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ABSTRACT 

This report summarizes the mathematical solution of neutron 
transport problems in a bare sphere and infinite homogeneous slab 
according to the new analytical jx method, spherically symmetric 
scattering in the laboratory system being assumed. It also describes 
in detail a Fortran-IV computer programme JN-METDl for accurately 
solving both the stationary and time-dependent problems. 

The method has the practical advantage that the eigenvalues and 
eigenfunctions of the integral equation converge to the exact values 
very rapidly as the order of the j N approximation increases. The eigen
values can be computed in the j N method without any knowledge of the 
eigenfunctions which are therefore only evaluated by the code if 
required (e.g. the flux in selected energy groups at selected space 
points). This fact makes for a high computational efficiency. 
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JN-METDl, A FORTRAN-IV PROGRAMME FOR SOLVING NEUTRON TRANSPORT PROBLEMS 
WITH ISOTROPIC SCATTERING IN BARE SPHERES AND HOMOGENEOUS SLABS BY THE 
1 METHOD *Λ 
N ' 

1. Int roduct ion 

The j method has been developed during the last ten years to achieve a 
simple but accurate analytical approach to neutron transport in a finite 
system. One of the essential points of the method lies in the expansion 
into spherical Bessel functions of the Laplace-Fourier transformed emis
sion density of neutrons (or the distribution of secondary neutrons) and 
the kernel of the integral equation (resulting from the Laplace and 
Fourier transformations of an integral transport equation with respect 
to time and space, respectively). For spherical and plane geometries, 
the expansion of the transformed flux rather than the transformed emis
sion density with respect to the Fourier transform variable is equivalent 
to an expansion of the original flux in Legendre polynomials with respect 

1)2) 
to space . Due to the expansion of the emission density, our final ex
pression of the flux exactly satisfies the boundary conditions independent
ly of the order of the j approximation (truncation order of the expansion). 
The method has already been applied successfully to space-energy time-

3) 
dependent transport problems in a bare spherical system as well as 
space-angle energy-time dependent problems in an infinite homogeneous 

4) 
slab with finite thickness (always assuming that the scattering of neu
trons is spherically symmetric in the laboratory system). The neutron flux 
for a stationary state has also been obtained as a simple limiting case of 
time-dependent problems. A computer code for stationary problems in a homo
geneous slab has been adapted for calculating also the first and second 5) time moments of the flux due to an incident delta function source 

An extention of this approach to take into account anisotropic scattering 
of neutrons as well as multilayer slab systems can easily be performed, 
as already shown by several authors . Furthermore, the application 
of the method to convex geometries has recently been demonstrated for a 

. lo) T homogeneous medium in which the neutron scattering is isotropic . In 
this work, an expansion into ordinary Bessel functions of odd order was 
adopted for an infinite cylinder instead of the spherical Bessel functions 
for the slab and spherical geometries. 
*) Manuscript received on 16 September 1970 
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The present report is concerned mainly with the computer code JN-METDl 
designed to solve neutron transport problems for bare spheres and in
finite homogeneous slabs within the context of the multlgroup and (up 
to) j approximation (scattering being assumed spherically symmetric). 
The code can deal with the following problems: 

(a) Stationary problems in bare spherical reactors to obtain the asymp
totic time constant (decay constant of the fundamental mode), the 
value of the effective multiplication factor k „. or the critical 

eff 
radius, and the flux distribution as a function of space and energy. 

(b) Stationary problems in homogeneous slabs to obtain the space, angle 
and energy dependent flux due to a plane isotropic, point isotropic 
or monodirectional boundary source. Also the first and second time 
moments are calculated for the time-dependent flux in the slab with 
a point isotropic or monodirectional delta function source on one 
boundary. 

(c) Time-dependent problems in a non-multiplying bare sphere without up-
scattering of neutrons to evaluate the space, energy and time de
pendent flux resulting from the incidence of an external source at 
the centre, the time behaviour of the source being described by a 
delta-function or the Gaussian distribution. 

(d) Time-dependent problems in a non-multiplying homogeneous slab with
out up-scattering of neutrons to evaluate the space, angle, energy 
and time dependent flux in the slab with a point isotropic or mono
directional source (described by a delta function or the Gaussian 
distribution in time) on one boundary. 

2. Mathematical Formulae 

Under the assumption of spherically symmetric scattering in the laboratory 
system, the j method has already been developed to deal with neutron 
transport in a bare sphere and an infinite homogeneous slab with finite 

3)4) thickness . We therefore only summarize the mathematical formulae 
here. 
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2.1 Timedependent problems in a bare sphere 

We consider first a bare sphere of radius R within the context of a multi

group (G energy groups) model and the j approximation (with an odd value 

of N). Let Σ» and Vj be the macroscopic total cross section and speed 

of neutrons in the gth group respectively and C(fl^*1) the mean number 

of secondaryneutrons produced in the gth group as a result of a collision 

in the gtth group. 

The number of neutrons at the radial coordinate r and at time t resulting 

from a neutron source S.S(t)S(Y)//'(fjrif
J
) » in the case where R/Vj is 

finit« 

to M) 

3) 
finite, is written as (£M3 being the largest integer less than or equal 

vJw,(nt)=s;^fiW^itirA;)/«Ä.n 

where 

Çn«V*>iï*-k[j§- ψ-^^ίηψύ0 f^(-f\VJ¿n(¡Vj (2) 

in which JtøOQ is the n-th order spherical Bessel function and ft 3 
i-PM-Àybftò· The explicit expression for ¿̂ («ί,̂ Γ,Λ) is shown in the 
Appendix 1, Section 4. In Eq. (1), A=*MJj. and BmtyAi ) stand for 
a real pole and the residue of f>W(fl,,4) which satisfies the following 
linear equations (the notation ¿ indicates a sum only over odd values 
of n)î 

(3) 

where 
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The expressions for Jfujî i/-̂ ) a n d A«tøi/-4) a r e summarized respecti
vely in the Appendix 1, Sections 1 and 8. 

In the absence of up-scattering of neutrons in a non-multiplying bare 
sphere, Eq. (3) is reduced to 

41**1 

0ΐ=4,?,'··,Ν. (6) 

This equation indicates that the problem of finding the pole J=T^%J: 

of Bm(?>/4) is the same as that in a one-group model: 

Λ* I J ^ - C W W ^ M ) |=o, Μ=Η3,5/··,Ν, (7) 

and the total number of poles for the g-th group is £(Ν·Μ}/ί?}3 instead 
of £(N+O/Î2j|<r ι including all poles of the higher groups due to 

the presence of the last term on the righthand side of Eq. (6). 

2.2 Stationary problems in a bare sphere 

From Eq. (1), the asymptotic behaviour as t<>øO can be written as 

™ (8) 



where -4«2}Ί^ stands for the largest pole of Βρι^Ά") whose 
value is to be obtained by solving the determinantal equation: 

-tø I %^-
c(
ww^w<> κ 

I1'
s
l2,-,ç -for n,n*i,3,5,--·,Ν, 

(9) 

which gives the asymptotic time constant J4-4 as a function of the 

physical properties of a reactor and the geometrical dimension. 

For a critical reactor, «¿j must be equal to unity and Eq. (9) with <&\-\ 

therefore gives the critical condition. In order to obtain the value of 

the effective multiplication factor k for a given reactor, C(̂ *J'} 

is divided into two parts. These are the scattering part Ci(1"*}0
s 

2j(f»J')/2| and the fission part C¡(J*p= fy(VZf)|/Zj where Xj 

stands for the proportion of fission neutrons born in the gth group. 

Using this separation, the value of k is obtained by solving Eq. (9) 

with -å^i and 

c ( \*p = cA ψ p+ cf W)/4*n. ( 10) 

The ratios between the residues BWif/^)
 c a n n o w D e

 obtained by the 

use of Eq. (3) with S.~0 and Eq. (9) for any of the abovementioned 

three problems, that is, the evaluation of the time constant, critical 

condition or k ... Having thus obtained the residues, the flux distribu
eff 

tion can be obtained from Eq. (8) for each problem. 

2.3 Timedependent problems in a homogeneous slab 

We now consider here an infinite homogeneous slab with finite thickness 

a by assuming a neutron source SjCMit) incident with the direction 

cosine JJL upon the surface at the space coordinate X~0 · The number 
4) 

of the gth group neutrons is then written as 
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(11) wheye 

ι M 00 

(12) 

the explicit expressions for J-J, (<>;,.£,ƒ, Λ ) and ^ (fyf,/, ^+^-2)1^ ) 
being given respectively in the Appendix 1, Sections 6 and 7. In the second 
term on the right-hand side of Eq. (11), the summation is performed only 
over the contribution coming from the poles of the g*-th group (g' = 1,2, 
,.,g,...,G) which satisfy the condition Α\·ι > Å~ *}V*/{.Tfå ) £ at most, 
j = 1,2,..., (N+1)G} . The function JL(J,J) satisfies the following equa
tion: 

(13) 

where 
,00 

(14) 

For three cases where 
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(a) SjJM/ΐ} = {>.§(+) (plane isotropic source), 

(b) 5j{A(,t)=2S'í/iSÍt) (point isotropic source), 

(c) &CW,t)=$.SCU^)$(t) (monodirectional source), 

the integral Cn(4f/O takes respectively the following forms: 

^^>àr£in
(
^

y
^£f^

i(
^

t4
\
 (15) 

^^^ηΙ-φ^Χψ**^)**1- jjl, (16) 

C¿Uq,A)~2F*<q,4,/o<*); (17) 

the explicit expressions for Cn^vA), C/tty/A") aná
 ¿» tøj/Ό being 

shown in the Appendix 1, Sections 9, 10 and 12, respectively. 

Since JmeiWj/A ")~0 when m+n = odd, a system of linear equations (13) 
can be split into two sets; one contains only the terms with even values 
of η and m and the other contains only those with odd values of η and m. 
Hence, for a non-multiplying slab in which there is no up-scattering of 
neutrons, the poles of Rn(J/-0 are to be obtained by solving two de
terminantal equations [see Eq. (7)3 : 

«tø l Jfr-«n>j«*<^-o ι =°;
 (18) 

n,m = 0,2,4,...,N1 or n,m = 1,3,5,...,N, 

under the condition that the value A=ZfâA', should be larger than Ι ^ - φ . . 

In this case, the maximum number of the poles for the gth group is (N+l)g 

instead of (N+1)G. 
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Upon integrating Eq. (11) over it from 1 to 1, the total flux is ob

tained in the form: 

* S* frjV^, &fr-*j 'WW-φι λ 

(19) 

The expression for 6(Λ (û^, 2"$-λ} ί^+Χ^-"2"^ ) is shown in the Appendix 1, 
Section 5. Furthermore, the total number of neutrons reflected by or trans
mitted through the slab is obtained by integrating \u.\^Æ.* (XtjMj t ) ( Xø-0 

to observe neutrons reflected by the slab, or "Xt—(L for neutrons transmit

ted through it) over ytt from 1 to zero or from zero to 1. This gives the 

form £ see Appendix 1, Section 11 for the expression of ÉJJ (Qi, ÍJ(+X|V¡fZj1£ ) J I 

+^βΐ£ηϊ-(φΓ1ϊ HJ h4-0nBn(1, il+ΣΜ-φ, ) 

(20) 

2.4 Stationary problems in a homogeneous slab 

For a subcr i t i ca i system with a s ta t ionary boundary source Sj (¿Ο ι only 

one largest pole A-Zfâ of Bm ^%ιΛ ) i s of importance. Hence, by multi

plying A'Ttti on both sides of Eq. (13) and taking the l imit ¿>Z|ty , 

we get 
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+íc(3^ozía$íC1L(z¡a/2yJ n=oJl2J-JN, 
(21) 

JLcu-n'-)jr.a$.£-(z.a/2*>. n=ù.4.2. — .H. 

where Β^ψ-JUm. U-W) titty A) and $*,4ι<«,) = Jùn U-XiVOS^WpA) 

which takes the form given by Eq. (15), (16) or (17) with ^ = Z<V| when 

the angular distribution of the source is plane isotropic, point isotropic 

or monodirectional. 

The stationary vector flux, scalar flux and the total number of leakage 

neutrons can thus be written as follows: 

Vjfl, &,p=jt$W)Mf (-ZiWÌ+jÌBrfpFn&^T/a^m ), (22) 

$4μ\/\ψι (X:f) = ieV SiVOVft-WPiix+A 

In addition, it is also easy to obtain the time moments of the timede

pendent flux. For example, the first three time moments of the angular flux 

5) 
(11) is written as 

ί/*ψι (%>M ̂ föjh (M~yi > *? ( ψ- ) 

+ ¿ ΒΛ ( i> m ) F« (Σ,α/2, XA,f> *M ) , 
* * (25) 

(26) 
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+£iízB1l($,A')F1l(^^V^/Jj)}jsm m 

From a comparison between Eqs. (13) and (21), it is seen as expected that 
the zeroth moment of the flux due to an incident delta function source 
S (M Ό =

 SiÍA)S(t)
 is ea


ual t o t h e

 stationary flux (22). 

3. Procedures for Evaluating the Pole. Residue and Contribution of the 

Continuous Spectrum for a NonMultiplying Medium without Uprscatter

ing of Neutrons 

3.1 Approximate values of the pole 

We summarize here the procedure to find an approximate value of the pole, 

which is required for solving Eq. (7) or (18). 

Figure 1 shows the curves giving l/c as a function of JUL obtained by 

solving the determinantal equation (18) of the elements with even values 

of η and m by fixing the value ^=2TV , within the context of a one

group model and the j , j or j approximation (N = 3,5 or 7). (Note that 

the smallest c gives the value required to keep a slab of thickness Ζ Λ 

critical). In order to find the poles of the gth group with C(J>J) and 

2Γ.Λ , the diagonal of a rectangle with sides Ί/ΟΙ}-*]) and ZjÄ is 
drawn as illustrated in Fig. 1. The points of intersection between the 
curves and the diagonal should have the abscissa Zjû-H · In the ex
ample shown in Fig. 1 ÍCtJ-'Ps'f and Zj«= </5 1 , it is not clear 
if the lowest curve of the j approximation intersects with the diagonal. 
In such cases, the asymptotic expression for the pole with a small absolute 
value of -2jÆ-R should be taken into consideration. The expressions in 
the j , J and j approximations are respectively written as follows 
XCDfjS C(J->J)2JÄ/2 aná V being the Euler Mascheroni constant 3: 
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rl.-L. 

Zt^ucfìi-r-ér, 

I 4Z j-42/(50X¡) 

jL 4-Hf/(35CDfj) 
4° í4-Jl.20O26O/(caj)lV-5.3125<n/(co(J)} h 

g j U-3. e%53V(aXi)l V-1.7153i0/(.C(X¡)Í ι 

(28) 

which shows that, for example, in the j approximation there are 4 poles 

for C««> 9.265908, 3 poles for 9.265908 > COCj >- 4.279830g, 2 poles 

for 4.279830 > CU, > 2.198517 and only 1 pole for 2 .198517g > CO; 7Ό , 

On the other hand, when 2JÄ|^ »4 , the value of fj is approximately 

equal to Cif»J) 

The approximate value of the pole coming out of Eq. (18) with odd values 

of η and m or Eq. (7) can be found by following the same procedure as 

mentioned above with the help of Fig. 2. (Note that the negative values 

of R are applicable only for spherical geometry.) In this case, the asymp

totic expressions for the pole with small |0jPj | (C(J = ZJÄ/2 OT ZjR )
 i n t h e 

j , j and j approximations are respectively given by 

«fi 

fi(*ifflM)f<.i«ftt)/í/-&), CÛCj 5C£<i 

·< 

50O5t4<2l7m/(ü)l])]Í4-3.W312/(ca3)]f:4-Í2ÍSéH/(CO(j)Í 

Ä H-2,n5if4/Cca{)ìt4-L^o25r!Acoiì)1 
(29) 

i20f>ffl& 

From these e x p r e s s i o n s , i t i s seen t h a t , for example, in the j 7 approxima

t i o n t h e r e a r e 4 p o s i t i v e poles when COij > 11.748197, 3 when 11.748197 

P-COfjP- 5 .423541, 2 when 5.423541 > CKj > 3.263428, 1 when 3.263428 

> C t f j > 1.277137 and none when 1.277137 > COijPO . 
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3.2 Evaluation of the residue 

The procedure to evaluate the residue by solving Eq. (6) or (13) for a 

nonmultiplying sphere or slab will be shown here by the use of Eq. (13) 

with odd values of n in the j approximation t
c
Jnm- Ci

î"*J) JnintZjß/
2
.;̂  )J 

BityA) 

B3tyA) 

/Z4tyA^ 

ZstyA) 

frtyA)) [ZstyA)) , 
(30) 

where 

2*(J,2)s Ζ Î J / C C ^ ^ Z J / A C * ^ ^ ^ ) 
JW 

J=1 11=4,3,5 

(31) 

Equation (30) leads, for example, to 

>2rø i 
B3(Ui>ßm 'λ 

3 ^ -3%(W> 3CJ4S 

7CJ« 75a ( ^ ) 7cj35 

Mete -4tés<i>A) UcJsí-4 
(32) 

where 

AB. 

3Cj«-4 301,3 3CJÏ5 

7cj« 7cj334 7cj35 

^ c j < 5 7cj3y HcJss-4 (33) 

Hence, for the pole A~J!nty¿¡* of the gth group obtained from the 

equation A—0 » 



17 

^ C M J ) = 

3CJir4 -3£,(?J) 3Cji5 

7CJ« ~Wv*) icj35 

W « -41&1U) m5S-4 
á". •WW 

3CJ,f4 3CJ43 3tJ4s 

Hcji5 44cj35 i4cja-4 

(34) 

> Wjj 

the explicit expression for ¿r¿7<Mn(#i,A) being given in Appendix 1, Sec

tion 3. 

On the other hand, for the pole A~^i%Ai»/ of the higher g'th group, 

t4 

i Βί^ΊΆΐγ)- £ ̂
=JjV,^j/ 

3CjM-4 -^yV^l^W2,A)Bn(UiV) 3CJ4S 

7<T« -7%cU*1)% JwiûSM^^ftiÛtV 7CJS5 

W « -4^ca^)ZJsn(^^A)BMAJr) HcJttf 
(35) 

which shows that all poles of the higher g'the group (g' = l,2,..,,gl) 

are also the poles for the gth group if all values of CfJ'̂ Ĵ v/) are 

not equal to zero (this condition means that there is the slowing down 

of neutrons from a certain group to the next group). For a homogeneous 

slab, however, the condition that À\y >4-T]%/lXtVi') excludes some poles 

because the -Ala/ has been obtained under the condition that -Afa' >■ 

4-Ί.,ν.//(.ΧΜ) £ this implies also the condition that Jjy >4-Ztfk/&K%) 
for h = 1,2, ...,g'-l, as seen from the presence of the second term on the 
right-hand side of Eq. (31) "} . In other words, some poles of the g'-th 
group for which Z«/V·/ >^X,Vj may not be the poles of interest for 
the g-th group. 

3.3 Contribution of the continuous spectrum 

For time-dependent problems in a homogeneous slab, we have to evaluate 
the last term on the right-hand side of Eq. (11), (19) or (20). The con
tribution of the continuous spectrum represented by, for example, the 
last term of Eq. (20) can be rewritten in the j approximation as follows: 
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Ir*? (-«)Γ# £ rë-o* í ( V*<r**>î Cuj >™ W 
ftt 

■(V^W*!^*
01

; 
(36) 

where 

and use has been made of t h e f ac t t h a t Bflflijííf) and ¿ W t j ^ i P 

even or odd funct ions of y depending on whether n+m = even or odd. 

a r e 

Since B«(\, ipW-ZjVj) i s written as {c J^S CC^pJ^{TjO/j, ip^-Jty ) ; 

see Eqs . ( 3 0 ) , (31) and (33) j 

B.tyipm-ZjVj)^ 
i 

y=» j [+2 j i$ -^ 

3CJ4i-4 -32,(1,ψΦΓψι) 3C1» 

7CJ« -ΐΖΜ,'φΦΓφί) 7cjw (37) 

Β„η and & 4UJ can be evaluated successively starting with g = 1 by 
using the expressions shown in the Appendix 1 f Section 2 for Jn^io'j^ 
¿y+ZiVrf-̂ V- ) and Section 11 or 13 for ¿ ^ or ¿¡̂ (flCj, ¿¡f+̂ ty-̂ tü to ob
tain 2«( J/¿|ί+>|5νί-·2'ι'Λ̂  for the case where the angular distribution 
of the boundary source is point isotropic or monodirectional J . 

When H-*eQ , however, the value of the integrand of Eq. (36) changes very 
rapidly as a function of y. The evaluation of the integral over y from 
'/>£>'</ to PO is therefore performed separately by the use of asymptotic 
expressions for the functions J-m y Cijij Cnj $Λ and/or F« for large y 
for for large Atf/falfc) J , which can easily be obtained from the expres
sions shown in the Appendix 1, Sections 2, 11, 13, 5 and/or 7. In the case 
where the boundary source is monodirectional, this gives in the j approxi
mation the following forms (.JiaX/fa.) · 
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( a ) For t he angula r f l ux V.TZj (X,,K,t ) w i t h M>0 w r i t t e n by Eq. ( 1 1 ) ; 

-^(3ΧΛ+7Χ3+41Χ^45Χ5-4-5Χ6-1ΧΊ'43Χ? ) 

(38) 

where 

Xí = (wp{^wwí*-tf JÍW*-V«**» j } , x<* H*(4-J)J 

X7H 4-20jli-5)íl-Í30-J)J, Xys^-PjffJ>} f-t«WÍ*· ^ J W-J)]} 

Since Ϊ^(*|;£,/,Λ)=Η)Α)^(^-3Γ,->Κ,Λ) , the value for the angle -/ 
and the space CL-X (or 4-% ) can be obtained by changing the sign of the 
first 4 terms in the parentheses of each term on the right-hand side of 
Eq. (38). 

(b) For the total flux tt#«(ît,t) with χ-é. 0/Z written by Eq. (19); 

\r 
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/ ■ ν 

 4 W+44+45-4-5-U3 ) i c ̂ pZyVy^dí ^{(■^Fri^]j 

for 5=0, 

4í3X5+7Xj+^X^+^5X5+^5^+7X7+/3Xp)^c(j^2j,VJ/^Jy
í^íW^t) 

~^( 3X2+7X3H1X+H5X5-I-5ÁÍ- lXr43X9 ) 
(39) 

The value for "ξ >» 0.5 can be obtained by changing the sign of the first 

4 terms in the parentheses of each term on the righthand side because 

G«S«v3>A )= HfÇ* (fit¡, 4'% Λ ) . 

(c) For the total number of leakage neutrons J^UWIV.M. CTp,U,i ) written 

by Eq. (20); 

4i(40C3^W+^5+7W]^ 

Λ/

(40) 

In the j approximation, the first J"(N+l)/2j terms out of the first 4 and 

out of the last 4 terms remain in the parentheses of each term . on the 

righthand side of Eq. (38), (39) or (40). In addition, when the boundary 

source is point isotropic, the total number of terms on the righthand 

side is reduced to be half, for example, only the first 2 terms remain 

in Eq. (38). 
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4. JNMETDl Computer Code 

4.1 Input data (see the Appendix 3) 

After an ID card with a 20A4 format, 26 integers are read with a 2613 

format. These integers are defined as follows: 

110 

IIII 

NPRINT 

NSTATY 

IGRP 

IHT 

I HS 

I HL 

NS PH 

JOD 

JJJ 

NKK 

N 

3, 5 or 7 for the j , j or j approximation (0 to stop the 

execution) see the Appendix 2, Section l) 

0 or 1 in the case where the boundary source is plane or point 

isotropic when NSPH = 0 

1 or 0 when the intermediate results are required or not 

(1 for NSPH = 1 or NSTAT1 = 1 ) 

1 or 2 for a stationary or timedependent problem (2 when 

LLL = 1) 

Total number of energy groups 

Arrangement of reaction type of the cross section (XSEC) for 

the gth group; XSEC(IHT2,g) = Z*g , XSEC(IHTl.g) = ZtJ> 

X S E C d H T S 3,g) = Z t r J , XSEC(IHT+l,g) = 2¡(g+IHSIHT > g), 

.... XSEC(IHSl.g) = Σ ( ε + 1  > ε ) . XSEC(IHS ̂  IHT.g) = Z(^pJ 

XSEC(IHS+l,g) = Z(]4»j) ,..., XSEC(IHL>IHS,g) = 21(gIHL 

+IHS>g) rZ^tri
 i s u s e d

 instead of Σ* (for taking into 

account the anisotropic scattering of neutrons) and 2tj
 i s 

for calculating the values of C(J»J0= Z C j  ^ O / X t j . ( Zt J 

may be equal to Σίγα ) ] 

0 or 1 for slab or sphere 

When NSTATY = 1 and NSPH = 1, JJJ=2, NKK=2 or/and N=2 for 
critical radius, time constant or/and k calculation 
(1 otherwise and JOD being not used), 
When NSTATY=1 and NSPH=0, J0D=1, JJJ=1 and NKK=0 (N being 
not used), 
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LLL 

JNKK 

NNN 

JJJJ 

NOT 

NOM 

NOS 

NFLUXR 
NFLUXS 
NFLUXK 

When NSTATY=2, 

JOD=l or 2 for NSPH= 0 or 1, JJJ=1 and NKK=0 for solving 
a new problem or for LLL=1, 
JOD, JJJ and NKK for restarting an unfinished problem for 
which punched cards for the poles and residues are avail
able till the NKK(>0)-th group of JJJ of JOD £ see the 
subsection (d)J , 

N for evaluating the contribution of the continuous spec
trum by using 4N+1 values for NSPH=0, NZ70 being recom
mended (see the Appendix 2, Section 6), and N=0 for NSPH=1 

0 (1 to obtain only the poles when NSTATY=2) 

The flux is to be calculated beginning with the JNKK-th group 
(1 when NSTATY=1 and NSPH=1) 

The flux is to be calculated till the (JNKK+NNN)-th group (IGRP-1 
when NSTATY=1 and NSPH =1) 

1/2/3 or 4 for calculating only the total number of leakage 
neutrons/total number of leakage neutrons and total flux/total 
flux and angular flux or total number of leakage neutrons, total 
flux and angular flux (3 when NSPH=1) 

Total number of time points (1 when NSTATY=1) 

0 Ctotal number (oddsí3) of angle points when NSPH=0 and 
JJJJ> 3 ] 

Total number (2 2) of space points (N0S>3 when NSPH=1 and 
NSTATY=1) 

When NSTATY=1 and NSPH=1, NFLUXR=1, NFLUXS=1 or/and NFLUXK=1 
to obtain the flux distribution for JJJ=2, NKK=2 or/and N=2 
(0 otherwise), 
When NSTATY=2 and NKK>0, NFLUXR=NNNNN if no poles till the 
(NNNNN-l)-th group for JJJ of JOD (NFLUXR=1 when NKK=0), 
When NSTATY=2 and TPINT>0, NFLUXK=NOP; the total number of 
time points for pulse source 
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The total number of input cards for the present problem 

NSTAT1 

1 for obtaining the first and second time moments of the flux 
due to a Fff) source, in addition to evaluating the stationary 
flux, when NSPH=0 (0 otherwise). £When NSPH=0, NSTATY=2 and 
LLL=0, NSTAT1=1 for solving a new problem or NSTAT<=0 for re
starting an unfinished problem for which punched cards for 
the stationary flux are available; see the subsection (c).l 

NUPSAT 1 in the case where there is up-scattering of neutrons (or/and 
fission process) when NSTATY=1 and NSPH=0 (0 otherwise) 

Next, 12 floating-point numbers are read with a 6E12.5 format. These are 
defined as follows: 

A 

DMU1 

EPSS 

TINT 
SCAL 
SCALI 

TO 
TCON 

TSTAT 
TPINT 

Thickness of slab a or diameter of sphere 2R 

The value of Jili>0 of the monodirectional boundary source 
when NSPH=0 (0 otherwise) 

Required relative accuracy for the value of the pole when 
NSTATY=2 or for the time constant when NSTATY=1, NSPH=1 
and NKK=2 

Time interval of NOT time points for the flux due to a $(.+) 
source when NSTATY=2; 

TINT±(SCAL)g"JNKK+1 for the g-th group (g « JNKK,JNKK+1,..., 
JNKK+NNN-1) and TINTxíSCAD^^ÍSCALl) for the(JNKK+NNN)-th 
group, 

TINT=SCAL=SCAL1=0 when NSTATY=1 

Parameters describing the time behaviour of the pulse source, 
exp C-TCONi(t-TO)2 } 

To obtain the flux due to the pulse source for the time points 
TSTAT, TSTAT+TPINT,...,TSTAT+NFLUXK*TPINT £TPINT=0 for ob
taining only the flux due to a S(t)-source or NSTATY=1J 
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Tl 
T2 

The duration of the pulse source; exp f-TC0N*(t-T0) ] from 
t=Tl to t=T2 

In the subroutine JNMETD, the following data ordered respectively by energy-
group beginning with g=l are read with 8F10.6: 

VG 

BUCLG 

SOCE 

Speed of neutrons Vj> 0 (it is recommended to chose the 
values which are around in the same order of magnitude as A 
when NSTATY=2 and NSPH=0) 

Buckling (B +B )g when NSPH=0 or fission spectrum %» when 
NSPH=1 and NSTATY=1 

Source intensity S* at the slab boundary when NSPH=0 or at 
the centre of sphere when NSPH=1 and NSTATY=2, or (VZf)j when 
NSPH=1 and NSTATY=1 

The total number of these cards is therefore 3 £(IGRP+7)/8J . Next, the 
cross section XSEC is read with (8F9.6, F8.5) for all types of reactions 
arranged as mentioned above in the first group, then for those in the se
cond group and so on, the total number of cards being £(IHL*IGRP+8)/9 ] . 

The remaining input data depending on the input integers are: 

(a) When NSTATY=1 and NSPH=1, one card is read with 8F10.6 in the sub
routine JNMETD. These are 

Rl 

R2 

SI 
S2 

ÓK2 

EPSR 

EPSK 

Fixed radius of sphere for which the time constant (when 
NKK=2) or/and k ._ (when N=2) are calculated, or the first ef f 
guess for the critical radius (when JJJ=2) 

The second guess for the critical radius if JJJ=2 

The first and second guess for the time constant 
if NKK=2 

The first and second guess for k „„ if N=2 
eff 

Required relative accuracy for the critical radius if JJJ=2 

Required relative accuracy for k „„ if N=2 
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If R2, S2 or CK2 is equal to zero, the input value Rl, SI or CK1 is 

regarded as the critical radius, time constant or k .. without any 

iterations. 

(b) When NSTATY=1, NSPH=0 and NUPSAT=1, one card is read with 7F10.7 in 

the subroutine RESCAL to evaluate the fundamental decay constant of 

neutrons in the system ZiVkU-AO. 

SI 

S2 
The first and second guess for the time constant A(~4 

EPSS Required relative accuracy for the time constant 

(c) When NSTATY=2, NSPH=0, NSTAT1=0 and LLL=0, a punched card dump for the 

stationary flux with a (5E15.8) format is read in the JNMETD in the same 

order as in the punched output or in the output print £ for each of 

(NNN+1) energy groups beginning with the JNKKth group, NOM values for 

the angular flux for each space point (when JJJJ> 3) followed by NOS 

values for the total flux (when JJJJ 2: 2) and then 2 cards for the total 

number of leakage neutrons at % = a and X= O (when JJJJ¡¿3) J . The 

total number of cards is 2(NNN+1) when JJJJ=1, (2+£(NOS+4)/5l)x(NNN+l) 

when JJJJ=2, (C(N0S+4)/5j+t(N0M+4)/5]NOS)(NNN+l) when JJJJ=3 or 

(2*r(NOS+4)/5j+C(NOM+4)/5jNOS)(NNN+l) when JJJJ=4. 

(d) When NSTATY=2, NKK>0 and LLL=0 £in case of NSPH=0 and NSTAT1=0, the 

present data follow the cards described in the Subsection (c)"J, a 

punched card dump with a (5E15.8) format for the pole and residue is 

read in the JNMETD beginning with K=l and M=l when NSPH=0 or with 

K=2 and M=l when NSPH=1.£K=1 or 2 represents the fact that the values 

come from Eq. (13) with even or odd values of n and M=m stands for the 

mth eigenvalue (or the pole) for each K and the associated residues.} 

Following the cards for (K,M), those for (K,M+1) are read if M+l¿JHL 

= i(II0+l)/2j when K<JOD or M+lííJJJ when K=JOD. Then, the cards for 

K+l (K+1^J0D£2) are read beginning with M=l till M=JHL or JJJ. For 

each set of values of K and M, the cards should be ordered as follows 

£ N N S IGRP except for (K,M)=(JOD,JJJ) where ΝΝΞΝΚΚ}» 
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SSPP Ρ , g=l,2,...,ΝΝ; ί(ΝΝ+4)/5 3 cards only if K=l £ when these 
cards are not available because all values for 5«Ape are 
not very small (see the next subsection e), blank cards should 
be inserted 1 

SP 1-Λ| , g=l,2, ,ΝΝ; Γ(ΝΝ+4)/5]cards 

RES Β (g, Λ·/ ), g'=l,2,...,g for each η (n=l,2,..,JHL) separately, 
η * 

beginning with g=g"+l, then g"+2 and so on till g=NN (in the 
same order as in the punched output), where no poles of in
terest exist or SP=0 for g=l,2,...,g" falso SSPP=0 and 
BntyAv)~0~i ; JHL* ί(ΝΡ^1)*(ΝΝ-2.5*ΝΡ)-(ΝΡ,+1)*(^'-2.5*ΝΡ·)] 
cards where NP Ξ Γ(ΝΝ-1)/5 1 and NP' = í(g"l)/5 3 

(e) When NSTATY=2 and NKK<IGRP, following the data mentioned in the Sub

sections (c) and (d) if any, the first and second guesses for the poles 

SP(l,g), g=l,2,..., IGRP, and SP(2,g), g=l,2,..., IGRP, for K=JOD and 

M=JJJ are read first with 7F10.7 in the RESCAL ([(2*IGRP+6)/73 cards). 

If no pole exists for the gth group, SP(1,g)=SP(2,g)=0. If no iteration 

process is required for obtaining the value, SP(2,g)=0 £SP(l,g) is re

garded as the pole J . Furthermore, if the value of ZjÄfj is very small 

for the case where K=l fsee Eq. (28)J, SP(l,g)=0, SP(2,g)¿0 (any value) 

and the first and second guess for the value of Ρ is read next with 

g 
2E15.8. The total number of cards for Ρ is therefore the same as the 

g 

number of groups for which SP(l,g)=0 and SP(2,g)^0 for each value of M 

for K=l. These input data are repeated in the same order as mentioned 

in the last subsection (d) till K=2 and M=JHL. If NKK=IGRP and J0D=1 or 

JJJ<JHL, the present input begins with the data for (K,M) next to 

(K=JOD, M=JJJ). 
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4.2 Computer programme 

4.2.1 General 

The JN-METDl package consists of 24 programmes; MAIN, JNMETD, RESCAL, 
FLUXCA, INTCAL, PULSE, ITRTON, DET, SOLEQ, EP, F, FSML, DEROF, SDERF, 
CCALC, DEROC, GCAL, FMCAL, VARIAC, ADJPUL, FNCUT1, IFNCAL, GIMAG and 
FMIMG. In addition, the code makes use of the library subprogrammes, 
MAXO, EXP, DEXP, DLOG, DATAN, DSIN, DCOS and DSICI (see below). 

Almost all input integers and floating-point numbers are transmitted 
through a COMMON where, in addition, all subscript variables and their 
dimension information are stored for the use of the adjustable dimensioning. 
The present size of the floating COMMON for all subscript variables is set 
to be 72,000 bytes so as to the programme requires the core storage less 
than 300 K bytes in the Fortran-IV, Version G on the IBM-360/65. 

For altering the dimension of the floating COMMON to fit core storage, 
the following 27 statements should be adjusted (all 24 programmes are 
numbered respectively): In the MAIN programme, the 45th card (dimension 
of BCOM), 47th card (COMMON), 55th card (clear-COMMON), 318th card (avail
able ̂  required storage?), 321st card (available s£ required storage only 
for the stationary problem?) and 340th card (available ̂  required storage 
for the time-dependent problem?). In the JNMETD, the 24th card (COMMON) 
and 32nd card (dimension of ECOM). In the INTCAL, the 17th card (COMMON) 
and 24th card (dimension of ECOM). Seventeen cards for COMMON.: the 21st 
of RESCAL, 28th of FLUXCA, 13th of PULSE, 14th of EP, 5th of ITRTON, 18th 
of F, 14th of FSML, 16th of DEROF, 10th of SDERF, 18th of CCALC, 13th of 
DEROC, 17th of GCAL, 16th of FMCAL, 35th of FNCUT1, 14th of IFNCAL, 12th 
of GIMAG and 12th of FMIMG. 

4.2.2 MAIN 

In the main programme, sizes of the required arrays are computed based on 
input paramters and then first-word addresses are calculated for these 
arrays. The locations of these pointers and the associated arrays with 
their dummy dimensions are shown in Table I where the arrays which share 
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the same storage locations are written in one block (for example, Real*4 

subscript variables FNPOL, TFLUX and FFLUX share the same storage loca

tions as for Real*8 arrays DELTA, E, ED and SS in the case where NSTATY=1.) 

The actual values for these integer variables specifying the sizes of 

arrays are summarized in Table II. The firstword addresses and the di

mensions are transferred through a call statement and a part of a vector 

in COMMON is treated as a multidimensioned array in subprogrammes. The 

flow chart of the main programme is shown in the Appendix 2, Section 1. 

4.2.3 JNMETD, DET, ITRTON, F, FSML and EP 

The subroutine JNMETD (see the Appendix 2, Section 2) is devoted mainly 

to solve stationary problems in a bare sphere (NSTATY=1 and NSPH=1). As 

can be seen in the Section 2.1 of Appendix 2, for the timeconstant cal

culation to obtain the value of S, for example, Eq. (9) is solved by using 

the two guesses SI and S2, the function subprogramme F for evaluating J , 

nm 

the subroutine DET to evaluate the determinant and the subroutine ITRTON 

to iterate the process for making the value of the determinant zero until 

the difference between two successive values of S becomes smaller than 

the product of the last value of S by EPSS. After having been obtained 

the value of S, the ratios between the residues are calculated by evaluat

ing the cofactors of the determinant, then the subroutine FLUXCA (see be

low) is called for the calculation of the total flux Eq. (8) and in the end 

the neutron balance is calculated by normalizing the total number of fis

sion neutrons produced in the reactor to the value of k 

ef f 

In the function subprogramme F(N,(V,....) for evaluating Fj Jnm.(c(i JÌ 

the series expansion shown in the Appendix 1, Section 1 is used if the 

absolute value of (X-0(.R is less than 2 (K=2 in the programme). The 

argument N stands for n and m £ N = 1,2,3,...,20 corresponding to 

(n,m) = (0,0),(1,1),(0,2),(2,2),(1,3),(3,3), ,(7,7)3 . As regards 

the control integers transmitted through the COMMON, LG=2 is for re

ducing execution time required for calculating R Jn¡fn (tf., ¿ ) with 

different indices η and m but with the same value of (X (LG=1 other

wise) . In addition, J0D=1 or 2 is for evaluating the function with even 



29 

or odd values of the indices. When J0D=1 and \(X\>2 , as is seen from the 
expression for PjJo0 , it uses the function subprogramme ΈΫί'Λ,Χ,Λ/·' ) 
to evaluate the exponential integral E«(X) . On the other hand, when 
\(X\<2 ι it uses the function subprogramme FSML( (X ,M, ...) which eval
uates Rj Inm. (°<J/ A }/(X with even values of η and m by the use of the 
series expansion £ M=l,2,3,...,10 corresponding to (n,m)=(0,0),(0,2), 
(2,2), .... ,(6,6) ] . The control integer LF=2 is for computing FjI^/oC 
with the different indices but with the same 0< (LF=1 otherwise). 

The EP( ft, X.J-,·*·· ) evaluates also the integral Γ ¿3 ÅZ/Z 

numerically based on the generalized Simpson's rule when #>O £note 

that the integral is equal to f, £.# (HOJE| (#%) if 4<θ1 . For 4=0, 

it uses the asymptotic expansion for large % or small X depending 

on whether X> 17 or 0 <. X< 0.05 for evaluating Eft(X) with 0 < η < 10. 

For 0.05< X < 0.5, Ef(X) i
s
 calculated by using the asymptotic expansion 

for small X and then En C O with n>l is evaluated by the use of the re

currence relation. Furthermore, for 0.5 ̂  X < 17, E<(%) is obtained 

through the numerical integration and then the recurrence relation is used 

for calculating the value of E«(X) . The control integer LFF is fixed to 

be 2 for computing EflCX) with different η but with the same X (LFF=1 

otherwise). 

For other problems than the stationary neutron transport in a bare sphere, 

the JNMETD calls the subroutines RESCAL, FLUXCA, INTCAL and then PULSE. 

In the case where NSTATY=2, NSPH=0 and NSTAT1=1, the stationary problem 

is solved first by calling RESCAL and FLUXCA, and then the timedependent 

problem is treated by putting NSTAT1=0 and by calling again these sub

routines. When NUPSAT=1 and LLL=0, following the calculation of the neu

tron flux by going through RESCAL, FLUXCA and INTCAL, the fundamental de

cay constant ZJ 1/j U'Ai ) is evaluated by fixing LLL=1 and by calling 

once more RESCAL. 

4.2.4 RESCAL, SOLEQ, DEROF, SDERF, CCALC and DEROC 

For timedependent problems, the subroutine RESCAL (see the Appendix 2, 

Section 3) computes the pole on the basis of two guesses for its value 
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£see Sections 3.1 and 4.1(e)3 . The procedure for solving Eq. (7) or (18) 

to evaluate the pole is the same as that mentioned above for obtaining 

the time constant in the JNMETD. When, as an input, the guesses for the 

value of R have been read instead of 4~A» (KKK=2 in this case and 

KKK=1 otherwise), the programme deals with, for example, Eq. (33) with the 

elements divided by Cf|̂ |)0fj (instead of the unmodified equation) by 

using the function subprogramme FSML directly (not via the function F). 

After having been evaluated the pole ( 4~Â* = 0 for stationary problems), 

if required (LLL=0), the residues at this pole and at the poles of higher 

energy groups are calculated as mentioned in Section 3.2 with the help of 

the subprogrammes DEROF, DET, CCALC and F (see the Appendix 2, Section 

3.1). In the case where NSTAT1=1, also the first and second derivatives 

of the residue with respect to the Laplace transform variable Λ at the 

point Α=ΣιΊ/ι are evaluated by calling the subroutines DEROC, DEROF and 
SDERF to obtain the first and second time moments of the neutron flux (26) 
and (27). On the other hand, for problems with NUPSAT=1 (one cannot deal 
with only one energy group, successively, beginning with the highest group), 
it calls the subroutine SOLEQ to evaluate the residues (or their derivatives) 
by solving a system of simultaneous linear equations. 

When NSTATY=2 and LLL=0, the RESCAL produces punched cards, with a 5E15.8 
format, for the residue and the pole ordered by Κ and M in the same way 
as for the input mentioned in the Subsection (d) of Section 4.1. For each 
set of the values of Κ and M, the cards for the residue Β/κ^ΪΆρ} ,g'=l»2,..,g, 
are punched in order of η (n=l,2,..., JHL, separately) for g=g"+l, then for 
g=g"+2 and so on till g= IGRP. When, as an input, the guesses for R have 
been read for g=g"+l,g"+2,...,g'" , the cards for R for g=l,2,...,gm 
( PjsO fór g=l,2 g") are produced following those for the residue 

of the g'" th group. All these cards are followed by those for the poles 

fjj for g=l,2 IGRP ( 4-JjsO for g=l,2, ... ,g") . 

The subroutine DEROF ( CX ,CAXV,KKK, ....) evaluates CAXV* WlW)XjVjPfffJnm(i¡Xp¿) 

when KKK=1, by making use of the explicit expression if |o<|>2 or the series 

expansion otherwise (see the Appendix 1, Section 3). The control integer JOD 

transmitted through the COMMON is fixed to be 1 for even values of η and m 

£the functions with (n,m)=(0,0),(0,2),(2,2),,,,,(IIOl,IIOl) being evaluated] 
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or 2 for odd values of n and m f the values for (n,m)=(l,l),(l,3),(3,3),..., 

(110,110) being obtained ï . On the other hand, when KKK=2, it calculates 

CAXV*l2fl+4)r|Vjf^.^Tnw(ffJ;̂ )/0f with even values of n and m by the 

use of the series expansion. 

The subroutine SDERF( (X, ....) calculates î jVj)*̂
3
 ̂ , J ^ (tf·,̂ ) by 

using the explicit expression or the series expansion depending on whether 

the value lOf 1 is larger or smaller than 3, for n=0 and 1 (m<7) and for 

m=7 (n<7). For other values of n and m, it adopts a linear relation among 

the functions: 

J¿* ·>ι*\,νι ~MM KW Jinlvi-4"* Z¿* Jin,m4 J"ffi in-i.m.> 

with the he lp of t he symmetrie r e l a t i o n ^ 3 X?tin = 4~i Jfli/M 

The sub rou t ine CCALC(2£X ) eva lua t e s 2Ρ(ΰΛ£ C«j, A ) (when J0D=1) or 

2ΜθΛη?4 ( Λ | , Λ ) / ί (when J0D=2), n = 0 , l , . . . , ( I I 0 - D / 2 , in t he case where 
I I 11=0, DMU1=0 and NSPH=0. In a d d i t i o n , i t computes 20(0Λ£(ty,J) or 

2(XC1ÌHJ(.<XÌ>A')/Ì
 i n t h e c a s e w n e r e I I H = 1 , DMU1=0 and NSPH=0. The e x p l i c i t 

express ions a r e adopted for t h e s e c a l c u l a t i o n s when |2C></>2.5, with the he lp 

of t he funct ion EP ( t h e s e r i e s expansions o the rwi se ; see the Appendix 1, Sec

t i o n s 9 and 10 ) . Fur thermore , in t he case where DMU1>0 and NSPH=0, i t c a l 

c u l a t e s 20(&η(<Χ<ι*Α) or 2lXC31m ( « j , J ) / ¿ . the s e r i e s expansion shown 

in t he Appendix 1, Sec t ion 12 being used when {2{>C/MAI<3 . I t a l s o computes 

20iAaft+i (20ft, A ) (Appendix 1, Sect ion 8) in the case where NSPH=1 by 

us ing t h e e x p l i c i t express ion when | 2 Λ Ί > 0 . 3 or the s e r i e s expansion o t h e r 

wise . 

The f i r s t and second d e r i v a t i v e s of t he funct ion L* (ftj,y¿) or Cn (CYj, A ) 

with r e spec t t o s a r e eva lua ted in the sub rou t ine DER0C( 0<,...). In the case 

where DMU1=0, i t computes 2K (ZjVfå-føΤ^ΙΧρΑ) or 2(X (ZrøPj^TVduit ( « M ) / f 

(m=l and 2) depending on whether J0D=1 or 2 , by t he use of the s e r i e s ex

pansion (when \20i\<4- ) or the e x p l i c i t express ion with the he lp of the EP 

(when | 2 « Ί >Λ ) . On the o the r hand, in the case where DMU1>0, i t c a l 

c u l a t e s aodZf^P^fÔ^Wj.A) or 2<Χ(Ζ,1)Ρ1ίΓ)'ηΰΜΑ(«νΛ)/ί by 

adopt ing the s e r i e s expansion when I 2£V/tf41<4 o r t h e e x p l i c i t express ion 

o t h e r w i s e . 
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4.2.5 FLUXCA, GCAL, FMCAL and VARIAC 

The subroutine FLUXCA (see the Appendix 2, Section 4) calculates the con

tribution of the poles to the total number of neutrons leaking out of a 

slab fwhen JJJ (or JJJJ in the main programme) = 1,2 or 4 J, to the total 

flux in a sphere or slab (when 333=2, 3 or 4) or to the angular flux in a 

slab (when JJJ = 3 or 4). 

The contribution to the total number of leakage neutrons is evaluated for 

two boundaries of a slab according to the second term on the righthand 

side of Eq. (20) or (24) by calling therefore the subroutine CCALC for 

evaluating C* . In addition, in the case where NSTAT1=1, the first and 

second time moments £multipiied respectively by ZjVt and CZ*V»)a ] of 

the leakage neutrons due to a S(t) source are calculated on the basis of 

the expressions similar to Eqs. (26) and (27) (the contribution of uncol

lided neutrons being excluded) by calling the DEROC for evaluating the de

rivatives of cv* . 

For computing the contribution to the total flux (and the first and second 

time moments), that is the second term on the righthand side of Eq. (1), 

(19), (23) or the righthand side of Eq. (8), it calls the subroutine GCAL 

(£*, 5 ,JIK,...,m) to calculate the values of ^ffi^jVjf}^) ^(ffpJHH,^) 

when J0D=1 or ftf £ (7,V,P, ¿ ) * % * Μ («j,2ξ-4, A ) 

when J0D=2 [n=0,l,..., (IIOD/2J , the integer JIK=2 being for evaluating 

the functions with a different value of m (1, O or 1) but with the same 

tfstfjPj and 5 (JIK=1 otherwise). £Note that ( ¿ YÇin (cf., 2$-4} Α ) 

= (JLT'Y* Q Μ (Oft 4-2X A") ~l As is seen in the Appendix 1, Section 4, in 

the case where the explicit expression for (irr) crfc is used ( \2(Χ\>Λ· 

in the programme), the integrals E/fcWCfJJ)] and E/iipOj)
 f o r

 ¿To 

(only for ft> 0, that is LLL=1) and j * 3 dSl^/S for £ft with a posi

tive integer of η £of may be negative (LLL=2)J are evaluated first in 

the calling programme FLUXCA by using the function subprogramme EP. For 

\2M\K4- , the subroutine GCAL uses the series expansion for (4T¡ Qn , 

In addition, when NSPH=1, it is required to evaluate lim fificjwj (.Cf*,Χ,Α~)/Χ 

as can be seen from Eqs. (1) and (8). Also these values are calculated in 

the GCAL according to the following forms (the series expansion being used 

when \20C\<2 ): 
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= Z^miïl (*»5Μ+3)ΜΜ-3)1«-5)(η·7) (-uf. 

The contribution to the angular flux (and to the f i r s t and second time 

moments), that is the second term on the righthand side of Eq. (11) or 

(22) £ and the second terms of Eqs. (26) and (27)J are calculated in the 

FLUXCA by cal l ing the subroutine FMCALÍ ¿y , }■ ,JJL , J I I , . . . ,m) which evaluates 

-ÍCKfZjVjF^f^F^lcf^Sj/jA) with JU>0 when J0D=1 or 4UL Ήψ-^)**4 

* 5 ^ f o ) > & / M ) w i t h JÅ>0 w h e n JOD^C^ 1 2  1 » 0 . ! and n=0,l , . . . , ( I IOD/2 ] . 

This subroutine uses the expl ic i t expression or the ser ies expansion shown 

in the Appendix 1, Section 6, depending on whether the value \2ζ(Χ/Μ·\ 

i s larger or smaller than 4 . The integer JII=2 i s for calculating the func

t ions with different values of m and fl· but with the same values of (X 

and J (JII=1 otherwise). £Note that ($fflFnWpS,/,A') = Uf ( j f r / " ! * ^ , *  J ^ J X J 

In the case where NSTAT1=1, the abovementioned calculations are followd 

by the evaluation of the mean emission time t and the variance (Γ* of the 

timedependent flux due to a S(t) source. For the angular flux, these are 

written as £ see Eqs. (25), (26) and (27) ~} 

t xCdttVfö α,/Λί/^Μ:ψ] (Χ,/Λ), (41) 

(Γ*=ƒ Ία ta Vfâ ix,/jt)/Çdt Vjtf j cao/» ,ί ) - (t )* (42) 
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The f and Q·* are evaluated in the subroutine VARIAC(....,K,NSTAT2) 

when K=2 and 3, respectively. When K=l and NSTAT2=2, it produces punched 

cards for the stationary flux C see Section 4.1 (c)J. 

4.2.6 INTCAL, FNCUT1, IFNCAL, GIMAG, FMIMG and ADJPUL 

The subroutine INTCAL evaluates the contribution of the continuous spectrum 

to the timedependent flux when NSTATY (NCURVE in this subroutine)=2,NSPH=0 

and LLL=0. It calculates also the contribution of uncollided neutrons to 

the flux. The flow chart of the INTCAL is shown in the Appendix 2, Section 5. 

For the evaluation of the contribution of the continuous spectrum, it calls 

the function subprogramme FNCUT1 (see the Appendix 2, Section 5.1). The 

control integer KKKK=1, 3 or 5 is for evaluating the contribution to the 

total number of leakage neutrons, to the total flux or to the angular flux. 

Therefore, when JJJ (or JJJJ in the main programme) = 1, 2, 3 or 4, KKKK 

takes the value 1 only, 1 and 3, 3 and 5 or 1,3 and 5. For the calculation 

of the last term on the righthand side of Eq. (20), it uses the fact that 

only the factor (2Χο/Λ-4")η
 depends on the value of X0 . For the evalua

tion of the last terms of Eqs. (19) and (11), on the other hand, it makes 

use of the symmetric relations, Q/n^^jA ) — M)*
1
*?«.^^?.» A ) and 

Fn(^i'SJ/UjA)=HfFn^3ji-'§,-/MtA) , respectively. The newly defined in

teger NCURVE (¡¿NSTATY only in the routine) is therefore put to be 1 imme

diately after the calculation with NCURVE=0 for evaluating the contribution 

for the mirrored point, for example, the contribution to
 l^<¡/fU(d-Xj~U,'t') 

immediately after the calculation of that to V.Tîj (X, U,t ) for NOT time 

points. 

As shown in the Appendix 2, Section 6, in the FNCUTl(g,t,5,....) the value 

of ^e is first chosen to satisfy the conditions $„»4 and *{0 <^/(.2Va )»</ 

for all groups g of interest £only at the first time when the subprogramme 

is called (LF=1) J . The numerical integration from <ƒ=# to ^0 is divided 
into two parts at U = tan (0.9 tan"'' H0 ). The real and imaginary parts of 
the integrand are then evaluated for each value of j/= tan £o.̂ (ifl/2N)̂ 6in iolj 

m=0,l,,..,2N (JJJ=1), and #= tan £0.9 tan^+O.·/ CHl/xW) j ^ ^ , \ 
m=l,2,...,2N (JJJ=2). Since Bn(%, ¿¡Z+ZfVj-ZjVj > depends only 
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on g and % £see Eq. (37) 3 , the values for 4N+1 points of «ƒ are cal
culated only once for the group g (LOGCL=l and IGRP=1, these integers 
being different from those defined in the main programme) by calling the 
subroutine IFNCAL and then the integrand is evaluated, by the use of these 
values of β^ , for different time, space or angle points. 

In the course of evaluating gft(J, i-l+ZtfrTfl·. ) ■ the values of $j,Z*/CL 

XCn(2
,
J/Ä/2,i) + ̂ J^w(Zj,a/^^)ßwgU)with xí=¿^+X<Í5XíVí , are stored in 

the array Yl or Y2 for g*=l,2,...,gl, in order to use them for computing 

2n<J;*y
+
2iVrX/Vj) and g ^ j , i$+XflrZ¡V¡) , j =g,g+l, ... ,IGRPP £see Eq. 

(31) } . This is the reason why the calculation begins always with g=l, 

the highest energygroup, when LF=1.] Since the arrays Yl and Y2 require 

generally very big storage, it is recommended, in the case where these 

arrays are used (NSPtt=0, NSTATY=2, LLL=0 and IGRPP =JNKK +NNN>0), to esti

mate the required size of the floating COMMON according to Tables I and II 

in advance of the execution so as to be sure that the size is less than the 

available storage. 

After having been obtained the B^ S (Bl in the programme), the coefficients 

of cos(yt) and sin(yt) f see Eq. (36)} are evaluated by calling the sub

routine GIMAG or FMIMG when KKKK=3 or 5 £ for KKKK=1 , C%f and Cut have 

already been evaluated as a result of calling the IFNCAL (see below) J. 

The coefficients ZZA are then used to compute the integrand, and the in

tegral is calculated on the basis of the generalized Simpson's rule £ see 

Eq. (36) J . For evaluating the contribution for different time points 

[for the same energygroup, space(and angle) point and KKKK J , it uses 

directly the coefficients (L0GCL=2 and IGRP=2). In addition, for the 

mirrored point (NCURVE=1), the sign of a part of the coefficients is 

changed due to the control integers, L0GCL=2 and IGRP=1, to obtain new 

values of the coefficients. For computing the integral for different space

(or/and angle) points and/or different values of KKKK (but for the same 

energygroup), the calculated values of Β* ( J, ¿V+XiVi·2^ ) are used to 

evaluate the coefficients for this problem (L0GCL=1 and IGRP=2). The last 

part of the FNCUT1 is devoted to the calculation of the integral over jf 

from % to 00 according to Eq. (38), (39) or (40). 

The subroutine IFNCAL ( A#/(2tt) ,ΚΚΚ,...) evaluates Cnf and ?n£ 

( KKK=1 or 2 for odd or even n) shown in the Appendix 1, Section 13, when 

the angular distribution of the boundary source is monodirectional. When 
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Ul4/l2ViJ44') <. 1.5, the values are obtained by the use of the series ex

pansion. In addition, this subroutine calculates J^and J « ^ (KKK=1 for 

odd values of m and n) shown in the Appendix 1, Section 2, and ¿Lj* and 

Ca* (KKK=1 for odd n) shown in the Section 11, the series expansions 

being used if a>i/(2Vj)< 1.5. 

The subroutine GIMAG( 5, Λ^/ΐ^Ί*») ,ΚΚΚ,...) calculates the values of ¿rm 

and Gnu shown in the Appendix 1, Section 5 (the series expansion is used 

for evaluating the function with 4^/Vj ■<■ 2.5) and the FMIMG( R A^/CV^W^ 

KKK,...) evaluates Fin and Erta with a positive value of Jl shown in the 

Section 7, the series expansions being used if /A^/C1^U)I < 4. In these two 

subroutines, KKK=1 or 2 is for evaluating the functions with odd or even n. 

The control integer LFF transferred through COMMON is put to be 2, instead 

of 1, for computing the functions with different values of a^/(2Vm) or 

{L'i/(Vill) but with the same value of *f 

The subprogrammes FNCUT1, IFNCAL and GIMAG make use of the library routine 

DSICI(SI,CI,3C) to evaluate the sine and cosine integrals: 

Following the evaluation of the continuous spectrum, the INTCAL adjusts the 

calculated values of the flux by calling the subroutine ADJPUL, because it 

has been found that the contribution of the continuous spectrum does not 

converge to the exact value so rapidly (as the order of the j approximation 

increases). The adjustment uses the fact that the integral of the timede

pendent flux due to a delta function source, Eq. (25), is equal to the value 

of the stationary flux (22). 

The ADJPUL therefore evaluates the integral of the timedependent flux (the 

contribution of uncollided neutrons being not included) over time from 0 to 

OO under the assumption that the gth group flux decays exponentially, 

after the time T(NOT), with the asymptotic decay constant Zjlij(4~M\)· 

£rhe Simpson's rule is repeatedly adopted for the integration over time 

from T(NOT) to O.J If the calculated value of the integral is larger than 

the stationary flux, the values of the timedependent flux are put to be 
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zero beginning with the flux at t=0 until the integral becomes smaller 

than the stationary flux. Then, as for the case where the integral of 

the unmodified flux is smaller than the stationary flux, the first posi

tive flux is adjusted so as to achieve the equality. 

To show the measure of the accuracy of the adjusted timedependent flux, 

the ADJPUL calculates also the mean emission time t (41) and the variance 

Q-* (42) of the adjusted flux distribution, which should be equal to 

the values obtained previously from the stationary calculation (NSTAT1=1) 

in the FLUXCA. 

As mentioned already, the INTCAL evaluates also the contribution of un

collided neutrons to the total number of leakage neutrons (for NSPH=0 and 

JJJ¿3), to the total flux (for JJJ^l) or to the angular flux (for NSPH=0 

and JJJ > 3) according to the following forms £ for NSPH=1, see the first 

term on the righthand side of Eq. (1)J ; 

(a) When NSPH=0 and NSTATY=1 f see Eqs. (24), (23) and (22)), 

^^ψ-)^{-ψ)=ψΛ^Χ), 2$ìF2&ìx) or $j^K-^r)/^o (44) 

depending on whether t h e boundary source i s plane i s o t r o p i c (1111=0), 

po in t i s o t r o p i c ( I I I I = 1 ) o r monodirec t ional (DMU1>0). 

(b) When NSPH=0 and NSTATY=2 £ s e e Eqs. ( 2 0 ) , (19) and ( 1 1 ) ] , 

j1^(/A-^ã)Uj>(-^r)=^ icrr \>a./V% (0 otherwise) , (46b) 

$1^(-ffi^--Vfih <46c) 
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1%ψΛ-Μ-ψ> 

^^XMfi'Zf^AVji') for {>X/»Ì>QJ 

2^10:) "for X=0 <° otherwise)j (47b) 

S^i-ZpZ/ùïtt-VVtyùV/i j (47c) 

2^^{-I{C//-^{i-XA^))j (48b) 

J ' ^^{-xpz/Ai^nit-WfAiVfAj (48c) 

depending on whether the boundary source is point isotropic or monodirec

tional . 

As seen from Eqs. (43) and (44), the function subprogramme EP is used for 

evaluating the exponential integral E*tCiO · The flow diagramme of this 

routine is shown in the Appendix 2, Section 5.2. 

4.2.7 PULSE 

The subroutine PULSE calculates the neutron flux due to a pulse source of 

the Gaussian distribution in time, exp £-Λ(ΐ-ΪΊ,)*3 for T4<t<Tz 

(the value of (X may be equal to zero), by performing the integration of 
the flux resulted from a §(t)-source computed in the INTCAL: 

r *ft I t-Ta ' 

The integration over t' is performed numerically on the basis of the gene
ralized Simpson's rule. However, for the case where the contribution of un-
collided neutrons to 7^(Ό is written in the form which contains a delta 
function in time, the contribution to Φρ(Ό is evaluated according to the 
following analytical expression: 
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(a) When NSPH=1 £see Eq. (1) ] , 

,t-ü 
( J?M>t-o( (tt»t')a J $. Vfi-Xftt'iW-r/V, )/(n%V) 

■for t7V> Y/Vj 2Γ t7}, (0 otherwise) (50) 

(b) When NSPH=0 and the boundary source is monodirectional £see Eqs. (46c), 

(47c) and (48c) } , 

Mi 

^ ^ ^ ( ■ e  t .  t O ' j x 
'Ma 

' $i*¡ιf(-ΣìΛ//^^)%{ï-a/(ψo^) 

. $ι^(-^ν/4)ϊ(/-/<)ςΗ'-χ/(ψ4)·)ψί4 

' ?j ̂ (-^ír)*^í-flf ίΜ.-φζ ƒ J "for M^^i-Tico otherwise), (51c) 

^ ^ ( - ^ ^ ^ ^ Γ - ^ ί Η ρ - φ ζ · / ] ^ , (53c) J (o otherwise), 

(c) For the total flux at %-0 and the angular flux in the case where 
NSPH=0 and the boundary source is point isotropic £see Eqs. (47b) 
and (48b) 3 , 

t-7i (2$.Stt') 

= 2$^Uf {-^X/pMf £-«( i-tg-ΧΛψ) Ϋ 2 

■for i-Ti* X/(Vtfï)Z ί-ΤΛ (0 otherwise) . (53b) 
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For these cases, as is shown in the Appendix 2, Section 7, the contribution 
of uncollided neutrons to ^(t) is first subtracted from fyCt) ι the 
numerical integration is performed by using the thus modified %(f) and 
then the contribution of uncollided neutrons to %(t) is added to the re
sult. For other two cases where the total number of leakage neutrons and 
the total flux at X?0 in a slab with a point isotropic boundary source 
are calculated, Eq. (49) is used without any modification. 

In addition, this subroutine calculates again the integral of τ^(Ό £not 
including the contribution of uncollided neutrons written in the form of a 
S(t) 3 over t from O to T(NOT), the mean emission time of ft (t) and the 
variance £ the integration is performed only from t=0 to T(NOT)3 . Further
more, it computes the integral of 4»(t) (including the contribution of un
collided neutrons) over t from W(l) to W(NOP), the maximum value of 4ρ(Ό 
for W(l) < t < W(NOP), the pulse width at half maximum, the mean emission 
time of 'τρ(ΐ) and the variance of the time distribution. 

5. Remarks 

It should be mentioned here first how the present computer code deals with 
neutron transport in a medium with highly anisotropic scattering by the use 
of the transport approximation. For such media, the values of CfJ->5) are 
sometimes negative as seen, for example, in the hydrogen cross section of 

12) the LASL 16-group set . The code JN-METDl accepts also a negative value 
of C(f-»3) but gives all values of the g-th group flux coming from the 
pole zero (for stationary problems, it makes the value zero to avoid the 
negative flux and for time-dependent problems there exists no pole). As a 
result, the calculated flux consists only of the contribution of uncollided 
neutrons which cannot be treated correctly in the transport approximation. 
The results for the g-th group with a negative value of C(J-*J) are there
fore not correct (as so the S calculation in the transport approximation) 
but those for other groups with positive values of CCJ-^) have been found 
in a good agreement with the values obtained from the S„ calculation taking 

Ν 
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5) into account the linear anisotropic scattering . This defect will be 
cleared Up when our present work will be completed for dealing with multi-
region slab systems with anisotropic scattering. 

As already mentioned in the Section 4.2.6, the multigroup calculation of 
time-dependent problems in a homogeneous slab requires a big computer 
storage, so that the total number of integral points for evaluating the 
contribution of the continuous spectrum (the value of N in the input) is 
sometimes limited to be small (N<50). Since the contribution is dominant 
only for thin slabs (and for times close to the moment when the wave front 
of the direct neutron beam arrives), it will be recommended in such cases 
to use the j approximation instead of j so as to adopt a larger number O 7 
of N>70. It saves also execution time of the computation by about 30%. 

Typical running time on the IBM-360/65 is nearly 4 min. to obtain the time-
dependent lowest group angular and total flux in a slab within the context 
of a 7-group j approximation with 2 space, 3 angle and 56 time points, in
cluding the time required for obtaining the stationary flux as well as the 
time-dependent flux due to a pulse source. The calculation of the stationary 
angular, total and leakage flux in a slab takes 1 to 2 min. (depending on 
the slab thickness) in a 7-group j approximation with 11 space and angle 
points. All four sample problems shown in the Appendix 3 take about 2 min. 
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Appendix 1. Analytical Expressions of Functions 

The explicit expressions and series expansions of functions in the solution 

of the j approximation are summarized here by introducing the abbreviations 

OiBOtfi, Pj= f  W  v O / C W , 7> í̂ /ttUj) (^i^hen 4=ψΤ#4-φ.) 

and y Ξ EulerMascheroni constant.. 

1. J<wtCfri) 

fø (Α+5)(<Κ+3)Γ 

4ÍK'1 {i }~ &4 Cft«)0l+5) WH3)! K }> 

 Τ (tt3)ffl.2)fl. , , ^ * 

" # ( Cíi+5)!
 Í _ ; 2 C Ü

' 

P T s X  i  Í Í + I Í ^ Í + J  / j .a#Jflf>.Íl ό-̂Λ" -25 ,tA.S3 ritt·* 345 -ÍK 

+mi / J+4/aef ■ ) + A ¿-j«. ¿ag£ ,, - J« Í O f (frPOh^ffr^øHg),-Αχ« 
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, M5n ■ 4702 rati> . iVWOrXX 4,21515n iMf20(>., 20322225-M, 4002075,. 4Mr>*\ 

Λ. 4M3225.-2ÍX U2J3225,. Γ&Λ-Φ j jHO(ÌWJ2M2^J2E3j^ r 9 ^ * 
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= ? | ^ ή ^ C2MN}eW)Öft-3X4H)OfrSX«-3;eMK; (7? ƒƒ 

+ # 3 7 ο ^ / α - « * $ ) ; ι + Λ ^ 

*~4tjL(-tf^kfîi n (WW)ffW)Öfr3Xfra)CaW)(fr3) ( T J ) ^ 

¿«W 

a) Γ 5->·-/-5ΐ indicates that the expression is the same as shown just 
before except for replacing £ by ̂ -^ 

b) X n-» 2nlì· or | n 4 2n|. in the series expansion of £m4 or <r«ta ( F«< 

or F̂ a ) shows that the expression is the same as shown in braces oí 

the series expansion of Grm (see Section 4) £ Ftn <
see

 Section 6) ] e: 

cept for replacing η by 2nl or 2n. 

c) For JU< 0 > F*WV?,/,A)= C^F* W%,4-$,-}4, A ). 
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Appendix 2. Flow Diagrammes of Computer Programmes 

1. MAIN 

Γ START V Clear COMMON 

READ ID card and input integers (see § 4.1) 

k The 1st integer > 
N No J \ 

o J——»\ STOP ) 

Yes 

READ floatingpoint numbers (see § 4.1) 

Dimension assignment for arrays (see Table II) 

and, if LLLî l, WRITE the problem classification 

Storage locations of arrays (see Table I) 

ÌL 

WRITE ID card and storage requirement 

(E 
I 

Required storage <■ available storage 

Yes 

) 
No 

NSTATY=2.AND.NSTAT1=1.AND. r e q u i r e d s t o r a g e \ 

^ for t h e s t a t i o n a r y p r o b l e m ^ a v a i l a b l e s t o r i l e / 

%-

CALL JNMETD 

± 
Yes 

NSTATY=1 

V ? . 
^Required s t o r a g e ^ a v a i l a b l e s t o r ageT ^ 

y< f
68 

No 

READ all input data left 

for the present problem 

For the next problem 
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f ENTER V READ VG, BUCLG, SOCE and XSEC 

(NSTATY=1.AND.NSPH=1 J-^> Zt= B
2
/ (3Z t r)+Z t ,ALPHA=(2t r /2)*A 

Y< e s 

xv=ZtrU cs(i>j)=rj(i>j)/zti 

WRITE CS and SOCE 

É 
NSTATY=1.AND.NSPH=1 

> 
^ NSTAT2=NSTATY 

Yes 

CF(i^j)=Xj( V2f/2t)± , 

C = CF + CS 

ÍNSTATI > o ĵ n̂s NSTATY=1.OR,NSPH=1 

ICR = JJJ, JJ = 1, JK = 1 

yYes Yes 

NSTATY=1 

READ Rl,... (see § 4.1.a) < ■ 

Λ 

3 
\r_No_ 

READ FNPOLj 

TTLUX & FFLUX 

JOD = l.AND.NKK = O 

No 

Eigenvalue (time constant, k or criti

cal radius) calculation by constructing 

the array E (see Appendix 2, § 2.1) 

( NSPH=1 J H NKK=0 J 
Yes v 

J. 

Nc No 

3 
Yes 

READ SSPP. SP & RES 

Calculation of RES=cofactor of E 

1 

i 
CALL RESCAL 

CALL FLUXCA 
Yes 

{ LLL=0 ) H RETURN J 

Q NSTATY=1.AND.NSPH=1 
| No 

Next page 

3- Yes 
Neutron balance normalizing TFIS 

= |dE VZf JdV <j> (r) to keff 

WRITE neutron balance and flux distribution 

Critical radius cale. 

Κ 

jEeff or/and critical 

radius 

^ < ^ JJ^> ¿S RETURN j 
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C 

( * V 
l NSTATl >.0 y 

Νο 

CALL INTCAL 

C NUPSAT > O 

No 

ΤΡΙΝΤ > O 

No Yes 

CALL PULSE 

C RETURN ) 

Yes 

) 
Yes 

JL 
LLL=1 

NSTATY=NSTAT2 

NSTATY 

X. 
=2 

Clear a part of COMMON 

-> 333=1, JOD=l, 
NKK=1, NSTAT1=0 

,—̂  
12 



2.1 Eigenvalue calculation 
in JNMETD C RETURN to MAIN 

f ENTER \ 

Critical radius JJ=2 -&\AL and CI 

IF 

k
e f f c a l c u l a t i o n 

=2 Time c o n s t a n t 

S S , AL and Cl » J0D=2 

AL and Cl 

~ F — 
JK=2, IG=1 

M a t r i x e l e m e n t s E=ED by c a l l i n g F 

C2 

ft—* 
-> E = C2*E/C1 > CI = C2 CALL DET 

IG=2 h i X < IG>^-f CI·..: > 0 V~2 

U u r t h e r 

a 
i t e r . CALL ITRTON 

Not 
conv - yf 

Conv. il: t 

0} 
No 

►{ R2 > Ο Λ =2 ^ R 2 > 0 ^ 2 2 ^ 

WRITE CK 

GH 
( 

4. 
NFLUXK ^J 

Yes 

±-
CALL ITRTON 

JL 
R".T::R:," t o JNME 

Further iterations 

Conv.\ l 

CALL ITRTON 
.No Conv. 

WRITE R=R1 

f NFLUXR > O ) - >( 

Further. 
iterations 

Not converged 

RETURN to MAIN 

WRITE S 
LNot converged 
41 Κ ττ- ^ NFLUXS>( ( NFLUXS>0 ƒ ± 

D 
Yes 

Yes < 
RETURN to JNMETD 3 



3. RESCAL 
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JENTER ) > MMMM=1 >ƒ NSTATl > O \ 
Yes NSTATl > O ) - > MMMM=3, J1=IGRP 

=2 

No 
< 

=1 
V 

> NKK=IGRP 

N K K < IGRP 
> 

Yes . S* NKK=NKK+1 

READ SP (see § 4.1.c) 

V Λ Λ 

> NQ, NQQQ 

J=NKK 

-> 
Calculation of the pole (SP or/and SSPP) or/ 
and the residue (RES) of the J-th energy-
group (see Appendix 2, § 3.1) 

lm - , 

.Yes -( J=J+1< IGRP J 

No 

C RETURN 3 NSTATi > ( LLL>0 y ^ 

WRITE all 
SP, SSPP, RES 

No 

PUNCH SP 

=1 

( J J J < IHL j < ■ 

110=1 I O H , J0D=2, J J J = 1 

_y 
Yes 

J J J = J J J + 1 

JL 
NKK=1 ,KlNNNN=l 
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3.1 Calculation of the pole (SP or/and SSPP) or/and the residue (RES) of the J-th 

group in RESCAL 

( ENTER V-ENTER V- > KKK=1, JKL=1 ^ J1=J-1 

LLL> 

fsP(l,J)=0 \ 

Yes 

(^sp(2,j)=o y No, 

Yes 

G RETURN 
Yes 

) 

KKK=2, READ 

SP (see §4.1c) 

No 

SSP=S, M a t r i x E=E1 \^~ 

by u s i n g FSML 

=2 
KKK 

655 K ' S ( NUPSAT> f ( NUPSAT> O Vi

Yes 

READ S I , 

S 2 , EPSS 

JKL=2 S=S1 

L_J^i 
SSP= ι-ΣΜ*$ΛΣ,ντ), 

E=E1 by u s i n g F 

No 

CALL DET to obtain ΒΑ=Δ fsee Eq. (33)] 

r——\ 
I LLL>0 W 

Not c o n v , 

NNNNN= K " 

NNNNN+1 

No 

: J K L > Η 35 

CALL ITRTON 

No 

J > NNNNN 

Yes 

SCNU=0 

) 

F u r t h e r i t e r a t i o n s 

Converged 

S P ( N Q , J ) = S = 1  J j j <■ 

WRITE J , SP 

35 

Κ 2 ^NSTATY>—»{DEN0M=BA 

( LLL>0 j ^ / RETURN J 

No 

NNNNN=J 

SP(NQ,J )=0 <-^2~( NSPH^O.OR. Afr>4-Zj\ïj/(ZiVi') J 

No 

Yes 

NSPH^O.OR. A„>J{ 

ZiVi/iZM), i=l*vJl 

Yes 

DENOM = denominator of the residue by 

calling DEROF [see Eq. (34) J 

Next page 
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( L L L > 0 ƒ 
No 

* CALL CCALC >f NSTAT1>0 y 
Yes 

NSTAT1>0 J > 

Yes 

Yes 

CALL DEROC 

No 

< N o ( J l > O k— SCNU = - £ l s t t e r m of Ζ ( J , s ) a t s = 2 i V > J j j J ; s e e Eq . 

( 3 1 ) f a n d t h e 1st & 2nd derivatives if Ν3ΤΑΠ>0; see Eqs.C26)and (27)3 

/—* .Yes 
( NSTATl > o r—-■ CALL DEROF and SDERF 

No J 
(NBPSAT>o)^»jggÍ) lg(r¡y |p t^fg t (U) . t ^ T U , , . ,1-1,2,.., 

J  l and η=ΐΛ»ΜΜΜΜ [ s e e t h e 2nd t e r m of Eq . ( 3 1 ) ] \ Yes 

M a t r i x E l 

< ^ N S T A T Y ^ > > R E S
k i i

= (TMii' hlhA) at A= Z4% ,i=W-l 
^ \ ^ ^ and.n=l-vMMMM fsee Eqs .(21) , (25)/v (27)] 

I=2 4 ' 
r«— 

No 
(j-l>NNNNN ys Iscm^-ÇZjVjFj^fZ^M at J=J^% 

£ es 

I = NNNNN 

<-

NSPH.A).OR. Ajj>4-XjVj/(Z4Vi) 

( s e e t h e l a s t p a r a g r a p h of § 3 . 2 ) 

No. 

Yes 

RES
n,j i

a
R » ^ % ) £see Eq . (35 )] 

C 
_± 

>r
 Λ 

I=I+1<Jl 
> Yes 

No 

^( LLL>0 V 
Yes 

No 

ι 

Next page 

^Further 

iterations 

CALL DET and ITRTON to obtain the fundamental decay 

constant for the case where NUPSAT>0 and NSTAT1=0 

\ponverged 

WRITE r4v,*S { 
>iNot c o n v e r g e d 

RETURN J 
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f NUPSAT > O y 
Yesv 

No 

E=E1 and then CALL SOLEQ to obtain RESj¡¿ 

■ (*iVi jx)
H

B^jA) at A=XM , i=i^IGRP 

and n=lA/MMMM £see Eqs. ( 2 1 ) , ( 2 5 ) Λ , ( 2 7 ) ] 

RES$ÎJ =|Ell /DENOM= (ZyVjFj^ff^B^ (J, A) at 

A^JMAw , n=lvMMMM [ s e e Eqs. ( 34 ) , ( 2 5 X 2 7 ) ] 

WRITE RES 

NSTATY^ 

= 1 

=2 

< 
PUNCH RES 

(™ 

JL 

1.0R.(J<IGRP.AND.SP(1,J+1)=0) 

No 
> 

Yes 

SSPP i=SP i, S P ^ XiVi ( l - S P ^ / C T ^ ) , i=NNNNN,. . . ,J- l ,J 

PUNCH SSPP i, i = l , 2 , . . . , J 
< 

X___ 

RETURN 
) 
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4 . FLUXCA 

( ENTER V " MMMM=1 ■W NSTAT1 > O j 
Yes 

TT = X/V, o r r / V / 
.=2 

JC=1 

NSTATY 

=1 

MMMM=3 

No 

NOS s p a c e p o i n t s , Xm.- X/d o r Y/R 

^ NOT t i m e p o i n t s , T^ * > / NSPH=0 j Y e S > NOM a n g l e p o i n t s , 

I No A»
GL

 =/* 

J=NKK JOD=l, 111=1 

AA= ftj NSTATY^. 2 >i 

X = ( l + r / R ) 2 Ç 
m 

"TS 

T = SCAL * Τ 
m m 

=1 

No 
( NSPH=0 W 

¿, JOD=2, 111=1 

Yes 

■^ NQ, NQQQ k 

I=JC =2 NSTATY =1 
JC=J 

C a l c u l a t i o n of t h e t o t a l number of l e a k a g e n e u t r o n s , t o t a l f l u x 

o r / a n a n g u l a r f l u x f o r t h e J r t h g r o u p ( s e e Appendix 2 , § 4 . 1 ) 

= 1 + 1 ^ J ) >{ NSTATY=2.AND.IIKIHL 

No. > 

Ye 
% 111=111+1 

NSTATY=1.AND.NSPH=1 
üo* 

y Yes 

/ NSPH=0 p 

TFLUX 

=1 

Q 

NPRINT 

WRITE J 

Yes 

) 

lep 
JOD=l, 

111=1 

NSTAT1 > 0 

RES = 
m 

total flux 

at Xm 

WRITE X and intermediate re

sults for the flux 

WRITE the mean time t and variance <7~
Λ 

by calling VARIAC f see Eqs. (41) and (42)] 

Yes 

J=J+1 

< IGRPP 

No 

( RETURN J 
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4.1 Calculation of the total number of leakage neutrons, total flux or/and angular 

flux for the J-th group in FLUXCA 

C ENTER LLL=1, IJK=1 

f RETURN \ Ä / SP(NQ,J)=0 \ ^ XVS= J,Vj (4-Jjj ) 

¿ . AB=2\0(JFJ\ 
=1 

LLL=2 « No 

i. 
ƒ AA>0 \ 

Ν — , • 

j n T > * AA= CXjFj 

W%WjítffytiAVU*ñ) with :a=2j^jii n=l 'vMMMM 

ï 
Γ NSTATY=1.AND.NSPH=1 j N°><^NSTATY^> 2 >( 1̂ =0 j YeS >f RETURN J 

^ Y e s 

M = l <■ 

| = 1 >|No 

Y e S A ( 333=3 V EXPNT=exp£Z ( V i ( ^  J j : r ) ] 

CALL GCAL 

É NSTATY=:LAND .NSPH=1 

>' Yes 

TFLUX= Y I T J W J C Y ) 

£see Eq. (8)] 

Yes 
( 

1 

) 

No 

FFLUX=2nd term of Eq.(20) or (24) by calling CCALC 

(and the derivatives, by calling DEROC when NSTATl=l) 

No 

No 
( JJJ=1 J ( RETURN ) 

TFLUX=2nd term of r*fEq.(D] or Eq.(19) when NSTATY=2, or 

FFLUX=2nd term of Eq.(23) (and the derivatives) when NSTATY=1 

NSPH^O.OR.JJJ^ 2.0R.M: Ώ No CALL FMCAL 
Yes 

Γ M=M+1 < NOS y^ 
No 

f RETURN ) 

FNPOL=2nd term of Eq.(ll) when NSTATY=2, or TFLUX=2nd 
term of Eq.(22) £ and Eqs.(26) and (27)] when NSTATY=1 
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J=J+1 <̂  

=1 

NOT time points, Τ , 
EXPNT=exp f-Zj^t ] 

WRITE Τ 

Yes { NSPH=1 J 
No 

Calculation of the contribution of the continous 
spectrum to the J-th group flux (see Appendix 2,§5.1) 

NSPH=0, NCURVE=2 

^ SOCEj> O j- ^ Calculation of the contribution of uncollided neu
trons to the J-th group flux (see Appendix 2,§5.2) 

WRITE final results for the total number of leakage 
neutrons, total flux or/and angular flux 

<IGRPP 

=IGRPP 

>IGRPP 
< 

JJJ=3.OR.SCALAI 

f RETURN y 

Yes 
) 

No 
IGRPP 

WRITE 21 (total No. of leakage neutrons) 
J=l 
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5.1 Calculation of the contribution of the continuous spectrum to the J-th group flux 
in INTCAL 

f E N T E R y ^J IGRP=1, KKKK=1, ±3-. Yes., JJJ=^ I * KKK=3 
No 

M=l 

KKKK=3 < Yes - ƒ M ¿ 1 \ L0GCL=1 

( M 
y No 

f RETURN J 
—κ 

H. 

}
 Ye

» >Q 
No 

Yes f \ Yes 
> middle space point j — >{ 333> 2 J >\ KKKK=5 

No 

LF=1, NCURVE=0 

J± 
MMU = middle angle point I only for JU> θ] 

For mirrored space pointy 
TFL = last term of Eq.(ll),(19) 

or (20) by calling FNCUT1 

LF=2, IGRP=2, L0GCL=2 

ï 
j<0( ' "Λ 

"* \JTL+2nd term of Eq.(ll),(19) or (20)J 

1
 D 2nd term+TFL)| < 10 

i Yes 
WRITE X & TFL+2nd term, CALL ADJPUL 

NCURVE Z>0 y * - r " C K K K K ^ ^  ^ NCURVE > 0.0R.MMU=middle point 

y x e s ^ Jt~* 

( RETURN V ^ J J J > l J (NCURVE >0.0R.Xm=0.5 J  ^ ^ 8 3 

[Yes h~~ 
_ V _Y_ 

No /—" V Yes r~ 
f M=l.AND.KKKK=3 Γ [ 

Yes 

) 

Yes 

L0GCL=1, 

NCURVE=0 

KKKK=KKKK+2, 

L0GCL=1 

J J J > 2 

Ye; 

C RETURN 

3k 

) 

\ No 

N o { M=M+1 < NOS 

Yës^ 
Κ MMU=MMU+1< NOM 

> 

Yes 

-$» 



5.2 Calculation of the contribution of uncollided neutrons to the Jth group flux in INTCAL 

( ENTER y * 11=1 

KKKK=3 

1 Yes I 
KKKK=1 < (M=NOS.AND.J J J ¿ 3 

*( NSPH>0 y i £ g ^ ( ^ / U j > 0 ) I g j ^ 3 2 6 J 

>'^° ν,Νο 

τ. >H 

Yes 

NSTATY^ >̂ MU=middle angle point 

MÍANOS.AND.JJJ=I V
 Y e s

—>f M=M+I< NOS V - ^ / R E T U R N Λ 

'fè/zk^-^r
 n¡A

——) 

FFLUX= 

FFLUX+Eq. (43) 

=1 ^ \ =5 
^ __<^KKKK^>__ >i 

( 

No 

Í KKKK=5 y Z r K DMUl̂ í > 0 
=1 

NSTATY">—*■ 

yQ 
TFLUX=TFLUX+Eq. ( 4 5 ) 

1=3 

FFLUX=FFLUX+Eq. ( 4 4 ) 

MT=1 ( t = 0 ) TFLUX=TFLUX+S e x p (  Z j D / (  f I T ' ? ) f o r Y > 0 £ s e e E q . ( l ) ] * 

i * 

KKKK=1.AND.JJJ=1 

Yes 

( RETURN J 

( 

Íes y 

No 

3 
TT 

=1 

Yes 

=3 ^ 
C < KKKK c 

j , Yes 

^ V ^ / C t y O V * 2 ^{NSPH> o ) 
o r 'XAtyQTzt ) Γ — 

FNPOL=FNPOL+Eq.(48c) 

Yes ( DMU1> O \ 

MT=MT+1< NOT 

KKKK=3. AND.JJJ=2 

3 
) 

KKKK=KKKK+2 

No 

=5 

X. 
349 

No 

y FFLUX= 

FFLUX+Eq.(46b) 

FFLUX+Eq.(46c) 

( NSPHÄ) ) , 

Yes^—N. ( t=0 V — TFLUX=TFLUX+Eq. (47b) 

Yes 
Y 

TFLUX=TFLUX+Eq.(47c) 

1^350 J 

FNP0L= 

FNP0L+Eq.(48b) 
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6. FNCUTl (g.t. ? ) 

C ENTER C «C 
\ 

> 

=2 

NI= ̂& 

Ä 

s 

Y 
( 

=max 
3 

(5 ,5 V a , 400 V I G R p p / a ) 

i 
DPI=0 .9 t a n " (Y ) / ( 2 N ) , DP2=DPl/í 

V 

J - 1 1 1 

) , NI=1 

A 
333=1, KMIN=1, KMAX=2N+1, CAL=c(J>J)X a/2, 

<J 

RV= 
a / ( 2 V T ) , S X P = 2 Z T V T S T 

J ■ .1 .1 J 

I=KMIN 

KKK=1 

AZ=(I-1)*DPI « 

t 

=2 
J J J ■>■ AZ=2N*DPI+(I2N1)*DP2 

* Y=tan (AZ) <r- Jf 

=2 
IGRP "> ¿J ZZA=ZZA2*ZZB 

YM=RV*Y > 

ZZ1=0, ZZA=0, ZZB=0 

=2 

T 

( YM>0 V 

Yes 

No ->( J>L y 
No 

1=1+1 

Θ"  i / KKKK > 1 \ 
Yes 

No 

M 611 

J ,C a n d / o r C° by c a l l i n g IFNCAL 
nm η η |» 

£see Eq. (37)] 

IGRP 

B1=B 1T or Β of Eq.(36), by calculating the contribution due to 
nid n2J 

S_c(J>J)XTaC of Ζ in Eq.(31) (J0D=1) and then, if J>1, due to 
J . J m m 

Ζ? c(g'W)*(Yl or Y2) (J0D=2) 

|H _ _ _ _ _ _ _ _ _ _ _ 

Τ Next page 
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Ι , 

No No 

ï l = S T I T a C + Ζ J Β 
 J J m n mn n 

[ s e e Eq. ( 3 1 ) ] 

= 1 . 
KKK> ^ Y2 = Yl 

=2 

KJ!) XeavJ 

=1 5=0.5.AND.KKK.= 

F by c a l 
n 

l i n g FMIMG 

No 

G by c a l 
n 

l i n g GIMAG 

1 
LFF=2, 

Z Z 1 = Z B C of E q . ( 3 6 ) 
■Π n n 

KKK 

=2 

~^\ KKK=2j \£-

ZZB=ZZ1 

=1 

1) 
θ 

Yes 

ZZA=ZZ1 

ZZ1=ZZ1 

ZZB=ZZ1 

VY=t*Y 

RINT=integrand of Eq. (36) 

$ / 1=1+1 < KMAX V e S >( 7 

=2 
J J 

Yes 

R E S U = i n t e g r a l o v e r y 

from 0 t o Y0 

[ s e e Eq . ( 3 6 ) ] 

_1 

=1 

RESU=in teg ra l 

o v e r y from O 

t o t an(2N*DPI) 

=2 

_ ^ J J J = 2 , KMIN=2N+2, 

KMAX=4N+1 

0 ^ _ _ 5 L ¡ > 
.No 

60 

FNCUTl=RESU=integral over y from O to 00 by adding the value in

tegrated analytically from Y to OO (see Appendix 2, § 6.1) 

I 
f RETURN J 
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6.1 Analytical intgration over y from Y r to DO in FNCUT1 (see the second half of §3.3) 

( ENTER ) > RET1=ƒ dj RETI= I dy cos(yt)/y Coefficients of Eq.(38),(39)or(40), 
for example, (3+7+ll+15)/2 

V 
J=l 

rSOCEJ> O \ No 

LYes 
RV=|ax/(1fyU)+PPP-t| Yes IG=1,PPP=0 14-£L( κκκκ=5 y -RES1=RES2=RET1 

Λ a 

SVl=RVxY 
j ß _ 

T
-

CCC= ( d y c o s i R V x y ) ^ 

Y0=RET2= 
=3 

RES 

RES2 
_ _ ^ / ΚΚΚΚ=5 Λ 

Yes I 
KKKK=5 \ > IG=3 

925 

yNo 

( D M U 1 > 0 \Ï3/(KKKK=VVND .NCURVE > 0 ) .OR. (KKKK _ . 3 .AND .: MCURVE=0) 

 ν 

Yes 

PPP= A/tø/,% 

Rv=\a/(Vj/4)-t\, 

IG=2 

3 
No 

RES1=RES1 

RET2=RET2 

Yes 

RESl=coefficient*RESl 

RES2=coefficient*RES2 

RESU=RESU+CS(J>g)i ZjVj xSOCE *(RES1+RES2) 

[ s e e Eq. ( 3 8 ) , (39) or (40) ] 

Yes 

{_____[___> 
^ N o 

( RETURN J 
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7 . PULSE 

f ENTER N—^ NOT and NOP time po in t s r e s p e c t i v e l y f o r ^ ( t ) and pu lse source ,Τ and W 

J=NKK 
Next energygroup 

M=l 

y 

Next space point 
]Yj 

Yes 

KKKK=3 

Yes 

( M ^ N O S .AND .lfc1 .AND . JJJ=1 \ YeS>( M=M+1 _ NOS Y ^ { J=J + 1 ^ I G R P P ) 

_ _ _ _ _ _ _ 

( R E T U R N ] 

/ NSPH>0 V ^ i (M^NOS .AND.M^l) .0R.JJJ=3 V 

. d_Ye

< Y e S [ KKKK=5 V p 4 7 

No 
KKKK=1 

D D D = ^ 

»( Λ > o ) 

Yes 

{ DDD7OO J 

SOCE =0.0R.(KKKK=1.AND.M=1).0R. 

(NSPH=0 .AND. J4, =0 .AND. .NOT. (KKKK=3 .AND .M=l ) ) 

No 

DDD=2 

No 

No 

r280 

Sub t rac t ion of t he con t r i bu t ion of uncol l ided neut rons (UNCOL) 
from the f lux due t o a S ( t )  s o u r c e ; 

For NSPH>0 and r > 0 , TFLUXS Jexp(Z rr)S(iTA r j)/(4ÆY3), 

For NSPH=0 and β,>0, FFLUXEq.(46c), TFLUXEq.(47c) or 

FNP0LEq.(48c) when KKKK=1, 3 or 5, 

For NSPH=0 and J¿4 =0, TFLUX2S % ( t ) when KKKK=3 and M=l 

Çsèe Eq.(47b)J or FNPOLEq.(48b) when KKKK=5 _________ x_ 
UNC0L=0 > UNCOP = UNCOL _̂ . Next page 
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,Τ(ΝΟΤ) , ,Τ(ΝΟΤ) 

where ^(t) _ FFLUX, TFLUX or FNPOL(t) 

,ΐΛ^υχν , . - χ * « , - , T ( N O T ) — 
PM=I d t ^ ( t ) , TMD=\ d t t < ^ ( t ) / P M , VAD=J dt(t-TMD) ^ ( ί ) /ΡΜ, 

TFL(W )=T dt'exp£-TCON*(W - T O - t » ) 2 ] ^ ( t * ) [ s e e Eq. ( 4 9 ) ] 

__ Ja. . 
X 

Addi t ion of t h e c o n t r i b u t i o n of unco l l i ded neu t rons (UNCOPxEEX) 
t o t h e f l ux due t o a pu l se source TFL: 

For NSPH>0 and r > 0 , TFLUP=TFL+Eq . (50) , 

For NSPH=0 and ß4>0, TFLUP=TFL+Eq.(51c),(52c) or (53c) 
when KKKK=1, 3 or 5 , 

For NSPH=0 and /d=0, TFLUP=TFL+Eq.(53b) when KKKK=3 and x=0, or KKKK=5 

W(N0) 

PMP=) d t <fe( t ) , TFMAX= T„ , SUMl=pulse width of % ( t ) , 
' w ( l ) ' r,max r 
,W(N0P) ,W(N0P) , 

TMP=\ dt t 4>(t)/PMP, TFLS1=\ dt(tTMP) <^(t) /PMP, 
; W ( 1 )

 ^
W(1)

 where <fr(t) _ TFLUP(t) 

WRITE PM, TMD, VAD, TFLUP, PMP, TMP, TFLS1, SUMÍ, TFMAX 

( MU=MU+1 < NOM y X < ^ K K K ^ > ?/ 

Yes 

KKKK 

1 

NSPH>0.0R.JJJ_ 2 

__D „ Λ Yes. 

4 \< ,./ JJJ=1 

No 

>_uQ 
No 

KJCKK=KKKK+2 *© 



1. STATIONARY PROBLEM FOR A SPHERE TO EVALUATE ΤJMECONSTANT, K^ AND CRITICAL RADIUS, AND 

THE FLUX DISTRIBUTION SY THE USE OF A 1 ENERGYGROUP MODEL AND THE j 7 APPROXIMATION 

I 
4 F 

ID TEST CASE 1 1  G R 0 U P I N 0 S = 2 1 

7 1 1 1 3 4 4 1 2 2 2 1 

Z,Z +0 . 0 0 0 0 1 +0 

3 1 2 1 1 1 1 9 

{ 
V 1 . 

% 1 . 

V~f 1 .3 

X$EC . 5 1 . 1 . . 5 

1 . 1 1 . 1 9  . 1 0 0   . 1 0 1 . 9 4 3 7 . 9 4 3 5 . 0 0 0 0 1 

Î0 
τ 

I 1 
20 

I I 
40 

. 0 0 0 0 1 

I 
ίο 

τ 
?0 

_? 
α o 
α 

3 ο 
π
α 
Ρ rt 
Ρ 
Hi 
Ο 

*3 
Ο 
C 
Η 
α> 

g· 
ίο 

00 
ο 



2 . STATIONARY PROBLEM FOR A SLAB (WITH UP-SCATTERING OF NEUTRONS) TO OBTAIN 7TH GROUP 

ANGULAR FLUX, TOTAL FLUX AND TOTAL NUMBER OF LEAKAGE NEUTRONS DUE TO A POINT ISOTROPIC 

BOUNDARY SOURCE BY THE USE OF A 7-GROUP MODEL AND THE jn APPROXIMATION 

IALSO THE 1ST ANO 2ND TIME MOMENTS OF THE FLUXES DUE TO SitJ-SOURCE AND THE FUNDAMENTAL 

OECAY CONSTANT ARE CALCULATED) 

f <f V 
I D TEST CASE 2 

7 1 1 1 7 3 

9 . +0 

7GROUP, N0S=2, N0M=3, J J J J = 4 FOR 7TH GROUP 

1 1 7 4 1 3 2 1 15 1 

\ 

1% 2 8 5 . 

(Pj+fcV
009 

$, . 1 0 7 5 7 

1 7 1 . 2 

. 0 1 2 

. 3 6 2 7 8 

32 .24 

. 0 1 6 

. 5 0 4 0 3 

1 8 . 4 5 

. 0 1 8 

.02559 

2 . 1 1 8 

. 0 1 9 

. 0 0 0 0 3 

. 2 4 0 2 

.019 

. 024484 

. 0 2 1 

OO 
ι— 

I 

X$EC< 

.00133721.08457866.08457866-.0305552 

.1277501 .1277501 -.0377562.08437803 

.2766694 .2766694 .06970756.1490423 3.02674421 

.51975166.51975166.21350756.20038489.0161576 .00267442 

.00026137.70096002.70096002.48070889.30493378.00657692.00030642 

.00204551.74581862.74581862.48544689.21846222.00131032 

.01947 2.11599 2.11599 2.09652 .25832622.00152754 

.00004 .000038 .0000001 

Í I 
f o 

I 
io 

I 
to 



3. TIME-DEPENDENT PROBLEM FOR A SPHERE FOR EVALUATING THE TIME-DEPENDENT TOTAL FLUX DUE 

TO THE INCIDENCE OF A Slt)-SOURCE AT THE CENTRE, BY THE USE OF A 1-GROUP MODEL AND THE 

ijAPPRÓXIMATION (USING PREVIOUSLY OBTAINED PUNCHED CARDS FOR THE POLES AND RESIDUES) 

V 
I D TEST CASE 3 

5 1 1 2 

1.4 +0 

(Ç 

{ 
V 1 . 

1-GROUP,NOS=6,NOT=40 

4 1 2 3 1 1 3 40 6 1 

1 . - 7 . 0 7 + 0 1 . + 0 1 . 

to 
I 

20 

+0 

S ι. 
XSEC Ï . 

4-J4 0 .24421241D 01 

0.18110943E 01 

0 .40183169E 00 

-0 .10175411E-01 

i-A2 0 .79124205D 01 

' - 0 . 77125874E 01 

- 0 . 2 7 0 3 8 5 8 9 E 02 

0 .42687244E 01 

4-A3 0 .13313983D 02 

0 .14525379E 04 

0 .51024375E 04 

0.70917461E 04 

1. 

I 
20 

1 . 

I 
40 

I 
10 

oo 

to 



4. TIMEDEPENDENT PROBLEM FOR A SLAB TO OBTAIN THE TIMEDEPENDENT ANGULAR FLUX, TOTAL 

FLUX AND THE TOTAL NUMBER OF LEAKAGE NEUTRONS FROM THE SLAB WITH A MONODIRECTIONAL 

BOUNDARY SOURCE 1/*<=1) OF THE TIME BEHAVIOUR DESCRIBED BY A RECTANGULAR PULSE, BY THE 

USE OF A 1GROUP MODEL AND THE j s APPROXIMATION (ALSO THE FLUXES DUE TO THE S(t)SOURCE 

AND THE FIRST 3 TIME MOMENTS ARE CALCULATED AND COMPARED WITH THE STATIONARY VALUES) 

1 I f I ? I f 1 '? 

I D TEST CASE 4 1GRÜUP,NOS=3,NOM=3,NÜT=32,JJJJ=4,N=70,NOP=40 

5 1 1 2 1 3 4 4 1 1 70 1 4 32 3 3 1 40 14 1 

1 0 . + 0 1 . + 0 1 .  7 2 . + 0 1 . + 0 1 . +0 

{ 1. +0 2. +0 g 

ν ι. 

$ 1. 

X$EC .ι ι. 

Γ.12744 .1274 

.36297 .363 

4-Aj-i 

.21181 .2118 

.59495 .595 

I I I I I I I 

20 40 iO tO 
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Table I Locations of the first elements of Real*» (or»Real*4) arrays stored in the 
floating COMMON and their dimensions 

Location 

IA(71) 
IA(72) 
IA(73) 
IA(74) 

IA(75) 
IA(76) 
IA(77) 
IA(78) 

IA(61) 
IA(34) 
IA(36) 

IA(79) 
IA(80) 

IA(106) 
IA(145) 

IA(87) 
IA(88) 
IA(89) 
IA(90) 

IA(95) 
IA(96) 
IA(97) 
IA(98) 

IA(99) 

! 

Array name (dimension) 

ALPHA or AL(IGRP) 
XV(IGRP) 
SP(IA(1),IA(2)) 
A(IA(3)) 

DELTA or AL1(IA(4)) 
E(IA(5),IA(69)) 
ED or E1(IA(5),IA(69)) 
SS(IGRP) 

IA(61) 
IA(34) 
IA(36) 

• FNP0L(IA(6)) "j 
• TFLUX(IA(7)) V when NSTATY=1 
• FFLUX(IA(8)) J 

• FNP0L(IA(6)) Ί 
• TFLUX or TTLUX(IA(7)) V when NSTATY=2 
• FFLUX(IA(8)) J 

C1(IA(9),IA(9)) 
C2(IA(10),IA(10)) 

IA(79) 
IA(82) 
IA(83) 

IA(85) 
IA(86) 

X(IA(16)) 
RC(IA(17)) 
ABB or DELTA(IA(18)) 

IA(79) 
]A(84) 

B( IA(11 ), IA(12 ), IA ( 15 ) ) 
SCNU(IA(13),IA(15)) 

SO, AA or DELTA(IA(14)) 
SN(IA(17)) 

AL2(IA(20)) 
B(IA(20)) 

VG(IA(19) 
E2(IA(11),IA(11)) 
CNUdAOD.IA^i.IAao)) 
R(IA(23),IA(12)) 

IA(66) 
IA(91) 
IA(92) 
IA(93) 

SSS or AIN(8) 
FG(IA(29)) 
AP(10) 
SG(IO) 

EXPN or VG(10) 

*ZZA(IA(25),IA(26)) 
•ZZB(IA(25),IA(26)) 

IA(66) 
IA(139) 

•ZZ1(IA(27)) 
• B1(IA(40),]A(25), IA(26)) 

IA(95) 
IA(101) 
IA(102) 
IA(103) 
IA(104) 
IA(105) 

IA(99) 
IA(107) 

•W(IA(68)) 
•TFLUP(IA(68)) 

F1(IA(30)) 
F2(IA(31)) 
F3(IA(32)) 
C(IA(33)) 
F8 or F4 (IA(30)) 
F9 or F6 (IA(35)) 

A1(IA(33)) 
R(IA(37)) 

to be continued 
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Table I (continued) 

Location 

IA(IOÖ) 
IA (109) 

IA(llO) 
IA(lll) 

IA(114) 
IA(115) 
IA(116) 
IA(117) 
IA(118) 
IA(119) 
IA(120) 
IA(121) 
IA(138) 

IA(122) 
IA(123) 

IA(124) 
IA(125) 

IA(126) 
IAQ27) 
IA(128) 

IA(133) 
IA(134) 
IA(135) 
IA(136) 
IA(137) 

Array name (dimension) 

X5, XY or AY (IA(39)) 
RC(IA(39J) 

F7(IA(40)) 
F5(IA(41)) 

IA(llO) 
IA(112) 
IA(113) 

FN1(IA(40)) 
FN2(IA(47)) 
FN3(IA(40)) 
FN4(IA(27)) 
X11(IA(50)) 
F4(IA(51)) 
F6(IA(40)) 
FN5(IA(53)) 
YD1(IA(31)) 

ABB(IA(42)) 
S0(IA(43)) 
SN(IA(44)) 

IA(114) 
IA(144) 

IA(llO) SO(IA(45)) 

RS1(IA(38),IA(49),IA(94)) 
AC or AA(IA(28)) 

• CS(IGRP,IGRP) 
• SOCE(IGRP) 

•RES(IA(54),IA(55),IA(55)) · 
•SSPP(IA(56),IA(57)) 

• AL3(IA(20)) 
• AL4(IA(20)) 
• EX(IA(20)) 

• CF(IA(9),IA(9) 
• C(IA(9),IA(9)) 
• BUCLG(IGRP) 
• VG(IGRP) 
• XSEC(IHL,IGRP) 

IAQ24) 

IA(126) 
IA(129) 
IA(130) 
IA(131) 
IA(132) 

IA(133) 

• Y1(IA(50),IA(59),IA(60)) 

• ANGL(IA(62)) 
• EXPNT(IA(63)) 
• T(IA(64)) 
• TT(IA(65)) 
• R(IA(17)) 

• Y2(IA(50),IA(59),IA(60)) 

, 

• 



Table II Computed integers for specifying the array dimensions ÍJHL = (ΙΙΟ+Ό/2, NNNN Ξ NNN+1, IGRPPH JNKK+NNN and N0SMN2 NOS*NOM* 
*NNNNJ 

NSTATY 

NSPH 

NSTAT1 

NUPSAT 

IA(1) 

IA(2) 

IA(3 ) 

IA(4 ) 

IA(5 ) 

I A ( 6 ) 

IA(7 ) 

IA(8 ) 

1 

1 
0 

0 

2 

2 

0 

0 

0 

0 1 

JHL+3 

Max(IGRP,2) 

0 

1 

0 1 

Max(JHL+3,6) 

Max( IGRP,a . ) 

11 

2 

1 

0 

0 

0 

0 

0 

1 

0 

I IO+3 

Max(IGRP,2) 

11 

Max(IGRP,10) 

JHLxIGRP JHL JHL*IGRP j JHL JHL*IGRP 

0 

• NOS*NNNN 

0 

NOSMN ( f o r J J J J = 3 o r 4 ) 

2*NNNN ( f o r J J J J = 1 ) , 
NOSxNNNN ( J J J J = 3 ) , 
(N0S+2)*NNNN(JJJJ=2 o r 4) 

3*N0SMN ( f o r J J J J = 3 o r 4 ) 

6*NNNN ( f o r J J J J = 1 ) 
3*N0S*NNNN ( J J J J = 3 ) 
3*(N0S+2)*NNNN(JJJJ=2 or 4) 

JHL 

0 • N0SMN*N0T 
( f o r J J J J = 3 or 4) 

• N0S*NNNN*N0T 
( f o r J J J J = 2 , 3 o r 4 ) 

0 
• 2*N0T*(NNN+2) 

( J J J J = l ^ p r 4 ) 

• N0SMN*(N0T+1) 
( f o r J J J J = 3 o r 4 ) 

„, /NOS*NNNN*(NOT+1)Λ 
, M a X l 3*N0SMN J 

( f o r J J J J = 3 o r 4 ) 

•N0S*NNNN*(N0T+1) ( J J J J = 2 ) 

„ /'2*N0T*(NNN+2 )+2*NNNN, \ 
' M a X l 6*NNNN J 

( fo r J J J J=1) 

• 3*N0S*NNNN ( f o r J J J J = 3 ) , 

/•2*N0T*(NNN+2 )+2*NNNN Λ 
* MaXU*(N0S+2)*NNNN J 

( f o r JJJJ=2 or 4) 
I 

y — — 

00 

(To be continued) 



Table II (Continued) 
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IA(9 ) 

IA(IO) 

I A ( l l ) 

IA(12) 

IA(13) 

IA(14) 

IA(15) 

IA(16) 

IA(17) 

IA(18) 

IA(19) 

IA(20) 

IA(21) 

IA(22) 

IA(23) 

Ι Α ( 2 4 Γ 

IA(25) 

IA(26) 

IA(27) 

IA(28) 

IA(29) 

IA(30) 

IA(31) 

IA(32) 

IA(33) 

IA(35) 

IA(37) 

IA(38) 

NSTATY=1 

NSPH=1 

IGRP 

IGRP ( f o r N=2) 

0 

0 

0 

• 12 

1 

NSPH=0 

0 

0 

( · JHL 

(IGRP>1 and NUPSAT=0) 

• IGRP-1 

JHL 

• 12 

1 ( f o r NSTAT1=0) 

3 ( f o r NSTAT1=1) 

NSTATY=2 

NSPH=1 NSPH=0 

0 

0 

• JHL ( f o r IGRP>1) 

• IGRP-1 

JHL 

• 12 

1 1 ( f o r NSTAT1=0) 

3 ( f o r NSTAT1=1) 

• NOS 

• 4 

11 

0 

• IGRP 

0 

0 

0 

0 

O 

0 

0 

0 

0 

4 ( f o r NSTAT1=0) 

10 ( f o r NSTAT1=1) 

0 

• JHL 

• IGRP 

• 10 ( f o r IGRP>1) 

0 

0 

0 

0 

20 ( f o r NSTAT+=1) 

10 

• 10 

0 

• JHL 

• IGRP 

• 1 0 ( f o r IGRP>1) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 10 ( f o r NSTAT1=1) 0 

• 4 

• 2 

β 4*N+1 

« 6 

20 ( f o r NSTAT1=1) 

10 

• 20 

• 10 

• 12 

• JHL 

• 8 

e I I O - l 

10 ( f o r NSTATÉ1) j 

(To be continued) 
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Table II (Continued) 

\ 

IA(39) 

IA(40) 

IA(41) 

IA(42) 

IA(43) 

IA(44) 

IA(45) 

IA(47) 

IA(49) 

IA(50) 

IA(51) 

IA(53) 

IA(54) 

IA(55) 

IA(56) 

IA(57) 

IA(59) 

IA(60) 

IA(62) 

IA(63) 

IA(64) 

IA(65) 

Λ 
IA(67) 

IA(68) 

IA(69) 

IA(94) 

NSTATY=1 

NSPH=1 

0 

««C;s
+ 1 ) i J H L

· ) 

NSPH=0 

0 

0 

0 

0 

0 

0 

0 

0 

IGRP ( f o r NSTAT1=1) 

0 

0 

0 

(JHL+1)*JHL(NSTAT1=0), 

Max(2*(JHL) 2 ,6*JHL) 

( f o r NSTAT1=1) 

NSTATY=2 

NSPH=1 

■ 

-

0 

2 * ( J H L ) 2 

NSPH=0 

• 8 ( f o r J J J J = 2 , 3 o r 4 ) 

• I I O + l 

• 16 ( f o r I I 0 2 5) 

•
3
Ì 

• 4 V(JJJJ=2 ,3 or 4) 

.a] 
• 7 ( for J J J J= 3 or 4) 

• 6 ( fo r I I 0 > 5 ) 

IGRP ( for NSTAT=1) 

• II0+1 ( fo r IGRPP>1) 

• II0+1 ( for I I 0 S 5 ) 

• 8 ( fo r 110=7) 

• 2 * ( J H L ) 2 (NSTAT1=0), 

• Max(2*( JHL) 2 , 6*JHL) 

( f o r NSTAT1=1) 

• IGRP 

0 

0 

0 

0 

0 

0 

0 

JHL*IGRP 

0 

1 

• IGRP 

0 

0 

• NOM 

1 

0 

D 

NOSxNNNN ( J J J J = 2 o r 4 

and NSTAT1=0), 

3*N0S*NNNN(JJJJ=2 o r 4 

and NSTAT1=1) 

0 

JHL ( f o r NUPSAT=0), 

JHL*IGRP+2 

( f o r NUPSAT=1) 

2 ( f o r NSTAT1=1) 

0 

0 

0 

0 

0 

. 

. 

. 

0 

NFLUXK 

0 

• JHL 

• IGRP 

• IGRPP1 

• 4*N+1 ( i f I G R P P > 1 ) 

• NOM 

NOT 

NOT 

NOS 

3*N0S*NNNN(JJJJ=2 o r 4 

and NSTAT1=1) 

( i f T P I N T > 0 ) 

JHL 

2 ( f o r NSTAT1=1) 

• Only if LLL=0 (or NFLUXR, NFLUXS or NFLUXK>0 for NSTATY=1 and NSPH=J) 

φ Dimension for the integer array II at the location IA(140) 

_ Dimension for the stationary total flux which is included in IA(8) 
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poles 2|ViSj in the j 7 appr. for the g-th group [c(g*g)=U —gCl=15] 

ÜiiSiR 
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