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: Usually one starts from the adjoint transport equation to construct a Monte
' Carlo game for its simulation. This procedure requires a sophisticated reasoning
: to find out which quantity of the game is adjoint to what. Contrary to this
| point of view we start from the beginning with two independent games of
f two different kinds of particles and put the condition that the expectation
| value of some estimator in the two games should be equal. This leads directly
i to the Monte Carlo game for the adjoint flux and provides on with a large
: arbitrariness for the adjoint game. This arbitrariness can be used to find
X adjoint games with smaller variances. This method is applied to the cal-
[ culation of the neutron flux in an annular air gap in the water shield of a
" cylindrical reactor.
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ABSTRACT

Usually one starts from the adjoint transport equation to construct a Monte
Catlo game for its simulation. This procedure requires a sophisticated reasoning
to find out which quantity of the game is adjoint to what. Contrary to this
point of view we start from the beginning with two independent games of
two different kinds of particles and put the condition that the expectation
value of some estimator in the two games should be equal. This leads directly
to the Monte Carlo game for the adjoint flux and provides on with a large
arbitrariness for the adjoint game. This arbitrariness can be used to find
adjoint games with smaller variances. This method is applied to the cal-
culation of the neutron flux in an annular air gap in the water shield of a
cylindrical reactor.
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Monte Carlo simulation of the adjoint neutron game *)

A) The normal game

In;fhe following we describe a,prdcedure to-arrive a% the Monte Carlo
simulation of the adjoint neutron transport equation from a somewhat
different point of view than usual (see for instance [1],[5] and [3] ).
We bégin with the transport game for particles diffusing in a medium,
The particles are injected into the medium by a (stationary) source and
establish a (stationary) flux distribution. Using the terminology of [4]

.we write their transport equation in the integral form:
qS(xv): 5a/x X(x'v - | (L)

X(xv) =Skv) +f<}5(x V'}C(VV’/"VIX)O/"/ (2)

The gquantities introduced have the following meaning:

s(xv)= S,(xv) WA -

i T |'
F(x'—vxlv):— E(x-xlv)\W (x-= le) (4]

c(v'svix)= Z}’C“)icx"yc‘(v;v”‘) Wi G/ 5 vlx) s
S K

where

5 (,( V)Jx Jv is the probability that a particle starts its
°
) history in the spatial volume-element dx areund

x with a velocity in the range dv around VvV .
S, xv) is mormalized: S setxv)dxdv=4

*) Manuscript received on March 12, 1971



\/\/S()f v) is the weight of the starting particle.

E (XI"") x lv) is the probability that a particle at x' flying
with velocity V in the direction m, = v/\V\

is 'still alive at the point x, and is given by

Ix ="
{
_ SGC;{‘(‘SM.)O‘S
e 1
— 1 BTy X~ X
EGx—=x|v)= € —:——z)/ W= 6
| x- x| x- x| (6)
l

\A/ T(x-—“)xl\/) is a factor which multiplies the weight of the

particle then passing from k' to x. ’
GK (x V) is the cross section at x for an incoming particle

of velocity v to induce a reaction in which »(K)
new particles are generated and where

/ .
is the probability that the velocity of a particle

C (v = [x)dv

genevrated in this reaction is in dv/
' ) is a factor which multiplies the weight of the in-
W (vav'[x <
k coming particle to get the weight of this newly borr

particle leaving this reaction point.

The total cross section becomes

)= T, Gt 7
w



For the later use we introducé the quantity
T (x=>x'|v)= E(x->x Iv) & (x'v) ' &

which is the probability that the particle starting at (x v ) makes its next

collision at x'.

With these definitions we have the usual interpretation in which

CF(X V)ol\/ is the mean weight of all particles with velocities
in the range dvy crossing unit area at x perpendi-

cular to Vv per unit time, and

X(X;/)JX O(V is the mean weight of all particlés leaving col-

lisions in dx with velocities in dv per unit time.

The integro-differential form of the transport equation (1) and (2) can be

found in the usual way (see [4] ) by writing:

qs(x-l‘—n-} v)= S"ll‘, XC (x- tn,v) Fx-2la=x-¢alv) Q)
fa

and forming

1 g—é bU-tR,v) = =2 ged Plx-a2,v) 40)

2) 9% blx-t2,n) = - X(x-¢2,\) +

R ' - (A4
So‘flx(x-z"xz,v)-?— F(x- €25 x-¢Lfv)

| ls
z



Under the assumption that

_QI(X—D X+S_Q-|V)= f(x‘fS—Q)V):F(X—? X-{-S—[ZIV) (12)
25 - |

we obtain the equation for + in the form:

e 3*"(,4’&4\') +Fev) lxv) = Xlxv) | U3)

We assume now that our problem consists in calculating the integral

(Unw)

D = (dtxv) HOxv) dx dv

where H(x vy ) is an arbitrary function.

The integral over the spatial coordinate x may extend over certain volume
or over a surface., As the scoring procedures for these two cases are dif-

ferent we consider themseparately.

a) Volume integral

Within the transport game described above the quantity D may be evaluated

by noting, that it can be written in the form

D:SCbeV)G'CXV) O*Xo'{\/ L(X\:) (AS)‘
G (xv) '

where G~(x v ) is the cross section for an arbitrarily chosen reaction.
The type of reaction chosen may even be different for different parts of

the phase space,

. As c‘? (x v ) G(xv)dxdy is the mean weight of all those particles en-



tering reactions of the type chosen in dxdv , we obtain D if at every
‘such reaction event we score the quantity q(x v) =w. Hx Vv )/C' (xv ),

wherekw is ' the' weight of the particle inducing the reaction,

b) Surface integral

In this case we write the integral for D in the form

':D_-—-_ So{Folvc(J(xv) @oX M—) X(XV) _ﬂg_‘.’_)_ | - (46)
@_M)X(xv)

where

0 =v/iv|

AN is the normal to the surface F at point x(ew F);

positive direction on the same side as$ V.

X ()(V) is the probability that a particle, when trying
to cross F at x in direction Vv will induce some
event X (e.g. the particle might be absorbed in

the surface with a certain probability X).

The term d)(xv)(_ﬂ_,w) X(XV) is now the mean number of events X per sec

per unit area at x induced by particles trying to cross F at x in direction
Vv .

This means that at any event X(x v ) induced by a particle trying to cross
F . ~ in direction Vv we score the quantity Q(xv) = w(xv)H(xv)/

[(.Q. n) ‘X(xv )J where W (xvVv) is the weightof the incoming particle,

After playing N histories we obtain an estimated value D for D given by

N
D= L0 )1, e -
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where the first sum goes over all N histories and the second sum over all

reaction events o¢ of history i, initiated by source-particle number i.

Wé denote by

Zf(x&‘fk)-‘_ 2 Cf,-c’(“"“) | U

o

the contribution of history i to the final result where (x& Vi ) indicates

explicitly the starting point of history i.

Now we transform (lo) to

dNg
N

D=2 AP ACAN “s
'.A't;k AN{ N

where the first sum goes over all phase space elements d’ie. dXﬁJV&
and the second sum over all the histories i starting in 4‘[’_‘_ , and 4 N{

is the number of histories starting in A’C’i .

Repeating the game for many histories, we obtain. in the limit for very large

N for the mean value of D the expression
LB>= D= gSf,CxVJ C, (x~) dx v (20

C{CXV) ': < éa cxy)>averaged over all his- (24

tories starting in x

and for its variance:

' = <3~ <53>7 22)
:’IS' :
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where

~ - dN.{_. // | 2 A |

D = 2 VI Z & (Xp\a) | (23)
and

S,cx0) G, Cx) dxely an

N
o
\/ &
1
N

C&(xv)=<(‘j’a(x v)>

averaged over all his- (25%)
tories starting in x

The equations for Cl(x\/) and CZ(X‘V) are easily derived (see [5} ):

S~ B

Let f: (x V) be the contribution to the final result of a history gene-

rated by a particle starting with weight unity at (xwv).

The obviously:
~ ' ~
Pxv)= \n/ (x~) é‘: (x\)

Assume that this particle suffers its first collision at x'. If the par-
ticle initiates a reaction of type K which we use to calculate D, we

obtain first the contribution

H(x'v)
= \ R
,£\|< A{;_('X —? x") ) '
G (x'V)
~ .
to éi (xvy) and second, as ¥» (X ) new particles ar created each starting

with a velocity ~v/ (i =1,2,,,»(X)) chosen from the distribution
[} - .
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C.‘ (V - V,-, \ x) , a contribution due to these newly born par-
ticles: ’ :
vix) o o
Y f ’ .
= / / / . .
BK \Aq_(x—vx \V)Z\A/K (v __7\/" |X'J (i (x)\/,) (26)

=<1

The probability for this event (reaction 6f type K at the first collision

at x') is given by:

Elx—=>x"Iv) & (x V) @3

If the first collision at x' is of type :,<_‘ (# K, probability for this
event is B (x = x'\\) G (x'v) ) then we obtain only the contri-
bution: -

yC«!')

= \ > x| A (v = ', & > '
B -,{,—(*'X\V)Z\/K.V—)v )X)ai(xv‘) - (29

V= {

Combining these results we have:

~ A w T U o1 if first reaction is of type W«

f_ao (xv) = ' &

3 ' if first reation is of type '
<

To obtain the mean value C'o(xv) of 80(x v) we multiply each possible

contribution with its probability and sum over all contributioris.’

This leads to

C;- ()(\}) =\SF(X—;x'IV) gH(Ylv) +SC (v V'(X.')(;CX‘ i ave dx ¢

As this equdtion is adjoint to equation (1) we can put

) | |
Cxn)e ¢Fxv) o
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and have:
CP+CXV)= SFCx—vx'lv) )Cffxlv)olx/ (32)
Kixw) = H(xv) + SCCV—av'(x) & G ') AV (33)

In the same way one can derive the equation for Cz(x‘v) by first squaring
the contributions and then averaging. This equation takes a complicated

form similar to the adjoint equation for Co(x*/) above, with modified source
and modified kernels. Only for » (K ) =1 and all weight factors unity

it reduces to a simple form which is given for instance in [5] .

When we calculate D with the Monte Carlo method by giving an estimated
value B’we can therefore with (16) simultaneously calculate an estimation
for its variance by evaluating‘sz. Generally we want to get‘B'with high
accuracy, that means, with a small variance, But for a given game the
statistical behaviour of S‘and'ﬁz is well determined. A change in the
value of the variance can therefore only be obtained by playing another
game, changing some or all of the characteristic features of the given
game, This change has to be done in such a way, that the new game leads to
the same <33> but, hopefully, to smaller variance, Such a procedure might
indeed lead to a smaller variance but unfortunately it might also lead to
an increase in the computing time per history. So the only condition of a
small variance is not reasonable., What we need is a criterion which leads
to a minimal variance of the result under the condition of fixed cost
(computing time). If therefore Tiﬁx a Va ) is the random variable giving
the computing time for history i starting in (x-Q.\QL ) we want to find a
changed game which makes G% smaller, keeping <T> constant.

We do not try to solve this general problem here. In the next chapter we
rather consider the different possibilities for constructing a changed

o~
game which leads to the same expectation value D for D,

E
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B) The changed game

We consider the Monte Carlo simulation of the diffusion of two types of
particles a and b. The equations for the relevant mean values of the two

diffusion processes are for the a-game:

4’,.va)= SJx' X, (x'v) Fa (x'= x |v) @Y

X;(xv) = S;va) + Scﬁa(){v') Cﬁ(v/—a v lx) A’

3s5)
and for the b-game:
4,be <) = SJX‘ )Cbe|v) Fbéx "5 x V) 36
Xb(,(\,)= S’h(xv) + S)\v' ;{abe\/’) CLCV’__-,VI ¥) -
We are interested in the quantity
D= S4,a(,v) H,_ Gev) dx dv 39

- ,
It might turn out that the variance of the quantity D obtained for a fixed
computing time by playing the a-game is not tolerable., We therefore try to

estimate D by playing another game, the b-game. The question is:

How can we choose the characteristics {Sb’ Fb’ Cb’ Hbj of the b-game to

obtain the equality
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Squva) HqC)!v) dxdAV b= SJ%G!V) H Cx V)JX"'V | o 39

for the expectation values,

The calculation of the quantity D can then be done by simulating the b-game,

utilizing 4)b(xv) and Hb(xvv).

Out of the different possibilities (see [4J ) for choosing an allowedb-

game we take the following:

SbCXV)"—‘- H o (x —v)

(}#+0)
Hbev)? S. ~) -
Fx'o 2] = Fa x> x 1) "
Cb(v‘——vle) = Cq(_v—a—\/'.lx) D
If we put:
&b (xv) = $,(x, -V)
X:(x v) = X, ¢ -V | @B

and insert the relations 09) - (#3) in (36) and (3%) we obtain the adjoint
equations to (3%),(35).

This can also be seen by using the integro-differential equations for the

two games (see (4)):

<

[ &5)

—Qw'*)c\-‘- f"+°“
£ gfmd'i’b'(' -Cb+b-—

X
o

“46)
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Using the relations (&2 -~ (43) we obtain for the b-equation:
/
@ gdt + £G4~ S e+ § Qv b v am
b a b b b

Replacing V¥ by - V we obtain

@ gedten)t L oev) $'eev)= 4 G +Sg (o) llx) AVl 4D

and this equation is adjoint to (#5).
The b-game may therefore be considered as "adjoint" to the a-game,

In the same way we can say, that the a-game is adjoint to the b-game, as
due to the equations (#0)-(#3) the property of being "adjoint to each other"

is a reciprocal one, This reciprocity has also the following consequence:

If we identify the a-particle with neutrons and if we play for the neutrons
the usual transport game, we know that introducing a weight function which
is proportional to an approximation of the "adjoint flux" leads to a smalle:
variance, Similarly we can now play the b-game introducing a weight functior
(for the b-particles) which is proportional to an approximation of the ac-

tual neutron flux,

With the help of equations (4) and (5) we can write (#1) and (#3) in a more

explicit form. For (#2) we use the fact that in general

E(x > x'lv) = E("“”‘l"’) (#9)

and for (#3) that the scattering kernels depend usually on the inner product
of Vv and v/ and the cross sections only on the absolute value of the velo-

city. Then we obtain for (#2):
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Johul — T . B T
G ) T, (= x W) W, (<2xIV)= 646v) T x5 1) W (eox'1) 50

and for (#3):
5 5
Z >>ch<) (—?:(x\r‘) C,( Cvl——vle) W, (viovix) —

(54
= b ' .
2 79(n<)6“:(><v) C,(v=vix) W (v -ov'Ix)

The characteristics of the b-game have to be chosen such that these equations

are satisfied,

C) Choice of the adjoint game

As an example we choose the b-game in the following way

a) Source routine

S,tx~) = Hacx =) (52)

where Sb(x v ) has somehow to be separated into a normalized part Sg(x'v)

and a weight function Wz(x v).

b) Transport routine

—_ —_— {
‘b(x(—-) x |\,) = | « C)‘ — x (V) (53
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_ AL
T, ™ ' S, (xv)
A (x=xiv) = W, (ko x'[-V) (s
> AL
Go\ C)‘V)

Equation (53) implies that the geometric transport of the b-particles from
the chosen starting point (x'v) to the next collision point (xwv ) can be
made using the transport kernel of the a-game, The weight of the b-particle

when flying from x' to x has then to be multiplied by Wb(x'-a X, V).

c) Collision Routine

ﬁ
»ix) = ¥ C"<)

(55)
b / g: C)‘V) a / .
C (V—)V,X)z C) C\/ oDV l)‘-) norma..l}zed
x Y txv) “ collision (56)
P‘\' *v kernel
. o 5
b P (x~ )
\n/ (vl—)y(,() = - \/\/: (v >v IX)
A < 5%
Gb(xv)
where
9 . ,
prov) = (e lom CJ v =vin) v 59
>

d) Cross Sections:

.
Sl = Plav)
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This gives the probabilities for the different types of reaction events «

b
G (xv) ' 9
- P (x) 60
VJKva)z =
DG (xv) Uev)
- 2f
‘ K
e) Scoring routine
M (x~) = S“CX,’V) (61)

This b-game can now be used to calculate quantities defined for the a-game.
In the application described below we identify the a-particles with neutrons.
The weight factors in the original neutron game are allunity and we obtain

for the weight factors for the "adjoint" game from (§4) and (5#):

Rt o
e N

b ' _
\I\/.( (vovix) = A, “s)

T
By a simple procedure we can also avoid the geometric weight factor W _ in the

b-game, Instead of letting one b-particle enter the collision with weight Wb,
we let

Y = [W:l PM‘LV!“O (/':g A L ’l)

or

» = [\‘JZS""{ y“'"‘/’!"de” ( bos)
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enter the collision point, where ~ is a random number, equally distri-

buted between O and 1 and
T ., T
\ —_ A
oA = l‘/b L\’"/b
This procedure might lead to the end of a history if [W::S= 0. Obviously,

if »>1, then each of these particles has to be followed separately from

this collision point ew,

D) Evaluation of the Cb distribution

For the actual evaluation of S:(x~/) we recall that the scattering kernels
o : can usually be written in the form (we express now the kernels in terms

of energy E and direction . =‘V/\V1):

Cle, a6 2)= Cce~> E’/;/’; SO~ £ £ €1)) (e

Here

o = (e ')

Cf q(’F‘—a Et)'nc’ is the (normalized) probability, that the energy of
« CE £
an a-particle leaving a reaction of type X (in-
duced by an a-particle of energy E) has an energy in

the interval dE' around E', and

7(' CE E’} is the cosine of the scattering angle (for instance
4 ’ .
in the Laboratory system) compatible with the pair
(E,E') due to the impulse- and energy-conservation

laws,
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The factor 5":;—1_ expresses azimuthal equidistribution of the direction

around the incoming direction £2 . Inserting (6%¥) in (58 (with dv
replaced by dE d-& ) and integrating over d& = dc«dtp leads to {we

skip now the index K, « and the variable x):
ER
pCE’) = gde GCE')CCE™ E) (65)
EL

The 1ntegrat10n ranges over an energy interval Z_EL ER] over which we

want C to be normalized.

Using the relation

C(E - E’) OIE l-" //)(é'".r /5}0//",] (66)

where 73(/’%/5) o//”’,r is the probability that the scattering angle («:
lies in the range dhs around A, (s = ¢ for center of mass system, s = L

for laboratory system), we obtain

ER
o
PCe’) = SG‘CE) 7)((‘%(5"5')/5) /’:,é‘ AE (e¥
EL

Transforming finall to the lethargy scale

-
E = Eo A0

we arrive at

@R

70((”,): G(“) ?({w /a—vu)/a)/_,é — ’/K A3

UL
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. b .
Using the form (64#) also for C, integrating (54) over .2 and transforming
to lethargy gives:

o )

20

6 1
C («>ul =

S | E
/Pg/«(«—w')/u) L=
dx | € %)

This scheme suggests that for the b-game we pick first the lethargy & of
the b particle after the collision out of the distribution Cb(“'€>bc) and

/
calculate afterwards the corresponding scattering angle due to = f(« ,« ).
e '

Note that tables usually do not contain the distribution P(ka/&() but the

combination:

(tabulated)

(’V((“ CEvI

/
27

() P gula ') ]u) (30)

In the example described below we deal only with the reaction types of

elastic scattering -and inelastic scattering on individual levels.

We have especially for the case of

a) elastic scattering:

/
o - Ca

S Ca=a) = Aot A, A0
Ay==Ca%a) [ (25)

GH
Ao (p)' ) R5)

where A is the atomic weight.
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Therefore:
1C | £ ‘
A)E - g, L ()= C
Au'l € | (72)
and finally:
xR
p)= € fot o) P (precn=0 1) 9
XL
C,é(b&/":))(): E"{f) 47(/"( ()(-_7 \//) /x) (TLI-)
plw)
i = Max(Wo,\ul-€) @
y /ﬁﬁ/z
= \ . E.= 4
KRR /‘// F L a-4 30)

If the lethargy X after the collision of a b-particle is determined out of

the distribution Cb(w-e>x), we find the cosine of the scattering angle in

the Laboratory system with the help of the transformations:

X~ W

»\\ (‘(c _ AJ */44 /0 (73

%= (1eAm) JCaepe2ap) * 9
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b) inelastic scattering on level )"

Assuming isotropic scattering in the CM-system
/ .
P Q“< [«)= > (79

we have (see Appendix A):

2
(« (M—?u’/—_— (’9*4) 4 ‘/4171& - A (90}
2 A TF

E,= A0
a-.CQ,

+
where 49, is the lethargy value of éxl )~ and ) is the niveau

energy of the level.

Then
Ef l/;: (P4)

and finally

X R
(x )
(w)c—C-S’(" G
£ ¢ (F2)
XL
6 C S (x)
C (Woax)= 5 T
| e 2 P | (#3)
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where we made the substitution

6 (x)

G Cx) =

y ¥+, %)
As for the integration limits we observe that for inelastic scattering a
lethargy value w after the collision can be reached from all lethargy

values x (before the collision) lying in the range (see Appendix A):

x_ (o) S'. x € X Cicr) (¥5)
where
. e
_ R (w)
< U, + by (4~ +
)(t(W) _ ) 2[ ( Py ) 70>
- _ _, >,
‘,z‘)_ (W) - /2 + /;ﬂ/—A") t A2 / @H

P
R+ A2

Q
= A0

Q.___ W — L//— 2 »?P(//-r"ﬂ)

The  integration boundaries are then

XL (w)= INMAX (‘*"’/ Xay X- () (9

XP(w) = ~Mine ( Xz/ X+ (W)) ®9)

where Xl and Xz are such that 6 (x)# O within the interval LXI,XZJ
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Clearly, if

XR(w) < xt(w) - (%0)

then

P(w) = O,

An example for the functions XL(w) and XR(w) is given in fig.(A4) .

After having determined X we find the cosine of the scattering angle in

the Lab. Syste%fA<L out of

. 2 .
- (A+R) Fa —A Fo -4 34)
N 2 ARIF,

A+ A IV F. (92)
(4t 4 F ¢ A% /5 )¢

e =

E) Example

As an application for constructing the b-game we want to calculate the
neutron flux as a function of height z in an annular air gap within a cyl-
indrical water shield surrounding concentrically a cylindrical reactor of

finite height as sketched in fig.(%) .

The average flux in the energy interval 4 E around E at height z, averaged
over the annular cylindrical volume element Av of height Az and radial

width AR is given by:
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5 |
T - b E,R) AX AE AL
$ael= 009

aT
' (9%)
4T = aVv - 4E - 4‘ a
This expression has the form (7) with
s
d—t' within 4T
Hxv) = 9%)
O else
This means that if we want to calculate r.; by using the b-game
P = Scﬁb(xe_z) Hy(x ER)JIx AE AL (9%)
we have for the source of the b-particles (see (52)):
A
S (xER)= HaCx, E-R]= (36)

which is already normalized over 4T,

As the direct neutron game (a-game) is played without weights (all weight
factors unity) we start the b-particles:

1) equally distributed over the spatial volume 4 v

2) equally distributed over the energy interval 4 E

3) isotropically, and

4) with unit weight



This source establishes a flux distribution qu(x,E,JL) of b-particles

which finally leads to ¢ due to (85) using for H

Y the relation (4A)

/-/be, E ) = J. O £ ———2) (93)

The original neutron source distribution Sa is defined over the reactor-

surface and taken to be

£Ce)

S, Gk =)=5, Y(®) C’”(F(f“g)) (39)

27
where
S : Source intensity (Source intensity (Total number of neutrons
o emitted from F per sec)
f(E): normalized fission spectrum

(2) _{1 if L2 points into the shield

0O else

As we consider the reactor surface F to represent the neutron source, any
neutron crossing F from outside has to be considered as absorbed by F.

Now the geometric transport in the game for the b-particles is performed
with the transport kernel Ta for the neutrons. Therefore also the b-par-
ticles are to consider as being totally absorbed when crossing F from out-
side. In this case we take the evenlX (see (9)) to be the absorption and

have X= 1,

To obtain <& we have to score for each b-particle which crosses F at x

in direction & from outside

<)

_ E
T3+ £Ce) o r(ﬁ-f)) (. pointing inside) (33

(_a_ M.)
and the final result after N histories'becomes

— J_;:Sv..__/,
¢ = N5 2F R

(Ave)
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F) Computer programme for the evaluation of the adjoint cross sections

and scattering distributions

a) Elastic Scattering

We have to calculate the functions f’CKﬂ and Cb(wli) as given in the

expressions (73) and (74).

As input data we use a discrete set of values for the elastic cross sec-

tion G (x) at the lethargy values X(I) (I = 1,2...MX):

Lethargy X(I) Cross Section & (I)

x(1) G (1)
x(2) S (2)
x (Mx) | G (Mx)

where the lethargy intervall [x(l), x(MxZJ covers the lethargy range [ho’wl]

relevant for the problem.

The *tabulated differential elastic scattering distributions are given for a

set of lethargy values y(I) (I = 1,2...My) and have the form:

& S ()

1.0 XXX
0.9 XXX
0.8 XXX
-0.9

-1.0 XXX
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where é_ is the stored quantity due to (99) for all b-particles starting

in the volume element 4V considered, and R is a constant which normalizes

4 -
the spatial and spectral source distribution to one (e.g. 73:=i3 J o
— ) -nja
Q,{f;:f'/ for a spatial cosine source distribution and a normalized

fission: spectrum). .

Figs. 6a,b show the result of the calculations done for different source
: or
distributions (with So = 1 neutron/F-sec) (flatYCosine over the reactor

surface F) and flat or fission spectrum over the energy). The height H
(= 60.0 cm) of the assembly was divided in 10 intervals and 3000 b-par-
ticles were started in each interval v:l v2 v10 (see Fig, 2). Finally

and v. , v, and v_ etc. were added to obtain a smoother
X lo 2 9

curve, The calculation time was about 1 hour for 30,000 histories. The

the values for v

values ¢(2) plotted in Figs., 6a and 6b are the scored quantities due to
(99). To obtain the actual numerical values of the flux one has to apply

(100) (N = 6000),
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where again the interval [y(l), Y(My)“] covers the range [woiwl_]":' s

We put

| e
5"&“4"" o

and form the tables:

Qcr, )= 8 (/¥ @) L 277 ae4)
s(yz)
K=1,2..... 21
=1,2..... My

As output data we tabulate the function fD (w) at a discrete set of MW
1,2...MW),
and the distributions Cb(w -2 x) will be presented at a discrete set of MV

I

equally spaced (by DW) lethargy values W(I) = Wo + (I-1) - DW (I

equally spaced (by DV) lethargy values V(I) = Wo + (I-1)'DvV (I = 1,2...MV)
by a table of numbers C(I,K) (I = 1,2...MV, X = 1,2 ....NV) which -are solu-
tions of the equation:

CcCT,x) .
' K- 4
Secn P (e (x2~v@@))otx = p (v oz
NV=] AR

-Note that C(1,K) = Wo for all K and {C(I,l) = XL, C(I,NV) = V(I)} for all I.
The quantities {Mw, DW, MY, Dv} are such that W(MW) = V(MV).

The computer programme for the calculation of the quantities f’(W(I) and

C(I,K) proceeds as follows:

a) For a given lethargy value W prepare the tables {A(I),F(I) I= 1,2...MA} ,

where

F(T)= 6 (AW@) ’P((“c (aCz)->w)) (403)

in the range (see fig.3aJ):

XL < A(r) € A@) € ACMA)< X R Cao¥)

with

AlT)= X)) 4 XL € X(K) € XR (408
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b) Integrate the function F(I) (using trapezoidal rule) from A(1l) to
A(MA) and form the table (see figlaﬂ)ﬁ

ACT)
Hd&)= S Flx)AX (1 = 2",3...MA) (106)
ACa)

c) Divide H(MA) in (NV-1) equal parts and determine the C(I,K) values
(see fig.Bc)).

To find the lethargy X after an elastic collision, when the incoming par-
ticle has lethargy W, we have in general to interpolate between two le-
thargy-distribution curves. Assume that: V(I)< W<V(I+1). Then we have
(see fig.(4) ): '

X=CCz)+ BB { C(:::+.A) - CCI_)} | (403
where
c(1) = ¢c(I,K) + DK { C(I,K+1) - C(I,K)S
B = (W - v(I))/DV
H = r(NV-1) + 1
K = [H] , DK = H - K
r = Random number equallyvdistributed between O and 1.

b) Inelastic scattering on levelaz

We have to calculate the functions f’(W) and Cb(W-ax) as given in the ex-

pressions (82) and (£3).

As input data we use a discrete set of values for the inelastic scattering
cross section G7(x) at the lethargy values X(I) (I = 1,2,.. Mx) and form
the table
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c (C xCx)).
' (avg)

G ()=

[ 40*

As output data the function f(W) will be tabulated at a discrete set of

MW equally spaced (by DW) lethargy values W(I) =;W° + (I-1) DW (I = 1,2,.MW),
and the distributions CC(W —> x) will be presented at a discrete set of MV
equally spaced (by DV) lethargy values V(I) = Wo + (I-1) DV (I = 1,2...MV) by
a table of numbers C(I,K) (I = 1,2...MV, K = 1,2..,NY) which are solutions of

the equation:

K-
SG(X)AX - P(VCI))' (409)
AV

The quantities {MW, DW, MV, DV;} are such that W(MW) = V(MV).

For lethargy values W for which ﬁ (W) = 0, an inelastic collision will never
occur and the corresponding table C(W,K) will never be used. Their content is

therefore irrelevant and will be put equal to zero.

The computer programme for the calculation of the quantities P(W(I)) and
C(I,K) proceeds in the same way as in the elastic case with the function

F(I) = 6 (I).

To find the lethargy X after an inelastic collision, when the incoming par-
ticle has lethargy W, we have in general to interpolate between two lethargy-

distribution curves.

Assume that V(I)X WCV(I+1) and that

a) the values C(I,K) and C(I+1,K) are all different from zero.
Then we can use the same formulae for X as for the elastic scattering

see (4o7),

b) C(I,K) =0 and C(I+1, K) £ 0,

We can use the same formulae for X as in case a) if we put
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B= (W= M) /(V(.IM)—WP’I) (A40)

c) C(I,K) # O and C(I+1, K) =0

We can use the same formulae for X as in case a) if we put

B= (\,\/_,.\((I)) /(\Al?—-\/cz)) (AAA)

C(Ted)= C (T NY)

Here WM(WP) is the lethargy value at the left (right) of which f’(w)
is identical to zero (see fig.(5)).
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Figure Captions

Fig. 1: Inelastic scattering of an adjoinf particle on the 6.065 MeV-Level
of Oxygen (A = 16.,0). If the lethargy of the (adjoint) particle
before the collision is W, then the lethargy X after the collisions
between XL and XR (XL € X £ XR).

Fig. 2: Geometrical arrangement for the example. The surface of the inner

cylinder with radius R, represents the neutron source. The calcu-

1
lation gives the neutron flux averaged over the annular rings of

equal volume Vi Vg eeeeVye Regions (2) and (4) are filled with

water, Region (3) is empty.

Fig., 3: The graphs in Fig. 3a, 3b and 3c show the individual steps in the

calculation of the C(I,K) table as described in the text,

Fig. 4: Double interpolation between two distribution curves given -for the
lethargy values v(I) and v(I+1). W is the lethargy of the (adjoint)
particle before the collision (elastic or inelastic) and X the

lethargy after the collision. For the explicit formulae see the text.

Fig. 5: General behaviour of f (w) for inelastic scattering. PpP(w) is

different from zero only within the intervall [WM, WPJ .

Fig. 6 Neutron flux averaged over the annular rings of equal volume vl,

v,. as a function of z for the special geometrical situation

Voo eVy

R, =10 cm, R

1 =25 cm, R

=26 cm, R, =30 cm, H = 60 cm.

2 3 4

$ (z) is the neutron flux averaged over the energy interval
bﬁ)ev - 20 eVJ , over the volume element and all directions
for different source distributions,

FL-FL: source distribution flat over the cylinder surface F and
over the energy range 10 Mev - lev

FL-FI: source distribution flat over the cylinder surface F and
fission spectrum over the energy

CO-FL: source distribution "cosine" over the cylinder surface F
and flat over the energy

CO<FI: source distribution "cosine" over the cylinder surface F
and fission spectrum over the energy.
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Appendix A:

Inelastic Scattering on level Y.
v

We introduce the following quantities:

—>
{‘\70, Voj velocities of neutron and nucleus before the collision in
. -
the laboratory system, We assume Vo = 0 and put Eo = '2- m v(z).
- —
{ Vl’ Vlj velocities of neutron and nucleus after the collision in the
laboratory system, We put El = %m v?.
This means:
Velocity of the center of mass
- A M 2)
V. o= ~, (—= ) A= 2 ¢
o “AtA
Energy available for the reaction in the CM system:
[ z | ) & :
- - = (w+M)vy = E T 2)
D - 2 WA Vo 2 ( < ° /“LA (

This shows that the minimum energy € of the neutron in the laboratory

system necessary to exite the level X is given by:

A
— (s)

Y°£A+A

or:

Z=37'_‘ (4)
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P -
{v', v! } velocities of neutron and nucleus before the collision in

o o
the CM system.

vy v! velocities of neutron and nucleus after the collision in the

CM system,

Momentum conservation in the CM system:
( Vv
ot N Ead
wA N, + MV,‘ wyv, I\/] \/I = O

This gives

{

—
Vo= -
A

Wy =
Vl
™
Energy conservation in the CM system:
2

Tt 't ~
zl—wy, + Z,NV’ = D y_

This gives, with (2 ) and (4):

e 25 - %)

Now we use the relation:

—
—>» -
v,= V. + v,

{

and obtain, with (A ) and (8)

2 €

(/+A)l

(s)

(¢)

)

(9!

(%)

E = J wmy, = = A+ AL[/_ E—i‘) + 2[& A l)/-éj (0]
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This gives us finally:

E + £
é“cCEo-’E')= ‘Ef’(/f/i) -A- A (A- E.)
.
LAY 4- Ez_

(14)

As z“c can only range from (-1) to (+1) we obtain the range for the energy

E1 after the collision:

_ . _ .
v T | Tz
£ [/4//4—-1_?0 /fj cp <€ £ [/)/x c +/] -
(1e4) © (18] °
Vv —~
(qc = —/ /'c_‘ +4
We introduce . ’ '
_ - .
2= A VA=, A .- = /CA~ %) (13)
53 / .
- £ o
and obtain from (42): _
foc2) € F < f (2) as)
with
2t f
Fo2)= A2 98 . feas fo2) W

(2ta)”
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For a fixed 5 we obtain from this unequality:

2 () ¢ 2 € 2, (F) “
with |
w. Brlemyi oo,
T Fe 2
# “«
Expressing Z back in terms of E_, transforming to the lethargy scale
—Ef:- = A v (4%)
and taking the logarithm of (A®) finally leads to
X (w) ¢ X € x¢(w) @)

+ 24
X, (w)= [g//» = )+ X~ (24)

— - 9. +
- 10V %~ " 2 log(1l+A) |

o,

x = Lethargy value before the collision

w = Lethargy value after the collision
A\

x , = Lethargy value of the level ( €),
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