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to find out which quantity of the game is adjoint to what. Contrary to this 
point of view we start from the beginning with two independent games of 
two different kinds of particles and put the condition that the expectation 
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Monte Carlo simulation of the adjoint neutron game *) 

A) The normal game 

In the following we describe a procedure to arrive at the Monte Carlo 

simulation of the adjoint neutron transport equation from a somewhat 

different point of view than usual (see for instance /l/>/2/ and ¿3J ). 

We begin with the transport game for particles diffusing in a medium. 

The particles are injected into the medium by a (stationary) source and 

establish a (stationary) flux distribution. Using the terminology of Í4 7 

we write their transport equation in the integral form: 

The quantities introduced have the following meaning: 

F 6<U * lv) = E6<UxlvJ W ^ O c U * ! ^ 

( 3 ] 

( 4 ] 

c fvU ν l x)= 2j>c«)ÇC*^')CK(y-^*) v/KCvU Yixj w 

where 

5 (Xv)eJx «nv is the probability that a particle starts its 

history in the spatial volume­element dx around 

χ with a velocity in the range d ν around V 

$0C *vj is normalized: $
 S
e

f x
 ̂  °*

x
 **

v
~ Á. . 

*) Manuscript received on March 12, 1971 
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V/ £Χν) is t h e weigftt of tlie starting particle. 

ρ ( yf^^z) χ I ν ) *s t n e Probability that a particle at x' flying 
with velocity V in the direction M, — V / \ ^ \ 
is still alive at the point x, and is given by 

o 

. /T/'.^jyly) is a factor which multiplies the weight of the 
particle when passing from x* to x. 

£- s^ ,.1 is the cross section at χ for an incoming particle 
of velocity ν to induce a reaction in which yC*·) 
new particles are generated and where 

/" (^/ _>>v l/)oiv is the probability that the velocity of a particle 
** / 

generated in this reaction is in d ν 

. , , /ι \ is a factor which multiplies the weight of the in-
** coming particle to get the weight of this newly borr 

particle leaving this reaction point. 

The total cross section becomes 
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For the later use we introduce the quantity 

T^^x'|v)= E^-^'lvJe^x'v) <» 

which is the probability that the particle starting at (x V ) makes its next 

collision at x'.' 

With these definitions we have the usual interpretation in which 

I / \J., is the mean weight of all particles with velocities 

in the range d ν crossing unit area at χ perpendi­

cular to V per unit time, and 

"X'Vv U v <Å\/ is tlie m e a n we
ight of all particles leaving col­

lisions in dx with velocities in dv per unit time. 

The integro­differential form of the transport equation (1) and (2) can be 

found in the usual way (see [ΊΙ ) by writing: 

φ C*-*-*,*)- §Jé' Χ(*-*Ά>ν)νί*-*'-Λ^ x~ ¿­al·) (9) 

and forming 

at: 

2) 2 M(x-tJL,\r) - -Xd^-tJl^) -f 
at T 

J
 2t 

t 

Uo) 

(ΛΑ) 



­8 

Under the assumption that 

UX) 
2TC*-*> x + s j a i v ) Ä ÇCX+SJI,*) ipc*-? X+SJ¿¡V) 

OS 

we obtain the equation for φ in the form; 

XL fr~JL$Uv)+ fC*v) 4><Txv} =. ΧΎχν) U») 

We assume now that our problem consists in calculating the integral 

D = $φ£χν/) H^vj Jx· Jy (Λ4) 

where H(x y ) is an arbitrary function. 

The integral over the spatial coordinate χ may extend over certain volume 
or over a surface. As the scoring procedures for these two cases are dif­
ferent we consider themseparately. 

a) Volume integral 

Within the transport game described above the quantity D may be evaluated 
by noting, that it can be written in the form 

H6cv) 
(/I5) C(xv) 

where ô"(x V ) is the cross section for an arbitrarily chosen reaction. 

The type of reaction chosen may even be different for different parts of 

the phase space. 

As cP (χ V ) (S'(xV)dxdy is the mean weight of all those particles en­



­ 9 

tering reactions of the type chosen in dxdV , we obtain D if åt every 

such reaction event we score the quantity q(x v) = w . H(x v )/ G' (χ v ), 

where W is'the weight of the particle inducing the reaction. 
V 

b) Surface integral 

In this case we write the integral for D in the form 

(XL M.) X(x γ) 

where 

_Ιλ = v/|v| 

^A^ is the normal to the surface F at point x(o>».F); 

positive direction on the same side α­S V. 

V (χ\/) is the probability that a particle, when trying 

to cross F at χ in direction V will induce some 

event X (e.g. the particle might be absorbed in 

the surface with a certain probability X). 

The term φG<v)(SL·¿¿λ Χ(χ\/) is now the mean number of events X per sec 

per unit area at χ induced by particles trying to cross F at χ in direction 

V · 

This means that at any event X(x ν ) induced by a particle trying to cross 

F . χ in direction V we score the quantity β'(χ ν ) = w(xv)H(xv)/ 

[(Λ­ η)·Χ(χν )J where W (xv) is the weight of the incoming particle. 

After playing Ν histories we obtain an estimated value D for D given by 

5= ±± I I · ^ 
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where the first sum goes over all N histories and the second sum over all 

reaction events o(. of history i, initiated by source­particle number i. 

We d e n o t e by 

ÇfViJ- Zt.^vj 

the contribution of history i to the final result where (x v. ) indicates 

explicitly the starting point of history i. 

/ Ov 

Now we transform (1 ) to 

where the first sum goes over all phase space elements 4ΤΓ »=­ ¿IX­ 4ΝΛ 

and the"second sum over all' the histories i starting in <3T# » and ¿) Ν­

ιε the number of histories starting in ¿4T. . 

Repeating the game for many histories, we obtain in the limit for very large 

Ν for the mean value of D the expression 

^ 5 > = Ρ - S 9οί*^ ÇtCx^JxA V (ao) 

t-J-%yj </ C C X
 V
^ X averaged over all his­ (2­\) 

tories starting in χ 

and for its variance: 

3 

(iX) 
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where 

4
 ¿N*. À 5- ζ "-? - je-^vj 

„ r Λ/ ¿ ι ^ ,· 
(2.%) 

and 

</ 5 > = \ S,C*vJ C^lfxv.} J ^ ^ v (2Λ) 

ςίχν)=(Λχν)> averaged over all his- (2.5) 
tories starting in χ 

The equations for C (χ ν ) and C (xv) are easily derived (see Γδ] ): 

Let c o (x V) be the contribution to the final result of a history gene­
rated by a particle starting with weight unity at (xv). 

The obviously: 

£Vxv)= W/Xv) ζ ¿"xv? 

Assume that this particle suffers its first collision at x'. If the par-
tide initiates a reaction of type < which we use to calculate D, we 
obtain first the contribution 

to c (xy) and second, as V ( >< ) new particles ar created each starting o 
with a velocity v (i = 1,2.., >>(K)) chosen from the distribution 
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C j, CV ­^ Ν/'· I X J , a contribution due to these newly born par­

ticles: 

vC«) 

3 « v(x-,/iv) Tv„cv-wix'j ε ^w;; <*o-
i = l 

The probability for this event (reaction óf type i< at the first collision 

at x') is given by: 

E­Cx­^x' lv) G-^U w) ">­

If the first collision at x' is of type κ.' (¿ v< , probability for this 

event is Ç. Cx -=> x'lv)S~ , Cx vy ) then we obtain only the contri­

bution: 

3 = ν/c*-?*'ivj Τ w (ν-,ν',ίχο ρ c/ν/; (i? 
>—f 

Combining these results we have: 

^ yA n ■+ v v( / if first reaction is of type i< 

Τ? if first reation is of type κ ' 

To obtain the mean value C (xv) of C (xv) we multiply each possible 

o o 

a> 

C (xv ) of ¿f (xv/) 
o o 

contribution with its probability and sum over all contributions. 

This leads to 

As this equation is adjoint to equation (1) we can put 

r<rxv)= 4>
+
cx^) c*. 
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and have: 

CU) φ * £ Χ ν ; β ^ p c x - ^ ' i v j x ^cxv ;« ! * / 

7CfCxv) = M Cx ν) + 5 c C v - ? v ' U ) 4 , " f C x V ^ v / C3S) 

In the same way one can derive the equation for C (xy) by first squaring 
the contributions and then averaging. This equation takes a complicated 
form similar to the adjoint equation for C (χ ν ) above, with modified source 
and modified kernels. Only for V ( K ) = 1 and all weight factors unity 
it reduces to a simple form which is given for instance in L^J · 

When we calculate D with the Monte Carlo method by giving an estimated 
value D we can therefore with (16) simultaneously calculate an estimation 

—»2 '"" 
for its variance by evaluating D . Generally we want to get D with high 
accuracy, that means, with a small variance. But for a given game the 
statistical behaviour of D and D is well determined. A change in the 
value of the variance can therefore only be obtained by playing another 
game, changing some or all of the characteristic features of the given 
game. This change has to be done in such a way, that the new game leads to 
the same<D.> but, hopefully, to smaller variance. Such a procedure might 
indeed lead to a smaller variance but unfortunately it might also lead to 
an increase in the computing time per history. So the only condition of a 
small variance is not reasonable. What we need is a criterion which leads 
to a minimal variance of the result under the condition of fixed cost 
(computing time). If therefore T.ix _ v. ) is the random variable giving 
the computing time for history i starting in (x V« ) we want to find a 

2 ~ 
changed game which makes Q~ ~ smaller, keeping<£T,> constant. 
We do not try to solve this general problem here. In the next chapter we 
rather consider the different possibilities for constructing a changed 
game which leads to the same expectation value D for D. 
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B) The changed game 

We consider the Monte Carlo simulation of the diffusion of two types of 

particles a and b. The equations for the relevant mean values of the two 

diffusion processes are for the a­game: 

4/xv)- ^x ' /C^x ' vy^Cx ' -? * Ivj 

χ ¿cv) = Sjx*) + S^
Cy

^
}
 CCvU v lxVv

/ 

and for the b-game: 

We are interested in the quantity 

» J A °* 

ÖH) 

(35") 

T
fa J

 h
 (36) 

X,6¿v)- S!fyv)+ Ç<AV'<P ¿xvO^Cv^vlx) 
<" "

 J U
 (5?) 

(3S) 

It might turn out that the variance of the quantity D obtained for a fixed 

computing time by playing the a­game is not tolerable. We therefore try to 

estimate D by playing another game, the b­game. The question is: 

How can we choose the characteristics s S , F , C , Η ν of the b­game to 

obtain the equality 
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5+Cxv)HeiCyv)jfX-<V = ^4?bCxv; H ^ v J ^ ^ V (53) 

for the expectation values. 

The calculation of the quantity D can then be done by simulating the b-game, 
utilizing <f (χ ν ) and H (xv). 

Out of the different possibilities (see £4J ) for choosing an allowed b-
game we take the following: 

(*o) 

('M) 

(41) 

lo 

If we put: 

Φΐίχν)= 4>. c*, -ν) 

x^cxv; - x^cx, -W (**) 

and insert the relations QtO) - (H-3) in (3fc) and (37·) we obtain the adjoint 
equations to (3 *■) ("J5") . 

This can also be seen by using the integro-differential equations for the 

two games (see (.H·)): 
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Using the relations (¿f2) ­ (43) we obtain for the b­equation: 

XL<***J± + ­revCx(­v)^5
,
fcCxv)­f^CCv­7v

,
;^fcCxv'j^v

/
 (4?) 

Replacing V by ­ V we obtain 

(4P) 

and this equation is adjoint to (.W-S). 

The b­game may therefore be considered as "adjoint" to the a­game. 

In the same way we can say, that the a­game is adjoint to the b­game, as 

due to the equations (**-<>)-(.**■ 3) the property of being "adjoint to each other" 

is a reciprocal one. This reciprocity has also the following consequence: 

If we identify the a­particle with neutrons and if we play for the neutrons 

the usual transport game, we know that introducing a weight function which 

is proportional to an approximation of the "adjoint flux" leads to a smaller 

variance. Similarly we can now play the b­game introducing a weight functioi 

(for the b­particles) which is proportional to an approximation of the ac­

tual neutron flux. 

With the help of equations (4) and (5) we can write (*2­) and (43) in a more 

explicit form. For (̂ 2.) we use the fact that in general 

E(Tx­>x'|vJ= 5(f x
l
­­>x|­vj (43) 

and for (̂ 3) that the scattering kernels depend usually on the inner product 

of V and ν and the cross set 

city. Then we obtain for (*2.) : 

of V and ν and the cross sections only on the absolute value of the velo­
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G-*Ä>0 / Cx l^xly)V/CxUxlv)=e-^xv) ι 6 C U X M V / G < ^ ' H <*c> 

and for (43): 

2 " * ' k J6 -^cxv · ; C K 6/-7v ' /x ; V/JCv-->ν7xJ 

The characteristics of the b­game have to be chosen such that these equations 

are satisfied. 

C) Choice of the adjoint game 

As an example we choose the b­game in the following way 

a) Source routine 

l i x v J = A V „ C x ( - ^ j 
b
 (52) 

where S (χ ν ) has somehow to be separated into a normalized part S (χ ν) 
b b 

s, 
and a weight function W (xy). 

b) Transport routine 

U x | v ) = IcC^'-^xtvJ (53) 
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V/ rCxUxlv)= vTCx-^ ' l -v j 
Co fc (Χ V / 

(5Η-) 

Equation (55) implies that the geometric transport of the b­particles from 

the chosen starting point (x'y) to the next collision point (xv) can be 

made using the transport kernel of the a­game. The weight of the b­particle 

when flying from x' to χ has then to be multiplied by W (x'­̂  Xj ν ). 

c) Collision Routine 

(55) 

b f eKCxvj « f 

PVxvJ 
1 »v 

normalized] 

collision j 

kernel j 

(54) 

S t oCxvJ 
(5>) 

where 

f^cxv) = Ç G - ^ O O , ; C^Cv^v*" !^« ! V (5?) 

d) Cross Sections : 

<o" (χ v) = e!
c
—) (53) 
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This gives the probabilities for the different types of reaction events *. : 

ρ Cxv)= 

Z<cxv) 2ir"cx^ 
κ 

e) Scoring rou t ine 

u c x ^ ; = S CTxy -vO 
(¿1) 

This b­game can now be used to calculate quantities defined for the a­game. 

In the application described below we identify the a­particles with neutrons, 

The weight factors in the original neutron game are allunity and we obtain 

for the weight factors for the "adjoint" game from (5"4) and (.59-)'· 

τ 

By a simple procedure we can also avoid the geometric weight factor W in the 

b­game. Instead of letting one b­particle enter the collision with weight W , 

we let 

or 

y = l_^Zl+J ψ**^&" C *&*-) 
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enter the collision point, where "f~ is a random number, equally distri­

buted between 0 and 1 and 

«U V/J - [wl] 

This procedure might lead to the end of a history if )_W 1= 0. Obviously, 

if y>l, then each of these particles has to be followed separately from 

this collision point β«.. 

D) Evaluation of the C distribution 

For the actual evaluation of J (xv) we recall that the scattering kernels 

C K can usually be written in the form (we express now the kernels in terms 

of energy E and direction ­Λ. =
 V
/|V|): 

Here 

¿Τ = C­O­­&0 

S~ "s μ _5j pr)^/pf
 is the (normalized) probability, that the energy of 

an a­particle leaving a reaction of type Κ (in­

duced by an a­particle of energy E) has an energy in 

the interval dE* around E', and 

jf f£ g') is the cosine of the scattering angle (for instance 

in the Laboratory system) compatible with the pair 

(E,E') due to the impulse­ and energy­conservation 

laws. __ 
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The factor ~ expresses azimuthal equidistribution of the direction 

2ΤΓ 

around the incoming direction ­Ω­ . Inserting (&Ψ) in (5#) (with dv 

replaced by dE d­Λ­ ) and integrating over d­Λ­ = d/«.d«p leads to (we 

skip now the index K ê  and the variable x): 

£¿ 

The integration ranges over an energy interval ƒ EL,ER I over which we 
want <-K to be normalized. 

Using the relation 

C Ce -=> e') ¿e - Φ Cf* léÌJfs (α*) 

where / (V*V/£y c»//Ir
 is t h e

 probability that the scattering angle /*<j 

lies in the range d/Kj· around/̂ Tj. (s = c for center of mass system, s = L 

for laboratory system), we obtain 

e¿. 

Transforming finali to the lethargy scale 

- ¡c 

E - £„ S* 

we arr ive at 

f(u.u ^d-P^r-«'/«)/^ '« (£*) 

¿£¿ 
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Using the form (¿if) also for C , integrating (5é) over M- and transforming 
to lethargy gives : 

cW-->")-= —— 'Pone«.-*«1?/*) l-f'ίτ~> 
pyU) c ι <**■ ι

 c
 «*) 

This scheme suggests that for the b­game we pick first the lethargy K. of 

the b particle after the collision out of the distribution C {t* ■=> u. ) and 

calculate afterwards the corresponding scattering angle due to At- f(£t ,«* ). 

Note that tables usually do not contain the distribution P( x<./¿t) but the 

combination: 

(tabulated) 

£-¿W«-̂ 'y7
£
'/'=- ­iz­^f*) 'P (¿* (<*­­>«')J") (?o) 

In the example described below we deal only with the reaction types of 

elastic scattering and inelastic scattering on individual levels. 

We have especially for the case of , 

a) elastic scattering: 

C c
 OA) 

4^ (A+'f / &*) 

where A is the atomic weight. 
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Therefore : 

^±lJ- = ~f;= ^JL(^-C 
t/Oi 

and f i n a l l y : 

pCw)= C fix er U ) Ψ Cf* C * "* ̂  l<] 

x¿ 

κ 
¿ = ΛΤ/3Χ (Γ ^<v

 X
^ - O 

χ/Ζ = W > £ = ^ C XJ-7 *■- ' ^
 L

 / > - " 

(?2) 

(?3) 

(>4) 

(>5) 

(?¿0 

If the lethargy Χ after the collision of a b­particle is determined out of 

the distribution C (w­^>x), we find the cosine of the scattering angle in 

the Laboratory system with the help of the transformations: 

X- v/ 

A 4, cA /» ™ 

¿*t- (¿<-/)^) /(/fS+JY')'*-
 c w 
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b) inelastic scattering on level y~ 

Assuming isotropic scattering in the CM­system 

/ 

'PCf*l
u
J~ Γ <«> 

we have ( see Appendix A): 

¿A /?[ 

e 

U- «y 

^ 

A+l 
where ¿V­ is the lethargy value of —j— ·ƒ" and y~. is the niveau 
energy of the level. 

Then 

I Jo.' I B' fr^ c*) 

and f i n a l l y 
XÆ 

K ^ < = f 5 ^ çrC*) 
(.fl) 

XL 

t, c e- Cx) 

■^ f<&) (*3) 
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where we made the substitution 

© f x ) 
G-cx) = 

ίΙΎΓ <**) 

As for the integration limits we observe that for inelastic scattering a 
lethargy value w after the collision can be reached from all lethargy 
values χ (before the collision) lying in the range (see Appendix A): 

X _ ( w ) ^ X ·£ * Í U / ) (?5) 

where 

/2 e" (Ft) 

i* + fzC'-¿)+ Ί£~Ι 
H+ JZ 4' 

o. 

£ ^ W - ¿^ - Ζ ^ f^/Oy
1 

The"integration boundaries are then 

where X and X are such that C~(x)¿ O within the interval [Xl>hJ 
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Clearly, if 

then 

f Cw) *=­ o 

An example for the functions XL(w) and XR(w) is given in fig.^Xy . 

After having determined X we find the cosine of the scattering angle in 

the Lab. System AK, out of 

,2- t 

_ C±t±) f> -A F t - -/ (3>f) 

Λ A fWz 

yf -t A/"o / F I (îz) 

0+A
L
^ <"i*^ fc)* 

E) Example 

As an application for constructing the b­game we want to calculate the 

neutron flux as a function of height ζ in an annular air gap within a cyl­

indrical water shield surrounding concentrically a cylindrical reactor of 

finite height as sketched in fig. (2.) . 

The average flux in the energy interval A E around E at height z, averaged 

over the annular cylindrical volume element Av oí height Δ ζ and radial 

width A R is given by: 
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£ j = — C 4>Cy,E,¿Z.) J-X J£ ¿-Ι 

¿/t = ¿/V-¿/£- £ J~ 

This expression has the form (7) with 

within ¿41 

(tt) 

(94) 

O else 

This means that if we want to calculate φ by using the b­game 

φ = ^cj>bc*£-*-) HyC>cE-£)Jx~(£~f^- OD 

we have for the source of the b­particles (see (5"¿)): 

_χ_ 
Γ(χ EJL)= 14. Cx, £,—£}= ^ C5C) 

which is already normalized over <ít . 

As the direct neutron game (a­game) is played without weights (all weight 

factors unity) we start the b­particles: 

1) equally distributed over the spatial volume A v 

2) equally distributed over the energy interval Δ E 

3) isotropically, and 

4) with unit weight 
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This source establishes a flux distribution ψ (x,E,_ß­), of b­particles 

which finally leads to φ due to (55) using for Η the relation (<4yf) 

b 

in) 

The original neutron source distribution S is defined over the reactor­

a 

surface and taken to be 

y ο , ς - * ; - JT — y c-*-) C+'C^H: -IV c» 
2.7Γ 

where 

S : Source intensity (Source intensity (Total number of neutrons ° emitted from F per sec) 
f(E): normalized fission spectrum 

(n_\ - f 1 î  -^~ points into the shield 
£o else 

As we consider the reactor surface F to represent the neutron source, any 
neutron crossing F from outside has to be considered as absorbed by F. 
Now the geometric transport in the game for the b-particles is performed 
with the transport kernel Τ for the neutrons. Therefore also the b-par­
ticles are to consider as being totally absorbed when crossing F from out­
side. In this case we take the everitX (see (9)) to be the absorption and 
have X a. 1. 

To obtain Φ we have to score for each b-particle which crosses F at χ 
in direction JX- from outside 

ψ ^ X + Ce^nrC'TT - t j/ ( M, pointing inside) (33) 

and the final result after Ν histories becomes 

M s ¿ir % 
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F) Computer programme for the evaluation of the adjoint cross sections 

and scattering distributions 

a) Elastic Scattering 

We have to calculate the functions ^Ο<0 and C (w­îx) as given in the 

expressions (73) and (74). 

As input data we use a discrete set of values for the elastic cross sec­

tion <ο~(χ) at the lethargy values X(I) (I = 1,2...MX): 

Lethargy X(I) Cross Section S*(I) 

x(l) S~(l) 

x(2) 6­(2) 

x(Mx) £~(Mx) 

where the lethargy intervall ¿_x(l), x(Mx)J covers the lethargy range /w ,w 7 

relevant for the problem. 

The 'tabulated differential elastic scattering distributions are given for a 

set of lethargy values y(I) (I = 1,2...My) and have the form: 

f* ts-
T )

<¿*cl * » > 

1.0 xxx 

0.9 xxx 

O.8 xxx 

­0.9 

­1.0 xxx 
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where φ is the stored quantity due to (99) for all b­particles starting 

in the volume element ¿d\/ considered, and R is a constant which normalizes 
It- ­J. 

the spatial and spectral source distribution to one (e.g. 7%, s f. J «•<>­

C*y¿-£ 7¿) *
or a

 spatial cosine source distribution and a normalized 

fission spectrum). 

Figs. 6a,b show the result of the calculations done for different source 

distributions (with S = 1 neutron/F«sec) (flatVcosine over the reactor 

o 

surface F and flat or fission spectrum over the energy). The height H 

(= 60.0 cm) of the assembly was divided in 10 intervals and 3000 b­par­

ticles were started in each interval v, v„ ... v, (see Fig. 2). Finally 

1 2 lo 
the values for v, and v, , v„ and v„ etc. were added to obtain a smoother 

1 lo 2 9 

curve. The calculation time was about 1 hour for 30.000 histories. The 

values φ{£) plotted in Figs. 6a and 6b are the scored quantities due to 

(99). To obtain the actual numerical values of the flux one has to apply 

(100) (N = 6000). 
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where again the interval jy(D, y(MV) J covers the range /w ,w 7 

We put ¡s f 

and form the tables: 

s^C^/yCx)) ^ CAOA) QCT,x)~ -2—1£—CX. i_ . ¿y/ 

f?CyCx)) 

K = 1,2 21 

I = 1,2 My 

As output data we tabulate the function f* (w) at a discrete set of MW 

equally spaced (by DW) lethargy values W(I) = W + (1­1)« DW (I =1,2...MW), 

b ° 

and the distributions C (w ­>x) will be presented at a discrete set of MV 

equally spaced (by DV) lethargy values V(I) = W + (I­l)DV (I = 1.2...MV) 

by a table of numbers C(I,K) (I = 1.2...MV, K = 1,2 NV) which are solu­

tions of the equation: 
CCX,«) 

©Cx.) P ^ C x ­ î v C x ^ e ­^— ffvQr^ ^ 
U
 NV­/ S 

XL. 

Note that C(l,K) = W for all K andíc(I,l) = XL, C(I,NV) = V(I)> for all I. 

The quantities f MW, DW, MV, Dv} are such that W(MW) = V(MV) . 

The computer programme for the calculation of the quantities Ρ (W(I) and 

C(I,K) proceeds as follows: 

a) For a given "lethargy value W prepare the tables 1 A(I),F(I) I = 1,2...MA> , 

where 

in the range (see fig. 3 O : 

with 

A d , - XC*) ~ f x-Lv< X C k ) ^ * £
 c

"
s > 
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b) Integrate the function F(I) (using trapezoidal rule) from A(l) to 

A(MA) and form the table (see figdÇb)): 

ACx) 

KCX)­ Ç PCX) A X (I =2,3...MA) ("O 

AGO 

c) Divide H(MA) in (NV­1) equal parts and determine the C(I,K) values 

(see fig.^fc)). 

To find the lethargy X after an elastic collision, when the incoming par­

ticle has lethargy W, we have in general to interpolate between two le­

thargy­distribution curves. Assume that: V(I)< W<V(I+1). Then we have 

(see fig.¿4; ): 

X­ CCi) + 3{ CCJI+A) - cd:)] C " * ' 

where 

C(I) = C(I,K) + DK Í C(I,K+1) ­ C(I,K)( 

Β = (W ­ V(I))/DV 

Η = r(NV­l) + 1 

Κ = [ H 1 , DK = Η ­ Κ 

r = Random number equally distributed between 0 and 1. 

b) Inelastic scattering on level 

b, 
We have to calculate the functions Ρ (W) and C (W­^x) as given in the ex­

pressions (.82-) and (PS) . 

As input data we use a discrete set of values for the inelastic scattering 

cross section Θ"(χ) at the lethargy values X(I) (I = 1,2... Mx) and form 

the table 
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C C X CX)). 

I Λ-AO ι 

G- c x ) - ίΛ°^ 

s 

As output data the function f (W) will be tabulated at a discrete set of 
MW equally spaced (by DW) lethargy values W(I) = W + (1-1) DW (I = 1,2..MW), 

b ° 
and the distributions C (W -^ x') will be presented at a discrete set of MV 
equally spaced (by DV) lethargy values V(I) = W + (1-1) · DV (I = 1.2...MV) bj. 
a table of numbers C(I,K) (I = 1,2...MV, K = 1,2...NY) which are solutions of 
the equation: 

ζτοο,<χ= p ( v ^ ) · ma 
Nv- Λ 

ΧL (ν α.)) 

The quantities ¿MW, DW, MV, DV I are such that W(MW) = V(MV). 

For lethargy values W for which Ρ (W) = 0, an inelastic collision will never 

occur and the corresponding table C(W,K) will never be used. Their content is 

therefore irrelevant and will be put equal to zero. 

The computer programme for the calculation of the quantities p(W(I)) and 

C(I,K) proceeds in the same way as in the elastic case with the function 

F(I) = £­(i). 

To find the lethargy X after an inelastic collision, when the incoming par­

ticle has lethargy W, we have in general to interpolate between two lethargy­

distribution curves. 

Assume that V(I)<W<V(I+1) and that 

a) the values C(I,K) and C(I+1,K) are all different from zero. 

Then we can use the same formulae for X as for the elastic scattering 

see (.­toft. 

b) C(I,K) =· O and C(I+1, Κ) Φ- 0. 

We can use the same formulae for X as in case a) if we put 
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Ä ( w - w n ) /(vCltzl)­Vli) (»/«o) 

c) C(I,K) ̂ Oand C(I+1, κ) = O 

We can use the same formulae for X as in case a) if we put 

g = Cw­ vex)) / (SA/P­ ν Cx.)) (,M) 

CCT+J)= C CX( NV) 

Here WM(WP) is the lethargy value at the left (right) of which p(W) 

is identical to zero (see fig. (S~) ) . 
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Figure Captions 

Fig. 1: Inelastic scattering of an adjoint particle on the 6.065 MeV­Level 

of Oxygen (A = 16.0). If the lethargy of the (adjoint) particle 

before the collision is W, then the lethargy X after the collisions 

between XL and XR (XL 4X4 XR). 

Fig. 2: Geometrical arrangement for the example. The surface of the inner 

cylinder with radius R represents the neutron source. The calcu­

lation gives the neutron flux averaged over the annular rings of 

equal volume ν , ν . . . .ν . 

water, Region (3) is empty. 

equal volume ν , v . . . .v . Regions (2) and (4) are filled with 
L· Ci L% 

Fig. 3: The graphs in Fig. 3a, 3b and 3c show the individual steps in the 

calculation of the C(I,K) table as described in the text. 

Fig. 4: Double interpolation between two distribution curves given for the 

lethargy values v(I) and v(I+l). W is the lethargy of the (adjoint) 

particle before the collision (elastic or inelastic) and X the 

lethargy afterthe collision. For the explicit formulae see the text. 

Fig. 5: General behaviour of Ρ (w) for inelastic scattering. Ρ(w) is 

different from zero only within the intervall [WM,
 WP
J · 

Fig. 6 Neutron flux averaged over the annular rings of equal volume ν , 

v ,...v as a function of ζ for the special geometrical situation 
c» JS 

R = 10 cm, R = 25 cm, R = 26 cm, R = 30 cm, H = 60 cm. 

J. ¿t O 4 

φ (ζ) is the neutron flux averaged over the energy interval 

[lO eV ­ 20 eVj , over the volume element and all directions 

for different source distributions. 

FL­FL: source distribution flat over the cylinder surface F and 

over the energy range 10 Mev ­ lev 

FL­FI: source distribution flat over the cylinder surface F and 

fission spectrum over the energy 

CO­FL: source distribution "cosine" over the cylinder surface F 

and flat over the energy 

CO­FI: source distribution "cosine" over the cylinder surface F 

arid fission spectrum over the energy. 
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Appendix A: 

Inelastic Scattering on level γ~ 

We introduce the following quantities: 

(ν , V ί velocities of neutron and nucleus before the collision in ο ο Τ ,_ 
j _» 1 2 

the laboratory system. We assume V = 0 and put E = — m ν . 
o o 2 o 

J ν , ï j velocities of neutron and nucleus after the collision in the 

laboratory system. We put E = — m ν 

­L Δ Χ 

This means: 

Velocity of the center of mass M. 

o ^A+¿. J ^ v A­f­A, J 

o) 

Energy available for the reaction in the CM system: 

This shows that the minimum energy £ of the neutron in the laboratory 

system necessary to exite the level V" is given by: 

A 

or: 

y - ε At A 

Λ+Α 

cs) 

*'?­j 
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lv', V* C velocities of neutron and nucleus before the collision in 

the CM system. 

7 V
i'

 V
i Í velocities of neutron and nucleus after the collision in the 

CM system. 

' T +
M

V , ' . o «> 

Momentum conservation in the CM system 

This gives 

—^, t OU) _=· , 

Ν/ = ­ V, fA) 

Energy conservation in the CM system: 

2­ . t 

¿-«v; + : M v ; - 5 - r 

This gives, with (5­ ) and (4): 

c?; 

V
1

. e ­(^¿(A­t" 

Now we use the relation: 

v¡ = V c + v„' (»; 

and obtain, with (Λ ) and (.8 ) 

^XX=^h,A(.-i)^c^fc¿¿ <·" 
O tAÌ L 
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This gives us finally: 

^ίε 0-Έ,)- %(/+ΑΫ-Λ - Α*~ (λ- ε.) 
UÀ) 

¿Α/s- i: 
ε. 

As y^c can only range from (­1) to (+1) we obtain the range for the energy 

E after the collision: 

E 
o 

l*¡¡<-

i> 

We int roduce 

ε 
E* 

i-AÌ 

- / 

' J 
ζ. ­­­» o 

Cx+AÌ*~ 

Λ +J 

-AlT^'fe* 

CAT. 

ε„­ */C'­£) CA*) 

(Λ<ϊ) 

and obta in from (·*2.) : 

ƒ, CA) ¿J « ƒ_ a) ÇiÇ) 

with 

f+(JI^ 
J_ 

/ f * ^ X 
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For a f ixed % we obtain from t h i s unequa l i ty : 

J_ CS) ¿ Jtr *■ ¿+ Cf) 

with 

J+ ¿i. 

Expressing Ζ back in terms of Ε , transforming to the lethargy scale 

C7 

and taking the logarithm of (A9) finally leads to 

where 

f = 10*"V
 21
°e

(1+A)
 · 

χ = Lethargy value before the collision 

w = Lethargy value after the collision 

χ = Lethargy value of the level (€ ) . 

(Λ?) 

, w . /J j Sïï^Fï* I _ ,.„ 

je χ-*/-

ca»; 
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