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A B S T R A C T 
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collection of electric charges emitted from a short lived β emitter activated by 
neutron flux. 

After a short description of components and measuring circuits, this report 
deals mainly with the theoretical sensitivity of the collections. An evaluation of 
self-shielding and flux depression factor and of self-absorption factor leads to 
the formulation of the theoretical sensitivity of the collections in normal 
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in-pile behaviour of collections with a chapter specially devoted to a confronta­
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1 . INTRODUCTION *) 
ι 

Neutron flux measurements during irradiation tests 

are normally performed by activation methods using 

wires or foils of suitable materials like Co, Ag, 

Ni, Au, Ih, Cu ... The amount of radioactivity 

induced during a controlled exposure is a measure 

of the neutron flux intensity : after exposure the 

activities measured are those of the emitted fl or 

Y rays. The method is simple, rather accurate but 

gives only a mean value of the neutron flux during 

the whole exposure. 

A direct measurement of the neutron flux is possible 

with fission chambers but they require a complex 

electronic associated equipment and are generally 

of notable dimensions : however a dealer proposes 

a sub­miniature fission chamber of 1 mm O.d. and 

10 mm long ¿f"1_7· 

After the theoretical and experimental works of 

MITELHAN ¿~2j, CESARELLI ¿"3_7 and HILBORN ¿~4_7, 

a new type of instantaneous flux detector was deve­

lopped, the "collectron" or continuous neutron flux 

detector which is self powered, gives a signal direct­

ly proportional to the neutron flux and can be easily 

miniaturized. 

*) Manuscript received on January 5> 1972 
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2. DESCRIPTION AND WORKING PRINCIPLE OF THE COLLECTRON 

2.1. Principle ¿~2, 3, 4, 5, S J 

The detector consists of two coaxial electrodes : 

the inner electrode which is a (i emitter is isolated 

from the outer electrode or collector (Pig.1). 

When a neutron flux impinges on the device, the inner 

electrode is activated and the emitted [2> particles 

are collected by the outer electrode : it is suffi­

cient to close the circuit on a suitable measuring 

device to measure an electric current which, at satu­

ration is directly proportional to the neutron flux. 

2.2. Realization and component materials 

Geometrically, the detector is composed of a ft emitter 

wire, a solid dielectric material (usually high purity 

AlpO,) and a sheath. The detector is then joined to a 

coaxial connecting cable (Pig. 1 and 2). The measured 

current is the resultant of (̂  emission from the emitter 

and from some impurities always present in the sheath 

and in the connecting wires. 

2.2.1. The_emitter 

The emitter must present a high cross­section to give 

a good sensitivity but not too much in order to limit 

the loss of sensitivity due to burn out. The radio­

active half life for decay in the material should be 

of the order of 4 to 5 minutes ■ for normal in­reactor 

applications. If other neutron absorbing isotopes are 

present in addition to the principal Ô emitter they 

must not produce long­lived CL· emitter that could cause 

slow variation of the measured current. 
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-*** 42 sec 
2.3 m 
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-»- 24.2 sec 

Spectrum 
max.energy 

(Mev) 
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2.6 

2.44 

\ 1.56 

2.87 

1st r e son -
nance peak 

(ev) 

185 

1.26 

16.5 

5.2 

I 

CO 

I 

ζ Westcott (AECL) counsels the normalized value of 150.19 

13 —2 —1 
xx negligible, 1 $> of signal after 1 year In a flux of 10 J n.cm s 

xxx S 4 

TABLE I ­ Neutronic characteristics of /3 emitters 

employed for tne realization of collectrons 
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The maximum energy of (b spectrum must be high to allow 
the β to escape from the insulant and from the emitter 
wire itself. 
All these conditions limit normally the choice of emit­
ter to Rhodium, Vanadium or Silver whose main characteris­
tics are summarized in Table 1. 

2.2.2. The_sheath__or_collector 

Normally choosen with regard to applicability (weldabi-
lity, compatibility in normal working conditions) the 
collector is usually (as the sheath of the connecting 
cable) a tube of stainless steel or inconel with a thick­
ness sufficient to stop j3 particles emitted from the cen­
tral wire. 

2 .2 .3 . 2°^£££ tog^cable 

It is a miniature sheathed cable of the type normally 
employed for temperature measurements : the sheath is 
in stainless steel or inconel, the wires (or the wire) 
are in Ni, the insulant is usually MgO. 
This connecting cable can be the origin of spurious cur­
rents and (or) electric leakage. Theoretically a compen­
sating wiring (see § 2.3.) can eliminate spurious currents 
from the coonecting. cable. 

2.3. Measuring circuit 

It is possible to measure either directly the current, 
or, more simply, the tension at the terminals of a load 
resistance according to Pig. 2 a . It is obvious that 
the cable leakage resistance R, must be large compared 
to the load resistance Β~. 
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Or, if R-, is very high under the laboratory conditions 
at the moment of the fabrication of the detector 
(R^^ 10 M-Ω- ) it falls drastically in normal working 
conditions (influence of temperature and irradiation on 
the insulant, see § 3.6). The connecting cable, which 
is always partially submitted to neutron flux can be 
the origin of spurious currents : in fact either the 
sheath or the connecting wires contain traces of β emit­
ters and it is possible to obtain a secondary current 
coming from the connecting cable in addition to the main 
signal of the detector. Theoretically, a compensating 
wiring, as indicated in Fig. 2 b allows to eliminate this 
parasitic effect. 

3. THEORETICAL SENSITIVITY OF THE COLLECTRONS 

In the simplest case, when activation is due to a single 
emitter nuclide, the output current, as a function of 
time after exposure to the neutron flux, is given by : 

Lj = K.N. 0. e.CT β - exp(0#693 Vl1/2).7 (1) 

Ν = number of atoms with T. /? 

0 = Westcott flux 0 = nv 

G* = Westcott activation cross-section 

^= CT0 (g + rs) 
— 19 e = electronic charge 1.602 10 coulomb 

Tl/2 = half-life of the emitter 

Κ = constant depending on geometry, beta self-absorption 
and neutron flux depression in the detector. 
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The response­ time Tp , which is the time requested to 

obtain 63 fo of the saturation signal corresponding to an 

instantaneous neutron flux variation, is defined as : 

T
E ­

 1
·

4 4 T
l/2 

The equilibrium outputj or saturation signal, reached 

after some
 T
­i/2

 i s
 "thus : 

I = K.N.jZf.e.tf" (2) 
S 

All neutron detectors gradually lose sensitivity, due 

to burn out of the neutron sensing fi> emitter. 

If N is the number of stable isotopes at instant 0 

(beginning of irradiation), after the time t, it remains : 

N = No exp (­ CT . 0 . t) 

and the equi l ibr ium output becomes : 

I s = K±. NQ. 0. e . CT . exp (- <Γ . 0 . t ) 

3.1. Evaluation of the correcting factor K 

In first approximation K may be considered as the pro­

duct of two factors : 

K = K.* . K— 

where : 

IL = neutron self­shielding and flux depression factor 

Kp = self­absorption factor of ß particles in the emitter 

(and in the insulant) 

K. and Kp must evidently take into account the geometrical 

configuration of the device. 
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3.1.1. Self2Shielding_and__f¿^„degression^factor_K.. 

Generally speaking, the presence of an absorber of macros­

copic size in a neutron flux modifies the flux : it cannot 

be assumed that the flux in the absorber position is the 

same as that which would exist in that position if the 

absorber were absent. In general, the absorber will depress 

the flux in its vicinity. 

KUSHNERIUK ¿~9_J has shown that the ratio of mean flux to 

surface flux in an infinite long cylindrical absorber sur­

rounded by an infinite predominantly scattering medium 

sustaining a thermal neutron flux, is adequately represen­

ted by the following formula : 

g m _!__ . JL 
0O a.Ia * 2 ­|3 

where 

a = radius of the cylinder 

X = macroscopic absorption cross section 

β = Probability that a neutron falling in the surface 

of the rod will be absorbed within it. 

If 'Σ. is the macroscopic scattering cross­section and Σ + 
S u 

the macroscopic total cross­section, |=» can be represented 

by the following expression valid for a Έ. + <£. 2.5 
a ,Za.P1 (a . Z a + a.Zs) 
a.Za+ a-£ s.P E S(aZ a + a^â) 
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where 

Ρ­ (aüÜ­μ) = probability that a neutron, thrown into 

the absorber from a oonstant and isotropic source density 

in an infinite medium surrounding the absorber, undergoes 

collision within the ­cylindrical absorber.' 

Ppo (aZ.) » collisbn escape probability for an isotro­

pic source distribution within the cylindrical absorber. 

In these conditions : 

j2 P.. (a.Σ«.) 
K s _ = 2 ï (3) 

1
 ^

 a 2
a ' ¿5­P1 (a ̂ t27+ 2a.Zs.PES(a^t) 

a.Z t ­ a.Ta + a.? e 

P1 and PES are given for varying (aZ.) in Pig. 3. 

Moreover Mc GILL and al. ¿f"10_7 have made experimental 

measurements whose results are in good agreement with 

the KUSHNERIUK's computation. 

Por values of â L_ up to/N/0.8 they propose the empirical 

a correlation : χ (K&) 

E
1 ­ — * 7-Γ (4) 

1
 K.a I„(Ka) 

with Κ a C (Z.a)V
2 

a 

C = 0.183 - 0.13 

IQ and I1 are Bessel ' s functions, 
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The experimental and calculated values are in­¿cod 

agreement with the computation made according to the ·.·;:;. 

Kushneriuk's formula. The $ error "between the two methods 

(5 to 10 <fo) is of the same order of magnitude as the expe­

rimental measurements. 

Values of K1 obtained "by the two methods are compiled in­

Table 2. 

j "~" ! ! \ ! Σ 
iEmitter !a(cm)Imacroscopic cross! a .2 . ! K1 ' 
Î I ! χ —1 ! ! 

{ { { section (cm" ) , , ; 
! ! ! ! ! ! ! ! ! 
! I ! . ! . ! +. ! ! Formula 3! Formula 4: ι ι ι a | s , t , , , 
1 ■ I I I · · · · 

j ¡0.05 j ¡ | j 0.0176 J xx j 0.99 ; 

¡Vanadium! !0.352!0.352!0.704! ! ! ί 
j .,; ¡0.025¡ | j ¡ 0.0088 | xx j 0.99 | 

¡ ¡0.05 ¡ ¡ ¡ ¡ 0 .545 j 0.83 ¡ 0.82 j 
IRhodium ! 110.9 !0.366111.3 ! ! ! ! 
J ¡0.025¡ ¡ ¡ Ì 0.272 ί 0.91 ,! 0.90 j 

¡ ¡0.05 ¡ ¡ ¡ ¡ 0.184 ¡ 0.88 ¡ 0.93 j 

ISilver ! 13.69 !0.352! 4.04! ! ¡ ¡ 

j ¡0.025¡ ¡ ¡ ¡ 0.092 ¡ 0.92 ¡ 0.96 ; 

TABLE 2 : Flux depression factor K1 

χ from ANL 2nd edition 

xx non calculated because of the magnitude of errors due 

to P̂  and PgS for values of a Z close to zero. 

Values of K̂  have been calculated for neutrons at 2,200 m/s; 

they must be corrected for the Westcott flux and the neutron 

temperature. 
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Preceding methods do not allow to take into account the 

effects due to sheath and insulant. In fact some elabora­

ted nuclear codes exist which are able to take into account 

all the constitutive elements of a collectron. 

The use of a WDSN code £"\\J leads to the results of Ta­

ble 3· The computation was made, considering on one hand, 

the shielding effect due to the single emitter and, on the 

other hand, the global effect due to the whole detector 

according to the geometrical conditions of Pig.4, in which 

are also indicated the nuclear data adopted. 

! J Γ 
! Emit ter ! K. ! 
! 1 ' 1 
• · · I I I Ι Γ 
• É * i · 

! Mater ia l ! Radius ! due to the ! due to the ! 
1 t ___ t 1 I 

j i i s ing le emi t t e r ¡ whole de t ec to r ¡ 

ι ; ι t j 

! ! 0.05 ! 0.99 ! 0.99 ! 

j V j 0.025 i 0.99 j 0.99 ; 

j 0.05 j 0.71 ¡ 0.56- ¡ 

! mL ! 0.025 ! 0.86 ! 0.75* ! 
! ! ! ! ! 
! ! 0.05 ! 0.90 ! 0.83 ! 

j A g j 0.025 j 0.95 ' j 0.90 j 
• · · # · " 

TABLE 3 ­ Computation of K. according to a nuclear code, 

With respect to the preceding results the only sensible 

difference regards the rhodium, The additional effect of 

sheath and insulant is in the range of\10 fo. 
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Fig. 4 - COMPUTATION OF K1 FROM A NUCLEAR CODE 
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3.1.2. Self­absorgtion_faetor_K2 

To each monoenergetic p» particle is associated.a maximum 

range X (which is normally expressed in the form of A · Ρ 

in mg/cm of aluminium). 

The probability for aß particle emitted from a point of a 

cyclindrical source of radius a to escape from the cylin­

der is a function of a'and X . För example, a β particle 

formed in the center of a rod, with a range less than the 

radius of the rod, would not escape. 

The same β particle might escape if it were formed near 

the edge of the rod, depending on the direction of travel. 

If a sphere, with a radius equal to the range \ of the 

considered particle is placed with its center coincident 

with the origin of the (3 particle, the escape probability 

is the ratio of the area of the sphere that is outside of 

the rod divided by the total area of the sphere. It is 

possible to make a complete computation from this model 

¿~12_7» fcut it is easier to use the following formula, 

valid for a cylindrical emitter the diameter of which is 

low with respect to the length. 

*? *= ­4" ¿"0.5 ­F 2 (­f­)_7 CHJ 

A = range of the particle in cm. 

a = radius of cylinder in cm. 

a 
F« (—­)' integral function defined by 

^ 2 

F2 (4) . a/ E 3 (a) 

A-* 
with E, (q.) = I — κ — . dp 

A
 P 
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Values of E (q.) and F„ (q) are tabulated in Annex I 

or in Ref. Ζ"
14
./· 

The range ^ must be calculated from empirical formulas 

like : 

\ . ù = 0.543 E ­ 0.16 ¿~13j valid for aluminium 

between 0.8 and.3 Mev but extrapolable to 

other materials, 

)v . f « 0.142 E
1 , 2 6 5

 ­ 0.0954 log E C^J 

valid f or 0.01 < E < 2.5 ­ Mev ι J 

> . f = 0.53 E ­ 0.106 C^J 

valid for E > 2.5 Mev 

where Ρ is the density of the considered material. 

The computation of Kp is complicated by the fact that 

β particles are emitted with a continuous: energy spectrum 

with energies varying from 0 to a maximum value which is 

considered as characteristic of the (à emitter considered. 

A general shape of a (3 spectrum of energies is given by 

Fig. 5. 

To each number Ν. of (* particles of a given energy must 

be associated a range \. which allows to calculate a cor­

responding value K. of the self absorption factor. 

The value of K«, for the considered reaction, is the inte­

gral of these elementary K. values. An approximate value 

of the solution can be obtained in assimilating the β energy 

spectrum to a sum of rectangles to each of which is asso­

ciated a mean number N. and a mean energy E.. 
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For each elementary rectangle it is possible to compute 

a mean absorption factor ^ ; approached value of Kg is 

then given by the sum : 

2.Λ K± 
K
2 

H
i 

The only difficulty consists in determining the Û, energy 

spectrum of the considered reaction. 

In the litterature it is possible to find values of maxi­

mum energy E max. which are normally used in radiation 

protection; the few experimental (3 spectra existing are 

related to elements with a rather long half­life which is 

evidently not the case of Rh, Ag, V. The only alternative 

consists in calculating, for each considered element, the 

theoretical corresponding fi> spectrum, or to use an empiri­

cal formula giving, for the whole spectrum, a mean energy 

value. 

a) determination of K» from a theoretical fi> energy spectrum. 

The computation, detailed in Annex 2, has been made in 

the case of Rh . The corresponding value of Kg is 0.41. 

b) determination of K2 from a mean energy value. 

A mean energy value (at ± %) of a (3 spectrum can be 

derived from the following formula : 

Ë = 0.33 E (1 ­ 4ζΓ) <
1 +
 Τ"") ¿~

15
­
7 

where : E = maximum energy in Mev 

Ζ = atomic number of the stable isotope. 
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Always in the case of Rh where E max. = 2 and Ζ = 45 

this formula gives Ë = 0.967 which leads to a value of 

0.43 for K2. 

This value is a justification of the validity of this de­

termination and the results obtained, according to the 

application of this formula, are summarized in Table 4 

for Rh, Ag and V in 0.5 mm diameter. 

! Emitter 

| Eh
10
* 

! τ
5 2 

1 

• 

! 

! Isotopie 
¡abundance 
!.. 1o 

ι 100 

j 51.3 5 

j 48.65 

i 100 

I 

1 

• ! 

• 

! 

! 

! 

1 

• 

Energy 

E max. 

2.44 

1.56 

2.87 

2.60 

I 
• 

I 
1 

(Mev) 

Ë 

0.97 

0.59 

1.16 

1.08 

I 

! 

! 

v 
.'* 

0.43 

0.29 

0.54 

0.62 

TABLE 4 ­ Values of K~ computed from mean 

energy values 
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3.2. Sensitivity of the collectrons 

With the values of K, and K„ it is now possible to calculate 

the theoretical sensitivity of the different (ò emitters 

according to formula (1). For thermal neutrons at 2,200 m/s 

and neglecting the possible effects of resonance phenomena 

in the epithermal region, the theoretical values of the sa­

turation current are given in Table 5 for the different emit­

ters considered. 

K = K rK 2 I corrected 
s 

A per neutron 

0.61 

0.39 

0.27 

0.50 

0.066 

1.34 

II- .416 

10 

10' 

­21 

■21 

10 
­21 

TABLE 5 ­ Theoretical values of the saturation current 

for various emitters of 0 0.5 mm and 10 mm long. 

As neither the silver nor the rodhium follow a J_ law, it is 

necessary for these elements to correct the vaïues obtained 

for the Westcott cross section which depends on the condition 

of irradiation. Moreover all values must be corrected for 

the neutron temperature. 
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4. LOSS OF SENSITIVITY OF THE VARIOUS β EMITTERS 
AS A FUNCTION OF NEUTRON DOSE 

Due to irradiation the number of stable isotopes dimi­
nishes with increasing neutron exposure and consequently 
the sensitivity of the detector diminishes with neutron 
exposure. In Table 6 is indicated the loss of sensitivity 
(in io with respect to initial sensitivity) in function of 
the integrated flux for various emitters. 

Emitter 
— 2 —Ί 

Integrated flux ( n. cm" .-S ) 
1020 ! 5.1020 ! 1021 5.10 21 ! 10 22 

V 

Ag 

Rh 

0.045 

0.44 

1.5 

0.22 

2.2 

7.5 

0.45 

4.4 

15 

! 2.25 

22 

!.75 

4.5 

44 

TABLE 6 - Loss of sensitivity versus integrated neutron 
flux. 
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A N N E X 2 

Numerical values of the funct ions : 

P2 (q) = <i2 r E 3 (q) 

Values of E. have been computed in CETIS (C.C.R.ISPRA) 
in assimilating the integral to a sum of trapezia : 
thus the tabulated values are slightly higher than 
the theoretical ones. 
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A N N E X 2 

Evaluation of the self-absorption factor of Rh 

from the corresponding theoretical β energy spectrum 
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A.2.1. Determination of the theoretical β energy spectrum 

¿"λ 1 and A 2_7 

For an allowed transition, the repartition of the energies 

of a ß spectrum can be derived from the law : 

Ν'(ρ) dp = K.G ( ± Ζ, Σ ) ρ . Ζ ( Σ 0 ­ Σ )
2
 dp 

where : 

ρ = particle momentum 

<ΰ = energy of the (b particle expressed in relati-
vistic units 

2-0 = maximum energy of the spectrum 

Ζ = atomic number of the daughter 

G- ( - Ζ, Σ. ) = Fermi function 

Ρ = (Z2-1)1/2 
y E 

0.512 

G ( - Ζ, Σ ) is tabulated in function of '.'/"A 2 7 
Ζ 

Κ is a complex factor whose absolute value is not neces­
sary for the specific case considered where the only im­
portant term is the statistic factor Σ ( Έ-Q - Σ ) 
which is representative of the shape Of the spectrum. 
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After integration it follows : 

N = Κ· . G (t Ζ,Ζ ).ρ.Σ (Σö -Σ.)
: 

In the specific case of rhodium we have : 

E max. = 2.44 Mev 

Ζ of the daughter =■ 46 

Σ. β _ÌL_ + 1 = 5.765 
0 0.512 

It is possible to plot a theoretical spectrum, similar 

to the true spectrum except for the K· coefficient. 

The calculated values are tabulated in Table I and the 

corresponding spectrum has been plotted in Fig. I. 

A.2.2. Evaluâtion_of_the_self­absornti£n_factor 

ÏZ_ÊSËî!êZ_^!2HP.S 

From the preceding values it becomes possible to calculate 

a self­absorption factor in assimilating the spectrum to 

a sum of rectangles each of which corresponding to a mean 

energy value and a mean number of particles (proportional 

to the true number by K
1
 ). 

By successive applications of the formula : 

a good approximation of K«, extended to the whole spectrum, 

can be obtained. 

For a spectrum assimilated to a sum of 10 rectangles where 

the mean data are those of Table I the calculation, indica­

ted in Table II, leads to : 19 

Σ N f 
K2 = ­^ = 0.41 

^ 

Ν 



E (MeV) 

^ ( W 
.2.138 

2.074 

.1.830 

1.586 

.1.342 

1.098 

^0.854 

.0.610 

.0.366 

.0.122 

0 

r 

5.765(Σ0) 

5.527 

5.05 

4.574 

4.097 

3.621 

3.144 

2.667 

2.191 

1.714 

1.238 

Ρ=(Σ.2-1)1/2 

5.44 

4.95 

4.46 

3.96 

3.48 

2.98 

2.47 

1.95 

1.39 

0.73 

0 

Ρ Ρ 

ζ 46 

0.1182 

0.1076 

0.0969 

0.0860 

0.0756 

0.0647 

0.0537 

0.0424 

0.0302 

0.0158 

G ( ± Ζ , Ζ ) 

4.22 

^ ο - ^ 

0 

0.238 

0.715 

1.191 

1.668 

2.144 

2¡62t 

3.098 

3.574 

4.051 

4.527 

( * ο - Σ > 2 

0.056 

0.511 

1.418 

2.782 

4.596 

6.869 

9.597 

12.773 

16.410 

20.493 

Ν.Κ· 

0 

7.10 

53.90 

122.07 

191.14 

244.36 

271.58 

266.70 

230.26 

164.92 

78.08 

0 

00 

4^ 

TABLE Ι ­ Determination of the theoretical β spectrum of Rhodium IO4. 
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N 

E 

X cm 

a 
a 

F ( - ) 2 V 
f 

Nf 

1 

781 

0 .122 

0 

0 

ï 

2 

1649 

0 .366 

0 .004 

0 .16 

6 .2 

2.6.1lT 

0 .08 

132 

l!. of c o r r e s p o n d i n g r e c t a n g l e 

3 

2303 

0 .610 

0 .014 

0 .56 

1.78 

0 .04 

0 .26 

599 

4 

2667 

0 .854 

0.026 

1.04 

0 .96 

0 .12 

0 .40 

1067 

5 

2716 

1.098 

0 .035 

1.42 

0 .70 

0 .16 

0 .48 

1304 

6 

2444 

1.342 

0.046 

1.84 

0 .54 

0.21 

0 .53 

1295 

( see F i g . I I ) 

7 

1911 

1.586 

0 .057 

2 .28 

0 .43 

0 . 2 5 

0 .57 

1089 

8 

1221 

1.830 

0.068 

2 .72 

0 .37 

0 .27 

0 .63 

769 

9 

539 

2.074 

0.078 

3 .12 

0 .32 

0 .29 

0 .66 

356 

10 

71 

2 .318 

0.088 

3 .52 

0 .28 

0.31 

0 .67 

47 

CO 
en 

TABLE II - Computation of the self-absorption factor from the (3> spectrum 

K, -1 
10 

N.f 

N 

6.658 
16.302 

0.41 
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