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A METHOD FOR DETERMINATION OF CONVERTIBLE NUCLEAR HEATING DATA ' 

1.0. INTRODUCTION 

-Calculation of nuclear heat generation in non-fuel materials 
of the High Flux Reactor (HFR) at Petten is in general 
based on measured values, which are obtained by special 
calorimeter probes. 

Although the presently available data are in themselves ra
ther complete, there exists a considerable lack of means to 
apply them to conditions, which are different from the test 
conditions . 

Particular difficulties are encountered, if the data are to 
be converted to objects having other geometry, size or ma
terial as the test sample. 

These difficulties arise, because the nuclear heat generat
ion, which is a result of several energy absorption proces
ses of gamma and neutron radiation, is measured by calori
metrie methods in integral form, which does not reveal the 
contribution of the individual process. 

Data conversion however requires the knowledge of the con
tribution of each absorption process to the overall effect. 

The functional dependency of a process on the sample para
meters has the form of an energy integral of geometry and 
material dependent parameters, in which only the energy 
distributions (more correctly the "energy spectral densi
ties of the number fluxes") of neutron and gamma particles 
appear as unknowns. 

If these energy distributions are known, then the proport
ionate contributions of the absorption processes can be 
determined, so that the conversion problem can be solved. 

*) Manuscript received on 10 October 1969· 



Since the gamma energy distribution, which is the more im
portant one of the two, is not known for the HFR, some con
version relations had earlier been derived on basis of an 
assumed distribution. 

Although by this evaluation, useful nu
merical results could be obtained, it is desirable to pro
ceed to a method, in which no explicit assumptions on the 
energy distributions are needed and which also covers the 
influence of the neutron radiation. 

Such a method must necessarily be based on a detailed ana
lysis of the energy absorption processes involved and must 
be directed on determination of parameters, which are re
presentative for the gamma and neutron energy distributions 
existing in the reactor. 

The method described here, is laid out for determination of 
3 constants, 2 representing the gamma and 1 the neutron 
distribution. 

The description of these distributions by expressions con
taining 2 resp. 1 parameters is, of course, very approx
imate and will only be satisfactory for investigations of 
nuclear heating and similar effects. 

The experimental principle of this method follows in some 
lines that of ref. 1 , where 2 parameters are determined, 
which relate the gamma and neutron heating of a material 
to the corresponding values, measured in C. 



2.0. SYNTHESIS OF NUCLEAR HEAT GENERATION 
The main effects contributing to nuclear heat generation in 
non-fuel materials in the HFR are the following : 
1. Core gamma radiation absorption, Ρ 

Y 
2. Core neutron elastic scattering energy degradation, Ρ 
3. Thermal neutron capture induced gamma absorption, Ρ nY 4. Inelastic scattering (fast neutron) induced gamma absorption, 

Ρ . ηΐγ 
5. Activation product gamma and β absorption Ρ „ 

: .ndecay 
There are other minor sources of heat generation, such as 
effects of (n,ot) and (n,p) reactions and others, which are however 
neglected here. 

The 5 above mentioned heat sources are not equally important, and 
some of them have negligible contribution for some materials. 
In all cases, the dominant role is played by Ργ. 

The total effect is combined in the form : 

Ρ = Ρ + Ρ (1) 
γ η 

Ρ = Ρ + Ρ + Ρ . + Ρ , (2) 
η ηη ηγ ηιγ ndecay 

2.1. Heat Generation by Core Gamma Absorption Ρ 
1 Ï 

The heat generation at a point with the local coordinate r in a 

sample due to gamma absorption is given in ref. 2 as : 

Ρ γ ί Γ ) = > T~ (E) ' N < E ' r > · E dE < 3> 

The spectral number flux density at r,N(E,r) is obtained from 
the undisturbed flux density Ν (E) by multiplication with a 
factor which is, according to ref. 3, equal to the escape 
probability p(r) from the same body for a homogeneous internal 
source distribution; if linear exponential attenuation is 
considered : 



N(E,r) = No(E) . p(r) <4) 

The average escape probability is : 

Po = i ƒ p(r)dV 
ν 

The average heating is : 

(5) 

■ * J Ρ (r)dV 

γ 

. E γ \ N(E,r)dVdE (6) 

(7) 

Herein : 

± ) N(E,r)dV = -γ J p(r)dV = Ν Ρ 
o o 

(8) 

And finally : 

uu 

Y J D O y jo ρ 
ρ . Ε dE 

o
 r

o 
(9) 

Alternative Derivation 

This result can be derived in an alternative way on basis of 

the total amount of incoming photons η (spectral) and the 

fraction of collisions F^ : 

(10) 

CO 

1 Í
 Va 

Ρ o _L· \ -± . ρ . η EdE 

γ pV J μ c o 

In ref. 3 one finds the relation : 

η = Ν . γ 
o o 4 (U) 

and the definition of the average chord R , which represents 

e av'
 e 

the mean of all possible penetrations through a body : 

R 
4V 

av S 
(12) 
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Introduction of these terms in eq. (10) yields 

f
 y

a
 F

c 

= I _in -4 E d! 
ρ o uR 

i
 v H

 av 

(13) 

Eqs. (9) and (13) are equal if 

F 

o yR 
av 

(14) 

The proof that relation (14) holds, is given in ref. 6 

Since in eqs. (9) and, (13) the effect of secondary gammas 

(scattering gammas) is neglected, these expressions give under

estimated values for Ρ , which are corrected by introduction 
γ
 . 

of the energy absorption buildup factor Β , which is applied 

in the linear form proposed in ref. 4 : 

Β (E,yr) = 1 + (f  1 ) yr (15) 

With use of the mean value r = r R in eq. (15), eq· (9) become s 

ζ. av 

00 

■ ! 1 + ^ ( _  1 ) u R a v 

a 

ρ Ν EdE 1
 o o 

(16) 

The average escape probability ρ is a function of photon energy 

and sample geometry. Calculations of ρ are rather extensive. 

For simple geometries, tabulated results can be found in ref. 3; 

among them are tables for slabs, spheres, halfspheres and 

infinitely long cylinders. 

The result for infinite cylinders is reproduced in fig. 1. It 

can also be used with good accuracy for length to diameter 

ratios L/D >0.5, if one replaces χ by the parameter : 

X = \ w R
a v ' 

(17) 
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where R , defined by eq. (12), is for cylinders 

R 
a V
 l^D/L 

Definition (17) permits the shorter form of eq. (16) : 

(18) 

Ρ = 

γ 

1 + < —  ! ) ρ (Υ).N .E.dE r
o
 Λ
 o 

(19) 

Other geometries than cylinders can be treated in analogue form 

on the basis of ref. 3. 

2.2. Heat Generation due to Core Neutron Radiation Ρ 

2.2.1. Heat Generation by Elastic Scattering Ρ 
nn 

In ref. 2 the following expression is given for neutron 

heating by elastic scattering : 
00 

Ρ (r) = 
nn 

^ ( E ) . Σ (E) 0 (E,r) dE, 
Ρ
 s 

(20) 

where the mean energy degradation per collision ΔΕ is : 

ΔΕ = E . 
2A 

(A+l) 

(21) 

Analogue to sect. 2.1., the local flux density can be 

expressed by the undisturbed flux density and a pro

bability. The volume average has the form : 

00 

'nn " - ^ 2 ' ï J ^(E).0o(E).po()iT).E.dE (22) 
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w h e r e i n t h i s e q u a t i o n 

2 E
T

R ( 2 3 ) 
av 

and ρ (χ) is taken from fig. 1, R corresponding to eq. (13) 

Graphs of Σ and £„, are presented in ref. 4 . 
s ι 

2.2.2. Heat Generation by Capture Gamma Radiation Ρ 

S* 

For the (η,γ) reaction following thermal neutron capture is 

assumed, that it has a spatial distribution in the sample 

producing a homogeneous gamma source distribution. 

Under this condition the heating due to capture gammas can be 

expressed by 

= - . Σ .φ „. . ρ (Y ) . Β — . ρ ( χ ) · q ( Ε ) . Ε d] 
ηγ p a Y o t h r o Λη J a y c A η γ 

(24) 

where 

oth 
0 (E)dE 
o 

(25) 

'th 

is the thermal neutron flux density. The build up factor Β is 

a 

Β = 1 + (_ÍL1 ) . χ 
a y '

 Λ 

a 
(26) 

In view of the information available in ref. 2 , the integral 

can better be expressed as a sum over discrete energy intervals 

ΔΕ. i n t h e f o r m : 
Χ
γ Ν 

( β ™ ·Ρ ( χ ) . q ( E ) . E d E * ) — ( Ε . ) . Ρ ( v ) . E . j j a f q dE ( 2 7 ) 
J a y c Λ ^ηγ / μ ι . ^c λ ι ö a J Η η γ

 ν ' 
ο L— ΔΕ. 



12 

In this expression, ρ (χ) is the collision probability 

Pc(x) = 1P0(X) , (28) 

In the preceding equations, χ is defined by eq. 17 and γ by 

I r ρ
 ( 2 9 ) 

X
n " 2 VnT av' 

The integrals 

; q (E.)dE = S(E.) (30) 
ηγ i i 

ΔΕ . 
ι 

are tabulated in ref. 2 for 7 gamma energy intervals and for 

all important materials. Eq. (24) can therefore be written : 

Ì
oth

P
o
(X
n
)
 ' ¿ a " (Ei).Pc(x).Ei.S(E. 

Ρ
ηγ
 =
 ¿V 

i=l 

Ρ is in general negligible for materials having comparably 

small absorption cross sections. 

2.2.3. Heating by Fast Neutron Inelastic Scattering Gamma Radiation 

Ρ . 

_ηιγ_ 

In the few cases, where inelastic scattering (fast neutrons) 

induced gamma radiation contributes to the heating, one can 

treat the induced gammas as monoergetic with energy Ζ . 

Under analogue conditions as in sect. 2.2.2, the heating gan 

then be expressed as : 

• Ε . Ι Σ . 
γ J n i -

Β μ 
Ρ . = — — (Ε ) . ρ ( χ ) . Ε . Ι Σ . (Ε ,Ε ) 0 (Ε ) ρ ( x „ ) d E , 

η ι γ ρ μ γ *c Α γ / ηΐγ γ n o n / j ro ΛΤ η ' 

( 3 2 ) 
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where Β is defined by eq. 26. Furthermore 
a 

P C ( X ) = ! _
P 0 ( X ) (33) 

and 

X
 = 2'

jR
av 

(34) 

X
T
 =
 2

Σ
 T

R
av 

(35) 

Cross section data are available in ref . 4 . 

2.2.4. Heating by Activation Product Decay Rad ia tion. Pndecay 

In some cases, thermal neutron capture generated nuclides 

contribute to the heating by their decay gamma and beta 

radiation . 

For calculation, it is again assumed, that the gamma and beta 

source distributions are homogeneous. The decay radiation 

normally originates from a nuclide, which was generated by 

neutron capture in an isotope, the natural abundance of which 

in the material under consideration is y . 
η 

The source strength therefore is 

y„
E
 •♦„fi, · ρ Λ ( χ „ ) 

n a o t n o η 

(36) 

If the decay gamma and beta energies are E and E R, the 

partial heating term
0
 are : 

Β y 
a a 

nde cayy 
= — — (Ε ).p (χ).Ε .y .Σ .φ . .ρ (χ ) (37) 

ρ y γ
 l

c γ η a oth *ο η 

'ndecayß
 =
 ρ'

P
c
( χ
β
5
'
Ε
3'

Υ
η'

E
a■*oth^ο

( χ
η
} (38) 
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where β is defined by eq. 26 and 

Xn
 =
 I

 E
thT

R
av

 ( 3 9 ) 

x = 1 ̂ V^av
 (40) 

x
e - \ ' *a '

 R
av <

4 , ) 

The total decay radiation heating must be summed up from 

the partial heating terms according to the decay characteristics 

of the involved nuclides, so that 

(42) 
Ρ = Σ Ρ + Σ Ρ 
ndecay ndecayy ndecayß 

The relations derived above apply to equilibrium conditions, 

which are reached only after a time of several half lives 

of the decaying nuclide. 
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3.0 ENERGY DISTRIBUTIONS OF GAMMAS AND NEUTRONS 

The three types of parameters of the preceding sections : 

Attenuation coefficients or cross sections, 
Geometry averaged reaction probabilities, 
Particle energy distributions 

are direct or indirect functions of particle energies; the 
energy distributions of neutrons and gammas therefore constitute 
the key to heating calculations. 

Energy distributions of neutron flux densities in the HFR are 
in general available by 4 group computer codes of the neutron 
metrology group (RCN) . 

The -for heat calculations- more important gamma energy 
distributions are unknown in the operating reactor. 

The calculations of gamma heating terms are therefore based on 
a double exponential approximation of the energy distribution 
with two unknown linear constants. 

3.1 Approximation of the Gamma Energy Distribution 

The gamma energy distribution of the operating reactor is a 
result of the interactions of the prompt fission spectrum and 
the fission product decay spectrum with the materials of the 
core region. 

In general, this distribution is a rather complicated 
function of the configuration and can only very summarily be 
expressed by a two parameter approximation. 

In the higher energy region (E>lMeV) the prompt and fission 
product spectra show an exponential form, approximated in ref. 

- 1 1 E . 
5 by a function e . Other measurements, mentioned in ref. 5, -1 . 24E which include also capture gammas, suggest a form e 

2 8 Since in the present case Al decay will cause appreciable 
increases of a distribution in the range E<1.3, one can 
assume, that the exponent -1.24 will be more realistic for the 
HFR. 
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-2 3E In the range E<lMeV ref. 5 suggests e ' for the prompt 
gammas. However, a great contribution of degraded higher 
energy photons must be expected in this region, the actual 
spectrum can therefore be expected to have an exponent <-2.3. 
For convenience, -2.5 is chosen; the distribution is therefore 
approximated by the expression 

» /Ί?Λ Α *s -1.25E _ Φ
δ -2.50E , . , . Ν E « A . ·τ- .e + B .·=— e (4.3) ο ο E ο E s s 

The exponents - 1 .25 and -2.50 have the dimensions KeV , 
if E is taken Ln MeV. . 

Φ 3 The multiplication with ■=— is applied in order to make A and 
fc-s ° 

Β non-dimensional, 
o 

The gamma energy distribution could also be approximated by 

various other two parameter expressions, but in view of the 

presentation in ref. 5., the exponential form is preferred here. 

3.2. Approximat ion o f the Neutron Energy Distribution 

For the approximation of the neutron energy distributions, 

results of the TEDDI-KFR 4 group code are used as·, a basis. 

These results refer to the integrated energy spectral densities 

of the neutron flux in the form 

E
TT 

( Φ
η " I 0(E)dE , η = 1 . ..4 (44) 

E
Ln 

where the following energy limits are attributed to the group : 

Φ ] : E - 1 . 3 5 MeV E T J ] = 10 MeV 

Φ 2 : E L 2 = 6 7 . 4 keV E u 2 - 1 .35 MeV 

Φ3 : E L 3 = 0.625 eV E = 67.4 keV 

Φ4
 : E

L4
 =
 °

 E
U4

 =
 ° ·

6 2 5 e V 
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One can derive from the TEDDI results, that the group fluxes 
φ are roughly equally related to each other in all central 
positions and also, bun functionally slightly different, for 
peripheral positions of the HFR, 

Th.es e two forms can be appro χ im? ted by : 

Φ. η 
Φ~7 

; + 0 , 7 0 ('η - ί ) - 0 . 0 5 ( η - 1 ) 3 (45) 

Φ 1 + 0 .75(η-1) (46) 

for central (4 5) and peripheral (4 6) positions, respectively. 
The characteristic'ratio 

Φ. (47) 

is by these approximations 1.51 for central positions and 
0.85 for .peripheral positions. 

For a given core position,, relation (45) or (46) can be used to 
approximate the neutron energy distribution in group representation 
by 

'Un/ 

Ln 

0 (E)dE » C o o 
n A, 

Φ7 ■
 φ

3 ' 
(48) 

where the factor φ is used for obtaining a non-dimensional form of 

s 
C . 
o 
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4.0 SOLUTION OF TUE HEAT GENERATION EQUATION 

·' 4.1. In sert ion of C a r. n a a n d Neu tron V. n c r g y Ώ i s t r i. b u t i o n s 

The energy distributions of gammas and neutrons, represented 
by eqs. (43) and (48), can now be applied to solve the various 
heat generation expressions of sect. 2 up to the unknown 
factors A , o and C . o o 
For this procedure the following insertions are made : 

I) Eq. (43) in eq. (19) : 

Ρ = A o'E :]·«·. l + (·— -l)x| .p„(x) .e 1 .25E EdE (49) 

+ Β .--ο E ! + (—- -1)χ t . -2.50E _,_ .ρ (χ) .e .EdE 

II) Eq. .(48) in eq . (22) : 

Eq. (22) is approximated by the sum : 

2Λ 
n n (A +l) 2 P 

A 
) .Σ . s 

n=! 

rUn 

'Ln 

0 (E).EdE o (50) 

The integral of this expression can be solved by applying eq. (48) 
in the following form : 

JUn 

on ETT -Ε,-
Un. Ln 

C 
0-dE = ~ ~ 2 -

o E„ - E 

Φ. 
n A 

Un Ln ™1 
( 5 1 ) 

'Ln 
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which brings : 

'Un 

0 EdE = £ 

o E„ E 

Ln 

 . ~ .φ 4(E.
2
. ET

2
 )=4c (Ε.. +ET )·Αφ φ,

 T
s 2 Un Ln 2 o Un Ln φ, s 

Un Ln 1 1 

(5'2) 

and 

p c . -JL- 1 
nn o / ... χ 2 E 

Φ . 
Ρ (ΧΤ)'Σ0 (Ε..+Ε).. — . φο (5.3) 

/..\¿ Ρ / ο Τ s Un Ln φ, s 
(Α+,)

 5=1 . * 

III) Eq. (48) in eq. (31 ) : 

The thermal neutron flux density φ ·.. corresponds to the 4th 

otn 

energy group, and therefore : 

Φ Λ 
φ . , = C . —— . φ 
oth ο φ. s 

(54) 

Z
a
 φ

4 
Ρ = C . — . ¡^ .ρ 
ηγ o p Φ] 

7 

(Χ )ΛΒ 3—(Ε.).ρ (χ) .Ε. .S(E.) .φ 
ο
 Λ

η / a y
 χ
 ι' 'c ι ι ¡ 

i=l 

(55) 

IV) Eq. (48) in eq. (32) : 

Eq..(32) is approximated by: 

Ρ . -C — (Ε ) .ρ ( χ ) .E 
η ι γ o y Y c 

Γ 4 

■ ■•Γ 
m= 1 

Σ . φ "' ., ι J 
— , ν Λ ί γ m . 

ο Τ ρ φ j s 
( 5 6 ) 

V) Eq. ( 4 8 ) i n e q . ( 3 7 ) 

y Σ ψ, 
Ρ · , - C — (Ε ) . ρ ( χ ) . Ε . ν . — . -r-ί-.φ ρ (χ ) Β 

ndecayv ο μ γ l c γ ' η ρ φ. s1 ο η ' D
a 

(57) 
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V I ) E q . ( 4 3 ) i n e q . ( 3 8 ) 

Σ φ. 
P J rt=C.p(x„).E„.y. . -— .φ .ρ (χ ) 

n d e c a y β o l c A g ρ ' η ρ φ γ s ' ο Λη 
(58) 

4.2. Presentation of He a ting as Linear Expression with 3 Unknown 
Constants 

By summing up the terms of sect. 4.1. to the total heat generation 
(eq. 1), an expression for Ρ is obtained, in which the unknown 
factors A , Β and C appear in linear combination, o o o r ' 
The resulting eciuation can be written: 

Ρ » A .G + B . F + C . Ν o o o (59) 

G, F and Ν are short forms of the following expressions 
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Β yn 
+ — — (E ) .ρ (χ) .E 

p y γ c γ 

4 

m=l 

Φ m (χΤ>· Σηίγ· f¡' φ
5 

¿Ι 
μ
 Φ Λ 

Β — (Ε ί.ρ (χ).Ε .y .Τ. .ρ (Υ ) ~ . φ a y γ- c Α γ η a *ο Ä
n φ

 v
s 

'η . decayy 

(62) 

ί-E Φ, 
Ρο ( χβ )· Εβ·^η- Ση·Ρο ( χη )· φ~ · φ

5 
Ε η . decay β 

For convenience, the different arguments of the probability 
factors are once more listed here : 

■Õ y R 
2 av 

2
 Σ
Τ
 R

av 

(63) 

η 2
 E
thT

 R
av 

ß 

1 

2 μ ß av 

The expressions G, F and N (60), (61) and (62) are functions of 

the sample material and the sample geometry and size; they can 

be determined theoretically. 

For cylinder geometries, which are considered here, the influence 

of size is expressed by the dependency of G, F and N on R 

The dimensions of G, F and N are the same as the dimension·of 

P, e.g. [Watt/g] . 
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4.3. Determination of Unknowns A , Β and C 
o o o 

The solution of eq. (59) for the total nuclear heat generation 

now depends on the knowledge of the constants A , Β and C 

'· o o O 

of the gamma and neutron energy distributions. 

A and Β are unknown; C can be obtained by the TEDDI code 
o o ' o

 J 

theoretically and by activation analysis experimentally; it 

is however not advisable *·ο apply the sofound values, in view 

of the complete loss of selfcorrection within the further 

process. 

It is therefore useful to consider all three constants as 

unknown and to determine them simultaneously in a common 

procedure. 

For this purpose, the method applied in ref. I is used here 

in a modified form. It- consiste in a measurement of the heat 

generation in 3 materials and solution of the system of 3 

linear equations (59) with ¡the measured values P. 

With the subscript* 1, 2 and 3 for the 3 materials, one has : 

p
i ;

G
i
A
o *

 F
i
B
o *■ Mic

o 

P
2  V o *

 F
2
B
o *

 B
2
C
o (64) 

P
3 * V o *
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B
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The determinant of the coefficients is : 

ro, F, 1 

Q2 F, * 2 

C
3
 P

3
 H

3 

(65) 

The solution can be presented in the following form : 
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Once these constants have been determined, one can express 

numerically the approximations for the gamma and neutron energy 

distributions (43) and (48) for the conditions of the measurement 

(core position, core configuration, etc.). 

For the same conditions, the constants in combination with 

eq. (59) permit to calculate the nuclear heat generation in 

samples of any material, geometry and size, for which the 

coefficients G, F and Ν are known. 
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5.0. EXPERIMENTAL 

5.1. Principle 
The experimental determination of the constants A , Β and C r o o o 
according to sect. 4.3. requires simultaneous measurement of 
the specific power for 3 different materials, which are 
exposed to the radiation at the same point of the reactor core. 
Since this is, in the strict sense, impossible, it is necessary 
to apply a separation in either time or space. 
The principle of time separation requires use of calorimeters, 
which can be moved to the measurement position in succession. 
The principle of space separation can be realized with fixed 
calorimeters. 
In view of the rather slow changes in the radiation at a given 
point of the core, the time separation introduces practically 
no mistake, whereas the space separation can be subject to 
errors caused by local differences in the radiation pattern. 
These errors are difficult to estimate and can only be kept at 
a minumum by minimum spacing of the calorimeters. 
The practical realization of the time separation principle 
(movable calorimeters) however, is rather difficult and intro
duces special problems in view of the required sensitivity of 
the calorimeters. 
Since construction of rigs with movable probe supports is 
presently an unproved technique for the HFR, preference is given 
to the somewhat less accurate solution with fixed calorimeters. 

5.2. Sample Materials 
In order to reduce the errors, which are introduced by local 
gradients of the radiation pattern (sect. 5.1.), and to make the 
sensitivity, expressed by the right sides of eqs . (66), a maximum, 
materials with sufficiently different gamma and neutron heating 
characteristics must be selected. 
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In numerical terms, the determinant D (eq. 65) should approach 
a maximum value. 

On the other hand, the sample materials should be suitable for 
construction of geometrically equal calorimeters with good 
sensitivity and limited temperatures, which is an important 
requirement reducing the risk of thermo-couple failures. 
On the above basis,· the combination graphite-molybdenum-beryllium 
was chosen. Estimated heating ratios of these materials are 
approximately : 

Gammas : C : Mo : Be τ 10 : 14 : 9 
Neutrons: C : Mo : Be * 1 : 0 : 2 

The thermal characteristics of C and Be calorimeters are very 
similar, the temperatures in Mo are comparably high, due to Lhe 
higher heating rate and the greater density, 
Cross sections and absorption coefficients are well known for all 
3 materials; the specific heats and their temperature derivatives 
(source : ref. 6) as defined by.eq. (67) are listed in the 
following table : 

1 + q(T - To)j (67) 

M a t e r i a l 

Be 
C* 
Mo 

ρ [ g / c m J. 

1 .85 
1 .69 

10.21 

c o [ j / ( g d e g ) ] 

1 .89 2 
0 .762 
0 .253 

q [ l / d e g j 

0 .00178 
0 .00332 
0 .00026 

T o [degC] 

35 
35 
35 

T [deg C] 

0<T<150 
0<Τ<200 
0<Τ<600 

* graphite Carbone Lorraine type 3780 WEG 

With the above figures, c is accurate within + 2% in the 
temperature range indicated for T. 



- 26 

5.3. Test Rig 

A test rig, which can be inserted into the relevant experi
mental core positions of the HFR, is designed on basis of 
the principles of the CADO series, being in use at Petten. 

This test rig, CADO-17, is a carrier for isothermal calori
meters, which are arranged at the 4 vertical stations shown 
on the scheme of fig. 2: (1) two groups of 3 calorimeters 
(referred to as "group calorimeters") with graphite, molyb
denum and beryllium samples and (2) two single calorimeters 
with graphite samples. 

The group calorimeters have capsule diameters of 6 mm, the 
single ones of 10 mm. The single calorimeters serve for com
parison with earlier measurements, for which the same types 
had been used. 

The calorimeter capsules are of stainless steel with a wall 
thickness of 0.3 mm; the free space is helium filled. 

The group arrangement is shown in fig. 2 too. The center radius 
of 10 mm is a compromise between minimum spacing (see sect. 5.1.) 
and the distance needed in order to reduce mutual influencing 
(shadowing) of the calorimeters. 

The calorimeters are cooled by the primary coolant of the HFR, 
flowing in downward direction through the rig. The rig is in
serted in a standard filler element. 

The inner and outer thermo-couples of each calorimeter are 
connected in differential junction in the head of the rig. 

The instrumentation is a Solartron digital data logger with 
punched tape recording equipment. 
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5.4. Calibration and Sensitivity 

Calorimeters are calibrated outofpile by derivation of 

the temperature dependent time constant of the differential 

thermovoltage, developped in response to a sudden decrease 

of the cooling temperature. 

The first order approximation for this time constant reads 

M = K ·(1+βΔΤ) (68) 

With this, the differential equation of the calorimeter res

ponse 

dAT 

dt 

AT 

M 

has the solution 

AT 

AT = exp M, 
+ ß(AT AT) (69) 

Measured response curves of CADO calorimeters are perfectly 

represented by this relation, so that the parameters M 0 and β, 

defining M by eq. (68), are easily determined from the measured 

response on basis of eq . (69). 

A steady state calorimetrie measurement is evaluated, the time 

constant being known, from the following equation: 

p
 ="Fk · π ·

 ΔΤ (70) 

The correction factors f and k, allowing for the influence of 

the inner thermocouple mass and heat capacity and the heat loss 

by the sample supports, respectively, have been calculated; 

results are listed in the following table. 
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Calorimeters 
type 

single 
group 

M 

II 

Samp le 
material 

C 
C 
Be 
Mo 

f 

0 .985 
0.985 
0.975 
1 .004 

k 

0.043 
' 0 .024 
0.024 
0 .024 

The following table shows predicted mean values of the time 
W constant, the temperature difference developped per /g of 

heat generation and the sensitivity of the calorimeters, 
defined as the output in millivolts (thermo-voltage) per /g 
of heat generation. 

Calori
meter 
type 

s ingle 
group 
group 
group 

sample 
mate
rial 

C 
C 
Be 
Mo 

capsule 
i . d. 
[mm] 

10 
6 
6 
6 

mean time 
constant 

[sec] 

10.5 
5.5 
14 
1 1 

related tem
perature 

[deg/(W/g)] 

12 
6.8 
7.5 

41 

mean sen
sitivity 
[mV/(W/G)] 

0.48 
0.27 
0.30 
1 .64 
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5.5. Accuracy 

According to an analysis made in connection with earlier 
experiments, the expected mean error of CADO measurements 
is of the order of 4%. 

Since the same calor ime tei type is used for the present method, 
it is reasonable to consider this value also as the mean error 
of the individual calorimeter output. 

The total error of the method, which is the error attributed 
to the final result A , Β , C , must be evaluated on basis of 

o o o 
eq. (66), in which the calorimeter outputs are combined with 
the elements of the determinant D (eq. 65). 
The accuracy of these elements is rather difficult to estimate, 
because it depends very much on the unknown quality of the 
approximations for the gamma and neutron energy distributions. 

In view of these uncertainties, an analysis of the method 
accuracy requires experimental experience and can therefore 
only be made, after measured data results are available. 
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6.0. NUMERICAL CALCULATIONS 

6.1. Expressions G, F and N 

The expressions G, F and N of eq. (59), which are formulated 
in eqs. (60), (61) and (62), have been evaluated for the 
mat eri als 

C, Be, Mo, Fe 

and for cylinders of the dimensions 

0 < R < 6 cm. av -

Eqs. (60) and (61) were integrated graphically by means of a 
planimeter, with upper integration limits of 8 MeV for G and 
4 MeV for F. 

Absorption coefficients were taken from refs . 5, 7 and 8. 

N has been determined on basis of the mean of the neutron group 
energy distributions (45) and (46), reading 

Φ 
— = 1 + 0.70 (η - 1) - 0.03 (η - Ι ) 3 (71) 
Φ1 

Cross sections were taken from ref. 4. 

The n»Y contributions were evaluated on basis of the 7 group 
capture gamma spectra of ref. 2. 

Numerical results are presented for the standard values of 

E =0.1 MeV s 
φ = 1 0 cm sec s 

Diagrammes of G, F and Ν, based on these calculations, are 
presented in figs. 3 through 6. Diagrammes for other materials 
will be communicated in a separate note. 
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It should be noted, that numerical values of A , Β and C , 
o o o 

which are obtained experimentally and by inversion of the 
linear system (64), are only valid for parameters G, F and Ν 
with the above mentioned standard values of E and φ . 

s s 
6.2. Determinant D for CADO-17 

c 
The samples installed in experiment CADO-17 are cylinders of 
3.2 mm diameter and 20 mm length; their corresponding value 
of R (eq. 18) is av 

R = 0 .296 cm av 

The determinant (65) is set up by coefficients G, F and N, 
which are read from figs. 3 through 5 for this R . The in 

av 
correlation used here is 1 for C, 2 for Mo, 3 for Be : 

D = c 

2 . 6 6 7 

3 . 4 9 1 

2 . 3 2 0 

0.757 
1 .443 
0.644 

The value of D is : c 
D = + 2.143 W3 g"3 
c ° 

I .470 
0.240 
3.110 

(72) 

(73) 

On basis of this figure, eqs. (66) are evaluated to 
(P in Watts/gram) : 

A = + 2.022 P„ - 0.657 P„ - 0.905 PD o C Mo Be 
Β - - 4.806 Pn + 2.279 P„ + 2.096 P_ o C Mo Be 
C = - 0.513 P„ + 0.018 P„ + 0.563 P_ , o C Mo Be 

(74) 

where the indices C, Mo and Be stand for the corresponding 
materials. 
Since physically meaningful solutions require that 
Ρ > 0 and Ρ > 0, there exist the conditions γ - η -

A G + Β F > 0 
o o -

C > 0 
o -

(75) 
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By insertion of eqs. (74) into (75) and use of values G and 
F of (72), one finds a field of physically meaningful specific 
power ratios, which is shown in fig. 7 as the area limited by 
the straight lines (a), (b) and (c) . 

However, in view of the expected gamma energy distribution, 
only a part of this field can be realistic. 

The actual gamma distribution of the HFR has in all probability 
a form, to which both terms of approximation (43) contribute 
with positive sign, so that the expected field of solutions 
has the sharper limits 

A > 0, Β > 0, C > 0 . (76) 
o - o - ' o -

This field is, on basis of eqs. (74), the triangle I-II-III 
(fig. 7), in which point I corresponds to a gamma energy 

— 125E — 2 50E 
distribution type e (hard spectrum), point II to e 
(soft spectrum) and point III to pure neutron energies. 

Accordingly, on a line connecting two points, the contribution 
represented by the opposite point is zero. 

It can be expected, that actual HFR results will fall close 
to the line I-II, because the neutron effects are relatively 
small. 

The results of measurements at different points of the core 
combine to a curve or a field, the magnitude of which depends 
on the variation of the spectra over the core. 
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7.0. DEFINITION OF SYMBOLS 

A a tomic we igh t 
A ,B ,C constants of energy distributions, eqs. (43) 
Ο Ο Ο > -ι - ' 

and (48) 
B energy absorption build-up factor 
D diameter 
D determinant of coefficients, eqs. (65) 
E energy of gammas and neutrons 
E standard energy, arbitrary definition 
F defined by eq. (61) 
F fraction of collisions c 
G defined by eq. (60) 
L length of cylinder 
M time cons tant 
N defined by eq. (62) 
N energy spectral density of gamma number flux 

(eqs . 3 ... 8) 
N energy sp. dens, of gamma number flux, undisturbed 
Ρ specific power of nuclear heating 
R average chord 
av b 

S total surface of sample 
S(E.) integrated capture gamma spectrum, defined by eq. (30) 
Τ temperature 
Τ reference temperature o r 

ΔΤ temperature difference corresponding to U 
U„ differential thermo-voltage of calorimeter 
V total volume of sample 
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c specific heat 
c reference value of specific heat o 
f correction factor 
k correction factor 
n total amount of photons coming in 

O f b 

ρ escape probability 
ρ volume average of ρ 
ρ volume average of collision probability, eq. (28) 
q temperature derivative of specific heat 
q energy spectral density of capture gammas produced 

per capture 
r local coordinate 
y natural abundance 'n 
Σ absorption cross section a r 

Σ scattering cross section s 6 

Σ„ total cross section 
Σ,, „ total cross section for thermal neutrons t h 1 
E . cross section for inelastic scattering gamma ηιγ e & 

ray production 
0 energy spectral density of neutron number flux 
0 energy spectral density of neutron number flux, 

undis turbed 
μ gamma ray attenuation coefficient 
u gamma ray energy absorption coefficient 
3. 

μ„ beta ray absorption coefficient 

Ρ 
σ 

density 
sensitivity of calorimeter output 
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oth 

n 

neutron number flux 

neutron number flux, undisturbed 

undisturbed thermal neutron number flux 

standard neutron flux, arbitrary definition 

neutron number flux in energy group n, eq. (44) 

defined by eqs. (63) 

defined by eqs. (63) 

defined by eqs. (63) 

defined by eqs. (63) 
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Fig. 1 : ESCAPE PROBABILITY OF CYLINDERS (from ref. 6) 
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CL core 

(1) group calorimeters 
(2) single calorimeter 

Fig. 2.: ARRANGEMENT OF CALORIMETERS IN TEST RIG CADO-17 
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Fig. 4 : HEAT GENERATION COEFFICIENTS FOR Be. 
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Fig. 5 : HEAT GENERATION COEFFICIENTS FOR Mo. 
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