e - (1)
+ VZZ ?‘%r:[ekn@a;n(t)_@u(t)) + fknrb;n(t)], (11.32)

( )

o (Ryt)=6,(t)+ J(t)RJ-(p 211{)1’2—1{' 5 |+
+ vzv——[gkn< (t) ® (t)> hk bkn(t):‘ (11.33)
( .
)(pR £)=a,(t)+ —%Bf o.p"k +
9\_1——rakn( (t) e ft)>+k 'bkn(t)] k=1,2,3
(11.34)
and for k=2:
_(1) 2r
@2 (t)= C(t)+ J—Wﬁ+%+ 1np:l+
e -
AN ( ) (
Y ) s azn( A(t)- C t)>+b2nrb2n(t)] (11.35)

2n-



- 57 -

=(1)
hz (V=,(1)+ HETa L £ 1a2],
0(1) .
+ VZY _{ol c2n<I‘a2n(t)-’Fu(t)>+d2 rb,, (t)] (11.36)
— 2n

(1) 1 2
— W(t)R 1 q
G (O,t)—Ch(t)+ —§T§_475X 5 1ln p:]+

[ - (1) .
' VZZ olr 62n<ra2n(t)'®u(t)>+f2 l‘b,n(t):’ (11.37)
2n

(1) -

. . ¥(t
2 (Ryt)=r, (t)+ izx s %+ in p] "

(1)
+ 9‘:‘———{é2n<ra2n(t) 3} (t)>+ on b2n(t):] (11.38)

Problem (I1):

for k=1,3

(=) - 2

= W{t)R 1 -k k

By (£)=C (1) —LL{pq. g <9- R _)p . ] R
ik u kke _ D 2-k §T§:E7

" . (2) . .(2)
+ v2>; B—;—{—akn<rakn(t)-@u(t)> + bknr‘bkn(t):] » (11.39)

kn—

a
{

, ) k+2 <
'ﬁtZR e 1 £ Bl - ]+
(t)-u (£)+i ]_pq+-“~--2 S ey o T

1

o] *d\

+ vzv ’[ < (t) -9 (t>+dk'nrbkn(t)_' {(11.40)

g W(1)R QA 2k, kK
Uik (C,t)=0 (t)"'_lﬁ{';\)e—— bg + 2 <p o=k 2(2 -k) *

+ Z de (t) 6 (t»» S (t)-l (11.41)
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G;;)(R,t)=®u(t)+ﬂéi—;-‘£;[pq+ -(D \» 72—3]

e ()
2T 4 (% (4)-s 2
VY o] bkn<rakn(t) ou(t)> * hknrbkn(t)] , (11.42)

e

() 2
g (o7, 1)=0, () g1 ) Z—r] P-4 -

()
sk bkn(t):] k=1,2,3 (11.43)

ana for K=2:
, 2 2
—(2) W(t)RT P°_a 1
Yo@ - -1 - +
Y (t) Ou(t)+ 2 [?q +5%5 7% np -5

el o(2)
+v2\ o "211( (2)(t) -9 (t)> + bZnszn(t)] ’ (11-14-4)

2 a2n

2 2
N t R 1

T__\_r 2n< Z)U'-) 3 (t)> + dop b2)(t):l » (11.45)

_"2n

( )(o t) = 0,(t) + Wﬁ%;BE-féq + B -2-1np- %]-+

oo [e2n< Ha) () - (00 + 20 |

(11.46)

(2) _ W(t)R® P _a._ _ 1
@i; (R,t) = @u(t) +—é—7\l——\—-pq+ 5~ D Inp -5 |+

+ VQEZt-—_ rg2n< r(2 )(t) - (t)) + h, réQL(t)_‘.

.02
(11.47)
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In all expressions, the very uniform last (sum-) term is the addi-
tional transient complement to the stationary solution.

The final form of the solutions for the one-layer mroblem (Part A)
(L.25), (4.32), (L4L.33), is, when expressed in the same uniform no-
tation:

B0 = oy(0) + B (v 0) o ) G [ (Fapn() - 800)) -

L “kn
- aknrbkn(t)] - (11.48)
1 .
v Wgtsz 1 2 —_— _
@k(O,t, = @u(t) Sy >+ a)+ v Oin €1n Pakn(t) @u(t) -
- eknrbkn(t)] ’ (110149)
. _ w(t)R? 2\ 1 “ : :
6. (R,t) = 0 (t) + 55— .q + v ) I (Tagen ()=, () ) -
) kn
- Jknrbkl(it)] ’ (11.050)
using the appropriate guantities 8yn? ekn’ jkn’ Okn’ A, and v for

Part A,
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Appendix I

BESSEL functions with negative and imeginary argument

gome properties of BESSEL functions of order n = O end n = 1 are

compiled which are useful for the main analysis.

The usual series-definitions of these BESSEL functions are [2]:

2n
Jo(x) =1 + Z("“ )n 22n}((n')2 ’
n=1 .
> 2n
Io(x) =1 + -3
° Z 2*™(n1)?
n=1
b . 2n—-1
I (x) =\ (- 2 :
1 L 221’1"1 (n_1) m
n=1
baid 2n-1
I.(x) = N\ s ,
A i 22n-1 (n-1) m1
n=1
ZY,(x)= (y+ 1n £)T (x) - Z(-nn zgn’(‘ 2 (1 1o
, n
n=1
i L2n 1 1
Ko(x) ==(y + 1n 2)I°(x) + z 22n(n )2(1 ot eee t n) ,
1
n=1 )
= 1 x i n=1 x2n=1
> Y, (x)=-<+ (y+ 1n E)Ji(x) 3—\ (-1) an__1( . x
[ < n mit
n=i
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};1(X) Eg{ T <Y + 1n %) Ii(X) - T

We now rotate the arguments of all these functions through angles
+ % in the complex domain. For the functions with logarithmic¢ sin-
gularities at the origin, we make a cut along on the negative real
axis so that they are many-valued there. We define the mrincipal
values to correspond with the positive (counter—clgckwise) rotation
® from +X, e€.g. Yo(-x) = Yg(e+i7t x), and not Yo(e ™% x).

The following table can then be deduced from the above eguations:

Jo(+ix) = + To(x) Ji(+ix) = 4 iT1(x)

Jo(-x) = + Jo(x) Ji(-x) = - Js(x)

Jo(-1x) = + Io(x) Ji(~ix) = - iI1(x)

Io(+ix) = + Jo(x) Ii(+ix) = + 1J1(x)

Io(-x) =+ Io(x) : I:(-x) = - Iai(x)

Io(-1ix) = + Jo(x) I,(-1ix) = - iJ:(x)

g Yo(+1ix) = - Ko(x) + igﬁo(x) g Yy (+ix) = - g Ii(x) + iKs(x)
g Yo(-x) =+ g vol(x) + iWJ;(X) g Vi(-x) = - g Yi(x) - inTs(x)
g Yo(-1ix) = = Ko(x) - igjo(x) g Yy(-ix) = - g I:(x) - iKs(x)
Ko(+1x) = = 5 Yo(x) = 1570(x) Ka(+ix) = = F Ju(x) + i ¥s(x)
Ko (-x) = + Ko(x) - imIo(x) Ky (-x) = - K1(x) - inTs(x)
Ko(-1x) == FY (x) + 1 F(x) Ka(-ix) = - F Ja(x) - 1 F¥a(x)

The difference between consecutive sheets at the cut (i.e. for
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argument - x), is + 2%iJn(x) for the functions g Yn(x), and

+ 2inn(x) for the functions Kn(x) (n = 0,1).

The results indicate that

x

X Yn(—ix) is conjugate compiex to 3 Yn(+ix)

2

and Kn(—ix) is conjugate complex to Kn(+ix).

g Yn(—x) and Kn(-x), both complex-valued, are self-conjugate since
the imaginary parts at the two sheets differ only in sign.
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Appendix II

Computation of some limits involving the "fundamental functions"

In general, the limits for X = O of the transfer functions needed

in Chapter 9 1lead to indefinite forms. Anplying L'HOPITAL's rule

is not convenient for their evaluation because of the very complex
formulas due to repeated differentiation.

It is far better to consider the first terms of the TAYLOR expan-

sions of the fundamental functions about X = O, if there is no sin-

gularity, or, in addition, terms in % ’ —% y eeey and 1ln X, defin-

ing the type of singularity in the origi%,

According to the definitions (6.17) of the functions F, and &,
and of their derivatives (6.18), one finds the following behaviour

near X = +0 (for the BESSEL functions cf. Appendix I):

k Fk(+0) Fl’{(+0) q»k(+o) cpl'{(+o)
1 1 0 (~ + X) 0 (~ - iX) - i

2 1 0 (~ + g) -0 (~ + 1n X) +oo (~ + %)
3 1 o (~+%) ~teo (~ - ¥) ool ~ +}_(%)

The uniform notation for general k has been achieved by a sultable

choice of the coefficients of ¥, in (6.16), or ¢ in (6.17), res-

pectively. We define X /(2 k) to mean 1ln X, when k = 2,

Substituting the above expressions into (6.12) for the system de-
terminant Ak shows that

l1im A (X) ~ |—1.(-1k)(ax)1"k -2 5 }%] [‘q_X anX 1]_
X0 - :
2-k
£, ]qu( -15) (apx)"F + (-1%) LP—)-—]
~k

~-i(aX)
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1-k

as the lowest power of X dominates; i.e. X in the first term.
Similarly, one finds
1im F (X) = 1im £ F/(X) = + 1
k X "k ’
X-0 X-0
= . P FL(apX) - F, (aX)
lim F (X) = lim I3 X =+ 1,
-1
X-0 X0 P
k-1
= - & (apX) - & (aX)
1im & (X) = 1lim % k LS =0 (~ - H(ps1)ax) x=
k aX pk_1 2
X-0 X=0 = —oo{~ 1n aX) k=
3 b+t 1
n2+p+1 aX

Nevertheless, equations (9.37) and (9.38) still remain valid also
for k=2 and k=3,

The limits of the six transfer function numerators in (6.6) to
(6.11) are:

lim 2z, (X) = lim {F(aX) & (aX) - P’ (aX) Q(aX)} ~ = 18(ax)t K
X0 X0

1im ZIQk(x)
X-0 X-0

+ F(apX)]} ~ + 1¥(ax) 17k

Lin 25, (X) = 1in [R(X)® (aX) - kF'(X)@(aX)} ~ - 15ax) 1K

X-0 X-0
1lim zE21k(x) = 1im {- F(X)F' (aX) + kF’(X)F(aX)} =0
X-0 X-0

lim inzk(x) = 1lim {KF'(X)[QXQ(apX) + Q(apX)]}

X-0 X -0

kr/g 1 2-k,3-k
~=- 1" <ap + 2-k> (ap) ky

lim (F’(aX)[qX@'(apX) + ®(apX)] = &' (aX) [gXF’ (apX)
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0 k=1,2

A q 1 .
+ 1 = - — |= const., k=3
3 | (ap)? ap

lim ZEng(X) lim {- AF! (X)) TgXF’ (apX) + F(apX)]} =0
X-0 X-0

By combining all these results, the limits (9.35) to (9.&&) are
obtained.
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Appendix III

Examples eand summations of number-theoretical interest

This appendix illustrates not only the procedure followed in the

main part but also provides some results of pure mathematical in-
terest.

In the course of the development, one meets systematically summa-
tions of the types

[0 o]
€
xn _ “kn _ -
vz 02 - . L] [ and y - oo (ekn - akn, bkn’ ooo) [}
kn

As the €n are computable coefficients, these formulas can be

checked in some cases by specifying the parameters k, p, q, a,
and A.

We consider two cases, one each from Part A and B.

Example A:

We consider all three geometries k = 1,2,3. Let, for simplicity,
R = a, so that v = 1,

First, we treat the case q = O (boundary condition of the first

kind, i.e. gilven boundary temperature). The discriminant equation
(3.7) and solutions are

_ u
k = 1 cos 03 = O O4n~ (2n-1) 5
k =2 Jo(0og) = 0O = *)
= ol Oa = ozn— jon L, n = 1,2,39...
- sincg _ _
k=273 oa =0 03n_ nx

*)

Jop» the zeros of Jo(o), and J1(jon) are well-known; see e.g.[2].
These zeros must not be confused with the residues jkn for the
boundary temperature,



The derivative (3.22) of A

(

.

k
-1
-1\
k
_201n
I ( jon)
20, k
2n
n-1
(1)~ k
2
203n
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Hence, from (3.23) to (3.25):

k a e J
n—
1 84p = F 2 €n = (-1) %n j1n =0
202n
2 &, =+ U4 ey, = —— o =0
2n 2n Ji(j ) 2n
3 g, =+ 6 €3y = (-1) 203, jBn =0
We now apply the summations (L.14) to (L.16) from n = 1 to in-
finity:
a o *
Mo, ANy »y - % )
2~ "w L fon)® =
a
2n 1 1 1
——2 = U, —.2 = 1 "Y,_‘ = LT [3]’ p.502
[ o 4 3 [ 32
2n on on
K_‘Eé_ - 6.\ 1 - 1 A _ = *)
L_ 31‘1 7{2 /n L n2
n-1
ey G ARG il S
o?n Lo 2n-1 L
€on

2

ZE?

T

jkn
02

7.3
— JOII

1).

case q =

1 - 1
J1(jo;7 2

b1,p.199

1 (this paradox is discussed below in
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At the right hand side, we denote commonly known summations with
an asterisk, which therefore confirm our computations. For less
known summations, references are given. The summation for Eﬁg shows
a limiting case which is no longer convergent. o%n

This indicates that the rate of convergence of the main solutions
(11.39) to (11.50) can vary considerably with the system parameters.

Similarly, for the sum formulas (4.24), (L. 30), (L.31):

g 16? -1 E o »)
Lot (zn-1)* 3 (2n-1)*  %®
8
2n AN 1 \ 1
PSS b s
Lot / 4 8 .4 32 ’
_.02n LJJOH
ilr-]‘=6—'—z‘l =—1— —)Y—‘-l =ﬁ *)
jz:ogn 15 men* 90
T n_, BN -5 SAD S
Zh:o:n %2/ (2n-1)3 2 ' (2n-1)® 32
Y‘ 2n ., N -t Sy =L —— = L ), p.201
- jonJ1(jon) L”'JonJ1(Jon)
- n-1 2
_L_ AN 0 = - K
EZ\ - 2.ﬂ2§: n? 3 _igj nz 12 R
Tjkn;—' see =O'
ya okn

Now, we pass to case q = 1. The discriminant equation (3.7) is:

]
—

k =1 Oy tan O1

w
i

2 OgJi(Oz) = Jo(Oz)

w
]

3  cos Os = O with the solution © (2n-1 )25 .

3n ~

From formulas (3.23) to (3.25):
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k a e J
2 201n 1 20?n
1 a = e = ry . j =
n o402 nosin 94 g4l o 2ra?
20, ’ 2 a?
1
S 2n = J1(0, 1403 20 44o?
2n 2n 2n
6 n-1 _
3 8z, = — €z = (-1) . 205, Jap, =+ 2
3n
Unfortunately, there are no simple formulas for the °1n and °2n

though they have been tabulated ([4], Appendix IV) so that the ex-
pressions for k = 1,2 cannot be further simplified.

Applying the summations (4.14) to (4.16) shows that

a1n

2
- 01n

a2n
02

2n

n

]

2) sE
202 4+0*

in" "1n

uX —
' 0 +0

2n 2n
6 16 1

(2n—1)*

.

1
22
cos g, .(2

o\’ !

-3 —_—
+°1n)

L’JQ(O ).(1
. Z{:ﬁ:llfi_

2n-1

22{3 L y
2402

in

2$;\ LI

L 1+40

2
+02n)

= 1

7

(2n-1)*

(_1)n—1

2n-1

7(*

96

u],pp.121,

122

Ll,p. 202

*)

],p.122

L],p.202

*)

b],p.122

(b),p.202
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T_l_-gé}_v_____s.1 —-)z_\<_2_1_172_ 7[2
n-

= ’ - *
3n x2/ . (2n-1)% 8 )

The series for k = 1 and k = 2 converge particularly rapidly be-

cause of the high powers of O4n and oonrespectively. In principle,

the results for the %n and %n would be as interesting as for the

03n if they were in common use as e.g. the Jon

N. Bj For q =1, the jknare finite numbers so that the summations
Lﬁ,'gg converge to unity without difficulty.

o2

kn

This is also true for q ¢ 1, as long as q # O; only the conver-
gence of the series deteriorates as q = O. In the actual case g = O,
we have Jj, = 0 (ef. 3.25), and the series contains infinitely many
vanishing terms. If however we define this summation by letting

g =+ 0 instead of putting @ = O, the summation remains unity, and thi
explains the paradox found for this summation in the previous case

q = 0.

Example B

We take the follow ing special case in Part B:

k =1 plane geometry,

p =2 i.e. Re = 2Ri ;s equal layer thicknesses,

q=20 i.e. & = o ; boundary condition of the first kind, i.e.
boundary temperature ®e(pR) = 0,

a =1
A = 1 } eaual material properties for both layers,

1 time constant equal unity.
Then the discriminant equation (7.1) reduces to:
G1(apo) = cos 20 = O

with ‘-the solutions
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X
Onzi(Zn—‘l)E n=1’2,ooo

As emphasized in the text, when +0, is a root, so is =0, . But the
values of the summation are independent of the sign of on.

We compile the required fundamental functions:

n=] 1} 2|3\ L4|5|6| *
G,(0 ) = 6,(ac.) = + cos(2n-1)§ = %42 N PR P EPTS PR KPR IO
G1(apon) = + cos(2n—1)§ =0 n= (1i2i3(L156;
64(c,) = Gj(ac ) = - sin (2n—1)§ = %dz L =1=1+T+1-71-hk+-.
Gq(apon) = - sin (2n—1)§ = (-1)"
1 . S
Gi(apon)=—81n (2n—1)§=(-—1)n vn=|1‘ 2J 3;4i5'6!
i |
¥1(on) = ys(aop) = + sin (2n-1)§ = %42 el - -1+ +l=mte
a = i - E-- n-1
vilaBon) = + sin (2n-1) 3= (-1) n=| 1| 2| 5]al5 6
wi(Cn) = ﬂ]i(aOn) = + CO0s (21’1—1)-2- = %«/2 . +l —' —I +I +l _l_++_.
vi(apoy) = + cos (2n-1)g'= o .
' i P i
AL = 4 5%; . 26!(apo,) =+ - (-1)" (ef. 7, 10).
n el 1 2| 5[us] e
a, = (-1)7°61(o,) = 10 l +’ -| —l + | R

(ef. 8.4)

*) The sign sequence +--++--,.., may be represented by

1;{[1+(—1)n]—i[1—(-1)n]3 n=1,2,.00

-

and the seguence ++—--++--... by

. n—1
12 {[1+(-1)n_1]—i[1-(-1)n'1]} e N=1,25000 »

For practical purposes, however, these are too clumsy.
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b, = (-1)%6f(ac_ )¥:(apo )6i(q)) = - 7 (cr.8.5)
c, = (-1)"[ci(apc )-Gi(ac )] = + 1 - a_ (cf.8.6)
a_ = (-1)et(o_)v:(apo_)[Giapo )-Gi(ac )] = + & - a_ (cf.8.7)
e, = (—1)n'1.on (cf.8.8)

n=|1 2| 3l L4 5| 6|

£, = (1", o ci(ac )¥alapo)) PRV S 1R Y Y ) ) et
(cf.8.9)
n=lf] 2] 3| 4] 5] ¢
&, = ('1)n—1-°nG(0n) = on%Jz . +‘ +\ —\ —\ + +l—-
(cf.8.10) ,
= -f
n
h = (-1 LGi(ac )Wi(apo )G1(0 ) = (-1)7" On.(-%) (cf.8.11),
i, = (-1)n_1.onG1(apon) = 0 (N.B. Not true in general for g=0)
n=1 gcf.8.12g,
kn = (-1) «0,.a =0 (N.B. Always true if g=0) (ecf.8.13), .

Now, by substituting (2n—1)£ for o , all summations may be checked.

By (9.45)
Y\a—,‘rl:—,JZ liv .\‘_‘——1—'§]=+1-
L_.oﬁ L (4n-1) S (2n-1)
n=1, n=
. - 4:9 2,5,
c9 67

This rather strange formula can be found in [5],p.360, by proper-
ly choosing the parameters. Of course, the analytical representa-
tion of the sign sequence,as given in the preceding footnote, may
be inserted, if desired,
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(9.46) shows that:

Pn 116 T .
2 = 2 5 = .
i Op e x o (2n-1)

This yields the known summation };\——1——75 = %, which provides a
check. - (2n-1)

Now, from (9.47):

V - V- S TR g . B

=+ 1,
2 2 2
. on L on on X /. (2n-1)
end from (9.48):
d a
n 1 n
‘—-2'=+§T—12-—V-—2'=+1-1=0.
i Op L. 0O L op

Further (cf. 9.49):

&T.(J_)n— =+ 1

T 2n-1

[‘ .

9 I
S N>

T (=)

x :
This leads to ST =L @ known summation, too.

From (9.50):

f i r— —
on o1 L A I
Y 2 =2V 0% ‘szn T Zn-1] ‘
n= n=
3 Lh 1’2,)
l:ol Sﬁb!

also this interesting formula proves to be correct numerically.

From (9.51):
(—'\Cn n
-V
l__cn — On
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Finally, we have the interesting case (cf. S.52):

h
n v—‘ -
N - CORE
L on [l 2n-1
hn y
so that ho = -1 - i;\—§'= - 5 .
L Op

This explains the introduction of ho in Chapter 9. As in the ex-
ample g=0 in Part A, the jn summation is an infinite sum of (in
the 1imit) vanishing terms. The k summation is trivial.

Now, we investigate the —% summations.
o]

From (11.3): n
T 1236 Tt 1l (e = - b
L S St D
T =t
Consequently, TR "9 s @ known summation.
From (11.14): (2n-1)
a
1
R e il EEEE R
— On x L L (2n-1) LJ(2n- )
n=1, n=
4s5, 2,3, [5],p.364
t5’9’ 6’7’
This formula checks numerically.
d o\ a [ Rt Y
NI AR _1_7_&1592 U1 it _u 141
ook P ldh Logh F R (eme)t 22 0 2

which checks with (11.5),
C a
— ‘—\' n 8 1
N i 1 _ -n_ 8 _ 11 _
I il N T Sl S
— n

(o] e Opn A

S ' o
o

which checks with (11.18),



_75..

\_ﬁfﬂ_l,\/g@‘k N—— - N —— =-2.
p -2 "3 C (A b) g 5 o2
—_ On % L (en-1) [_ (2n-1)
n= n=
354, 1,2, (51,p.364
7!8! 5’6’

This summation has also been checked numerically.

From (11.22):

: n-1 -1 x®
N e_l'_l = b_LL T\ Lﬂ')———j‘ = + 2, leading to S_\ '(_1)'——3 = 3{2— »
Lok A Li(emm1)? [ (20-1)

which 1s known.

h e

S n__1 S -~ 1

- - 9
L q; 2 /.6

|

ol 2

which checks with (11.9) ,

- N -

/o <% 4
L. On L.rcn
which checks with (11.26).

Formulas (11.11) for k  and (11.29) for J, are trivial in case
q = 0.
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LIST OF SYMBOLS

As the working equations are all in a dimensionless form, any

consistent set of physical units can be used.

aB

8.2

akn’ e s ’kkn

Aprr Ao

F,3
Fap

G, ¥

x’ Px, 0Pk,

> Q N X

thermal diffusivity, Part A

ratio of thermal diffusivities (= ai/ag), Part B
coefficients of tre various partial fraction series
s-dependent coefficients of the gereral solution,
Part A

pairs of fundamental solutions of reduced eq.(1.8)
(and similar indexed functions), abbreviation for
Fk(apX), see Chapter 6

pairs of fundamental solutions of the "modified"
equation (6.14)

s-dependent coefficients of the gereral solution,
Part B

geometric index (1 = plane, 2 = cylindrical, 3 =
spherical)

numerator of any transfer function

ratio of "radii" (= Re/Ri)

w(s)/pc

reciprocal NUSSELT number (= A/oR Part A; = he/ocRi
Part B)

space variable

radius (or layer hal f-thickness)

complex LAFPLACE variable

time

heat source per unit time and volume (given)

steady heat source (initial value)
LAPIACE-transformed heat source (above steady state
level)

transformed space variable (= %?r Part A; a
Part B) 1

non-dimensional radius

]
|
3

numerators of specified transfer functions
heat transfer coefficient
the system discriminant



v

pc
%kn

i

®
0,(t)

Indexes:

e
i
n

N N
(5] .
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typical additive integral function for a partial
fraction series ‘

typical development coefficients in a partial frac-
tion series

transient complement function with inout éu
transient complement function with input AW/pc
(for Part B, problem II, see 9.19 and 9.20)
thermal conductivity, Part A

ratio of thermal corductivities (= li/le), Part B
time constant (= Ri/ai)

specific heat per unit volume

the zeros of A (eigenvalues of the problem)
IAPIACE -transformed temperature

temperature

ambient temperature (given)

exterral layer

internal layer

summation index (n = 1,...,0, Where not otherwise
specified)

"problem I", Part B

"problem II", Part B

averaged over internal layer

averaged over external layer
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