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variations following replacement of enriched-uranium elements with plutonium 
elements. 

The technique used for power density measurements (gamma activity scanning 
by means of a Nal crystal) proved its outstanding capabilities, because it 
revealed minor effects on the power densities, such as those due to rod manu­
facturing tolerances. 

The good agreement observed in previous criticality experiments between 
the experimental values and those obtained with the calculation methods 
adopted by E N E L in the design of plutonium prototype fuel elements was 
fully confirmed. The power density was calculated with a standard deviation 
less than 2 °/0, and reactivity with an error below 0.5 %. 
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A B S T R A C T 

During the last shutdown of the Garigliano reactor for refuelling (August-
September 1968), a series of critical experiments were performed on assemblies 
containing reload enriched-uranium elements and prototype plutonium ele­
ments. The outcome of these experiments was information on the rod power 
density distributions associated with highly heterogeneous lattices and reactivity 
variations following replacement of enriched-uranium elements with plutonium 
elements. 

The technique used for power density measurements (gamma activity scanning 
by means of a Na l crystal) proved its outstanding capabilities, because it 
revealed minor effects on the power densities, such as those due to rod manu­
facturing tolerances. 

The good agreement observed in previous criticality experiments between 
the experimental values and those obtained with the calculation methods 
adopted by ENEL in the design of plutonium prototype fuel elements was 
fully confirmed. The power density was calculated with a standard deviation 
less than 2 %, and reactivity with an error below 0.5 %. 
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SUMMARY 

During the last shutdown of the Garigliano reactor for refueling 

(August-September 1968), a ser ies of crit ical experiments were per­

formed on assemblies containing reload enriched-uranium elements and 

prototype plutonium elements. The outcome of these experiments was 

information on the rod power density distributions associated with highly 

heterogeneous lattices and reactivity variations following replacement of 

enriched-uranium elements with plutonium elements. 

The technique used for power density measurements (gamma activ­

ity scanning by means of a Nal crystal) proved its outstanding capabilities,, 

because it revealed minor effects on the power densities3 such as those 

due to rod manufacturing tolerances. 

The good agreement observed in previous criticality experiments 

between the experimental values and those obtained with the calculation 

methods adopted by ENEL in the design of plutonium prototype fuel ele­

ments was fully confirmed. The power density was calculated with a 

standard deviation less than 2%, and reactivity with an e r ro r below0.5%. 





1. Introduction 

The exper imenta l and theore t i ca l work desc r ibed in this r e p o r t was 

c a r r i e d out by ENEL under the Joint ENEL-EURATOM R e s e a r c h P r o g r a m 

for plutonium uti l izat ion in t h e r m a l r e a c t o r s . During the l a s t shutdown of 

the Gar ig l iano r e a c t o r for refueling (August -September 1968), a s e r i e s of 

c r i t i c a l expe r imen t s w e r e pe r fo rmed on a s s e m b l i e s containing re load en­

r i c h e d - u r a n i u m e lements and prototype plutonium e l e m e n t s . The purpose 

of these expe r imen t s was to check the expected pe r fo rmance of plutonium 

fuel e l ement s by a s s e s s i n g the accuracy of the calculat ion methods used 

in the nuc lear design of plutonium fuel e l e m e n t s . Since these exper iment 

w e r e pe r fo rmed on fu l l - sca le e l emen t s , they provide an in tegra t ion of the 

exper imenta l data previous ly obtained by o the r s on c r i t i c a l fac i l i t ies , such 

as those at WREC and at PNWL, and by UKAEA at Winfrith on ENEL» s 

beha l f ^ ' . In p a r t i c u l a r , they allow an a s s e s s m e n t of the accuracy of the 

calcula t ions for the de te rmina t ion of K „ and power d is t r ibut ion in mixed 
co r 

l a t t i c e s , a l so in r e l a t ion to the effects of wa te r gaps and proximi ty of 

e n r i c h e d - u r a n i u m e lemen t s to plutonium e l e m e n t s . 

The expe r imen t s can be subdivided into two groups : 

a) Cr i t i ca l i ty expe r imen t s 

b) Measu remen t of the local power d is t r ibut ion through gamma scanning 

on sl ightly i r r ad i a t ed fuel r o d s r emoved f rom the a s s e m b l i e s . 

2. Fue l e l ement s 

T h r e e types of fuel e l ement s w e r e used in these e x p e r i m e n t s : 

a) n o r m a l r e load fuel e l emen t s enr iched on an ave rage to 2. 3% U-235 (Fig . 1); 

b) s tandard plutonium prototype e l ement s (F ig . 2); 

c) mixed u ran ium-p lu ton ium prototype e l emen t s , consis t ing of 40 enr iched 

u ran ium r o d s and 24 plutonium r o d s (F ig . 3). 
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The isotopie composition of the plutonium was 88.96% Pu-239, 9.77% 

Pu-240, 1,19% Pu-241 and 0.08% Pu-242s 

The mechanical design was the same for all the elements. Each fuel 

element contained a square array of 64 fuel rods housed in a square Zircaloy 

flow channel of 0, 20 cm thickness. The pitch of the fuel elements was 17.89 cm, 

whilst that of the fuel rods within each element was 1. 97 cm. The Zircaloy-clad 

fuel rods were 1.51 cm in diameter, and the pellet was 1.29 cm. The active 

fuel length was 271,80 cm, 

The fuel rods were located and supported at their ends by stainless 

steel tie plates and held in position along their length by stainless steel 

spacers (total equivalent weight of SS spacers, 1500 gr) . Eight of the peripheral 

fuel rods (tie rods) had threaded end plugs and were secured to the tie plates 

to form a box-like structure.. 

The fundamental criterion followed in the nuclear design of the pluto­

nium elements was that their reactivity life and maximum rod power density 

were to be the same as those of the reload enriched uranium elements. With 

regard to the critical experiments, however, it should be noted that, because 

of the different conversion ratio and of the different hot-to-cold swing, the 

initial K of the standard plutonium elements and mixed uranium-plutonium 

elements in cold condition is by a few percent greater than the K œ of the 

enriched-uranium elements, 

3. Criteria followed in the performance of the criticality experiments 

The purpose of these experiments was to assess the accuracy with 

which the calculation method determines the Kœ of the plutonium elements. 

In order to obtain meaningful information, it was considered appropriate 

first to form a critical assembly with all enriched-uranium elements and 

then to replace these elements one at a time with a plutonium element. Neu­

tron leakage in the radial direction is very high in these crit ical assemblies 

arid any e r ro r s in its evaluation may compensate the e r r o r s in the determination 

of Koy. The criterion of retaining the same geometry inali the critical assemblies 

would permit any e r ror m the evaluation of neutron leakage tobe approximately 

the same for all the critical assemblies , 



3. 

The reactor control system (control rods) was not the best suited for 

the intended purpose; it was therefore necessary to limit the number of r e ­

placement plutonium elements in order to assess the reactivity variations 

with the technique of rising and falling period, thus avoiding the need 

for a complete calibration of the control rods which is never quite feasible. 

4. Critical configurations 

The crit ical assemblies were formed in the reactor pressure vessel . 

For this purpose the elements of a whole core quadrant were discharged to 

leave room for the critical assemblies . The latter were separated from the 

irradiated elements by a water belt at least 60 cm wide, which was enough to 

exclude any chance of neutron interaction and to lower the gamma background 

to acceptable l imits (Fig. 4). 

As expected on the basis of the theoretical evaluation, seven enriched-

uranium elements were required to attain criticality. The first criticality 

was obtained with seven control rods (E9, E10, F8, F9, FIO, G9, G10) 
*' (±) 

banked to notch in the midst of or adjacent to fuel e lements , 

Period measurements, carr ied out about 30 hours after first cri t ical­

ity, showed no reactivity variation in t ime. It was found that when the two 

control rods, F9 and FIO, surrounded by the fuel, were inserted one more 

notch, the five control rods around the edge of the load could be fully with­

drawn. Control rods F9 and FIO were then calibrated around notch 18 by 

the technique of successive rising and falling periods. 

The various configurations obtained with the successive replacements 

were:(Fig. 5): 

- Configuration II : A standard plutonium element loaded into 

a corner position 

- Configuration III \ The standard plutonium element shifted to 

the opposite corner position 

- Configuration IV : . The standard plutonium element loaded into 

a more central position 

(*) A detailed description of the procedures and of the problems encountered 
is given in Appendix V. 



­ Configuration V: A mixed uranium­plutonium element sub­

stituted for the plutonium element in the 

preceding configuration. 

Calibration of rods F9 and FIO was repeated for the various configura­

tions. Thus, it was possible to make several configurations with the control 

rods at the same levels, so that the Λ̂  K involved in a replacement could be 

assessed on the basis of the difference between the related periods. 

Configuration III, which is practically equal to Configuration IL was 

formed to check the reproducibility of 'a critical configuration. The 

only difference was that in Configuration II control rod F9 was adjacent 

tò a plutonium element, whereas in Configuration III it was completely 

surrounded by uranium elements. 

The water temperature at the inlet and outlet of the unloading system 

remained practically constant at 23'C throughout the t es t s . Chemical analyses 

of the water did not reveal the presence of any poison in the moderator. 

5 , Power distribution measurements 

5 , 1 Measurement technique 

The power distribution measurements consisted in slightly irradiating 

the fuel elements of a critical assembly and in monitoring the 1.6­MeV gamma 

activity of the Ba­140/La­140 chain on the individual rods . ' . 

The La­140 gamma scan was preferred to the measurement of the 

total fission product gamma activity because the decay law of the Ba­La chain 

is obviously independent of the fissile material composition, and the corre la­

tion factor between gamma activity and power can be calculated with fair 

approximation for various types of rods . This is not so for the total gamma 

activity. 

Indeed, a few preliminary measurements of the total activity, per­

formed previous to the formation of the crit ical assemblies (Appendix I), 

had indicated a substantial difference between the decay laws of the various 



types of rods . The acceptance of these laws would have entailed a periodical 

scan of all the typical rods (seven) which it was instead desirable to avoid in 

order to safeguard rod integrity and minimize measurement t imes. In addi­

tion, it was practically impossible to obtain the gamma activity/power cor­

relation factors for the various types of rods with sufficient precision other 

than by supplementing the total gamma activity values with those of the La-140 

activity. 

5 . 2 Fuel rod irradiation and handling 

Symmetry requirements led to the choice of an assembly of nine fuel 

elements in a 3x3 ar ray . Four were enriched-uranium elements, four were 

mixed plutonium-uranium elements and the one in the center was a standard 

plutonium element in order to provide a wider range of information. 

The reactivity of this cri t ical assembly was estimated previously by 

means of a 5-group bidimensional diffusion calculation. On the basis of the 

information obtained through this calculation, the four uranium elements 

and the central plutonium element were housed in stainless steel rather than 

Zircaloy flow channels, to limit the excess reactivity of the assembly and 

thus the degree of control rod insertion. The use of the stainless steel flow 

channels lowered the Keff to 1. 006 . 

Under these conditions it should have been possible to obtain a suf­

ficiently flat radial power distribution at a level of interest without any 

disturbance from the control rod bank. The configuration thus selected 

(Fig. 6) was characterized by a high degree of symmetry and by the presence 

of. all three types of elements in one octant. This permitted the gamma 

scanning to be concentrated on the rods of an octant. 

With the control rod bank nearly all out (70 cm insertion, co r re ­

sponding to À K = 0.006), the 3x3 configuration reached criticality, thus 

confirming the theoretical prediction. 

The nine-element assembly was irradiated at a neutron flux of about 
9 

10 nv for about an hour. 



6. 

The irradiation conditions had been established previously on the 

basis of p r e l i m i n a r y measurements taken on s p e c i m e n s of three 

types of t h e r o d s contained in t h e f u e l elements (see Appendix I). 

These conditions r e p r e s e n t a satisfactory compromise between thè 

requirement of sufficientLa-140 gamma activity for the measurement, and the 

necessity of keeping the radiation level low enough to permit rod handling without 

undue exposure of the personnel. A second set of specimens was placed inside an 

aluminium dummy element locatedatthe boundary of the 3x3 configuration (Fig. 6), 

This second set was used to check the gamma activity decay laws, because the 

impracticability of handling the rods did not permit them to be subjected to 

periodical measurements . 

Three fuel elements, that is , one reload fuel element, one standard 

plutonium and one mixed uranium-plutonium fuel element present in the same 

octant, were all transferred to the pool and allowed to decay for fourteen days. 

This waiting period was necessary to obtain meaningful data from the La-140 

gamma scan. Indeed, after about two weeks from irradiation, the 1. 6-MeV gam­

ma activity of La-140 is still h i g h , and the interference of the other fission 

products is negligible. 

After this hold-up period, the elements were decontaminated and t rans­

ferred one at a time to the fresh fuel vault where they were disassembled and 

gamma-scanned. In this manner, handling of the plutonium rods occurred in 

a restr icted area and could easily be kept under control. 

Before starting the disassembly operations, the element was moni­

tored to ascertain that the dose was lower than the specified limit. The station 

equipment normally used for fuel element inspection was employed for the dis­

assembly (Fig. 7). The personnel assigned to this operation had been trained 

on a full-scale fuel element mock-up, specially procured for this purpose. 

Disassembly consisted in removing the upper tie plate from the eight 

tie rods (Fig. 8). Since the other rods of the fuel element simply rested on the 

lower plate, they could be raised manually with the aid of a constant-load hoist. 

Once removed from the fuel element, each rod was placed in an aluminium pro­

tection tube (Fig. 9) where it remained throughout the transfer and counting 

operations up to the time it was to be placed back into the fuel element. 

Not more than two rods were removed at a time to avoid the r isk of 

altering the fuel element arrangement and jeopardizing its rigidity. 



5 . 3 Measurement equipment 

The equipment used for gamma scanning comprised: 

- An auxiliary system for positioning and rotation of the rods (Fig. 10). 

- A shielding and collimation system made of lead br icks. 

- Two counting chains, each consisting of a photoscintillator (Nal), a multi­

channel (400 channels) pulse analyzer and a fast printer (Figs 11 and 12). 

The rod positioning and rotating system comprised a jib crane for the 

vertical movement of the protection tube, a hooking and ball bearing rotating 

system, a fixed system to guide, the aluminium tube in front of the slit in the 

shield, and a locking and rotating system. 

The shielding and monitoring system consisted of a parallelepiped 

lead-brick shield enclosing twophotoscintillators with a 2"x2" Nal crystal and 

the related preamplifiers. The two detectors were located in front of the 

collimator at an angle of 30' and at a distance of about 15 cm from the rod. 

The collimator was 3 cm wide. The entire system weighed three tons and 

was supported by a steel base about 3 m high. 

The size of the collimator slit was chosen rather large to minimize 

the influence of pellet dishing. 

The pulse analysing system comprised two 400-channel spectrum 

analyzers of LABEN make, complete with HV power supplies, amplifier, 

t imer, integrator between two preset channels, multiscaler and printer of 

the memory content. 

5.4 Details of the measurements '* ' 

With the equipment described above it was possible to duplicate the 

measurements and at the same time to determine the 1.6-MeV gamma ac­

tivity of La-140 by integrating the pulses over the whole area of the 1.6-MeV 

gamma peak, and the total gamma activity by integrating the whole gamma 

spectrum starting from 480 keV (Fig. 13). It was thus decided that also 

the data relating to the total gamma activity should be collected as they 

might be valuable for the purpose of checking the main measurements . 

(±) The procedures followed in the measurements are described in Appen­
dix II. 



The m e a s u r e m e n t t ime was var ied from one rod to another so a s to 

have a s t a t i s t i c s of about 100, 000 counts for La-140 activity each t ime . 

The number of counts re la t ing to the total gamma activi ty was about 15 

t imes h igher . 

The rods w e r e moni tored about 167 cm from the bottom of the rod, 

corresponding to the maximum axial flux level (upper level) , so a s to r educe 

counting t imes (Fig . 14). At the s ame t ime , this point was far enough from 

the control rod inser t ion level (approximately 70 cm) to have prac t ica l ly no 

d is turbance from the control r o d s . 

Burn-up conditions were optimized to pe r fo rm a m e a s u r e m e n t un­

dis turbed by control r o d s . However, s ince fuel rod act ivat ion, even though 

very low, could be measu red at control rod level , it was deemed advisable 

to pe r fo rm gamma scanning at a lower level (about 5 2 cm from the bottom) 

in o rde r to a s c e r t a i n the exper imenta l power dis t r ibut ion also with the con­

t rol rods in. 

The data re la t ing to each rod w e r e immedia te ly p r o c e s s e d and checked 

in o rde r to es tab l i sh whether the m e a s u r e m e n t was to be repea ted before the 

rod was r e i n s e r t e d in the fuel e lement , and consequently to avoid handling 

the rods more than once. 

The check consis ted in: 

(1) verifying the constancy of the r a t io between the data supplied by the 

two counting cha ins ; 

(2) comparing the ra t io of the La-140 activity to the total gamma activity 

( cha rac t e r i s t i c of each rod type) with the r a t i o de te rmined on the b a s i s 

of the p re l imina ry m e a s u r e m e n t s on rod s a m p l e s ; 

(3) checking the r a t io between the exper imenta l power value and the theo­

re t i ca l one obtained through the two-dimension calculat ion method used : 

for the p rog ramming of this exper iment . 

It was a lso n e c e s s a r y to p e r f o r m s e v e r a l m e a s u r e m e n t s on s y m m e t ­

rical; posi t ions of the c r i t i ca l a s sembly , because the exper iment was con-
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ducted on the actual fuel and equipment of a power reactor rather than on an 
ideal critical facility. Therefore, a total of 125 rods were subjected to gamma 
scanning. Of these, fifteen were also given an axial scan for the purpose of 
checking the axial power distribution at the levels considered in the experiment. 

6. Analysis of experimental resul ts 

6 .1 Criticality experiments 

The Keff value for the critical assembly formed by seven enriched 

uranium elements and with all the control rods out was estimated to be 

1.0109 + 0.005 0. This value was determined on the basis of the average 

notch reactivity of control rods F9 and FIO (measured at notch 18 by means 

of the rising and falling period technique) and the calibration curve of the 

Garigliano reactor control rods . 

Table I. shows the differences in Ke^ values obtained from the pe­

riods measured for the various configurations with the control rods at the 

same level. 

TABLE I 

C o n f i g u r a t i o n s 

A Β 

II I 

III I 

V I 

III II 

IV II 

V II 

V II 

V II 

V III 

V III 

V IV 

V IV 

A K = K e f f A - K e f f B 

p c m 

2 4 6 . 1 

2 2 9 . 7 

1 8 9 . 4 

- 1 6 . 5 

1 4 9 . 7 

- 4 1 . 2 

- 5 6 . 7 

- 4 6 . 3 

- 3 3 . 6 

- 4 0 . 2 

- 1 9 4 . 2 

- 1 9 0 . 9 

+ g 

p c m 

4 . 9 

5 . 2 

4 . 5 

4 . 1 

3 . 6 

4 . 4 

3 . 0 

4 . 1 

5 . 0 

3 . 4 

2 4 . 4 

5 . 6 

C o n t r o l r o d 

F 9 F IO 

17 17 

17 17 

17 17 

17 17 

16 16 

16 16 

17 17 

17 16 

16 16 

17 16 

16 15 

16 16 

p o s i t i o n (notch) 

R e m a i n d e r 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 
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In determining the "mean square e r r o r " of period m e a s u r e m e n t s , consid­

era t ion was given to: 

a) uncer ta in t ies due to defective point al ignment on the cha r t s because of in­

c o r r e c t change of scale or other equipment defects ; 

b) in t r ins ic e r r o r dependent on the "waiting t i m e " . The waiting t ime was de ­

te rmined so as to obtain an e r r o r of about 1%, and at any r a t e not higher 

than 5%. 

The mean square e r r o r does not include poss ible sys temat ic effects nor 

other causes of e r r o r s that could not be invest igated. One of them is the 

co re t e m p e r a t u r e var ia t ion during the exper iment , because this was control led 

at the unloading sys tem inlet and outlet and not by means of a thermocouple 

inside the c o r e . At any r a t e , s ince the channel was completely flooded during 

the exper iment and the water was continuously r ec i r cu l a t ed , it is r e a s o n a b l e 

to a s s u m e that the t e m p e r a t u r e read ings w e r e c o r r e c t . 

Bes ides , in o rde r to shor ten the m e a s u r e m e n t t ime , no effort was made 

to r e s p e c t the or iginal posit ion of the U­235 e lements during the exper iment , 

and a change in posit ion was allowed among those that w e r e of minor neutron i m ­

por tance . This could cause a reac t iv i ty var ia t ion due to imperfec t fuel homogenei ty . 

During plant s ta r tup t e s t s , fuel uniformity t e s t s w e r e pe r fo rmed , which 

showed that the mean squa re e r r o r connected to this effect is 0 .5 3 χ 10" f\ K/K. 

As it is r easonab le to bel ieve that the uniformity of the new fuel batch is equal 

to that of the f i r s t co re load, the above figure may well be a s sumed as the contribu­

tion of fuel disuniformity. 

The ¡\ Κ m e a s u r e d between the II and III configurations was slightly higher 

than the mean square e r r o r ; it is difficult to a s c e r t a i n whether the resu l t ing 

/\ Κ is due to the worth reduct ion control rod F9 owing to the effect of the Pu 

fuel e lement , or whether it r e p r e s e n t s the e r r o r due to non­reproducib i l i ty 

of the m e a s u r e m e n t . 

The Κ f f of the 3x3 configuration with al l the control r o d s out was es t imated 

equal to 1,005 60 + 0,0005 0 by the s a m e p rocedure as desc r ibed above. 
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6 . 2 Power distributions 

6.2 .1 Level not affected by the control rods 

The La-140 counting ra tes were corrected for the background and for the 

activity of the fuel rods before irradiation. The background radiation was checked 

every twelve hours. The activity of the fresh fuel rods was evaluated from meas­

urements performed on the three specimens prior to their irradiation. 

The counting ra tes were all brought back to the reference time (14 days 

after irradiation) by using the Ba-La chain decay law obtained from periodical 

scanning of the three rod specimens over the whole duration of the experiment. 

The resulting decay law is an exponential with a half-life of 12.6 days versus 

the figure of 12.8 days given in the l i terature . 

The two sets of fuel rod data obtained from the two counting chains were 

appropriately normalized one to the other and averaged. The La-140 radioactivi­

ty thus obtained was converted into power density by means of the conversion fac­

tors evaluated for each rod on the basis of the macroscopic fission cross-sect ions 

of the individual isotopes and the related fission yields (Appendix III). The c ross -

sections were obtained with the calculation method used for the programming of 

the experiment. On the basis of the experimental distributions of Gf/ΰς meas­

ured at Winfrith(l), it was possible to ascertain that the calculation method 

assesses this rat io within + 5%. Therefore, the e r ror committed in passingfrom 

La-140 activity to power density is , at the most, 0.2%,in the worst case (rods 

enriched to 0,74% in fissile Pu). This e r ror is negligible. In addition the fis­

sion cross-sect ions are the same as those in the calculation method used for 

the theoretical-experimental comparison; for this reason, the e r ror was not 

taken into account in assessing the precision of the experimental data. 

At this level, the 3x3 configuration is characterized by a diagonal sym­

metry due to the influence of the neutron source. 

In giving the experimental distribution of the power densities (Fig. 15), 

the data relating to each set of symmetrical positions were averaged. The 

values indicated in Fig. 15 are affected by a standard deviation of +_ 0. 7%, 

which includes the random e r ro r , the e r ro r associated with the correction for 

decay and the e r ro r due to engineering tolerances. 
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The random er ror was evaluated from the scattering of the counting ra tes 

attained for each rod by the two measurement chains (ó" = + 0.2%). The standard 

deviation related to the best fitting of the exponential function to the decay data of 

the three rod specimens, net of the statistical component, represents the contri­

bution to the e r ror for the decay correction (σ = 0.4%). 

The scattering of the values related to symmetrical positions in respect of 

their average gave a standard deviation of + 0.5%, net of the statistical fluctua­

tions. This value represents the effect of irregulari t ies within the manufacturing 

tolerances on the power density; these irregulari t ies may involve mainly the 

density of the fuel and its fissile content, or the lattice pitch of the rods . 

The power densities obtained from the La­140 activity measurements 

were checked through comparison with the corresponding values derived from proc­

essing of the total gamma activity data, The procedure is described in Appendix IV, 

Paragraph 1. 

The comparison confirmed the power density values obtained from the 

La­140 activity measurements; the standard deviation between the two experi­

mental power density distributions was + 0.64%. 

The analysis of the data relating to axial scans indicated that the per tur­

bation due to partially inserted control rods is practically nil at the level in question. 

6.2.2 Level influenced by the control rods 

At this level, the gamma activity of the fuel rods proved to be very low 

because of the high depression in the neutron flux caused by the control rod bank. 

As a result , in this case the combined contribution of the natural background and 

rod activity prior to irradiation­ ­the latter being quite negligible at the upper 

level­ ­ represents a substantial component of the total activity. Consequently, 

there is an appreciable increase in the uncertainty degree of these data not only due 

to the small number of counts, but also due to an incomplete knowledge of the ac­

tivity of the individual rods prior to irradiation. In fact, for mainly practical rea­

sons, the background evaluation of each individual rod was merely based on the 

extrapolation of the data measured in the specimens of three rod types. 

Measurements of non­irradiated specimens indicated a strong variation 

in the total gamma activity from one rod type to the other, but it is thought 

that said activity may vary, though less remarkably, also in rods of the 

same type, especially in the plutonium ones. 
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The La-140 data are affected by a statistical e r ror greater than that 

of the total gamma activity, because the related counts represent only a portion 

of the whole spectrum. Nevertheless, the power density values obtained from 

La-140 appear to be more promising since the component of the activity due to 

the natural and rod background is much less important than in the case of the 

total gamma activity. In less activated rods, which are closer to control rods 

and to the reflector, this component amounts to 65% of the total gamma activity 

versus 30% of the La-140 one. Moreover, it is justified to assume that fluctua­

tions in the background component of rods of the same kind are negligible when 

only the activity of La-140 is considered. These fluctuations are probably due 

to traces of fission products present in the plutonium as reprocessing residues; 

the gamma activity of these fission products does not interfere with the 1.6 MeV 

activity of La-140. 

The experimental data were processed as described in Appendix IV, 

Paragraph 2. The analysis showed a systematic discrepancy between the 

values of the La-140 gamma activity and those of the total activity; on the 

basis of the aforesaid considerations this discrepancy appears to be mainly 

due to the uncertainty in the total gamma activity data resulting from the 

strong component of the rod background. 

Fig. 16 shows only the power distribution obtained from processing 

the La-140 activity data by a similar procedure to that described in Para­

graph 6 . 2 . 1 . The statistical e r ror of these measurements is estimated to 

be 2.5%, net of the e r ror relating to the background, for the determination 

of which sufficient elements are not available. 

The other e r ror components, such as those associated with the decay 

law and manufacturing irregulari t ies , a re distinctly smaller than the two 

preceding e r ro r s and are therefore negligible. 

An indication of the total e r ror affecting these experimental data can 

be provided by the standard deviation between the values of power densities 

from the total gamma activity and those derived from the gamma activity of 

La-140, after normalization, that is , + 8 . 3 % . 
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6 . 2 , 3 F i n e - s t r u c t u r e effects 

A number of in teres t ing , f ine - s t ruc tu re effects were observed as a r e su l t of 

ca r ry ing out the exper iment on actual r e a c t o r fuel and hardware r a t h e r than on 

ideal c r i t i ca l fac i l i t i es . With r e g a r d to axial power dis t r ibut ion, they included: 

a) The depress ion (<v4%) noticed in all the fuel rods not adjacent to the s p a c e r -

capturing rod, due to the s tee l space r gr ids (Fig. 14). 

b) Slightly pronounced peaks (/u4%) (Fig. 14) p resen t only in the rods adjacent to 

the plutonium space r - cap tu r ing rod; these peaks a r e caused by a t h e r m a l flux 

r i s e in the Z i rca loy end connec to r s . The effect is not vis ible in en r i ched -

uranium spacer -captur ing rods where the t h e r m a l flux inc rease in the end con­

nec tors is probably sma l l e r and is compensated by the absorpt ion in the g r id s . 

In the r ad ia l power dis t r ibut ion, the following was observed: 

c) The effect on rod power dens i t ies due to rod manufactur ing t o l e r a n c e s . This 

effect was evaluated by compar i son of a significant number of s y m m e t r i c a l 

r o d s . The value obtained (average: +0.5%) is net of the s tandard deviat ion 

of the m e a s u r e m e n t . 

d) Strong effect of the neutron source on the power level of the corne r rod ad­

jacent to the source (about a 15% local reduction) (Fig. 15). 

e) Power dep re s s ions in the pe r iphe ra l fuel rods c loses t to the aluminium dum­

my a s s e m b l i e s (Fig. 15). 

7. Compar i son between the exper imenta l data and the calculated va lues 

7.1 Theore t i ca l models 

The K „„ and power dis t r ibut ion of the c r i t i ca l a s s e m b l i e s was es t ima ted eff 
with the s tandard technique that ENEL u s e s , among the other , for the design 

of plutonium e l e m e n t s . This technique is based on the combination of the 
(2) (3) 

5-group RIBOT' and SQUID' ' codes (with energy cut-off at 0. 2 ev, 0.625 eV, 

5.53 keV and 183 keV), a l ready checked by ENEL on exper imen ta l power d i s ­

t r ibut ions of other c r i t i c a l a s s e m b l i e s 

The RIBOT code, developed by CNEN, pe r fo rms a cell calculat ion for 

each type of fuel e lement rod, and provides 5-group la t t ice cons tan t s . F o r 



15 

the bidimensional diffusion calculations, use is made of the SQUID code which 

is characterized by a complete matrix of transfer cross-sect ions . The RIBOT-

SQUID system, characterized by the division of the neutron thermal range in 

two groups, permits a more accurate representation of the events affecting 

the thermal component of the neutron spectrum, since it can take into account 

the thermal spectrum changes near the water gap or near the contact areas 

between uranium and plutonium fuel rods . In addition, the use of three fast 

groups permits a better evaluation of neutron leakage. This is of special 

importance when the K ** of small critical assemblies is to be estimated. 

The comparison was extended also to a more widespread calculation 

technique, such as the one based on the F O R M ' 4 ' and THERMOS' ' codes. 

Here again, the bidimensional diffusion code was SQUID with three neutron 

groups, of which only one was thermal (energy cut-offs at 5 .53 keV and 

0.625 eV). 

In the core representation at least three meshes were used for each 

lattice cell of the fuel element. 

The calculations were performed on the basis of the average fuel 

density and fissile content for each type of rod. However, in order to 

ascertain the effect of variations of these quantities on the power distribu­

tion, a calculation was performed for the plutonium element, the actual 

values of which were certified. The resul ts were compared with the power 

densities derived from the average values; the variations were small, being 

on the same order as was obtained from the comparison of the power densities 

measured on symmetrical rods . 

The lattice constants of materials not forming the fuel cells were 

calculated with the G G C II . 

In the diffusion calculations, the control rods were represented by 

special parameters , i . e . absorption cross-sections for fast and epithermal 

energy groups, and extrapolation lengths applied to the external surface of 

the rod sheath for the thermal groups. The area where the rod blades 

intersect was represented by the lattice constants of steel-water mixture. 
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The most suitable calculation method to obtain the control rod para­
meters is on the transport theory. For this purpose, the one-dimension 

(7) DTK code was applied to a slab model by utilizing a library with 18 

energy groups (four of which are thermal) prepared by means of the 

GGC-II code. The control rod is represented by two homogeneous regions, 

the first of which is constituted by the steel-clad boron carbide rods and by 

the cooling water, and the second by the control rod sheath. The fuel is also 

subdivided into two regions, of which the peripheral one corresponds to the 

less enriched rods (Fig. 17b). 

From the calculation with the DTK code the control rod neutron ab­

sorptions were obtained for the various energy groups. By employing the 

same geometrical model used in the transport code, this calculation was 

repeated with a diffusion code (SQUID), in which guess values were used 

as representative parameters of the control rods . By means of iterative 

calculations it was possible to establish the values of the parameters that 

used in the diffusion theory give the same neutron absorptions as provided 

by the transport theory. 

The calculations with the SQUID code were performed with three and 

five neutron groups in order to obtain the parameters to be employed with 

the FORM-THERMOS-SQUID technique and with the RIBOT-5-SQUID tech­

nique, respectively. 

The calculations were performed for the uranium and plutonium fuel 

elements in zirconium or steel channels, adjacent to a control rod. It was 

observed that the different fissile material content (uranium or plutonium) 

of the fuel elements adjacent to the control rods affects the parameters 

representing the control rod, whereas the effect of the channel material 

(.zirconium or steel) can be considered negligible. 



17. 

7.2 Consistency of the experimental and theoretical data 

7.2.1 Criticality evaluations 

Tablell shows the Κ ^ values calculated for the various fuel element con­

figurations and in the assumption of fully withdrawn control rods, together with 

the values derived from the experimental resu l t s . 

Consistency with the experimental data appears to be satisfactory for 

both calculation methods. 

TABLE II 

C o n f i g u r a t i o n 

I 

II - III 

IV 

V 

3x3 

E x p e r i m e n t a l 
K e f f 

1 „ 0 1 0 9 0 + 0 . 0 0 0 5 0 

1 . 0 1 3 2 8 + 0 . 0 0 0 5 0 

1 . 0 1 4 8 6 + 0 . 0 0 0 5 0 

1 . 0 1 2 8 0 + 0 . 0 0 0 5 0 

1 . 0 0 5 6 0 + 0 . 0 0 0 5 0 

Keff f r o m 
R I B O T - 5 - S Q U I D . 

1 .00800 

1 .01070 

1 .01375 

1 .01130 

1 ,00600 

Keff f r o m 
F O R M - T H E R M O S - S Q U I D 

1 .01560 

-

1.02140 

-

1 .00900 

A more stringent check is provided by the comparison of the /\ Κ values 

arising from replacement of an enriched-uranium element with a plutonium 

element in the all-uranium configuration (Table III). 

TABLE III 

Δκπ/πι-ι, P c m 

AKrv-i,pcm 

A K
V _ T Pcm 

E x p e r i m e n t a l 
AK 

238 + 9 

388 + 70 

191 + 7 

/ \ Κ f r o m 
RIBOT-5-SQUID 

270 

5 75 

330 

/\ Κ f r o m 
FORM-THERMO S-SQUID 

-

580 

-

/ \ Κ f r o m 
RIBOT-5 (R)-SQUID 

210 

445 

267 

R = revised l ibrary 
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This comparison evidences a tendency of both calculation methods to 

overestimate the /\ K resulting from the replacement of one enriched-ura­

nium element with a plutonium element, The overestimate is less appre­

ciable when the replacement is made in a corner position of the configura­

tion. 

The fact that this tendency is common to both calculation methods, 

notwithstanding the different number of neutron groups, might indicate an 

overrating of the Pu-239 multiplication properties provided by the code 

l ibrar ies , 

The calculations were repeated with a reduced epithermal fission in­

tegral of Pu-239 of the RIBOT-5 l ibrary from 338 to 293 barns according 
(a) 

to a recent code revision' . The related resul ts shown in the last column of 

Table III are in good agreement with the experimental values. 

7.2.2 Power distributions 

The power distributions relating to the two gamma scanning levels 

were calculated with both techniques described above, that is, one based 

on the RIBOT-SQUID system and the other based on the FORM-THERMOS-

SQUID system. 

Figs 18 and 19 show the percentage deviation between the calculated 

and experimental values of the power distributions for the level without 

control rods . 

The results of the two calculation techniques are fairly consistent with 

the experimental data (d"< + 2%), more significant deviations being observed 

on the rods at the border of fuel areas having very different character is t ics . 

The values obtained for the corner rods with the FORM-THERMOS-SQUID 

technique show a systematic deviation in respect of the experimental data. 

This deviation cannot be found in the resul ts obtained with the first calcula­

tion method because of the adoption of the two thermal groups. 

At the level characterized by the presence of control rods, the devia­

tions between the theoretical and experimental values are greater , as evi-
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denced in Fig. 16, which provides a comparison between the experimental 

power distribution and the theoretical one calculated with the RIBOT-SQUID 

method. The values obtained withthe FORM-THERMOS-SQUID system are 

not indicated as they do not differ substantially from those obtained with the 

preceding method. 

Because of the great uncertainty by which the experimental data are af­

fected, it is practically impossible to perform an analysis of the e r ro r s due 

to the calculation method. However, from Fig. 16 it can be noted that the 

deviations are distributed in a systematic pattern, the largest occurring in 

the fuel rods adjacent to the control rods, with opposite signs on the two 

sides. This trend may be due to off-center positioning of the control rods, 

which is actually possible also because of the 5-mm clearance between the 

control rod and the fuel sheath. 

To confirm this assumption a theoretical evaluation of this effect was 

performed with the transport code DTK for a control rod in the farthest off-

center position, that is, with one blade leaning completely on the sheath of 

one fuel element (Fig. 17a ) . 

On the fuel cells closest to the control rods, the effect determined a 

variation of about +14%, that is, consistent with the value deduced from 

the deviation between theoretical and experimental values. 

On the basis of the above considerations it seems that, at the time of 

the experiment, control rods E10, FIO and F9 were all positioned more or 

less eccentrically. 

By applying the eccentricity correction factors derivable from Fig. 17 

to the theoretical power distribution, a standard deviation equal to +5% is 

obtained which does not seem large in the light of the uncertainty on the 

actual control rod position and the measurement data. 
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8. Conclusions 

The information provided by the criticality experiments in the Gariglia-

no reactor usefully supplement the experimental data available for the design 

of plutonium fuel elements. For these experiments, prototype plutonium ele­

ments were designed and used as normal reload fuel in the Garigliano nuclear 

power station. Thus the resulting data differ from those of similar experi­

ments in that they include: 

- power density distributions associated with highly heterogeneous lattices 

(three or four enrichments per fuel element, water gap, presence of con­

trol rods); 

- reactivity variations following replacement of enriched-uranium elements 

with plutonium elements. 

These experimental data are satisfactorily accurate. The technique used 

for power density measurements (gamma activity scanning by means of a Nal 

crystal) proved its outstanding capabilities and its extreme effectiveness, 

because it revealed minor differences in power density, such as those due to 

the manufacturing tolerances. 

The good agreement between the experimental values and those obtained 

with the calculation methods adopted by ENEL (RIBOT 5 - SQUID and FORM-

TH ER MO S-SQUID), already observed in previous criticality experiments, 

was fully confirmed in this case. The power density was calculated with a 

standard deviation less than 2%, and reactivity with an e r ro r below 0.5%. 
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APPENDIX I 

PRELIMINARY MEASUREMENTS TO SET DOWN OF THE TECHNIQUE 

FOR GAMMA SCANNING OF Pu F U E L RODS 

The purpose of the p r e l im ina ry m e a s u r e m e n t s was to: 

a) Test the equipment . 

b) De te rmine the var ia t ion of the f iss ion product spec t r a with t i m e . 

c) De te rmine the i r r ad ia t ion and decay t i m e s ; neutron flux leve ls ; .doses to 

the pe rsonne l handling the e l e m e n t s . 

e) T ra in the pe rsonne l dest ined to pe r fo rm the m e a s u r e m e n t s on the fuel e l e m e n t s . 

Six fuel rod spec imens w e r e purposely p rocured to pe r fo rm the p r e l i m i n a r y 

m e a s u r e m e n t s ; thei r isotopie composi t ions we re : 

- Two spec imens with 0, 74% of f i ss i le Pu (Pu- A type) 

- Two spec imens with 2.855% of f i ss i le Pu (Pu- C type) 

- Two spec imens of 2 .41% enr iched u ran ium (U). 

These spec imens a r e 15 cm long and have the s a m e s t ruc tu r a l c h a r a c ­

t e r i s t i c s a s those of the plutonium and enr iched u ran ium fuel e lements shown 

in F i g . 20. 

The six spec imens w e r e divided in two se t s of t h r e e spec imens each. 

The f i r s t set was used for the p r e l i m i n a r y m e a s u r e m e n t s , while the second 

was to be used to check the decay laws of the gamma activity during rod 

scanning and was the re fore to be i r r ad ia t ed together with the fuel e l emen t s . 

1. Measu remen t p r o g r a m 

The m e a s u r e m e n t p r o g r a m was divided into the following th ree phases : 

a) Measu remen t of the neut ron fluxes in the i r r ad ia t ion channel . 

b) Adjustment of the m e a s u r e m e n t sy s t em and spec imen i r r ad ia t ion . 

c) M e a s u r e m e n t s p r o p e r . 
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Copper disk moni to r s 9 m m in d iamete r and 2 m m thick were used for 

the t he rma l neutron flux m e a s u r e m e n t s ; the moni to r s w e r e always i r r ad ia t ed 

in p a i r s and one or two of them w e r e covered with a cadmium layer in o r d e r 

to obtain the t h e r m a l flux and ep i the rmal component . 

After i r rad ia t ion , the moni to r s w e r e subjected to counting by means of 

a 2"x2" phot o se int ilia tor and a mult ichannel ana lyze r . The detection s y s t e m 

was ca l ibra ted by using the 511-keV peak of a N a 2 2 sou rce ca l ib ra ted at 2%. 

Bes ides , by means of a tungsten wi re and l a t e r of a copper w i r e , the 

neutron flux dis t r ibut ion was m e a s u r e d along the channel provided for the 

i r rad ia t ion of the t h r e e spec imens . This channel , which is normal ly used to 

inser t a neutron counter a s a r e a c t o r control ins t rument , c r o s s e s the main 

biological shield t r a n s v e r s a l l y until it nearby r e a c h e s the gap between the 

shield and p r e s s u r e v e s s e l in cor respondence of the c o r e mid»-plane, and then 

it r e t u r n s to the center of the shield . In the zone in front of the co re a ce r t a in 

length of the channel is enclosed by a lead s l eeve . 

F i g . 21 shows the neutron flux dis t r ibut ion in th is channel ; it can be 

noted that the only sect ion with an acceptable flux r a t e is that included between 

a depth of 11.5 and 12.5 m: this is the sect ion used for the i r r ad ia t ion of the 

rod spec imens . 

The second phase included ca l ibra t ion of the two detect ion chains and a 

f i rs t adjustment of the m e a s u r e m e n t technique. Subsequently, one each of 

the th ree spec imen types were i r r ad ia t ed together with the flux m o n i t o r s . 

Each rod spec imen was i r r ad ia t ed for 6 0 ' . 

The neutron fluxes and cadmium ra t ios for the t h r e e spec imens a r e the 

following: 

<3> , n / c m 2 sec RC 

U spec imen 5 .0 χ IO9 6.4 

Pu spec imen- A type 3.1 χ IO9 4 .4 
9 

Pu s p e c i m e n - C type 2 . 7 x 1 0 3.6 
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The day after i r r ad ia t ion , the f ission product d is t r ibut ion was m e a s ­

ured along the t h r e e spec imens by m e a n s of a detect ion sy s t em provided with 

a 3 m m s l i t . Distr ibut ion was r a t h e r uniform in the cen t r a l pa r t of the spec ­

i m e n s . F inal ly , the spec imens w e r e inse r t ed in one of the a luminum guide 

tubes provided for the fuel e lement r o d s . 

The third phase included: 

a) Measu remen t of the background rad ia t ion spec t r a of the t h r ee spec ­

imens at different t i m e s . 

b) Measu remen t of the rad ia t ion level on the aluminum guide tube in c o r r e ­

spondence of the s p e c i m e n s . 

2. Descr ip t ion of the gamma s p e c t r a m e a s u r e m e n t s 

The m e a s u r e m e n t technique of the gamma rad ia t ion spec t r a is the 

following: 

a) F o r the counting, the a luminum tube was posit ioned in success ion at 

notches cor responding to the spec imen pos i t ions . 
(*) 

b) The ana lyzer was ca l ib ra ted on 400 channels , (bias at 200 keV) , c o r ­

responding to 5 keV/channe l . 

c) F o r the g r o s s - g a m m a m e a s u r e m e n t s , the peak at about 480 keV was taken 

as r e f e r e n c e and the in tegra l was extended from the 10th channel preceding 

the peak to the r e m a i n d e r of the s p e c t r u m . 

d) Since the 480-keV r e f e r ence peak was not always s y m m e t r i c a l in r e s p e c t of a 

given channel , c o r r e c t i o n was made by means of a computer p r o g r a m which 

d e t e r m i n e s the fract ion of counts per t inent to the 10th channel , to be added 

in the in teg ra l . 

e) The 1.6-MeV La-140 peak occu r r ed between channels 268 and 272; by 

operat ing the ampl i f ier it was poss ib le to keep the peak within these l i m i t s , 

except for few days . At any r a t e , it was exper imenta l ly demons t ra ted that 

even when the peak moved to channel 277, the in tegra l was constant , at l eas t 

within m e a s u r e m e n t e r r o r s . 

(*) between 0.2 and 2.2 MeV 
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Integrat ion was per formed on 40 channels , se lect ing the f i r s t and the l a s t 

one a c r o s s the p e a k s o that the i r connecting 1 i n e was hor izonta l ; 

when this was not poss ib le , two adjacent in tegra l s w e r e averaged so that 

the l ines connecting the ex t r eme channels c r o s s e d each other with opposite 

incl inat ions . 

f) The background rad ia t ion was m e a s u r e d f i r s t with the non­ i r r ad ia t ed spec imens 

in front of the col l imator and l a t e r withoutthe spec imens ¡subsequently, the 

background rad ia t ion was m e a s u r e d every day without the s p e c i m e n s . The 

difference between the two f i rs t m e a s u r e m e n t s r e p r e s e n t s the contribution 

of the non­ i r r ad ia t ed uran ium and plutonium to the background and mus t be 

subt rac ted f rom all the spec t r a ; the daily m e a s u r e m e n t s indicate 

the contribution of the ex te rna l rad ia t ion or background p rope r , which has 

to be subt rac ted from each s p e c t r u m . 

3. Measurement r e s u l t s 

3.1 Radiation levels 

F igu re 22 shows the curve of the radia t ion level , as a function of t ime , 

normal ized to a t h e r m a l flux of 1 χ IO9 n / c m sec for the capsule with the 

highest activity, that i s , the type C plutonium capsule with 2.855% of f i ss i le 

Pu . 

On the bas i s of the r e s u l t s in F i g . 22, in o rde r to e s t ima te the r a d i a ­

tion level on the upper p a r t of the fuel e lement to be d i sas sembled and r e ­

a s sembled for rod gamma scanning, it was n e c e s s a r y to make some e m p i r ­

i ca l ­ theore t i ca l a s sumpt ions . In fact, because of the complicated geomet ry 

and poor access ib i l i ty to the m e a s u r e m e n t points , it was only poss ib le to 

e s t ima te the o rde r of magnitude of the radia t ion l e v e l s . 

An extrapolat ion was a t tempted on the b a s i s of the following data: 

a) A level of about 1 m R e m / h was m e a s u r e d on the surface of the n o n ­ i r ­

rad ia ted capsu le s . 

b) After 15 days ' decay, about 10 m R e m / h were measured, on the surface of 

the non­ i r r ad ia t ed capsu l e s . 
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c) A rad ia t ion level of 5 m R e m / h was m e a s u r e d in contact at mid-height of 

the non - i r r ad i a t ed fuel e l emen t s , s to red in the m e a s u r e m e n t room, and 

0.5 m R e m / h in the upper p a r t . 

d) By means of a s imple propor t ion it was poss ib le nea r mid-height of the 

i r r ad i a t ed fuel e lement after 15 days ' decay to fo resee a dose of 5 0 m R e m / h 

and of 5 m R e m / h on the head. These doses a r e sufficiently low to allow the 

d i s a s sembly and r e - a s s e m b l y of the fuel e l e m e n t s , 

3.2 G a m m a s p e c t r o m e t r y m e a s u r e m e n t s 

Table 4 s u m m a r i z e s the r e s u l t s of the gamma s p e c t r o m e t r y m e a s ­

u r e m e n t s for the per iod compr i sed within the 15th and 30th day from i r r a d i a ­

tion. 

Column I shows the number of filed s p e c t r a ; column 2, divided in t h r ee 

p a r t s , gives the da te , t ime of m e a s u r e m e n t and the hou r s e lapsed between i r ­

rad ia t ion and the m e a s u r e m e n t s ; column 3, a lso divided in t h r e e p a r t s , one 

for each capsu le , shows the g r o s s - g a m m a in tegra l , e x p r e s s e d in p u l s e s / 

second, net of the background and of the na tu ra l act ivi ty of the spec imen; 

column 4, divided in t h r e e p a r t s , shows the in tegra l on the La peak, ex­

p r e s s e d in p u l s e s / s e c , net of the background and na tu ra l act ivi ty of the 

r o d s ; column 5 shows the t ime function f(t) for the La-140 decay. 

4 . Analys is of the r e s u l t s 

4 . 1 M e a s u r e m e n t s of the total gamma activi ty 

On the b a s i s of the information provided in the l i t e r a t u r e , an effort 

was made to find an analyt ica l formula which would show the g r o s s gamma 

r e s u l t s (C) in the form: 

C = Α Γ Β 

where A is a constant dependent on neut ron flux, mac roscop ic f iss ion c r o s s -

sect ion, de tec tor efficiency and sou rce geomet ry 

Β is a constant dependent only on the type of fuel analyzed. 
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TABLE IV 

ANALYSIS OF SPECTRA ­ CHAIN I 

(Valuei oí integrals In cps) 

N. 

Spe c trun 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

¿3 

44 

45 

. D*y 

27-5 

28 

28 

29 

29 

30 

30 

31 

31 

1-6 

2 

3 

3 

4 

4 

5 

6 

6 

7 

7 

8 

9 

10 

10 

11 

11 

12 

12 

13 

14 

D A T E 

Hour 

16 ,30 

9 , 3 0 

16 ,00 

10 ,30 

16 ,00 

10,30 

17 ,00 

10,00 

16 ,00 

11 ,30 

11 ,00 

10 ,00 

16 ,30 

10 ,00 

16,00 

17 ,30 

11 ,00 

16 ,30 

10 ,00 

16 ,30 

11 ,00 

10 ,30 

10 ,00 

16 ,30 

9 , 3 0 

16 ,30 

10 ,00 

16 ,00 

11 ,30 

11 ,00 

AT.h 

335,0 

352,0 

358,5 

377,0 

382,5 

401,0 

407 ,5 

424,5 

43Q5 

45Q0 

473,5 

496,5 

503,0 

52Q5 

526,5 

552,0 

569,5 

575,0 

592,5 

599,0 

617,5 

641,0 

664,5 

6 7 L 0 

688,0 

695,0 

712,5 

718,5 

739,0 

762,5 

G R O S S -

υ 

1170,5 

1110,6 

1091,7 

1022,7 

1010,2 

953, 1 

949 ,2 

898,1 

884 ,9 

836 ,2 

796 ,3 

758,7 

7 4 8 , 9 

714 ,5 

703 ,1 

672 ,2 

649 ,7 

643 ,7 

6 1 3 , 8 

610 ,2 

5 9 1 , 2 

568 ,1 

535 ,2 

528 ,5 

516 ,5 

509 ,1 

497 ,2 

493 ,3 

4 7 5 , 0 

4 5 3 , 9 

• G A M M A I N T E G R . 

Pu "A" 

770 ,5 

715,7 

703 ,7 

6 6 7 , 2 

6 5 6 , 0 

620 ,5 

614 ,4 

584,1 

574 ,5 

548, 7 

506 ,4 

484 ,5 

478 ,8 

462 ,4 

455 ,7 

429,6 

412 ,8 

406 ,3 

399,4 

394,6 

377,8 

357 ,0 

3 4 7 , 0 

345,7 

332,8 

327, 6 

319 ,6 

315 ,2 

304 ,6 

291 ,9 

Pu "C" 

1547,3 

1447 ,8 

1413,7 

1332,4 

1310,6 

1232 ,9 

1214,5 

1157,8 

1138,6 

1046.6 

1018 1 

964 ,4 

948 ,6 

910,1 

896 ,2 

852,8 

8 2 1 , 0 

810 ,3 

783 ,3 

774, 2 

746 : 4 

7 1 2 , 9 

682 3 

67S.6 

654 ,3 

645, 5 

6 2 3 , 0 

6 2 2 , 8 

5 9 9 , 0 

578,6 

L 

υ 

9 5 , 7 

9 3 , 0 

90 ,7 

8 6 , 8 

85 ,75 

8 2 , 0 

8 1 , 8 

77 ,7 

7 6 , 7 

73 ,1 

70 ,05 

6 6 , 2 

6 5 , 8 

6 2 , 3 

6 0 , 8 

5 8 , 9 

5 6 , 8 

56 ,3 

53 ,5 

S2.8 

50 ,45 

48,1 

4 5 , 0 

44 ,1 

4 3 , 0 

4 2 , 3 

4 1 , 4 

40 ,24 

3 8 , 8 

36, 27 

1 4 0 
j I N T E G R . 

Pu "A" 

5 7 , 4 

5 5 , 0 

5 4 , 4 

52 ,3 

51 ,4 

4 9 , 0 

49 ,1 

47 ,4 

4 6 , 0 

4 4 , 5 

41 ,2 

39 ,96 

3 9 , 0 

3 8 , 4 

3 7 , 0 

35 ,3 

33 ,7 

33 ,3 

32 ,2 

31 ,5 

30 ,1 

28 ,3 

26 ,9 

26 ,95 

25,95 

25 ,6 

24 ,6 

24 ,18 

2 2 , 9 

21,87 

Pu "C" 

113,1 

108 ,0 

107 ,0 

100 ,4 

100,6 

96 ,1 

9 5 , 0 

9 1 , 5 

9 0 , 2 

85 ,7 

80 ,5 

7 7 , 2 

7 6 , 4 

7 3 , 0 

7 2 , 2 

68 ,1 

6 5 , 5 

64 ,7 

6 2 ,6 

6 2 , 2 

5 8 , 8 

5 6 , 0 

5 3 , 3 

5 2 ,6 

50 ,1 

4 9 , 9 

4 7 , 6 0 

4 7 , 2 3 

4 4 , 8 

4 2 , 7 4 

f(r) 

0,4667 

0,4498 

0 ,4434 

0,4258 

0,4207 

0,4037 

0, 3980 

0 ,3833 

0,3781 

0 ,3620 

0 ,3434 

0,32616 

0 ,3214 

0 ,3093 

0,30475 

0 ,2878 

0,2733 

0 ,2733 

0,2627 

0 ,2589 

0, 2484 

0,2355 

0 ,2234 

0,2201 

0,2119 

0.208S5 

0,20044 

0,19775 

0,18885 

0,179081 
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For the three types of fuel, the following different expressions were 

found: 

U C - 890,000 t " 1 , 1 4 0 1 

Pu-type A C= 654,460 t " 1 - 1 6 1 0 

Pu-typeC C= 1, 532, 000 t _ 1 " 1 8 7 6 

The decay time, within which these expressions are effective, is in­

cluded between the 15th and 30th day, but it can be extrapolated for a few 

days exceeding this period. 

The differences between the theoretical values obtained by means of the 

aforesaid formula and the experimental ones are shown in Table 5, as a func­

tion of the decay t ime. 

It can be noted that, notwithstanding the overall compensation between 

the negative and positive deviations, the distribution appears to indicate a 

discrepancy between the analytical expression and the experimental resul t s . 

4.2 Measurement of the La-140 activity 

Use was made of the data in Table 5 relating to the period between the 

15 th and 30th day of decay, to determine the apparent half-life of the three 

analyzed fuels. The values obtained are the following: 

U Tll2 = 1 2 ° 7 9 d ± ial° 
Pu-type Α ΎιΙ2 = 12.78 d + 1 % 

Pu-type C Ύι/2 = 12.79 d + 1 % 

The deviation of the half-life from the figure of 12.8 days given in 

l i terature is within the experimental e r ro r . 

The deviations between the theoretical and experimental values are 

given in Table 5 as a function of the decay time. The standard deviation 

referred to a 95% confidence level is comprised between: 

0 . 64 and 1.08% for uranium 

0.63 and 1.06% for type A plutonium 

0.55 and 0..92%for type C plutonium. 
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TABLE V 

PERCENTAGE DEVIATIONS BETWEEN CALCULATED AND EXPERIMENTAL VALUES 

N. 
Spectrum 

16 
17 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3Θ 

31 
32 
33 
34 
35 
36 
37 
33 
39 
40 
41 
42 
43 
44 
45 

Δ τ, h 

335,0 

352,0 

358,5 
377,0 
382,5 
401,0 

407,5 
424,5 
430,5 
450,0 

473,5 
496,5 
503,0 

520,5 
526,5 
552,0 
569,5 
575,0 
592,5 
599,0 
617,5 
641,0 
664,5 
671,0 
688,0 
695,0 
712,5 
718,5 
739,0 
76a, 5 

1 
negative deviations 

zero deviations 
positive deviations 

GROSS GAMMA 

U 

0,57 
0, 17 
0, 19 
0,59 
9,20 
0,60 

-0 ,82 
0,06 

-0 ,06 

0,55 
-0,37 
-0,94 
- 1 , 12 
-0,31 
-0 ,01 

-0 ,92 
-1,07 
-1 ,24 
0,10 

-0,56 
-0 ,85 
- 1 , 14 
0,72 
1,S3 
0,33 
0,61 
0, 14 

-0 ,02 
0,54 
1,52 

1 4 ( - ) 

16 (+) 

Pu "A" 

- 0,53 
1,09 

0,65 
0,15 
0,15 
0,24 

-0,66 
-0 ,33 
-0 , 30 
-0,86 

1,25 
0, 19 

-0, IS 
-0 ,72 
-0 ,51 
-0 ,09 
0,27 

0,73 
-1 ,04 
- 1 , 10 
-0 ,27 

1,05 
-0 ,29 
-0 ,35 
-0 , 15 
0,27 

-0, 16 
0,25 
0,42 
1,02 

1 6 ( - ) 

14(+) 

Pu "C" 

-0 ,60 
0,10 
0,30 
0,20 
0, 10 

0,70 
0,20 
0,20 
0,20 

-
0,10 
0,10 

-
-

0,20 
-0 ,30 
-0 ,20 
-0 ,10 
-0 ,30 
-0 ,40 
-0 ,30 
-0 ,20 

. -0 ,10 
0,40 

-
-

0,60 
-0 ,20 
0,20 

" 

11 (-) 
5 (o) 

13(+) 

140 
La 

U 

-0 ,59 

- 1,43 
-0 ,35 

-
-

0,35 
-0 ,82 

0,55 
0,48 
0,93 

-0 ,07 
0,42 

-0 ,43 
1,18 
2,12 

-0 ,40 
-0 ,70 
-1,06 
0,08 

-0 ,05 
0,36 

-0 ,20 

1,17 
1,70 
0,44 
0,49 

-0 ,59 
0,17 

-0 ,79 

0,63 

1 3 ( - ) 
2(0) 

15 (+) 

Pu "Λ" 

-0 ,52 
0,06 

-0 ,27 
-0 ,38 
0,14 
0,79 

-0 ,83 
-1,07 
0,56 

-0 ,47 

1,94 
0 ,13 
0,82 

-1 ,47 
0,76 

-0 ,24 
0,45 
0,41 

-0 ,18 
0,55 
0,96 
1,78 
1,58 

-0 ,07 
-0 ,09 
-0 ,32 
-0 ,30 
0,06 
0,89 
0,18 

1 4 ( - ) 

16(+) 

Pu "C" 

-1 ,73 
-0,79 
-1,30 

0,02 
-0 ,38 

0,06 
-0 ,20 

-0 ,21 
-0,15 
0,61 
1,58 
0,63 
0,20 
0,91 
0,54 
0,66 

0,62 
0,61 

- 0,35 
- 0 , 8 5 

0,62 
0,17 

-0,16 

-0 ,32 
0,74 

-0 ,44 
0,30 

-0,26 
-0 ,41 
-0,19 

14 ( - ) 

16(+) 

. 1 
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It follows that, in this t ime in te rva l , the 1.6-MeV lantanum peak can 

be reduced to a common t ime for the va r ious types of fuel with the theoret­

ica l function f(t). 

5 , Conclusions 

a) The equipment provided for the m e a s u r e m e n t proved adequate provided 

that the r o o m t e m p e r a t u r e r ema ined within the acceptable l imi t s (20-25 'C) 
g 

b) A max imum flux of 5 χ 10 at the fuel e lement scan level and a one-hour 

exposure a r e enough to obtain good s t a t i s t i c s in the counting of La-140 

ac t iv i ty . 

c) The p r e l i m i n a r y m e a s u r e m e n t s suggested 15 days ' decay t ime before 

s ta r t ing the m e a s u r e m e n t s . 





APPENDIX II 

DESCRIPTION OF THE MEASUREMENT AND CONTROL PROCEDURES 

1. Check of the flux in the 3 x 3 c r i t i ca l configuration 

After i r r ad ia t ion of the 3x3 configuration th ree rod spec imens belonging 

to the second set and the copper moni to r s with and without cadmium for the 

m e a s u r e m e n t of rod i r r ad ia t ion w e r e r emoved from the dummy element located 

nea r the c r i t i ca l a s s e m b l y . 

The copper mon i to r s w e r e subjected to counting according to the technique 

desc r ibed in Appendix 1, and the resu l t ing heat fluxes we re : 

1. 34 χ 109 n / c m 2 / s e c . 

1.24 χ 10 9 " 

1.7 χ 10 9 " 

1.4 χ 109 

The ave rage value c o r r e s p o n d s fair ly well with a max imum flux of 
9 

2.5 χ 10 in the a r e a of the c r i t i c a l a s sembly not affected by the cont ro l r o d s . 

The flux level obtained was thus cons idered sa t i s fac tory for the m e a s u r e m e n t . 

2. M e a s u r e m e n t s on fuel r o d s 

The m e a s u r e m e n t s on fuel r o d s w e r e c a r r i e d out in the f resh fuel 

handling r o o m . The r o d s w e r e r e m o v e d f rom the e l e m e n t s , inse r t ed in a lu­

minum shea ths and placed in the moni tor ing equipment . The m e a s u r e m e n t s 

included: one m e a s u r e m e n t of the axial d is t r ibut ion and two m e a s u r e m e n t s 

of the r a d i a l d is t r ibut ion at two e levat ions of i n t e r e s t . In addition, twice a 

day the background and the activity of the t h r e e r e f e r e n c e capsu les housed 

in a guide tube of the type used for the fuel r o d s w e r e m e a s u r e d . 

2 .1 P r o c e d u r e for axial d is t r ibut ion m e a s u r e m e n t 

The p rocedu re for th is m e a s u r e m e n t was as follows: 

a) The a luminum shea ths containing the rod was located at the f i r s t upper 

notch (all the guide tube is m a r k e d with notches at 5 cm in t e rva l s ) . 
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b) The threshold of the ana lyzer No. 2 was shifted to the 45 channel . 

c) Connection of the ana lyzer to the mul t i s ca l e r ( s to rage in success ive m e m o r y 

posi t ions of the countings re la ted to each axial posi t ion); measu r ing t ime 

10 s e c . ; waiting t ime 10 s e c . ; energy r ange 480 keV - 2.5 MeV. 

d) The rod ro ta t ion device was then actuated. 

e) All m e m o r i e s w e r e brought back to z e r o and counting began. Rotation was 

stopped during the waiting t ime (10 s e c ) . 

f) The sheath was then moved to the next notch and ro ta t ion was r e s u m e d . 

g) The opera t ion was repea ted down to the end of the r o d . 

h) the resu l t ing dis t r ibut ion was plotted on pape r . 

2.2 P r o c e d u r e for the r ad i a l d is t r ibut ion m e a s u r e m e n t at two elevation of 

in te res t 

The p rocedu re aimed at obtaining f rom both detec tor chains the plot of 

the f iss ion product spec t rum, the in tegra l on the 1.6 MeV peak of La-140 , 

and the in tegra l over all the s p e c t r u m from above 480 keV up to 2 .2 MeV, 

with subdivisions of approximate ly 5 keV/channe l . The two elevat ions at 

which the m e a s u r e m e n t s w e r e taken w e r e c l ea r ly m a r k e d on the a luminum 

shea th s . 

The p rocedu re was a s follows: 

a) The a luminum sheath was located at the se lec ted notch. 

b) The two ana lyze r s w e r e a r r a n g e d , by m e a n s of the ampl i f ier so that the 

f i r s t peak of the s p e c t r u m would fall in the channel 5 5 + 2 and the 1.6 MeV 

peak in channel 280 + 3. 

b) On the bas i s of a p r e l i m i n a r y m e a s u r e m e n t , the counting t ime was s e ­

lected so as to have at l ea s t 25 .000 pu l ses on the 1.6 MeV peak. 

c) The rod ro ta t ion device was s t a r t e d . 

d) The m e m o r y was brought back to z e r o and counting began. 

e) The spec t rum was plot ted. 

f) In tegrat ion of the 1.6 MeV peak over 40 channels with a hor izonta l connecting 

segments or with two c r o s s segmen t s ( see Appendix 1). 
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g) All the spectrum was integrated starting from 10 channels before the 480 keV 

peak to channel 399 (see Fig. 13). 

h) Counting and integration operations were repeated other two t imes, 

i) The rod identification data, the date and time (beginning and end of the 

measurement), the integration channels and the resulting integrals were 

recorded on a special form, 

e) The consistency of the values given by the two analyzers were checked before 

returning the rod for re- inser t ion in the element. 

2.3 Measurement of the activity of three rod specimens and background 

This procedure is quite similar to the one described in 2.2 except that 

the aluminum sheath contained the three rod specimens. The position of 

these specimens was marked on the external surface of the sheath by means 

of identification notches. For the background measurement, use was made 

of the empty part of the aluminum sheath. This procedure was repeated 

twice a day, at 0800 and 1600 hours . The specimen measurement time was 

360 seconds and the background activity measurement time was 600 seconds. 





APPENDIX III 

LA­140 ACTIVITY­POWER CONVERSION FACTORS 

The activity is proportional to the number of La­140 atoms, which in 

turn are produced in different amounts according to the fissioned isotope. 

Likewise, the energy generated in each fission depends on the type of 

isotope. Thus, we have the equation: 

P o e 

A 

Σ E.F. 
ι ι 

lypj t* 
where Ej , y ^ and F^ are respectively the fission energy, the number of 

La­140 atoms produced per fission and the number'of fissions of the con­

sidered isotope. 

The following table gives the values of E. and V . for the isotopes 

present in the fuel rods . 

Isotope 

U­235 

U­238 

Pu­239 

Pu­241 

E. (Mev) 

194 

193 

201 

205 

V. La­140 (%) 

6.25 

5.92 

5.16 

6 .21 

With the theoretical values of F¿ obtained by means of a 5­group 

diffusion calculation performed on the 3x3 assembly, the conversion fac­

tors for each rod of the assembly were obtained. 

The analysis revealed that for a given type of rod the conversion 

factors a re not affected by the position of the rods in the core. It is 
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thus sufficient to use only one factor for each rod type. The values nor­

malized to unity in respect of the values for the 2.41% enriched-uranium 

rods, are given in the following table. 

Element 

2 .3% U 

Standard Pu 

Mixed U-Pu 

Rod type 

1.83% of U-235 

2 .41% of U-235 

0.74% of f i ss i le Pu 

1.40% of f i ss i le Pu 

2.855% of f i ss i le Pu 

1.83% of U-235 

2 .41% of U-235 

1.80% of f i ss i le Pu 

2.89% of f i s s i l e Pu 

La-140 ac t iv i ty-power 
convers ion factor 

1000 

1000 

1139 

1172 

1200 

1000 

1000 

1185 

1200 



APPENDIX IV 

REDUCTION OF THE TOTAL GAMMA ACTIVITY DATA TO POWER DENSITY 

The procedure consisted in reducing the total gamma activity into the 

La-140 gamma activity by means of appropriate correlation formulae. The 

values thus obtained can easily be reduced to power density, and it is possible 

to overcome the difficulty of determining theoretically and accurately the law 

with which the ratio between power density and total gamma activity varies 

versus the composition of the fissile material and the decay t ime. 

Two different sources of information were used for the two scanning 

levels to transform the total gamma activity values into La-140 activity. 

1. Level not affected by the control rods 

The correlation formula for this level was obtained from the data col­

lected in the periodical scanning of the three rod specimens. In this man­

ner, the power density values determined on the basis of the total gamma 

activity provide meaningful independent check of the corresponding values 

obtained directly from the La-140 gamma activity. 

The total gamma activity values of the rod specimens are first cor­

rected to allow for the background and rod activity prior to irradiation and 

are then transformed into power density by means of the following corre la­

tion formula: 

P / A f to t ( N P t] = ( B / A ) ^ ( P / A X 140} 

where B/A and d, vary with the plutonium concentration in the rods (N )̂ 

P /Ayi4o is the factor for conversion from La-140 gamma activity to 

power density normalized to 1 for the U-235 rods . 
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The parameters Β/A and °( were obtained by the best fit of the 

^ V14o/-^ y tot v & l u e s nieasured for the three rod specimens and by extrapola­

tion for the other rod types. P /A« . . ,« was calculated with the method described 

in Appendix III. The related values are tabulated below 

Rod type 

1.83 & 2.41%. U-

Unat. 0-74% Puf 

U ., 1. 4% Puf nat 1 

Unat' 1.8% Pu, 
Unat, 2 ·85% Puf 

235 . "2, 
2, 

1, 

1, 

1, 

Β/A 

,6735xl0~5 

,1199xl0~5 

,9291xl0 - 5 

,8588xl0"5 

7452xl0"5 

1,1185 

1.1439 

1.1564 

1.1618 

1.1716 

1 

.. 1,139 
1,172 

1,185 

1,200 

2. Level affected by the control rods 

The total gamma activity of the fuel rods were transformed into power 

density by means of the following correlation formula: 

where the first term in the second member was derived, for each fuel rod type, by 

best,fitting the ratios between the La-140 gamma activity and the total gamma activi­

ty obtained from the measurements at the level not affected by the control rods ; 

λ -3 -1 
is a decay constant related to La-140 activity (= 2.2917 χ 10 sec ).' 

This procedure for the reduction of the total gamma activity data is 

based on the assumption that the ratios between La-140 gamma and total 

gamma activities are not appreciably affected by variations in the neutron 

spectrum. On the other hand, a spectrum variation from the unaffected 

level to the control-rod-affected level can be considered negligible. 

A comparison between the power density values obtained as above 

with those obtained directly from the La-140 gamma activity values 

reveals a systematic plus difference. In the light of the considerations 

stated in Paragrph 6 . 2 . 2 . , this difference was attributed to 

an er ror in the evaluation of the background component of the total gamma 
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activity. On this assumption a correction was made in order to eliminate 
this difference throughout the measurements . The resulting percentage dif­
ference plotted as a function of the number of counts per second of the total 
gamma activity'were distributed statistically (Fig. 23). 

The figure of 2.5% can be considered the standard deviation affecting all meas­

urements of La-140 gamma activity, because the statistical component a s ­

sociated with the total gamma activity measurements is negligible. 





APPENDIX V 

CRITICALITY TESTS IN THE REACTOR VESSEL 

1. Reactor conditions prior to the tests 

After removal of the pressure vessel head and turning vane, part of the 

fuel elements were transferred from the reactor to the pool to free an area 

of the reactor for the criticality tes ts . The fresh elements used for the tests 

were placed in a scattered arrangement in the reactor to avoid crit ical masses , 

Dummy elements were placed in the empty cells to support the fully inserted 

control rods . A map of the reactor situation is given in Fig. 4. 

2. Criticality 

Fig. 24 shows the reactor region in which the critical assembly was 

formed, the position of the neutron source and the initial positions of the 

instrumentation. 

Neutron multiplication during loading operations was monitored by two 

fission chambers, denoted by numbers 10 and 11, which did not belong to 

the safety system, and by five compensation chambers connected to the 

safety system so that any one of them would be able to scram the reactor 

for high neutron flux (chambers 1 to 4) and for short period (chamber 7, 

logarithmic channel). All chambers were positioned at mid-height of the 

core, except for the compensation chamber No. 4, which was placed 

70 cm above the mid-height to provide a reference reading during the 

initial control rod withdrawal stage. 

The presence of a high gamma radiation background due to the other 

irradiated elements in the reactor created difficulties in low-level neutron 

flux recording by means of the compensation chambers . In fact, although 

these chambers had been satisfactorily tested out of the reactor , because 

of the high gamma background they gave no response to the neutron flux 

generated by one of the sources in the reactor . In some cases , the signal 

was even negative and became positive when the chamber was moved away 

from the irradiated elements. 
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In order to have a reliable response, the neutron/gamma ratio was 

increased by loading the first four elements of the minimum critical one 

at a time around the neutron source. Actually, it had been determined 

that seven elements would be required for criticality. 

Under these conditions, withdrawal of the control rods close to the 

fuel caused a change in the compensation chamber reading that appeared 

to be acceptable for safe continuation of the loading operations. 

During this preliminary loading stage, the gamma activity of the 

steel end of the control rod appeared to affect the reading considerably as 

it passed in front of the compensation chamber; in fact, the instrument 

gave a full scale reading and consequently a high-flux scram signal. To 

avoid this inconvenience, the compensated chambers were removed from 

the fuel and placed near the control rods that could remain out of the 

reactor throughout the tes ts . The final position of the chambers is shown 

in Fig. 4. 

The fission chambers always gave a satisfactory response; however, 

the presence of a strong source required the fission chambers to be po­

sitioned far from the fuel elements. 

On the basis of this information, other fuel elements were loaded 

and criticality was reached with seven elements and with the adjacent 

control rods withdrawn to notch 19, 

The normalized inverse count ra te of the chambers are given in 

Fig. 25. 

After about thirty hours from first criticality, the measurement was 

repeated to check reproducibility, and the reactivity of the assembly was 

found to be unaltered. 

Subsequently, the two highest-worth control rods (F9 and FIO) were 

inserted in the reactor to permit complete withdrawal of the remaining 

rods . Under these conditions the two control rods were calibrated at 

a few notches to determine the Keff of the seven-element assembly with 

all the rods out. 
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3. Replacement tests 

The experience acquired with the minimum critical assembly permitted 

prompt execution of criticality measurements on the critical assembly in 

which a uranium element was replaced with a plutonium element in different 

positions. 

The replacement tests were performed with an aim at obtaining at least 

two crit ical assemblies characterized by the same control rod position, in 

order to determine the reactivity variations associated with the replacements 

on the basis of the differences in period. 
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FIG . 2 STANDARD PROTOTYPE PLUTONIUM 
F U E L ELEMENT 
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plutonium 
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Average f i ss i le plutonium content: 1.82% 



d 

d 

c 

c . 

c 

c 

d 

d 

d 

c 

c 

b 

b 

c 

c 

d 

c 

c 

b 

a 

a 

b 

c 

c 

c 

b 

a 

a 

a 

a 

b 

c 

c 

b 

a 

a 

a 

a 

b 

c 

c 

c 

b 

a 

a 

b 

c 

c 

d 

c 

c 

b 

b 

c 

c 

d 

d 

d 

c 

c 

c 

c 

d 

d 
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FIG, 7 FUEL VAULT AND STATION EQUIPMENT FOR FUEL 
ELEMENT INSPECTION AND DISASSEMBLY 





FIG. 8 REMOVAL OF THE UPPER TIE PLATE OF THE FUEL 
ELEMENT 





FIG. 9 INSERTION OF THE FUEL ROD IN THE ALUMINUM 
PROTECTION TUBE 





FIG. 10 AUXILIARY SYSTEM FOR ROD POSITIONING 
AND R OTATION 





FIG. 11 PHOTOSCINTILLATORS (Nal), SHIELDING AND 
COLLIMA TION SYSTEM 





FIG. 12 MULTICHANNEL PULSE ANALYZERS..(400 CHANNELS) AND FAST PRINTER 









if 

R/rurroRi 

ο υ MM γ 

io. 813 

■ θ. 757 

1.071 

1. 147 

1.217 

i 528 

0.704 

0.760 

0.801 

0.872 

0.960 

1.063 

1,225 

1.298 

0.716 

0.751 

0.827 

0.908 

1.002 

1.151 

0.797 

0.700 

0.740 

0.814 

0.886 

0.981 

1.115 

1. 460 

0.793 

0.704 

0.814 

0.987 

1.133 

1.445 

0.751 

1.010 

'."fim.*
1 

0.702 

0.763 

1.204 

1.285 

0.815 

0.757 

1.058 

1. 151 

1.215 

'TI 

1.574 1.290 

1. 342 1. 156 1.480· 1.479 

1. 380 

1.514 1.510 

1. 283 1.287 

1. 250. 1. 243 

1. 255 

1. 139 

1. 385 

1. 288 

1. 386 

1.280 

1.342 

1.476 

1.304 

1.565 

1.483 

1.493 

1. 341 

ÌL_L_1__1_J L_LT3IZli_I_J__J[ __L 
— m a s s wmmmmammmmBt IMI ti 

._! J 1 
F i g . 15 L e v e l no t a f f e c t e d by t h e c o n t r o l r o d e : e x p e r i m e n t a l d i s t r i b u t i o n of t h e 

rod p o w e r d e n s i t i e s . 



R/r¿£TTOf>£ 

îi 

ï 
¡? az/s 

ñ 
\ 

\ ■ 

>\ 
-\ 
Λ 
■Λ 

, \ 

F 
0. #52 

0 . 3 0 3 

+9 .9 

0 .458 

­ 5 . 1 

0 .440 

+12.0 

0 .546 

­7. 5 

0 .662 

­ 3 . 6 

0 .729 

­ 9 . 4 

0.767 

­ 5 . 2 

0. 809 

0. 823 

­ 0 . 9 

0. 672 

­5 . 1 

1.048 

­6. 1 

0. 486 

+1.4 

1.254 

0 

0 .339 

­ 1 . 5 

0. 335 

H 6 . 3 

1.463 

­ 2 . 6 

1.919 

­0 . 1 

(■:^x^,­;­,.:­x:.;;.::­­j i» \ , , , ρ S 

0. 654 | 0. 

\J 

0 .432 

­ 1 4 . 6 

0. 526 

­15 .5 

1.455 

­ 1 . 7 

1.943 

­ 4 . 0 

\^ 

0.672 

­ 7 . 5 

0. 889 

1. 132 

­ 1 3 . 4 

1.425 

0 

1. 473 

♦ 2. 4 

0 .815 

­ 1 . 8 

0. 721 

-AÄ-. 

0.851 

? H 

1. 162 

0. fi 

755 

­17. 3 . ­ 1 9 . 2 

0. 745 

­ 4 . 5 

0 .985 

5.1 

1. 026 

(0 .9 

1. 158 

3. 5 

1. 190 

­ 0 . 7 

1. 122 

1 224 

­ 3 . 3 

­1 .9 

1.086 

­ 6 . 6 

0.807 

+1 .2 

1.074 

­ 5 , 1 

0.823 

-3.7 

0 , 9 3 5 

+1. 1 

0.741 

-2. 3 

0. 959 

­7. 4 

0 .807 

­ 4 . 6 

0.733 

+5. 8 

0 .686 

+10.6 

0 .628 

f6. 4 

0 .616 

f6. 1 

f~*\ 

~l 

i 

f~\ 

1.987 

­4 . 3 

1 168 

( 1 0 

t 070 

15.9 

0 .692 

+ 12. 6 

1.477 

H. 6 

1.521 

15. 4 

1. 309 

+0.7 

1.642 

+3. 1 

1. 138 

+ 13. 7 

1. 551 

+7 9_ 

1. 503 

i3.fi 

.:,χ·::^.::·:τ-«ΓΤ3 

1.515 

(0 .6 

1.539 1.417 

­ 0 . 3 17.8 

0 .967 

+14.9 

1.503 

+4 .7 

1. 150 

+14. 8 

0 .700 

+15. 4 

1.042 

+11.8 

0.664 

417 .3 
\ 

V 

w 

JZTLTzrrïrrii: 
Π>ΖΕ 

T___X_Z DUTÌ 
s \ \ \ \ \ \ 

IOZE: TT 
Fig . 16 Level with control rode : exper imenta l d is t r ibut ion of thè rod power dens i t ies 

and percen tage deviat ions of theore t ica l data calculated by RIBOT 5 and SQUID 

Τ ­ E 
codes . (—­— . 100). 



I I a) 

3 2 1 2 3 

I 
ü 

I 
3 2 1 

J 

1.15 ■ 

1.10 --

1.05 -. 

1.00 

2 3 

P*/Pb 

I 
.95 * 

90 4-

.85 -

b) 

c) 

1 Control rod 

2 Water 

Fuel e lement sheath 

P e r i p h e r a l cell with l e s s enr iched fuel 

Inner fuel ce l ls 

F ig . 17 Evaluation of the effect of off-center control rod posit ioning: 

a) far thes t off-center posi t ion 

b) nominal posi t ion 

c) r a t io between the power dens i t i es in the two posi t ions . 



/?/Π£ΓΤΟβ?£ 

i OUMMY~\ 

Χ 

f 

IO. 7 

- 1 . 0 

- 0 . 6 

ι2. 2 

IO. fi 

+0,8 

- 0 . 8 

- 1 . 8 

-0.fi 

»0. 1 

+0. 5 

+0. 8 

-0. 2 

(0. 1 

- 1 . 2 

- 0 . 5 

-0. 2 

+0.3 

+ 0 . 4 

+0.8 

-0. 2 

-0. 7 

-0. 3 

+ 0. 4 

+1. 8 

+1. 2 

+ 2. 1 

(0. 6 

+ 0. 2 

- 1 . 4 

+0 ,4 

+0 .6 

+0.5 

+1.7 

- 0 . 8 

-0 . 6 

-0 8 

- 2 . 5 

+1. 1 

+0. 8 

+ 0. 2 

- 1 . 4 

+0.1 

+1 .4 

+0 3 

+0. 2 

:ΠΓΖΤ::Ι.::Ι::.:Ι Χ : -ΊΤΓΤ T T T 

- I 

Ί 

Ί 

= j 

-0 .9 - 1 . 3 

10 5 - 1.8 

12. 5 

­Ü. 2 

i2 6 

H 5 

10 8 

­1 .0 

i2.fi 

H. 1 

H . 2 

ιΟ. 1 

­0. 7 

+ 1.7 

+0 .8 

il 0 

­ 1 . 0 

0 . 0 

+2. 2 

­0. 2 

­ 0 . 9 

+0.9 

­0. 1 

• 0.8 I 

1 

! 
1 
1 

—1 
I 

1 

1 
1 

1 
| 
1 

■ 1 

— i 

i 

— i 

I 

I 
I 

" I 

Fig . 18 Level without control rods : percentage deviat ions between exper imenta l and 

theore t ica l rod power dens i t i e s , as calculated by RIBOT 5 and SQUID codes . 

( T " ■ · 100). C= + 1.5%. 



fí/rL£TTOR£ 

I 

I OUMMY~ 

-0.7 

-0.8 

-1.1 

+1.6 

-1.4 

-3.2 

-0.2 

+1.4 

-0.1 

+0.1 

+0.1 

0,0 

+0.5 

-2. 2 

+0.3 

+0.4 

-0.2 

0.0 

0.0 

-0.2 

+ 1.2 

+0.9 

+0.4 

+0.4 

+1,2 

+0.7 

+1.0 

-1.0 

+1.7 

+0.3 

+0.4 

+0.1 

-0.5 

-1.6 

+0.5 

-0.8 

0.0 

+ 1 0 

+0.5 

-1. 2 

-0.8 

-0.8 

+0.2 

+1.1 

-1.4 

-3.3 

-3.2 -2.9 

-0.2 -3.5 

+1.0 

-2. 1 

+2.0 

-1 .2 

-3 .0 

-2 9 

+2, 1 

-1.4 

-2. S 

-3.3 

-3.1 

+0.6 

-1.5 

+0.5 

-2.1 

-0.1 

+2.3 

+0.2 

-2.6 

0.0 

-0.7 

-0.6 

1 
1 
1 

I 

- \ 
1 
I 
1 
! 
1 
1 
1 

—1 

1 

—\ 
1 
1 
1 
1 

_ J L I L _ I _ I _ _I_' icnrxïrrfl. _ Γ Τ Τ Τ Τ Γ TTT 
Fig. 19 Level without control rods: percentage deviations between experimental and 

theoretical rod power densities, as calculated by FORM, THERMOS and SQUID 

codes (T " E · 100). £=±1.9%. 



φ 

f 44 Ο mm 

(D 

ITEM 

i 

2 

τ 
4 

5 

uãSCKlPTfON 

END CAP 

THREADED END CAP 

FUEL PELLST 

Ρ ETA ί H/H C SPRING 
CA/i 

Ν* of F MATER/AL 
4 

y 

ii 
i 
1 

Z/PC 2 
Ζ IRC 2 

PiÛz/UOt 

EN. 41 

Ζ IRC. 2 

FIG. 20 ENRICHED URANIUM OR URANIUM­PLUTONIUM SAMPLE FOR PRELIMINARY 

MEASUREMENTS. 



Date: 7 -5-68 

T h e r m a l power : 480 .8 MW 

Max.flux peak: ~ 3 χ 10 n / c m 2 s e c , 

E l e c t r i c power : 154 MW 

K> 11 12. 
PROFONDITÀ" (m) 

IS 14 

F I G . 21 THERMAL FLUX CURVE ALONG THE CHANNEL S E L E C T E D FOR 

SAMPLE IRRADIATION. 



1COO-

J­^ 

J-

Q X 4­

i 

1 ­

£-

A 

C 

( 

­ τ τ™—i — ι 

i\ 

^S_ Φ 
^%!f < 

■ τ τ r — ­ τ 

/ 

' · 

^ ^ · 

■ ■ ­ r — — Γ — i r 

­

►»w · 

ci I N 

f « 

-

β > ι κ ^ · d 

0 t 

> · 

s 

FIG. 22 Dose var ia t ion in t ime for P u " C " (Pu f 2. 855%). The dos« 

co r re sponds to a flux of 109 n / c m 2 s e c . 



+5 

-5 

( 

θ 

β 

ι 

β 

ι 

β 
9 

► « 

s 

> 

• 

ο 

β 

β 

β 

'θ 

9 S 

1 1 

Δ 

Δ β 

Δ 

ί < 

β 

Ο 

9 

e 

• Δ 
> 

• 

• 

1 , 

β 

χ 

β 

- Τ ­

Ο 

β 

• 

+ 
+ 

-τ­
ο 

+ 

υ 

4-

β 

5 = 

Δ 

• 

+ - : 

Δ 

+ 

Δ 

+■ 

5% 

Δ 

Δ 

• 

Δ 

! 

! 

i Rod T y p · 

Θ U 

• 0 . 7 4 P u f 

+ 1.40PUJ 

Χ 1.80 Pu; 

¿V 2 . 8 5 S P u { 

β 

a 

■ 

10 20 30 40 SO oü 70 80 90 C/ í 

Fig. 23 ­ Distribution of the percentage differences between the power density values obtained from the total gamma activity­
data and those obtained from the La­140 gamma activity data 



à 

LEGENDA 

D - SS dummy 
DA- Al dummy 
Ç~j - Instrumentation 
S - Source 
(g) - Control rod 

90" 

FIG . 24 Core configuration before loading enriched uranium minimum 
critical 



1.0 

0.7 0.8 0.9 1.0 

K eff 

FIG. 25 Inverse count, rate enriched uranium minimum critical 





page 9,, line Ί. 

page 16, line 2 

Appendix I, t i t le 

page 1-5, l ine 9 

page 1-7, l ines 10, 16, 25 

page 1-9, line 1 

page 1-9, line 6 

page I I - 1 , line 9 

page I I - 1 , line 10 

page I I -2 , line 1 

page rV-3 , l ines 2 ,3 

F ig . 22, t i t le 

F ig 22, absc i s sae 

ERRATA 

c r i t i c a l a s sembly 

is on 

set down of 

Table 4 

Table 5 

lantanum 

(20-25 C) 

heat fluxes 
/ 2 / n / c m / s e c 

45 channel 

difference 

P u " C " 

- -

CORRIGE 

assembly 

is based on 

set down the 

Table IV 

Table V 

lanthanum 

(20-25°C) 

neutron fluxes 
/ 2 n / c m . s e c 

45th channel 

differences 

P u - C type 

Days 





SEGRETARIATO GENERALE ENEL 
STAMPA O F F S E T - ROMA 





EUR 1635. f 

Le p r ix de ce r appo r t ayant été omis , 

veuil lez noter qu ' i l e s t de 

225, - F B . 





m < wiliPI
l
 1τ§1 Pï11«™! w ™áP 

ü 
NOTICE TO THE READER 

All Euratom reports are announced, as and when they are issued, in the monthly 

periodical "euro abstracts", edited by the Center for Information and 

Documentation (CID). For subscription (1 year : US $ 16.40, £ 6.17) or free 

specimen copies please write to: 

w3fS 
To disseminate knowledge is to disseminate prosperity — I mean 

MKHHHPU'I&ÍÜIÍ! 
­­ ρΛ . ( l i j 

¡¡¡I general prosperity and not individual riches — and with prosperity 

disappears the greater part of the evil which is our heritage from 
'::::::::::::::::::::::::::::::::::::: ■

r I
 °

 c 

darker times. 

WEB» ' -" ■rnSSmÊmÈS^iX^ 
Alfred Nobel tu 



mmm 
líítinítoHaltV 

mmn 

m 
^Pi 

rM'ii 

litliiÉ 
-I Sil Ρ?Ρΐ!ϊΙ^!!^^§^ 

SALES OFFICES 
■MUM: ¡m?, 

»f$ 

Ι, · Ι Ι » \ L^à Jfk­r> ■ ­ ν ■β ϊ Ιπ'ιΛΊΟ 
All reports published by the Commission of the European Communities are on sale at the offices 
listed below, at the prices given on the back of the front cover. When ordering, specify clearly the 
EUR number and the title of the report which are shown on the front cover. 

•f.J' ï* *;Htri rjTitilHI iïi-'tftH (<.·ίΐΙν:1.5'; ''¡Allí!'■'ill'W ­ l'If'tlWnî' 

S A L E S O F F I C E F O R O F F I C I A L P U B L I C A T I O N S 

O F T H E E U R O P E A N C O M M U N I T I E S 

37, rue Glesener, Luxembourg (Compte chèque postal N° 191­90) 

II 
•¡iiai»vifcj.»»i«»iiifi · 

if 3§ΙΠΓ«ΙΒ!Β| H1(7I 

BELGIQUE — BELGIË 
MONITEUR BELGE 
Rue de Louvain, 40­42 ­ 1000 Bruxelles 
BELGISCH STAATSBLAD 
Leuvenseweg 40­42 ­ 1000 Brussel 

DEUTSCHLAND 

BUNDESANZEIGER 
Postfach ­ 6000 Köln 1 

FRANCE 
SERVICE DE VENTE EN FRANCE 
DES PUBLICATIONS DES 
COMMUNAUTES EUROPEENNES 
26, rue Desaix ­ 75 Paris 15« 

ITALIA 
LIBRERIA DELLO STATO 
Piazza G. Verdi, 10 ­ 00198 Roma 

37, rue Glesener ­ Luxembourg 

LUXEMBOURG 
OFFICE DE VENTE DES 
PUBLICATIONS OFFICIELLES DES 
COMMUNAUTES EUROPEENNES 

NEDERLAND 
STAATSDRUKKERIJ 
Christoffel Pianti] nstraat ­ Den Haag 

UNITED KINGDOM 
H. M. STATIONERY OFFICE 
P. O. Box 569 ­ London S.E.l 

KFIH 1 . T? 

. Bnjwjl II'Sfl(?
s
ï ' 

CDNA04475ENC 

■im 
Commission of the 
European Communities 
D.G. XIII - C.I.D. 

1
;
L 
Jit*!} 29, rue Aldringer 

Luxembourg 

wrnimmnn™ 


	Table of contents
	1. INTRODUCTION
	2. FUEL ELEMENTS
	3. CRITERIA FOLLOWED IN THE PERFORMANCE OF THE CRITICALITY EXPERIMENTS
	4. CRITICAL CONFIGURATIONS
	5. POWER DISTRIBUTION MEASUREMENTS
	5.1 Measurement technique
	5.2 Fuel rod irradiation and handling
	5.3 Measurement equipment
	5.4 Details of the measurements

	6. ANALYSIS OF EXPERIMENTAL RESULTS
	6.1 Criticality experiments
	6.2 Power distributions

	7. COMPARISON BETWEEN THE EXPERIMENTAL DATA AND THE CALCULATED VALUES
	7.1 Theoretical models
	7. 2 Consistency of the experimental and theoretical data

	8. CONCLUSIONS

