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ABSTRACT

Fluctuations of the power pulses in periodically (reactivity-) pulsed reactors
were confirmed experimentally, In this report we establish the necessary
analytical methods to describe such phenomena. It turns out that the variance
to mean ratio of some fluctuating quantities (e.g. the number of neutron counts
in an absorption counter integrated over the power pulse) is power-independent
and only a function of the criticality of the reactor. These quantities can
therefore be used to determine the criticality of the reactor experimentally.
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Power pulse fluctuations in the SORA reactor *)

Part I: Theory

A) General considerations (see [1] ) [2], 6 )

We investigate the fluctuations of the power pulses in the Sora reactor in

the point- and one group model. In this picture the state of the reactor is
characterized at any time point t by the set of integral numbers N = {na nb .}
where na denotes the number of particles of type a. If we have only one a-
type particle present we write simply N = a. Later we shall identify type-a
particles for instance with neutrons, type-b particles with delayed neutron
emitters of a certain decay constant, type-c particles with counts of fission

processes etc.

To describe the time evolution of the particle field we introduce

a) P(tN) as the probability to find the system at time t in state
‘e d
N{nanb },an
b) P(8sI,tN) as the probability to find the system at time t in the

state N{na nb ..} if the system was at time s in the state
I i i .o .
{ ‘a v }

Obviously we have

Pt N) = J P(sI): P(T, 4 N-M) Q (s, M) (1)
M

where Q(s,tM) is the probability that a source acting between the time points
s and t produces the state M at time t.

To deal properly with equations such as equation (1) we refer to the standard

methods (see for instance [1] and [2] and introduce the generating function

*) Manuscript received on March 12, 1971



Where X is an abbreviation for the set {xa xb ...} and XN for
+ + L),

(xa n_ X, B )

Performing the operations indicated in (2) on (1) we obtain, under

sumption that each particle produces its population independent of

sence of the other particles:

Pl X)=P(sF) Qs X)

where

a) F is an abbreviation for the set if(sa,tx), f(sb,tX) ....}
b) f(sa,tX) is the generating function of P(sa,tN) and

c) Q(s,tX) is the generating function of Q(s,tM)

Definition (2) gives us in

D L db(¢,X)
D X o

= L (B)D= ™M (ad)
X=o0

the mean number of a-type particles at time t, and in

DL (%, X)

OX . I,

X=0

(2)

the as-

the pre-

(3)

(4)

- om0~ r @Iy =D (£)



the covariance between the a-type particles and b-type particles at time t.

Operation (4) and (5) applied on (3) leads to:

M(a.i):ZM(bs)-G(bS,a—‘U + Qs ta) (6)
b

.Dogb(f) -——'-ZM(BS)G(BS)a,bJE)-fQ(S)a,b;(:) +Z{2(s)—'§v[M(CS)_§X .
b’ oy (:““
x G(vs,azé) G (s, bt)

where

D £Cos, Xz) )

_ - a t - (8)
Clos at)=<mps,at)> ( 5%y,

is the mean number of a-type particles at time t due to the presence of one

b-type particle at time s (Green's function).

Q(s,ta) is the mean number of a-type particles at time t due to the source.

OF £(»s. X¢)

G s, abd)= Lm(vs at)m(vs,b¥) D= (9
Dxagxb

X=0

and Q(s,abt) is the covariance of a-type particles and b-type particles at

time t due to the source acting between s and t.

To simplify (8) we make two assumptions:



a) At time point s we assume a poisson distribution for the particles

D"c*(S)= 5"6‘ M (»s) (10)

This assumption will be justified in our application (see chapter C).

b) To describe the action of the source we divide the time interval {s,t}
in K small time-intervals {Atl,Atz, "‘AtK§ and introduce W(tl‘Ll’
tz L2 .o tK LK) as the probability that the source produces the states

Ly (Z“ Zb»--) in the time intervals Aty around t, (w =1,2,...K).

The assumption we make now consists in:

o
W(E L., tL, 2 Ll)= I s (2, L) (11)
and we obtain
K
———
Q(st X)= , \A/(fv, F (L)) (12)
Y=A

where

F (€)= [ L ple,a é X), Lf (2t e %) |

Let s(t')dt' be the probability for a source event in dt and R(L) the prob-

ability that in this source event the state L is produced, then:

s~/ (L=0, ¢ )= A— s(¢)d¢’
(13)
\’\/(L*_O) é'): %(f’)d'é,'/'Z;CL)



WS F )= (- s (¢)de') + s (#) okt R(F(¢)

s(t'){’,z, (Fred) - 4} Jde!

= €&
(14)
Now we obtain:
t
£.0(skX) = Ssee R (Fwn) = afdt! (s
S

Under the further simplifying assumption that only one particle of some type
will be emitted in each source event we obtain finally from (6) and (8) with

(10) and (15):

%
M (at)= Z{r’\(bs) G(bs,al-) + SS.,(t')G(bc“/ a!-‘)lt"j (16)
b s
t ~
D ) =Z Ms) Gles, abt)+ gscw) G@f;qbiz)ﬂ'; 17}
€ s

where sb(t')dt' is the mean number of b-type particles emitted from the

source in dt'.

To proceed further we need an equation for f(sa,tX) to calculate the quan-

tities G(bs,at) and G(¢ s,abt).
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B) Kolmogoroff-equations

To obtain an equation for f(sa,tX) we consider the time-evolution of the

particle field without a source.

Then we have

PGI,4N)= )P(I, ¢ N PN ¢ N) (18)
Nl

where we have to sum overall possible states N' at some arbitrary time point t!'

between s and t,

Assuming again that each particle produces its population independent of the

presence of the other particles, we obtain:
?(S_L)fX)= f(fijf =) (19)

where

e L fleny €0, o fln e X)- ]

Now we write (19) in the form:

£6-2 ¥ X)= £(s-La,sT)

(20)

Fu[ o0 fas, € X), Loflos, € X))

with the boundary condition:

Xa,

f(#a, ¢ X)= €
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The mechanism fo? the change of the state of the system is controlled

through the quantities:

v

Dr(at)h probability that an a-type particle disappears in the time-
element (t,t+h) through channel r

Wr(at,M) probability that the state M{ma m, ...j will be simultan-
eously generated when an a-type particle disappears through

channel r at time t, (W(at,X) = generating function)

With this mechanism in mind it is meaningful to perform the limit operation

h > 0 in (20).

To perform this limit we consider first the transition probability P(ta,

t+h N),
Plta, 8 N)= (A~;’.D'((a#)—&)<§;'\{+ Z’Df(“ ¢) \W/(a¥,N) (21)

xﬂ_
£t ¢tl X)= € + 3(¢t,><)-&

(22)

g(af) X)= Z:?_(qt){\,{r(d(,X)’ é"’«g

Using (22) we transform (20) into:

(23)
D'P(Sq,)f X)= Z :?((as) Z \,{((asﬁ:’)._ _FCS’q) {7()} 23

s

Fo [fflastx), L feostx), |
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We use now eguation (23) to derive the equations for the moments of f and

obtain for the

a) first moment:

_ 2 Gas,pe)= T Hase) 6, be)
Cc

oS (24

H(“S/C'.) = ZD;(QS){ ’W"((“‘,C) - g;cg

G(as,bs)= g\

ab

b) second moment:

—- Bé(as,mazl)s ZH/‘*‘,C) G(C‘) ~ lz) 1 (25)
L3

Z{H@cbc)— H@-‘)é}"’;fé‘(br,m z‘)g(c.r; ,.,,zl}
be

H (as, be )= Z%ﬂ(qs){w:_(aé) v rac) — J:,, J:cf
-+

é;(aJ;ﬁMAA1S)== J: ar

~o A

where m, (at,b) is the actual number of b-particles generated if one a-type

particle disappears at time * through channel r,
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To obtain solutions of (35) and (36) we observe that we deal with two dit-
ferent kinds of particles, namely with particles which can disappear (D#O,
e.g. neutrons, delayed emitters etc.) and with particles which cannot dis-
appear (D=0, e.g. counts of fission processes, total number of a-type

particles produced etc.).

To distinguish between these two different kinds we denote particles with
D#0 by greek indices {V:[”.Y"'g and particles with D=0 by capital latin
indices { A,B...-g. Small latin indices { a,b....} shall denote any kind of

particle.

Then we obtain from (24):

a) C(As, b2)= <{;b

b) solve the system of equations

- 9_2 S pt)= D HCSr) ECr5 0%
s e

é;(s;kf4:/ = C£;f~

Z
o Covs, Ad) = > féfvf/g*” H gt A) ¢ (26)
& T

and from (25):

o G(As abt)= "Q /:4

b

~~
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¢ ,
b) €ﬁ->j 4614);2_2{/‘6(»5;6«8")5)?1‘)0.41‘/1—5/».;/«2:]4;“ r}“f

(27)
where
S‘@d}qézl/=2—@r(éug’/;2 ,.,.:,r(/,,#) "g,. A (28)
+ 2 o e (pi)-dy [ 62 t) 64y 8 b2) /
5y
Using (26) in (16) we find
o
M(C,{-)= Z{\q(vs) Clrs, mt) + 5 S, (¢") G(v g,’cu,f)o/f'} (29)
¢
M (A¢) = Z S M, (¢) H(»¢,A) A2
~ ; (30)

and (27) in (17). we get

Loy
PROLD) { §at M@t St abt) + g HJL:“ JC*} (31)
-
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C) Application to the Sora reactor (see [3] , Z};{),

Here we identify

a) the time point s with the beginning of the reactivity pulse

b) » O with neutrons

c)y

1,2 ... 6 with delayed emitters
and assume

a) a constant source emitting neutrons only, and

b) neutrons are the only particles with D#O within the reactivity pulse,

Then we have from (A6):
¢

6
M (@ t)= M(os) Glos, ad)t D Mes) GGis,at) + S,So'l‘( E(ot)at) (32)

Xy

If the time point t ranges at most up to the end of the power pulse we can

put:

o
Glis at)= A, SG(M‘;’M‘) (33)
Ny

Further we have for the mean number of neutrons M(os) at the beginning of

the reactivity pulse
mM(os) = 5 (s) - ¢ (34)
s

where

6
S )= S+ 2, MGs) (35)
) 3

y=/



and .2 1is the mean neutron lifetime in the subcritical state between the

pulses.

Then we obtain from (32):

, , o) |
Mat) = &(;} M (at) | | | (36)
where '
&
Mm(aé)=2‘6'(o-",ql‘)+ feﬂz‘;q{}‘/f, (37)
>

As the neutron population developes within the reactivity pulse due to:

t
' /
Gronat)= ago JHiotio) st | @
g
‘/1‘(040)'—‘2/!){;;"{)—2: - ’a{é)/? (39)
we have:

G(leot,0f) = &(o5ot) /G(os, o?’)
(40)

and therefore

S

O sy Glos,08) LT+ S e’ g | |
‘ = 05,0 C :
M™(ot)= / D 6s, 0 ¢ o €41)
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*
M@ Ae) = S M@0 Hioe, A) A2
(42)
S
&
Grot, At)= S Glos, 02" ) H (0t A) A2 "/G/os, od’) (43)
f'
H{lo#, A) = ? D (o2) ~, (A)
-r
For the covariance we find from (34) and (36):
(s)
- s) MM (abt)
Do () = S5, r (40)
where
=
@ fabe) = SJt'waaf') Slot,abt)+ M“@oe) J, J,, (16>
S

The foregoing formulae may now eaxily be applied to special S8ituations. We

give a fewexamples (see [5] ).

a) number of neutrons present at time A

-_— 2 ,
SCot,00¢)= D(o¢") Yols-4) G(2¢, o¢) (46)
F
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) number of neutrons produced up to time t
¥

— < 4
Sot,NNE)= D(z_"){)—’;-f »o-1)+ 26-4) g(oz‘,,/vz‘}f-.gz}:fé/az‘,/\/{f(‘l”
F

c) number of fissions produced up to time t

2 .
Stot,F7¢) = DF/L")Z//H Pn-1) 6ot Ft)+ 35 Glok, :g)j C48)

The variance to mean ratio becomes

¢ _ _
el A+ 25 Bt 4 49)
M (F¢)
z ) 2 ¢ , )
A = jm“faz")pF/z") G (ot F¢)d ¢ /”7(Fz‘/ (509
S
é
s= jl*’/ “Yoz 2/(') Glot, F2) a/z‘/,v,f"(¢z£/' (51)
.y

d) number of neutron counts up to time t in an absorption counter

— e 2 ’
Stoticct)= D () + Dle) v (%-1) ECE,CE) (52>

The variance to mean ratio becomes
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Dec @) _ Tud A+ d

M d) ° | (53.

¢
A= Sm“’(a £') DF(t') Glot,ce)dt’ //~7 “ct) (54

For the numerical evaluation the reaciivity variation € (t) must be given,

which is mainly due to a change in the fission cross-section. Thus we have
rPE) > -4) — 1
- LE L D) (R -5 (ss:
o F

with DA assumed constant in time.

The main steps in the further development consist in the calculation of the

following quantities

¢
, N ¢
a) e%zﬂfffﬁ‘)'/t//Cf = Glos, o) (56)

24
o2’ /: M o) |
b) Glos, oé)ﬁfﬂfosaly (57)
c) (0502 )D& )it = Glot, T - (58)
G{as 077 /é’ )‘{‘) £ / )
d) g // (59)

fmf‘ ozj’)/z')./z‘ Gro¢, A¢)
o Grot, At)



The numerical investigation of power pulse fluctuations and related quan-

tities will be done in part II of this report.
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