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expected, the TOMOF programme has been applied to the proposed Ispra
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imental data are proposed (with a view to checking the theory) and a simple
correlation between the peak pressure and pressure pulse half-width is predicted.
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ABSTRACT

On the basis of a simplified representation of a reactor channel containing
a region where hot molten fuel becomes mixed with the coolant, the equations
of heat transfer and balance are derived in a form which permits the evaluation
of the pressure and vapour mass generated by the boiling of the coolant. These
equations are then coupled, via the pressure and vapour mass, to the equation
of motion describing the ejection of the unboiled coolant from the channel.

A simple numerical method of solving the complete set of equations jointly is
proposed and has been embodied in a new computer programme TOMOF
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UQ,/Na direct contact rig. The results show that the pressure pulses generated
by the boiling and ejection process are strongly dependent on the mean size of
the dispersed UO, globules and on the total mass of Na which interacts thermally
with these globules. This is true also for the speed and time of ejection of the
unboiled coolant, though here there is less dependence on the mass of interacting
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Introduction *)

Ever since the famous SPERT experiment in which the fuel in a water
reactor assembly was allowed to melt, mix with the coolant and cause a
destrpctive vapour explosion, the problem of direct contact fuel/coolant
accidents has been "in the air",

Such accidents are of particular current interest in the LMFBR field,
since even the experts are not yet entirely happy about the idiosyncracies
of liquid sodium cooling and, in the absence of more detailed knowledge,
it is reasonable to assume pessimistically, that the direct contact acci-
dent is a concrete, if small, possibility. This assumption is encouraged
also by the well known positive coolant void coefficient of reactivity in
the central region of the LMFBR which may be capable of amplifying a

direct contact accident into a dangerous nuclear excursion.

Many experiments are underway around the world, Ispra included, to
directly observe the effects of introducing molten UO2 into a channel
filled with liquid sodium. By this means the possibility is afforded both
of observing the hazards produced (pressure pulses, voiding, etc.) with the
materials and dimensions existing in the real system, and of providing the
data needed for a theoretical understanding of the phenomenen, The purpose
of the present paper is directed entirely towards the latter aspect: the

development of an appropriate thermo-hydrodynamic model.

In formulating this model, we do not restrict ourselves to particular
"fuels" or particular "coolants', but consider only the essential features
of a "direct contact" situation. These features are summarized by the

following chronological series of events,

1. A dense liquid (fuel) at high temperature Tfo is dispersed in globules
into a certain region (interacting zone) of a channel filled with a
light liquid (coolant) whose normal boiling temperature Tb is less
than Tfo'

2. The heat transferred from the fuel causes the coolant in the inter-

acting zone to boil,

3. The vapour pressure so generated leads to the ejection of the unboiled

coolant in the remainder of the channel,

*) Manuscript received on 21 October 1970



The accompanying diagram will serve to clarify these events and high-
light some of the assumptions made to facilitate their mathematical des-
cription. These assumptions are indicated by the broken underlining of
certain key words. Also provided below is a list of the more important
physical symbols used in the theory and an indication of some further

assumptions made.

The work presented in this article draws on many references, but the re-

port of DUFFEY (1) is by far the most important.






Glossary of the more important physical quantities and the assumptions

made about them:

Interacting Zone

1) Molten Fuel Globules

Total mass mf

Initial temp. Tfo (assumed uniform)

Mean temp. at time t Tf(t)

Mean linear size of globules df

b 4

Specific heat (const.press.) Cp (assumed constant)

Density [ ] (assumed constant)

Thermal conductivity o . k (assumed constant)

Thermal diffusivity X (assumed constant)

Boundary layer resistance h (assumed constant)
2) Coolant in the Liquid Phase

Total mass mz(t)

Initial temp. To (assumed uniform)

Temp, at time t T(t) (assumed uniform)

Specific heat (const.press.) C# (assumed constant)

Density S e,' (assumed constant)
3) goolant‘ in the Vapour Phase (assumed a perfect gas)

Total mass mv(t)

Temp. at time t _ T(t) (assumed uniform)

Specific heat (const.press.) va (assumed constant)

Latent heat of evaporation ‘ L (assumed constant)

Density ev

Bressure - KT) (assumed uniform)
Channel

Flow area o (assumed constant)

Friction press. drop coef, K (assumed constant)



1. Mass Conservation and Kinematic Relations

We imagine that at t = O, the interacting zone contains only fuel

and coolant in the liquid state, the respective temperatures being Tfo

and To' The initial volume of the interacting zone is thus

‘Mf m
V= — —_ (1.1)
0 O v

where m is the total mass of coolant miyxed with the fuel and the depend-

ence of the densities on temperature and pressure will be ignored.

With time, however, heat flows from the fuel to the coolant and eventu-
ally (after some time to) the coolant begins to boil. If mv is the mass
of vapour and mL the mass of 1liquid coolant, then, by the principle of

mass conservation we must have

ml+"'V= m (1.2)

Because of this vapour formation, the volume of the interacting region in-

creases from Vo to

m m m
f+£+v

VT TR e

¢ m my Ov
1— X
7 + Y] + Ov 91)

Since we shall be concerned with pressures and temperatures fairly well

below the critical point, we shall have QV << el' and

V=V +— . (1.3)

14
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On the other hand, the expansion of the interacting region implies

the displacement of the coolant plug thvough a distance X given by

xx=V -7,

where & is the flow area of the plug. Thus, from equation (1.3) we
get

(1.4)
QVLV = c((?v X

2, Pressure in the Interacting Zone

The vapour pressure P generated by the coolant must satisfy (assuming

saturated conditions) the Clapeyron equation:

dP_ L
T TV, =)

(2.1)

where L, v, (=l/ev ) and /) (=L/p£ ) are the latent heat and specific
volumes of the vapour and liquid phases of the coolant respectively. We
shall be interested only in pressures and temperatures low enough (viz,

P 2100 atm} 122100 °K) to allow the assumptions
L = constant (2.2)

and

(2.3)

RT

the latter equation being that of an ideal gas free of chemical reactions.

With these approximations, (2.1) becomes
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P _LP
dT ~ RT?

(2.4)

which integrates immediately to give the saturated (P,T) law:

-8/T
P=A¢€

with L/RT, " (2.5)

A= P e

-4

and

B

i
70][\

[}

2
dyn/cm”) is atmospheric pressure, Tb the normal

boiling temperature of the coolant and the gas constant R for the coolant

where Pa (= 1.0133x10

is given by

7
B = 8.31:‘ 10" o /en’k (2.6)

M being the molecular mass,., For sodium, M = 23 and R = 3.6151x106 erg/gmoK.
The above theory ignores all chemical effects such as dissociation or asso-
ciation and thus, for example, fails to account for the dimerization which

occurs in saturated sodium vapour,

3. Heat Transfer and Coolant Boiling in the Interacting Zone

As described in section 1, the flow of heat from the mass m, of fuel
into the mass m of coolant causes the latter to boil and the plug of
coolant above the interacting zone to be ejected. The heat exchanges with-

in the mixture during this process are as follows:

de = mf(dEf + Pdvf) to the fuel
dQL = m,(dE + Pdﬁz) to the liquid phase of the coolant
dQ = m (dE + Pdv ) oo vapour " "woon 1"

v v v v

"

3

d = roduction of new vapour
%&’V v P
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Since the process will be somewhat fast, we can ignore the heat transfer

to the mixture as a whole and write
daﬁ +deQ, + dqQ, + de,,, =0, (3.1)

In the above expressions, the E's denote specific internal energies.
Ignoring, as before, the variations in the densities of the liquids,

equation (3.1) gives
M-FdEF +'m£dEl +m, (dE, + Pd'v;,)-l-/_.a'mv =0, 3.2)

Now, the general thermodynamic relation for changes of specific internal

energy as a function of P and T is

dE= [C—P(ﬂ.) JdT—[T( )+P( )]d” (3.3)

so that for the liquid phases, we get (again ignoring the volume éhanges):

- rf
dE, = Cp AT,
2
dEl = CP dT
For the vapour phase, we see from (2.3) that

=%

and (3.4)

9
(), -~
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from which it follows that the second term of (3.3) vanishes identically

and .
c{Ei':: (Ca:/"' ﬁZ‘) dT

Furthermore, formulae (3.4) indicatethat
RT
Pdv = RdT-— FdP

and if dP is eliminated by using (2.4), this gives
L ) AT

Assembling these expressions into equation (3.2) and eliminating ?e

by means of (1.2), we get finally

L v ¢ L
rm{_,C:dE+{'MCP+mV(CP—CP—-_,—_-)}dT+Ldi=0, (3.5

This equation represents an overall condition on the internal heat ex-
changes within the mixture, namely, that there is no heat transfer to/from
the environment, It does not describe the heat exchange process itself
which requires a quite separate analysis based on the heat diffusion equa-
tion for the fuel globules and the surrounding coolant and the conditions
which exist at the boundary between them. Such an analysis is given in
the appendix where it is assumed that the fuel globules are spherical,
with a diameter equal to the mean size df which occurs in practice, In
addition, because of the turbulence induced by vapour formation in the coolant
and the tendency of vapour blanketing to occur on hot surfaces (combined per-
haps with a high coolant thermal conductivity) it is assumed that the only
significant spatial temperature variation in the coolant occurs in a purely
resistive skin layer next to the globules., On the basis of this picture, it

is shown in the appendix that the mean fuel temperature T, and (uniform)

f
coolant temperature T are approximately related by the equation

1:'7';+7;=T (3.6)
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where the time constant T embodies the hold-up of heat in the fuel due
to its heat capacity and thermal conductivity and the thermal resistance
at the fuel/coolant interface. Denoting the latter by h, and the mean

volume/surface ratio of the globules by & (=df/6), it is shown that T

is given by

f 3 0
r=—6¢.C, (h+-5—-E-) (3.7)

the condition for the validity of (3.6) and (3.7) being

hk o
= — S 1 (3.8)
4 36

which implies that the effect of the fuel thermal conductivity (second
term in (3.7)) must never exceed 20% of the effect of the boundary thermal
resistance (first term). To compute orders of magnitude we can assume

ka 0.1 watt/cmoK, h ~ 10°K/watt cm—z, 6~ 0.1 cm (di 0.6 cm), €f~ 10

gm/cm3 and Cpgna 0.3 J/gn°K. Then

Ve 3

in support of the validity of the approximations (3.6) and (3.7), and

T ~» 3 sec

4, Equation of Motion of the Coolant Plug

The assumptions made in order to simplify the derivation of an equation
of motion for the coolant plug are: (a) the coolant plug is incompressible
and (b) the pressure Poo a little beyond the channel exit is constant.

Assumption (a) is valid only so long as the speed of the coolant plug is
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well below the speed of sound in the liquid pkase of the coolant. Since
¢ 9

there is a pressure loss of about &m as the coolant bursts from the

channel, it follows from assumption (b) that the pressure at the exit is

o 4
Poo + Plx . Thus we can write the following statements:

mass of plug

p‘ot (L=2) ;

e 2
force on it due to pressure = (P_ F:)o - eﬂ R )O( ’
" oo on " friction = - eﬂ d (l— x) K x’ 2 ;
" "o onon gravity = — ?l ol (l _x) 3 ;

where, for example

2
+ 980,66 cm/sec’ if the coolant is ejected upwards

1" 1" " 1) " "

g = 0 horizontally (4,1)

- 980,66

" 1" " " " 145 downwards

and K is a constant giving the pressure gradient due to frictiomnal drag:

ld ="99.K°.°z

3x Friction

(4.2)

Combining the above forces into Newton's second law of motion, we get

.x'—_' P—P‘,o“e‘eia Kiz—g (4.3)
Pgu"x)
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5. Reduction of the Equations

With the derivation of the above equation of motion, the problem is
Vcompletely defined. We have the five unknowns m, P, Tf, T and x and
five equations (1.4), (2.5), (3.5), (3.6) and (4.3). Because of the
simplicity of the first two of these, however, it is easy to reduce
the problem essentially to a set of three equations in the variables

T T and x.

f’
Eliminating Pv_from (1.4) by means of equation (2.3), we have

m = "‘P'x_ (5.1)
v RT
of which the differential is
o« f2gp_Prary Lanl
=—4< =dP — = —dx
From (2.4) or (2.5), we have
BP
dP=—TTdT
which reduces the above expression to a function of T and x:
dm. = « P B—lxdT..'_dgc} | (5.2)
voRrT U T

Substituting expressions (5.1) and (5.2) into equation (3.5), using B = L/R
from (2.5) and rearranging slightly, we then obtain

L
dT; +{B-§; +JcF(T)}dT+G-(T)d3c=0 (5.3)
(4

~where

B= (5.4)

m
m,
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is the mass of coolant per unit mass of fuel in the interacting zone,

and

2
o« P(T) (c:—cf— 2L , L)

F(T) = ) C: R T T RT*

(5.5)

and

o L P(T) |
G.(T) = Mf C: R T (5.6)

are functions only of T, P(T) being given by (2.5). Equations (3.6), (4.3)
and (5.3) now form the above mentioned trio for the evaluation of Tf, T
and x.

6. Solution of the Equations betfore the Onset of Coolant Evaporation

During a certain initial time interval Oststo the heat flowing into
the coolant merely causes its temperature to rise, the latter being too
low for boiling to occur., During this interval, the Vapour mass mv is

zero and hence by (1.4) or (5.1)
x=0 for 0Kt (6.1)

With this condition, equation (4.3) is irrelevant, (3.6) of course remains

unchanged:

't'l.; +7; =T (6.2)

and equation (5.3) reduces to

CL
dT, + p—5dT =0 (6.3
f C:
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The solutions to equations (6.2) and (6.3), with the boundary conditions

T=T,
at t =0, (6.4)
=T
-t/7T,
Tsz_(Tm—'I;)e (6.5)
and
-t/ T,
E_Tm.g.('l}o——Tm)e (6.6)
where
l,
T-Fo + @ C 0 (6.7)

4+@

is the fipnal (asymptotic)temperature which both the fuel and coolant would

reach in the absence of boiling and

C"
er T
T, = P 1 (6.8)
1+ 8 &
P

is the hold-up time constant of the mixture.

The above solutions are only valid as long as the vapour pressure P(T)
corresponding to the tempprature T is less than the pressure Poo + leg
in the interacting zone, By the definition of to, it follows that when
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t = to, these two pressures are equal:

]
ot

P=p,+¢1J R | (6.9

at which time the temperature is equal to the corresponding boiling point

Tb1:

T:: Tb4 (6.10)

Combining (6.9) and (6.10) with (2.5), we get

-B/T,
Ae g = eo+e2lj

i.e. inverting and substituting for A and B from (2.5):

[

bi
1+ Kb ﬁn( fa )
L ho+6L9

The time to at which evaporation begins follows from (6.10) and (6.5):

(6.11)

)@u( T =T (6.12)
T
b4
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7. Solution of the Equations after the Onset of Coolant Evaporation

When t >-to, all three of the equations (3.6), (4.3) and (5.3) come

into play simultaneously and means must be sought for obtaining their

joint solution. For convenience, they are repeated here:

77;+T; =T
—P —-p, 2"
- KW 8% kit

6 (L-x)

and
AT, +{a+ = F(T)}dT + G(T)dxe =0
where
L
Cp
a= @ ——7;
Ce

() = & L P(T)
& —'me,fR T

GM) ,.v_ 2L | L
F(T) =—F (CP—CP—YT RT2

7

(7.

7

(7

(7

7

(7

1)

2)

.3)

.4)

.5)

.6)

.7)
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The boundary conditions at t = to are:

&
I

N &

i

0

(a)

(b)

(7.8)
(c)

(d)

(e)

the latter condition being a consequence of the instantaneous static equi-

librium embodied in (6,9). Conditions (c),

(d) and (e) make possible an ex-

plicit solution of equation (7.2) for times very near to to. For these times

[
it is accurate to put ¥ = O in (7.2) and, recalling (6,9), employ the ex-

pansion

P= Poo + 91'23 + Y(t"to)

where

().,

With these substitutions, (7.2) becomes
.

X = 7 (t—to)
€

of which the integral (using boundary conditions (c) and (d)) is

4
6921

x = (t—t,)°
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i.e, for t very near to to=

3
e (2P} (t-t,) 7.9
6ot \dt/ry,

Because of the complicating non-linearities in equations (7.2) and (7.3),
the evolution of T, Tf and x with time can only be obtained approximately from
a finite difference representation. The system being used at the moment, the

simplest possible,is described below.

8. Finite Difference Representation

Introducing an equally spaced chain of time points tn:

t =nAl ) n =0,1,2,.... (8.1)
n

with the origin n = O coincident with the boiling onset time to and writing

T(tn)=Tn , ATn = T —-7;1 :

n+1

n+4

~

f f _ Tf
Tf;(tn)“Tn P AATnf': [ T’n ) .2

30('tn ) = a:n. " A QQn = Jcn1n1 - Jbﬂ

~5s

for the unknown variables and

P(T.) = B
G(Tw) = G, (8.3)
F(Tu) = F»;1

for the functions of temperature, we can deduce formulae correct to first

1

]

order in A for equations (7.1)-(7.3):

f
ATf == (T, —T) (8.4
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IR 1 2.
= A oo - +_%A
Ax ; T { e, (2 ) -9 {K I, X (8.5
AT +{a+2, F 1 AT, + G 4%, =0 (8.6)

The above equations are valid for n 2 1. The temperatures at n = 1 can be

obtained by extrapolating the solutions (6.5) and (6.6) to t = to + A

~(t,+4)/T,
7:’= Tm—(Tm __7;)_e (8.7)

~(t,+4)/T, 5.5
F:Tm-(-(To—Tm)e )

The displacement SQ' at n = 1 can be obtained from (7.9):

B—R

xr = Ax. = A (8.9)

where P1 = P(Tl) and Po,= P(Tbl). With the values of all three variables
at the first time point thus given by equations (8.7)-(8.9), a complete step-
by-step solution of equations (8.4)~(8.6) is a straightforward matter and a
computer programme has been written to perform all the necessary arithmetic,
This programme has been named TOMOF (Thermohydrodynamics of a Mixture of two

Fluids).
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9. Preliminary Results of the TOMOF Programme for the Isgra UOE/Na Direct

- Contact Ri

The experimental rig designed at Ispra by KOTTOWSKI et al (2) for the
observation of the boiling and ejection of a sodium coolant due to a direct

‘contact with molten UO,_ will have the following essential features.

2
Channel length o . j; = 100 cm
" flow area (annular) 4 o = 2.356 cn’
" friction coefficient K = 0.0125 cm
=1 atm

Ambient pressure o P o
In the early experiments, only 2.4 gm of molten UO2 (i.e, at about 3070°K)
_‘yill be used, though larger quantities will be employed later, This UO2
will be brought into contact with sodium at a variety of temperatures,
typically 970°K, by allowing the sodium to fall from the channel into the
interacting chamber via a punctured diaphragm. Thus, we shall assume in the

calculations the following parameters for the UOz/Na mixture:

‘"Total mass of UO2 : m, = 2.4 gnm
Initial temperature of Na o T, = 970°K
" " " vo T, = 3070°K

2 fo

Two further parameters of the mixture are the mean UO2 globule size df and

the mass B of sodium per unit mass of UO,_, which engages in the heat trans-

2
fer and boiling process. The values of both of these parameters are highly
uncertain, but it seems likely that they will have the orders of magnitude:
dfnwo.l cm and B ~ 0.1, the latter signifying that the volume of interacting
Na will be at least as great as that of the UO

2
of the above magnitudes, we shall perform calculations for

. To ensure adequate coverage

[
[

0.01, 0.015, 0,02, 0.04, 0.06, 0.1, 0,2, 0.4 cm

and

0.1, 0.15, 0.2, 0.25, 0.3,
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For the remaining material constants, we shall assume:

UO,, density S T ' Pf =9.7 gm/cm3

" specific heat (cons. press.) Clj; = 0.35 J/gn °k
" thermal conductivity K =0.1 Wen %k
Boundary layer (U02/Na) resistance h = 1.7 °6W cn 2
Na molecular mass , M =23

" density (liquid) : ' PL = 0.8 gm/cm3

" sp. ht,. (cons, press. liq. ph.) - C;= 1.3 J/gm %k
L " vap. " ) Cp = 2.7 3/gm K

" latent heat vaporization L = 3900 J/gnm

" normal boiling temp. T, = 1155 °K

Typical results obtained by using the above data in the TOMOF programme
are plotted in Figure 1 which shows the sodium vapour pressure in the inter-
acting zone as a function of time during the boiling and gection process

for B = 0.1 and for all of the above values of df. It will be noted that

in every case, the pressure rise A4P(t) above the initial value of 1.08 atm
(eq. (6.9)) has the form of a pulse whose maximum value Apmax occurs re-

latively early in the excursion. For the smaller values of d the pulses

f’

are sharply peaked, the half-width tl/ being small and Apmax large, As

2

df increases, however, the pulses become much smaller and broader, reflec~

ting the decreased rate of heat transfer for the larger fuel globules,

This effect is further illustrated in Tables 1 and 2 which present the

maximum pressure rise Apma.x and pulse half-width t respectively for

1/2

all the assumed values of df and B, The first column of these tables

corresponds to the above discussed results for 8 = 0,1 plotted in Figure 1
and the other four columns correspond to the other assumed values of 8.

8
1/2 on both df and is clearly

exhibited., Because of this sensitivity, it should be easy to obtain from

The sensitive dependence of Apmax and t

£
agreement between the theory and experiment. The value of d £ thus revealed

the measured values of AP and t the values of d_, and 8 which give
max 1/2

can then be checked for consistancy against the fuel globule dimensions ob-
served when the experiment is dismantled, The value of 8, though probably

not verifiable, is of considerable interest.
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The calculated values of the ejection speed Vej of the sodium plug
at the instant of removal from the channel and the time te between
this moment and the moment when boiling began are given as functions

of df and B in Tables 3 and 4 respectively.

It is interesting to note from Table 3 that vej’ while being sen-

sitive to variations in d is practically independent of B. Hence,

f!
from an experimental value of Vej it should be simple to infer the

f
This value of df can then be checked against the observed globule

value of d_, required by the theory to give the same value of Vej'

size and that determined from the Apmax and t1/2 measurements as above.

The behaviour of tej with respect to d_ and B as displayed in Table

£

4 is similar to that of Vej’ i.,e, strongly dependent on df but rabher

insensitive to 8. Thus, from an experimental value of tej’ we may

again infer which value of d_, should go in the theory (to give the

£

same te ) and thereby have the third estimate of df to compare with

J

the observed value,

If these three values are all in good agreement with experiment,

the theory will have attained a high degree of plausibility,.

The existance in the theory of the two somewhat ambiguous para-
meters df and B has stimulated a search for derived mathematical en-
tities which depend only slightly on these parameters., This search has
lead to the formulation of the following two definitions of the pres-

sure impulse,

(a) The integral of the pressure rise with reépect to time between
t = 0 (boiling onset) and t = tej (complete ejection of the
sodium plug):
tqi :
f AP (t) dt - (9.1)
[/

L
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(b) The product of the absolute maximim pressure (not rise) and the pulse

half-width:
I2 = P;Jlax T1/2 . - . (9.2)

where P =P + AP .
max o max

The values of I, and I are displayed as functions of d_ and B in Tables 5

1 2
and 6 respectively.

£

From Table 5 we see that I1 is insensitive to B but varies with d_ by at

£

I therefore fails to provide the required

least the same amount as V .,
ej 1

constant,

On the other hand, Table 6 shows that the quantity I, is substantially

2
the same over a very wide range of both df and 8, In fact, for the conditionms

of interest in this section, it appears true to write

Pmax t1/2 A4 300 atm msec (9.3)

over the whole expected range of d_, and 8. It will be useful to see if this

£
rough prediction is fulfilled by the experiments.
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10. Appendix - Heat Transfer between the Fuel Globules and Coolant

To derive a simple equation connecting the mean temperature Tf of the fuel
and the temperature T of the coolant in the interacting zone, we assume that
f.FIt is assumed
that these globules remain close together so that the coolant experiences the
arrival of heat from all directions. The fuel temperatures of interest in this
problem are far above the normal boiling point Tb of the coolant and heat trans-
fer will therefore be accompanied by vigorous bubble formation and turbulence
near the surface of the globules, Such turbulence (combined with a high thermal
conductivity for some coolants) will tend to suppress spatial variations of tem-
perature in all regions of the coolant except a thin layer next to the fuel.
Thus, it appears reasonable to assume that the coolant has a uniform temperature
T except inside a purely resistive skin layer (mainly vapour) on the surface of

of the globules.

Representing a typical fuel globule by a sphere of radius ro = df/z, de-
noting the above thermal resistance at the boundary with the coolant by h,
letting T'(r,t), k and ¥ be its internal temperature distribution,thermal con-
ductivity and thermal diffusivity respectively and letting T(t) denote the bulk

-~

temperature of the coolant, then we can write

’ : . / . .
aT 8 ( 2 9T
7t "2 r (10.1)

inside the fuel and
/

T{_ T = -~ hk %; at r=r, (10.2)

at the boundary with the coolant. At the centre of the fuel globule, the tem-

perature gradient is obviously zero:
/

T _
9r.

The mean fuel temperature is given by

o 2
T, (t) = _rs_zj; T'(r, t) ridr (10.4)

0 at r=0 (10.3)

Quite independently of the above equations, one would expect, intuitively,
that an equation of the form
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rT, = T*Tp S o (10.5)

should describe approximately the behaviour of Tf. The reason for this ex-
pectation is that Tf will decrease if Tf>T (and vice versa) and the rate of

change must be governed by the difference T - T, and by some time constant T

embodying the effects of the heat capacity and :hermal conductivity of the
fuel and the resistance h at its surface, The attack on equations (10.1) -
(10.4) will be performed with a view to establishing an expression for T
and determining the domain of validity of (10.5)., This will be accomplished

by considering two widely differing cases.

For this case, we assume that a harmonic fluctuation

Lewt

T= T; (w) e (10.6)

is imposed on the coolant temperature and we ask what the response of T'(r,t)
and Tf(t) will be, First, it is clear that (after the decay of transients)

the time dependence of T' and Tf nust also be oscillatory and therefore that

twt

T'(r,t) = ‘I;’(w., rye - (10.7)

and
twt
T.(¢) =T _(w)e (10.8)
£ of
Secondly, substituting (10.6) and (10.8) into (10.5), it would appear that

we must have, approximately,

T, (w)
T (0)) = . (10.9)
of 14+ LwT

Passing on to the detailed analysis of the heat flow within and out of
the fuel, we substitute (10.7) into equation (10.1) to get
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a__/ ’ .
a 7; + 2 97; (/) T/ _ 0 '
ar? r ar X °
of which the solution is
/ sin(zr/r,)
= w .
T, A(w) v, (10.10)
where
lwr?
Z = -— .
X (10.11)

is a dimensionless complex constant. A second term in cos zr/ro is excluded
from (10,10) by condition (10.3). Substituting (10.6) and (10.7) with (10.10)
into (10.2), we obtain

A(w){S‘mZ+ (’zcosz—smz)} = 7;(w)

and substitution of (10.7) into (10.4), with application of (10,10), gives

3A (w)

2

7;f (w) = (sinz —zcosz)

Elimination of A(w) from these two equations leads to

T, (w)
_ o (10.12)
T;f(w)— 4 z2 —-h—kzi}
3l4—zestz 1
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The function z cot z can be expanded into a power series in z which for

~
lzl < 1 is rapidly convergent:

¢ 22 z*
ZcolZ = - 3 45
so that to order z2
2
2 z
Z - :5 {— —
{— zecotz ( 15

Substituting this into (10.12) and using (10.11), we then see that for
o~
wroz/x <1

) T,(w)
T w) = ~ S (10.13)
of Lwr, Shic
[ 1_‘_
4+ﬁx( G)

and comparison with equation (10.9) immediately provides the formula

r,? 5kh
= (1+
T 1K ( r

) (10.14)

for the time constant in equation (10.5).

Substituting
X=——TC
O “p
for the diffusivity of the fuel, we get

(h+2)

T =
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or, in terms of the volume/surface ratio of the globule, ¢ = ro/3:"fﬁ

: 6:.~ : ; SO I,
T=0p, C: (h +§3-?) R (10.15)

For this case, it is assumed that for t'<to the fuel and coolant temperatures
are both equal to To and that, at t = O, the coolant temperature suddenly drops
to zero and remains there, With such a disturbance, the fuel temperature T'(xt)

begins its evolution from a uniform distribution:

/
= ' : 10.16
T(r,0) =T, (10.16)
According to the approximate equation (10.5), this evolution is given, in
terms of the mean fuel temperature.Tf, by
~t/T
T =T e / (10.17)
£ 0

On the other hand, the detailed behaviour of the fuel temperature can be
obtained by putting T = O in (10.2):

/
/ _a_l___. at r = r (10.18)
T+hko==0 =%

and then solving the complete diffusion equation (10.1) with (10.3) and (10.18)
as the boundary conditions. Such a procedure leads straightforwardly to the re-

sult

T’(r,t) = z AN e o %}‘—';1’-5— (10.19)
A | | o .

where the eigenvalues A are determined by substituting (10.19) into (10.18):

hk

o

(1_"'_r's) Sew \ -+ ANcos)A =0 ~ (10.20)
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and the coefficients A(A ) are obtained from the initial condition (10.16).-
Substitution of (10.,19) into (10.16) leads to

S A SAr/e T

4 r/n, o °

and by using the orthogonality of the functions

_ SmAX
R (X ==

4 2dx = 9, fk w? dAd§
e Sum
J;F,'\(x) (X0 X7Ax ). §

S E wasds
A [N sia? s dE

A=,

(10.21)

The mean fuel temperature is obtained by integrating (10.,19) in the way pre-
scribed by (10.4):

22xt/r? ro.
° [ 3 ° s Ar/r, .2
T(@= 2 AN (T:sfo o dr)
)

o

Substituting for A()) from (10.21), this gives
) N 2 2 2
3(f Esingdg)”  -ACxt/y;
3,02 o 2 4 €
N )" sin"8dE

T;(t)=T;§,
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and using the formulae

[ §singds = siul= Acos

I

fAs;uzgdg =%(A—S&4A605A)

0

we get finally

(10.22)

2
G(sar-Acmp)®  TAKEM?
T (4) = 7;2 5 .cvs)\ o

Equation (10.22) offers an immediate test of the validity of the intuitive
approximation (10.5) and (10.17). If conditions are such that the first term
of (10.22) - that with the lowest eigenvalue A‘ - is much larger than all the
other terms combined, then (10.17) is valid and the hold-up time cons tant T
is given by

o3

(10.23)

>
=

-h

Let us consider the behaviour of the series (10.22) as a function of the

parameter

_ hk
Pe

which alone determines the eigenvalues in equation (10,20).

Case 1: P = h';k << 1
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In this case, examination of (10,20) indicates that the lowest eigenvalue

}\4 must be very near to [ . Let us write
A=m(1-€)

where £€<< 1 . Then
Smd, = S £ = em+0(e% ; cosh, ==1+0 (™

and therefore, by (10.20)
3
g=p+ 0"

Hence, for hrk << 1

A, = n(‘I——Q—)

and
‘ ~t/T ‘
) = —T & + faster decay terms
¢ n? e
where
':2

(10.24)

T=
% (1-hk/r)

These results show that the first, slowest decaying term of (10,22) accounts
initially for only about 61% of the fuel temperature excess and, therefore,
that the "intuitive" formulae (10.,5) and (10.17) are rather inaccurate in

this case.
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"Case 2: p =

hk
% =7

In this case, the smallest solution of (10,20) is
A =T
1 2

and therefore

—

-t/T
¢ T

T ('b) = — e + faster decaying terms

=
F

where

£
b

hk
Thus, we see that for r— =1, the first term of (10.22) is completely
dominant, accounting for°98.6% of the fuel temperature excess even at t = O,
The intuitive approximations (10.5) and (10.17) are therefore very accurate

in this case,

hk

5

Case 3: p= >> 1

In this case, (10.20) can be written

N cos A — (1— gn«u =0

from which it is obvious that the smallest eigenvalue is very small: 14 <<1,
Because of this, the functions can be expanded in power series: sin Al =
3 2
xl -— Al/ﬁ, cos Al =1 - Al/z, and therefore

\3 Aa
M- =(-(A=5) =0
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In addition

3
S“/“»A,f —A4COSA4 =_3Ai

. _ R \3
N —sindgcosdy == A
Thus, (9.22) becomes
-t/T
T.(t)= T e
where
PrRY  hkr
T= 3x = 3X (10.26)

The faster decaying terms are completely negligible here and the intuitive
description given by (10.5) and (10.17) is therefore exact in this case.

Thus, we have established that the simple equation
®
TT, +T =T

gives a very good description of the mean fuel temperature for a step change
in the coolant temperature T provided that

hk o (
__':_ S 1 10.27)



- 38 -

Now let us compare the formulae (10.24) - (10.26) for the time constant
T with that derived in the analysis of harmonically varying temperatures
(equation (10.14)). In the following Table the values of ‘T calculated by

the two methods are shown explicitly:

hk v
ro harmonic step
r2 r2
1 [0} 1 o)
small 15 X 5.0 %
2 2
T o
1 0.4 0.405 -~
b 4 X
hk r hk r
large Q Q
3K 3X

Thus, we see very clearly that if the condition (10.27) for the validity

of the intuitive description is satisfied, the time constant T is inde-
pendent of the manner of exciting temperature variations. We therefore con-
clude that the intuitive equation (10,5) connecting the mean fuel temperature
and coolant temperature is quite general provided equations (10.14j (or

€10.15)) and (10.27) are observed,
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TABLE 1

Maximum Pressure Rise AP (atm) during
B— max

Ejection as a Function of df (cm) and B,

8 0.1 0.15 0.2 0.25 0.3
0.01 44 .9 34,7 28 .2 23.5 19.9
0.015 34.5 27 .0 22.1 18.6 16.0
0.02 28.3 22.3 18.4 15.6 13.5
0.04 17.0 13.6 11 .4 9.81 8.60
0.06 12.4 9.98 8.42 7.31 6.46
0.1 8.19 6.63 5.64 4.93 4,39
0.2 4.48 3.65 3.13 2,76 2.47
0.4 2,31 1.89 1.63 1.44 1.29

TABLE 2

Pressure Pulse Half-Width tl/2 (msec) as

a Function of df (cm) and B
8 0.1 0.15 0.2 0.25 0.3
0.01 6.75 9.44 12,1 14.8 17 .6
0.015 8.52 12.0 15.4 18.8 22.3
0.02 10.1 14.3 18.4 22,5 26,6
0.04 15.6 22.3 28.9 35.4 41.7
0.06 20,1 29.0 37.8 46 .2 54.2
0.1 27.6 40,1 52.3 63.7 74.0
0.2 40.6 58.9 76.3 91.8 104.9
0.4 54 .4 76 .4 97.1 115.8 132.2

— L
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TABLE 3

Ejection speed'Vej (cmsec) of Sodium Plug

from the Channel as a Function of d_ (cm)

f
and B,
B

0.1 0.15 0.2 0.25 0.3
de
0.01 cenc 2457 2384 2312 2241
0.015 cenc 2413 2346 2279 2212
0.02 cenc 2357 2296 2235 2174
0.04 2178 2136 2094 2050 2005
0.06 1988 1959 1926 1892 1856
0.1 1719 1701 1680 1657 1631
0.2 1326 1320 1310 1297 1282
0.4 920 920 920 915 909

cenc = complete ejection not computed

TABLE 4

Ejection time tej (m sec) of Sodium

Plug from the Channel as a Function

of df (cm) and B,

8
df 0.1 0.15 0.2 0.25 0.3

0.01 cenc 43.0 " 45.0 48,1 50.8
0.015 cenc 46 .4 49.1 51.8 54.6
0.02 cenc 49 .5 52.3 55.1 58.0
0.04 56.3 59.6 62.8 66.1 69.4
0.06 63.9 67.7 71.3 75.0 78.6
0.1 76.4 80.9 85.2 89.5 93.7
0.2 100.9 106..6 112.2 117.6 | 123.0
0.4 141 .4 148.6 155.6 162.5 169.3

cenc = complete ejection not computed
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TABLE 5

Il: Integral of Pressure Rise over Time up to the

Moment of Ejection, i.e, Ejection Impulse (atm

msec) as a Function of df (cm) and B8

dg 8 0.1 0.15 0.2 0.25 0.3
0.01 cenc 530 507 484 462
0.015 cenc 496 476 457 437
0.02 cenc 469 451 434 416
0.04 410 397 384 371 358
0.06 364 353 342 331 320
0.1 307 298 289 280 272
0.2 233 227 220 214 207
0.4 163 160 156 151 147

cenc = complete ejection not computed

TABLE 6

I,: (maximum pressure, atm) x (pressure pulse

half-width, m sec) as a Function of d_ (cm)

f
and B
B
0.1 0.15 0.2 0.25 0.3
d
f
0.01 310 338 355 364 369
0.015 303 336 358 371 380
0,02 297 334 359 376 387
0,04 282 327 361 386 403
0,06 271 321 359 388 408
0,1 255 309 351 383 404
0.2 226 279 321 352 372
0.4 185 227 262 291 313
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