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Part I 

POWER PULSE FLUCTUATIONS IN THE SORA REACTOR ■ Theory 

by W. MATTHES 

Commission of the European Communities 
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Nuclear Studies 
Luxembourg, August 1971 - 20 Pages - Bfr. 4 0 . -

Fluctuations of the power pulses in periodically (reactivity·) pulsed reactors 

were confirmed experimentally. In this report we establish the necessary 

analytical methods to describe such phenomena. It turns out that the variance 

to mean ratio of some fluctuating quantities (e.g. the number of neutron counts 

in an absorption counter integrated over the power pulse) is power-independent 

and only a function of the criticality of the reactor. These quantities can 

therefore be used to determine the criticality of the reactor experimentally. 
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Power pulse fluctuations in the SORA reactor *) 

Part I; Theory 

A) General considerations (see [lj , ¡2J, 6 ) 

We investigate the fluctuations of the power pulses in the Sora reactor in 
the point- and one group model. In this picture the state of the reactor is 
characterized at any time point t by the set of integral numbers N = \ n n . .J 
where n denotes the number of particles of type a. If we have only one a-a 
type particle present we write simply N = a. Later we shall identify type-a 
particles for instance with neutrons, type-b particles with delayed neutron 
emitters of a certain decay constant, type-c particles with counts of fission 
processes etc. 

To describe the time evolution of the particle field we introduce 

a) P(tN) as the probability to find the system at time t in state 
N { n a nb ... ] , and 

b) P(Sl,tN) as the probability to find the system at time t in the 
state N f n n^ ...| if the system was at time s in the state l a b J 
1 { 'a H> ' · * 1 · 

Obviously we have 

i, n 
where Q(s,tM) is the probability that a source acting between the time points 
s and t produces the state M at time t. 

To deal properly with equations such as equation (1) we refer to the standard 
methods (see for instance [l] and [2J and introduce the generating function 

*) Manuscript received on March 12, 1971 
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N 

Where X i s an a b b r e v i a t i o n f o r t h e s e t J χ χ . . . > and XN f o r 

( χ η + χ. η . + . ; . ) . 
a a D b 

Performing the operations indicated in (2) on (1) we obtain, under the as­

sumption that each particle produces its population independent of the pre­

sence of the other particles: 

φ α x )~4>(s,T\)-Q(s¿>g 

where 

jf(sa,tX), f(sb,tX) > a) F is an abbreviation for the set <f(sa,tX), f(sb,tX) 

b) f(sa,tX) is the generating function of P(sa,tN) and 

c) Q(s,tX) is the generating function of Q(s,tM) 

Definition (2) gives us in 

3 A~$(t,yO 

Q X K AI C4) 

the mean number of a­type particles at time t, and in 

^JU^C-i, A) 

3 x ^ Ox 
- <!M*)"V*)>~<^w><^»> - j l . rt) <5) 

Λ­b 
lo %-ΰ 
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the covariance between the a-type particles and b-type particles at time t. 

Operation (4) and (5) applied on (3) leads to: 

b' »r- c 

where 

:,*.±)~<~^*>y>- ( — j ^ — | 

is the mean number of a-type particles at time t due to the presence of one 
tø-type particle at time s (Green's function). 

Q(s,ta) is the mean number of a-type particles at time t due to the source. 

and Q(s,abt) is the covariance of a-type particles and b-type particles at 
time t due to the source acting between s and t. 

To simplify (8) we make two assumptions: 
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a) At time point s we assume a poisson distribution for the particles 

Ό ($;- S M Í»« ) (10) 

This assumption will be justified in our application (see chapter C ) . 

b) To describe the action of the source we divide the time interval j_s,t£ 
in K small time-intervals ίΛ t,,Δ 19> . . Jit I and introduce w(t L , 
t L ... t L ) as the probability that the source produces the states 2 2 K K 
L (& d ■·· ) in the time intervals A t around t (y = 1,2,...K). 
y
 v
 Λ. io ' v *> 

The assumption we make now consists in: 

Wfe,L­> 4^· ^ K L K ) = // W ^ v U (11) 

v=^f 

and we obtain 

K 

Q¿si X)= \\ W ( ¿ v , ^ C O ) (12) 

y = >< 

where 

=F(0= [ i - . p^« ,¿X; , - í . - f (*■»!>,**)·"·] 

Let s(t*)dt* be the probability for a source event in dt and R(L) the prob­

ability that in this source event the state L is produced, then: 

w6-+o, i f ' ) * s (¿9 j * ' · HCL) 

(13) 



ano 

= e 
( 1 4 ) 

Now we ob ta in : 

-¿LQ(s¿X) = $*(ϊ)[Κ(*Η'))-<»1Α* 
( 1 5 ) 

Under the further simplifying assumption that only one particle of some type 
will be emitted in each source event we obtain finally from (6) and (8) with 
(10) and (15): 

M<W)= jW«o<o£cbs,*¿H $W)Gc»*'j«*U*'j (16> 

ή 

D^Ctí ^J^nCc^GCcs^h^-f CsCt'JO^Ub¿)J-¿'] Cl7j 

where s, ( t ' ) d t ' i s the mean number of b- type p a r t i c l e s emitted from the 
b 

source in d t* . 

To proceed further we need an equation for f(sa,tX) to calculate the quan­
tities G(bs,at) and G(cs,abt). 
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Β) Kolmpgoroff­equations 

To obtain an equation for f(sa,tX) we consider the time­evolution of the 

particle field without a source. 

Then we have 

P(sT ¿NJ-JT^C
5
! , * ' N') ^(-¿'N\ Ï KO <i8) 

N' 

where we have to sum overall possible states N* at some arbitrary time point t' 

between s and t. 

Assuming again that each particle produces its population independent of the 

presence of the other particles, we obtain: 

fOT, i X)= flsTj t'V) (19) 

where 

:P- \&~fii*} é*)}JL .fCf'b, t X)· - j 

Now we write (19) in the form: 

(20) 

with the boundary condition 

f(^;a)= ¿ 
* « , 
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The mechanism fo!r the change of the state of the system is controlled 

through the quantities: 

D (at)h probability that an a­type particle disappears in the time­
r 

element (t,t+h) through channel r 

W (at,M) probability that the state Mj m ην ···( will be simultan­

eously generated when an a­type particle disappears through 

channel r at time t. (W(at,X) = generating function) 

With this mechanism in mind it is meaningful to perform the limit operation 

h ­» O in (20) . 

To perform this limit we consider first the transition probability P(ta, 

t+h N ) . 

J
 rT Ν ■/ 'T "f 

or: 

f (¿^ -érJL X)= e ­t­ ^(*.±,Ά)·^ 
(22) 

Using (22) we transform (20) into: 

_ 2f&*. **)- X^c-oi H f · * ^ - P'9'**^ 
(23) 
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We use now equation (23) to derive the equations for the moments of f and 
obtain for the 

a) first moment: 

_2&c<*s,h¿)= 7 H C ^ Û ) GCCS, \oe-~) 
dS c 

H K C > 2J?>J«S4 ~VAf<¿) ~K*\ 

/ftï.tï)- άΛίο 

b) second moment: 

-2 GC*s, /*<. -M. ¿)= Τ Η («s,¿) efes; — ~ ¿ ) + 

Tinche)- HfajSyJrGfa, * *)£&*; -*) 

he 

Gfas,s~ -~is)= T Τ 
«s~~ ν

<|«. 

where mr (at,b) is the actual number of b­particles generated if one a­type 

particle disappears at time ft through channel r. 
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To obtain solutions of (35) and (36) we observe that we deal with two dif­

ferent kinds of particles, namely with particles which can disappear (DA), 

e.g. neutrons, delayed emitters etc.) and with particles which cannot dis­

appear (D= O, e.g. counts of fission processes, total number of a­type 

particles produced etc.). 

To distinguish between these two different kinds we denote particles with 

DÄ) by greek indices ¿̂ y ¿*i S \ and particles with D=0 by capital latin 

indices \ A,B... h . Small latin indices [ a,b... i shall denote any kind of 

particle. 

Then we obtain from (24): 

a) GCfìS, L·*)- j ^ 

b) solve the system of equations 

„> G(*'.M - Σ fa^fWHfcKW (26) 

and from ( 2 5 ) : 

o GfAs.-l·*)' Γ Γ^ 
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b) Çf>st*n)m zffifi>sfr¿')¿<f*lc.i*)tefi>f*)rn fi j 

where 

sfc<*i*J-Z^ctfZ ~¿M7^ C ft* AU C28) 

+ ̂  r; 

Using (26) i n (16) we f i n d 

ï^hcfjh^Jê^^jGo^ u) 

M(£*)- Jfr**) <*>*,?*) t $ ^(έΙ) e s t)M, 

M64¿)=2 I ^ ^ H K ' A J J / ' 

and (27) i n (17) . we g e t 

\Jé)'2i\ $<^W^w^;~u;+ ™<c*}f *£ > { 

(29) 

■v 

J (30) 

(31) 
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Ç) Application to the Sora reactor (see I 31 , / 4 7 ) . 

Here we identify 

a) the time point s with the beginning of the reactivity pulse 

b) >> = O with neutrons 

c) y> = 1,2 ... 6 with delayed emitters 

and assume 

a) a constant source emitting neutrons only, and 

b) neutrons are the only particles with D^O within the reactivity pulse. 

Then we have from C*6): 

'■=' Λ­

If the time point t ranges at most up to the end of the power pulse we can 

put : 

'/jr,«*)­ X; $GCo<',at) GC'T,<*-¿)= X.; ^b(o*,atJ (33) 

Further we have for the mean number of neutrons M(os) at the beginning of 

the reactivity pulse 

M(«?*;= S
 ís

) ' ΐ' <34) 

where 

é 
S (s)= %>+ X\;*0s) ( 3 5 > 
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and . £* is the mean neutron lifetime in the subcriticai state between the 
pulses. 

Then we obtain from (32,): 

where 

MM<*é)=Z'Gf*s,c'*)+ f6f**¡ «*)·**' (37) 

As the neutron population developes within the reactivity pulse due to: 

(38) 

(39) 

we have: 

G(*t',oé}~ S(oSoú) /¿Cos, O¿') 
(40) 

and therefore 

(41) 
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CA)(At)~ S ^(Λί(ού0 *CoK A) M' 

6 

*' 

H fot, A) ^ Z.^(°*) ~~-<
CÑ

) 

For the covariance we find from (3Λ) and (36); 

Ί>^«> = S*c'}
 "

M
r*

iéì 

where 

(42) 

&**',**)= {&f**,of)Ht**ÌA)Jt''/Gf*S,of) (43) 

c*) 

'Λ,ΙΟ
 y
 * ' *■"*·< (44) 

M<*Y.W;_ ^ ' Μ ^ ί ^ ί ^ ; ^ * ^ ^ ^ 0 r j ^ r e W ζ 4 β ) 

The foregoing formulae may now eaxily be applied to special situations. We 
give a fewexamples (see |_5_/ ). 

a) number of neutrons present at time A 

StoJj&ot)- T)(e*0 y.C»*-4) G(*t',*é) (46) 
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u) number of neutrons produced up to time t 

5(oi',NNé)~ ¿)te') ƒ-»> + »/Kr') + %&:-*) G(ot't/vt)ν ζ »* Gt<N*q u7) 

c) number of fissions produced up to time t 

SC°t]T*t) = Vftobt yJ*-0£f°t',?t)+' ¿ï CC**'***)} 
F C 

The variance to mean ratx> becomes 

M ¿'Fif) 
= K >φ(».-4)·Α + Ζκ ~>h + 4 

tr f M 

d) number of neutron counts up to time t in an absorption counter 

sconcev;= 2> Ce') ψ 3>r*'J y.C*-~*) 6?6°t',c¿) 

The variance to mean ratio becomes 
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(54 : 

For t h e n u m e r i c a l e v a l u a t i o n the reac t iv i ty va r i a t ion ^ ( t ) must be g iven , 

which i s mainly due t o a change i n t h e f i s s i o n c r o s s - s e c t i o n . Thus we have 

τ: F 

with D. assumed constant in time. 
A 

The main steps in the further development consist in the calculation of the 

following quantities 

j εψ C- fre*·)*'/*} = 6c*s,øé) 
(56) 

c/t' ì m M**C*4) 
b) GYos.oéUTn- /— 77. ï (57) 

«r 

> CGYOS,ÛΖ?"JJ)6"MU GCetfa) 
Gros, ot'J J F 

(58) 

d) Jf ƒ* ^ (59) 
fnc"(ot') VteOJt' l Gr*é',At) 

G'foéy A6) 
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The numerical investigation of power pulse fluctuations and related quan­
tities will be done in part II of this report. 
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