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ABSTRACT 

Various statistical methods were studied permitting detei-mination 
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using the experimental data obtained by tests on the component itself. 
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particular emphasis was also given to the use of probability papers. 

These methods for the Weibull distribution are applied to some 
samples concerning rupture resistance of intermetallic joints and the 
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to determine the Weibull parameters, the ranks with a fixed confidence 
level and application of the Kolmogorov test. 
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STATISTICAL PARAMETRIC AND NON-PARAMETRIC METHODS OF DETERMINING 
THE RELIABILITY OF MECHANICAL COMPONENTS *) 

1. INTRODUCTION 

1.1 Subject Matter 

The theory of reliability can be divided into two main sec­
tions. The first deals with the ways of handling the available 
experimental material so as to discover a posteriori the statis­
tical law of behaviour of a component. (The notion of a '•component" 
or '•system·' is not to be associated with any image of a physical 
complex. The component is the elementary unit under consideration, 
for which the statistical law of behaviour is to be defined. The 
system is the result of the functional connexion of a number of 
components.) 

The second section starts from the assumption of knowledge 
of the statistical properties of the components to deduce, by means 
of appropriate probabilistic models that simulate the functional 
relations between components, the properties of a system. 

This report is a contribution to the first section. To process 
the experimental material, which consists of data (lifetime, break­
ing stresses, etc.) corresponding to events considered as random, 
one uses statistical methods already developed to a large extent 
for an immense variety of applications. The specific application 
of these mathematical methods to reliability problems depends on 
the type of component in question, the context and the purpose of 
the application. 

The method that can and must be employed to assess the 
reliability of mass-produced electronic components in a design 
study for a data bank, for instance, is of little use to someone 
who wants to evaluate the reliability of mechanical components of 
a plant in operation so that the management can be duly adjusted 
at once. 

*) Manuscript received on 2 March 1970 



In this report we adopted the position of someone concerned 
with the reliability of mechanical and electromechanical components, 
i.e., components for which: 

- the dimensions of the available sample are always fairly small; 

- the deterioration of the properties (through wear, corrosion, 
fatigue, etc.) with time is significant with respect to the 
lifetimes regarded as useful; 

- the reliability analysis effected during operation, taking into 
account the damage that has occurred on only a fraction of a 
series of functioning components, can be of more immediate in­
terest than the reliability analysis that can be obtained when 
the sampling procedure is completed in full. 

Adopting this point of view, to which is not yet given 
enough consideration in the literature on reliability, we have 
set out the typical and suitable methods of analysis, developing 
for each the appropriate digital programmes. 

1.2 Plan of the Report 

Section 2 briefly describes the main outlines of what are 
called parametric methods for the statistical analysis of samples, 
i.e., the methods most commonly used in the case of large numbers 
of samples. We have dwelt more particularly on the application of 
these methods to cases of exponential and Weibull distributions 
of failure. 

The range of reference works available for this matter is 
enormous as far as the general principles are concerned, but is 
far more limited when it comes to specific application to Weibull 
distributions. We referred chiefly to the excellent book by Lloyd 
and lipow (Ref. 1). 

Section 3 shows a non-parametric method which can be regarded 
as a direct application of a general property of the statistical 
variables associated with ordered events (order statistics). 
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This method has been insistently advocated and illustrated 
by L.G. Johnson (Refe. 2 and 3) of General Motors, precisely in 
the context of its application to mechanical components. 

The method is extremely simple when suitable tabulated 
values are available; for small samples it is better than the 
parametrio methods and, unlike them, enables one to take into 
consideration incomplete samples, such as occur in the case of 
a set of in-service components only a fraction of which is dam­
aged· We describe the method and have also developed a digital 
programme by which the tabulated values can be obtained for 
samples composed of 1-30 elements and for various degrees of 
confidence. 

Section k contains a critical analysis of the method of 
"probability papers", a method which combines the advantages of 
the non-parametrio method with the potentialities inherent to 
the parametrio methods. For this method we referred principally 
to the works by Gumbel (Ref. k) and Weibull (Ref. 5). 

Lastly, in Section 3, the various methods mentioned are 
applied to some real cases and the results are compared with 
reference to the extreme values. 

1.3 Some General Concepts 

1.3.1 Definition of reliability 

Out of the various definitions of reliability we quote the 
one adopted by the IECt "The characteristic of an item expressed 
by the probability that it will perform a required function under 
stated conditions for a stated period of time". The probability 
indicated, a function of time, is the complement to 1 of the 
probability of non-function or probability of failure. 

Considerations on reliability are based on the considerations 
on the failure distribution, since the failure is the physically 
observed event. 
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1·3·2 Failure distribution function and failure rate function 

The functions of failure distribution versus time are also 
indioated as life characteristics of the given component. We shall 
take F(t) to be the failure distribution, i.e., the probability 
that the component will fail before time t, and f(t) the correspond­
ing density. It is also expedient to introduce a "failure rate" 
v(t) defined as 

, . . f(t) v(t) = 
1 - F(t) 

This function is also known as the "force of mortality", 
"mills ratio", "intensity function" or "hazard rate". The failure 
rate function is useful because amongst other things, it allows 
of dividing the distribution functions into two main categories -
the failure rate functions that increase with time, and those 
that decrease with time. 

The fact of belonging to one or other of these categories has 
an immediate physical significance: an increasing f.r.f. corresponds 
to the existence of wear or fatigue phenomena, a decreasing f.r.f. 
to the running-in situation, for instance; but the subdivision 
also has an important formal significance: one need only know 
that a distribution belongs to one or the other category to be 
able to deduce limit statistical properties of the component 
concerned or of the system consisting of a number of components 
(Ref. 6). 

1·3·3 Most commonly used continuous failure distributions 

Exponential distribution 

F(t) = l-e"Xt t £0 , λ > 0 
f(t) = Xe~Xt 

v(t) = λ 
Mean = ι/χ = τ 



Weibull distribution 
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The exponential distribution is characterized by a constant 

rate of failure function (A.). The reciprocal of >■ is the mean time 

between two failures (MTBF). 

This law interprets failure phenomena corresponding to 

purely random events and it also interprets phenomena of failure 

of complex systems, when the number of components tends to become 

very large, independently of the law of failure of the individual 

components. Furthermore it takes advantage of the fact that a 

system consisting of components characterized by an exponential 

law will likewise have an exponential failure law. 

The normal and log­normal distributions are used mainly to 

interpret failure phenomena due to wear. They are characterized 

by failure rate functions that increase with time. 

The Weilbull distribution, with three parameters, is more 

flexible than the foregoing ones. Its limit case, for oC = 1, is 

the exponential distribution, and it too can be used to interpret 

failure due to wear. Moreover it is suitable for a linear repre­

sentation on log­log paper, so that it does not require special 

probability papers. Lastly it is an asymptotic distribution of 

the extreme values of a wide class of distributions (Ref. ¿0, 

for which reason it appears in particular to be inherently suited 

to represent the phenomena of material failure, interpreted as 

the failure of the weakest link in a chain. 

For these reasons this distribution, proposed originally 

by Weibull to interpret data on tensile and fatigue failure of 

materials, has been increasingly used in the field of electro­

mechanical components which we shall be considering in particular. 
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1.3.1* The reliability function 

The reliability function R is defined as the difference 
between the failure distribution values corresponding to the 
extremes of the event (period of time intended and operating 
conditions encountered). 

R = F(t2) - F(t1) 

In general one assumes for . . 
the time interval ( V V ' l"» ' * s o t h a t : 

R(T) = 1 - F(T) 

The time Τ is often indicated as "mission time". 
On the basis of this definition R(t) is to be deduced 

straightaway in the cases F(t) indicated. 

2. PARAMETRIC METHODS 

2.1 General Scheme 

The term "parametric" applied to these methods is due to 
the fact that, starting from the sample, they evaluate the para­
meters of the distribution of failure and hence of reliability, 
a distribution hypothesized a priori. Roughly speaking, their 
stages of use are as follows: 

(*) i) availability of a complete set of values (sample) referring 

(*) 
An incomplete set is one of defined dimensions but only partially 

defined values. Take, for instance, a fixed number of components 
being tested simultaneously. The set of lifetimes will be complete 
when the last surviving component fails; it will be incomplete for 
all the preceding times. 
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to the component's characteristic used for the reliability 
estimate (lifetime, breaking stress, etc.). These values 
obviously have to be obtained from tests or operating expe­
rience on components belonging to the same statistical popu­
lation. 

ii) Assumption of one or more forms of statistical distribution to 
which the sample is assumed to belong. 

iii) Estimate of the distribution parameters, based on the sample 
values. The most practical and suitable procedure for this 
purpose is the one based on the principle of maximum likelihood. 

iv) Test for goodness of fit on the various assumed distributions 
to see which one fits the interpretation of the sample best 
for a given significance level. 

v) Determination of the variances of the estimated parameters 
and, if appropriate, of their confidence intervale. 

vi) Calculation of the reliability value, by means of the distri­
bution adopted and the estimated parameters. This reliability 
value will likewise be an estimated value. Hence a confidence 
interval will have to be established for it. 

2.2 Estimate of Parameters 

2.2.1 The maximum-likelihood method 

This very general method is mentioned in all text­
books on statistics. Considering, for simplicity's sake, a 
distribution with a single parameter of, f(t,e(), of which the 
mathematical form is assumed to be known, we form from the sample 
(t , t_,..., t ) the function 

L(t1,t2,...,tn;a) = Π. fit^a) (1) 
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known as the function of likelihood of the sample. It corresponds 

to the compound probability of n random independent variables, 

each with the same probability distribution, i.e., it corresponds 

to the probability of obtaining the sample under study out of 

all the possible samples of the same size. The method consists 

in determining which value of the parameter oc renders it most 

probable that the sample under study will turn up. Thus, if 

we call that value oc it must satisfy the equation 

flii = 0 (2) 

(or fj = ° with λ = log L) 

known as the likelihood equation. 

Under very general conditions, the maximum­likelihood 

estimate has a normal distribution when the sample dimensions 

tend to o4. This asymptotic property of the maximum­likelihood 

estimates is most useful, because it means that the properties 

characteristic of a normal distribution can be attributed to 

those estimates. At the same time, inasmuch as it is an asymp­

totic property, it is the chief limitation of the method, since 

small samples cannot be taken into consideration (according 

to Ref. 1, page 172, the correct use of the normal approximation 

oalls for sample sizes of not less than 50). 

2.2.1 Determination of the variances of the estimated parameters 

A distribution dependent on two parameters oC, X is con­

sidered. Let of and ­λ. be the values of these parameters esti­

mated by the maximum­likelihood method from the sample values. 

It has been shown (Ref. 7) that by using the asymptotic property 
A 

of the estimated parameters, approximated values of the ô<and X 

variances are obtained by constructing the matrix 



14 ­

A s 

Between A and matrix 

¿a 
3a

2 

3
2
4 

3α3λ 

(3) 

3α3λ 3λ' 

Β s («O 

Var α Cov (α,λ) 

A A A 

Cov(a,X;Var λ 

there is the simple relation: 

B
 = *

 A
 (5) 

It will be noted that A is a function of the real para­

meters of, X ; approximated values are obtained by substituting 
A 

for the real, unknown values the estimated values fit, Λ. 

In the oase where the distribution depends on a single parameter 

at, we obtain from the foregoing formulae: 

3
2
«CV­1 Var o = ­ (—j) 

3α 

(6) 

2.3 Goodness of Fit 

The choice of the form of distribution to which the data 

are assumed to belong is, a priori, arbitrary. Hence, the 

distributions adopted, whose parameters have been estimated on 

the basis of the sample, must be tested to decide which fits 

beet with the sample. Let us briefly describe two widely used 

tests, namely the chi­squared test and the Kolmogoroff test· 

The first applies to the density of distribution, the second 

to the distribution. The efficiency of both methods is limited 

by the size of the sample. The first method is not applicable 
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to small samples because it calls for division of the sample 
into classes and calculation of the frequency for each class. 
The second method does not have this drawback. But being based 
on asymptotic properties, neither is very significant when it 
comes to small samples. 

2.3.1 The chi-squared test (Ref. 8) 

The data for the sample of size n are classified in k 
intervale 

Ati 

and the values ν are considered, corresponding to the number 
of sample data comprised in the i-th generic interval. 

If f(t) is the density function of the assumed distribution 

*i + Ati/2 

w f(t)dt (7) 

*i - Ati/2 

will represent the probability that the statistical variable 
in question belongs to the i-th interval. 

If the assumption concerning the distribution is valid, 
then 

lim P(|Vi - npj < e) = 1 (8) 

Hence a measurement of the data's goodness of fit with 
the hypothesis is related to the complex of differences 
<*± - np ±). 
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With a choice owed to Pearson, we can establish the 
following magnitude as the measurement of this goodness of 
fit: 2 

k (v. - nPl> (9) 
Δ s i » . _ 

ι x "Pi 
and it can be shown that Δ is a random variable distributed, 

2 with n*""* , according to a γ law with k-1 degrees of freedom, 
in the event that the parameters of the assumed distribution 
are known. 

If, on the other hand, the parameters are estimated from 
the sample, the number of degrees of liberty will be lower 
than k-1 by as many units as there are estimated parameters. 

For practical application of the test, having calculated 
2 A and set a level of significance γ, we find from the tables a 

,2 value X r such that: 

r(x2>x*> = x (10) 

The assumed distribution satisfies the test if 

.2 2 Δ < χ Y 
For a valid application of the test the sample dimensions 
must be such that 

np. > 10 i = 1» —» k 

2.3.2 Kolmogoroff test (Ref. 9) 

This is a test which examines the cumulative distri­
bution. Let F(t) be this distribution assumed to be continuous 
and let S (t) be the empirical distribution of the sample of 

n 
dimensions n, arranged in ascending order of values. 
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Furthermore let: 

D s mx |F(t) ­ S (t)| (11) 
­<»<X<eo 

» 2 2 

Q(X) = Σ (­l)
k
 e"

2k λ
 λ > 0 (12) 

—«. 

The test is based on Kolmogoroff's theorem which states: 

lim P(D < — ) * QU) (13) 

η·*·
 n Jã 

For application purposes, once D has been calculated and a level 

of significance of has been chosen, we find in the tables value Λ^ 

for which 

QU a) = 1 ­ a (IH) 

The distribution in question will satisfy the test if 

D < λ / Æ 
η α 

In Appendix 1 will be found the description of the KTEST 

code, programmed in IBM 36O/65 to effect the Kolmogoroff test on 

various distributions. The normal, log­normal, Weibull and expo­

nential distributions are considered. 

2»h Reliability Estimate 

When the failure distribution parameters have been 

estimated, we can estimate the reliability value corresponding 

to a time T. 

R(T) = R(«, X, T) 

Now comes the problem of evaluating the confidence we 

can have in this estimate. 

The general method, which is valid only for numerous 

samples and does not require knowledge of the distribution of 
A A 

the parameter estimates, i.e., of ot, λ, etc., makes use of R's 
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property of being asymptotically normal (Ref. 1, page 192). Hence 
A A 

it is necessary to know E(R) and Var R, i.e., the mean value and 
variance of the estimate. 

It has been shown (Ref. 10, page 35Ό that 

E[R(CX,X)1 = R(a,X) + 0(l/n) (15) 

(16) 
Var[R(o,X)] = Ä 2

 Var α + (¿£)
2
 Var λ + 

9α
 α
 9λ 

+ 2 Ä &\ Cov(â, λ) + Od/n
1
'
5
) 

3α ° 9λ
 λ 

1 ·5 
Both 0(ΐ/η * ) and 0(ΐ/η) are terms which tend towards 

zero as the sample dimensions increase. An estimate of E(R) and 
Λ A A 

Var(R) can be obtained by substituting α, λ, for of, λ in (15) and 
(16). 

This general procedure is not necessary in cases where 
the reliability is a function of a single parameter (see exponen­
tial distribution). In such a case a reliability confidence in­
terval can be found directly from the parameter confidence inter­
val. For this purpose one must know the parameter distribution 
or else apply the property of normal asymptotic behaviour of 
the estimate using the variance calculated in Section 2.2.1. 

2.3 Applications 

2.5.1 Exponential distribution 

The failure distribution density is given by: 

f(t,X) = λ e~Xt t 2 0 , λ > 0 

Starting from the sample (t ,...,t ) the maximum-likelihood 
function will be: 

η "λ V i (17) 
L = λ e 
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and from the maximum-likelihood equation 

3 lp8 L = o 3λ 

we obtain 
1 .. Σΐ ti (18) 
A ™' 
λ η 

i.e., the mean of the sample is the inverse of the estimate of 
parameter λ. An estimated value of the reliability at time Τ will 
be given by: 

R = R(T,X) = e"XT <19> 

The calculation of the confidence interval of this esti­
mate can be done by two different routes as already mentioned in 
Section 2.,k. One procedure, which we might call general, entails 
calculation of the variance of the distribution parameter, followed 
by calculation of the R variance and, using the normal approximation, 
the R confidence interval. F r o m ( 6 ) w e o b t a i n 

v a r ; s . (ifiogji) -1
 s hi 

3λ2 n 

and from (15) and (16) 

E(R) 

Var 

a -

R 

The 

η = 

-XT 
ι s e 

" 2 
R = ( % , Var λ 

3λ Α 

Τ.λ -λΤ R 

in­

v a r i a b l e 

R - E(R) 
σ 

R 

λ 

l o g 

Æ 

2 π.2 
Τ 

η 

l / R : 

-2Τ .λ 

e 

: R l o g 

Æ 

l / R 

(20) 
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is asymptotically a standardized normal variate. Having established 

a confidence level γ, we find the confidence interval for the 

reliability: 

R
ì ° ; '

 η
(1+γ)/2 

R 

A second procedure, valid only in the case of exponential 

distribution, allows one to avoid the repeated use of the asymp­

totic approximations employed in the previous procedure. 

This second route is based on two characteristics of the 

exponential distribution: 

Λ 

­ the distribution of the estimated parameter λ is known; 

­ the reliability is a monotonie function of the parameter. 

It has been shown (Ref. 11, page 190) that the estimated 

parameter τ = — has a gamma distribution: 

λ 

t 

(21) 

2 τ 
by putting Χ = 2η — this distribution can be reduced 

to a chi­squared distribution with 2n degrees of freedom. 

Thus (21) is equivalent to: 

P(x < y) = 
Γ tn­l e­t/2 dt (22) 

2
η
Γ(η) 

By using (2.2) we can obtain an exact evaluation of the 
A A 

confidence limit on R = R(~) at a given confidence level γ. 

For having fixed a value for V, we obtain from (22) : 

P(2nL < τ) = γ (23) 

Χχ­γ 

Thus ' . 2ητ represents a lower limit of t with confidence level f . 
T
i " 2 

X
l­Y 
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­τ/τ 

As the reliability R » e is an increasing function of 

Τ , it follows that a lower limit for the reliability at time T, 

with confidence level f, will be given by: 

T
*l­y 

Ri^) = e *
 ;

i (24) 

It is important to note that we have been able to transfer 
A 

to the reliability the confidence limit calculated for Τ only 

inasmuch as the distribution has only one parameter. In general 

this is not possible where there is more than one parameter. 

2.5.2 Weibull_distribution 

The most general form of this distribution has three 

parameters: 

F(t) = 1­β­
λ
<*­

θ)β 

for the sake of simplicity, we shall assume © » 0; the probability 

density function therefore is: 

f(t) -- αλ t""1 e"At
 t * ­ 0 , a > 0 , \ > 0 

The log of the likelihood function, for a sample (t1i«««»t ) is 

given by: 

ç η η 

¿j = η loga t η logX + (a­1) E.log t, ­ Α Σ . t? 

1 *
 i

 1
 i i 

By imposing the maximum likelihood conditions on Åt 

(25) 

è-» i r=
o 
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we get two equations for the determination of the estimated 

values of, X , of the two parameters: 

λ = 

Σ t. 

α = 

(26) 

(27) 

λ Σ t. log t. ­ Σ log t¿ 

A A 

The calculation of oc and A from these equations is done 

with an iteration process programmed on IBM 36O/65· To obtain a 

reasonable initial value for α the following relation is used, 

which expresses equality between the sample mean and the distri­

bution mean: 

± Σ t. = λ"
1/α

 Γ(1 + ί) η ι α 
(28) 

Το determine the variance and covariance of the two parameters 
it is necessary to invert the matrix 

ÛL 
9a 

9 
2
£ 

3α9λ 

9
2
cC 

9α9λ 

9JU 

9X
2 

(29) 

Having calculated Var ot, VarA, Cov(«A.) in this way, 

we can find the variance of the estimated reliability value. 

If Τ is the mission­time for the component for which the relia­

bility is to be ascertained, then the estimated reliability 

value is 

. A T " 

R = e 

Also, by reference to (I5) and (16) 

Λ
 -λ τ

α 

E(R) » e
 T (30) 
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* 2α -2λΤβ 2 2 * " - -
Var R = Τ e (λ* log ' Τ Var α + Var λ + 2λ log Τ Οον(α,λ)) (31) 

Estimated values for E(R) and Var R can be obtained by 
replacing of and Λ in the previous equations with their estimates 
ot and A. 

Using the normal approximation we can then find a confi-
dence interval for R. 

The foregoing calculations have been programmed on 
IBM 36Ο/65. Appendix 2 gives a description of the VITA oode 
employed. 

3. NON-PARAMETRIC METHODS 

3.1 General 
Given a fairly small sample (with fewer than, say, 20 

values) the mathematically laborious method described in the 
previous chapter yields results whose significance is not pro­
portionate to the effort required. 

The method we shall give here, however, enables the 
reliability corresponding to the measured values to be easily 
and directly evaluated, even with very small samples. 

It also permits of evaluating a confidence interval, 
likewise in respect of the measured values. 

Lastly, it allows the sample size to be taken into 
account in cases where the sample is incomplete: from this 
standpoint it offers a possibility not allowed by the method 
described in the previous chapter. 

On the other hand, as it does not aim to evaluate the 
distribution but confines itself to evaluation of a series of 
discrete values, it does not provide indications for interpola­
tion or extrapolation. 
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3.2 Statistical Properties of Ordered Samples 

3.2.1 Distribution of the m-th value 

Let (t_, — , t , — , t ) be a sample of size n with 1 m n 
values in order of increase. The distribution $(t) from which the 
sample was taken is unknown. The problem is to estimate the 
cumulative probability 5(t ), using for the purpose the sample's 

m 
property of being ordered. If the population is sampled again, the value t', arrayed in the m-th position, will in general be m 
different from t and one can say that the sample order position 
m characterizes, by means of all the samples extractable from 
the population, a set of values, the t values, which will be 

m 
distributed according to their own law of probability, whose 
density is: 

n m m m |_ m n"m •'(t ) (1) 
m 

This law can be determined at once by using the poly­
nomial distribution and the sample's property of order. It is 
a known fact that, given three events with probabilities p1, p_ 
and ρ at the instant of a test, the probability that in η tests 
the event with probability ρ will occur η times, that of prob­
ability p. η times, and that of probability ρ η times is: 

nl n2 n3 
nl! V n3! Pl ?2 Pa 

If we now let the event "value of t lying between t 
m 

and t + dt " correspond to p„, then 
mm r ^i* 

ρ = ζ(t )dt χ m m 

where ξ (t) = Φ'(t) 
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Similarly let the event "value of t­̂ ­t" correspond to 

ρ , then 

P9 = #(t ) 
¿ m 

and lastly let the event "value of t>t " correspond to p,. so 

m 5 

that 
Po = 1 ­ *(t ) 
o m 

If η = 1, n_ = m ­ 1, η = η ­ m, the probability law 

obtained is actually that of the population of t values repre­
nd 

sented by (1). Naturally (1) and therefore the mean t , the 

m 
median t and the modal value t are unknown, in our oase, 

m m 
because <r(t) is unknown. 

3.2.2 Probability distribution for m­th value 

By performing in (1) the variate transformation 

Φ = *(t )
 ( 2 ) 

m m 

we obtain 

χ (Φ ) = m( )Φ_ (1
_
Φ„) A

n m m m m 

in which 

0 ^ Φ £ 1 
m 

Thus χ (Φ ) represents the probability density for the distribution of 
n m 

the cumulative probability values appropriate to the values of t . 

m 

The chief interest of (3) lies in the fact that the φ 
■» m 

distribution does not depend on the unknown ψ(t) distribution. 

It will be recognized that X_(*m) is a beta distribution. 
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In general the probability density for the beta distri­

bution is: 

_, ν Γ(α+β+2) α,. .0 
ζ ( χ )

 = Γ(«+1) fTßTil
 Χ (1

"
Χ) 

fo r 0» χ > 1 with e n t i r e α, β > - 1. 

With Ä = m - 1 and β = η - m one o b t a i n s express ion ( 3 ) · 

3 . 2 . 3 Es t imate of the 4>(t ) p r o b a b i l i t y - Median ranks 
— m 

If ij(p) i s taken to r e p r e s e n t the cumulative d i s t r i b u t i o n 

of i , then 
m 

'P 
■n(p) = χ_(Φ )άΦ 

^î m m 
■Ό 

It is readily apparent that, integrating item by item successively, 
we shall obtain 

n(p) = Σ i(J)pi(l-p)n_1 (Ό 
m 

or 
m-1 · : 

n(p) = l - Σ . φ px(l-p)n (5) 
o 

Relation (5) enables us to solve the problem stated at 
the outset, namely, that of obtaining an estimate of the prob­
ability §(t ) and assigning a confidence level for that estimate. 

For in (5), ρ is a value of i such that the probability 
m of a value t £ p is ^(p); hence it can be said that ρ is the m ' estimate of i(t ) with confidence level ^(p). m 

In other terms this means that if we assign the cumulative 
probability ρ to the sample observation t , there will be 100 -η (ρ) 
samples, out of 100 extractable from the population, in which the 
value ï(t ) will be lower than p. It is perhaps needless to re-

r 

mark that the use of (5) to estimate t(t ) does not entail 
m 
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knowledge of the value t ; it is merely assumed that t is the 

m m 

largest of the m values observed, i.e., that the sample is ordered 

in increasing values. 

Hence (5) lends itself to the construction of tables for p, 

each one characterized by a value of^(p). These are double­entry 

tables in which, for every n, the ρ values are given in line with 

m « 1, 2, __, η. It can be shown that with *\ (p), m, η fixed, there 

is a single solution of (5) lying between 0 and 1. 

Appendix 3 gives the text of the RANKS programme processed 

on IBM 36O/65 for the solution of (5), and also, for ̂ (p) = .05, 

•5, «95, the tables of the ρ values obtained, for sample sizes up 

to 20. The ρ values obtained with ·*)(ρ) » .5 are known as "median 

ranks" and are particularly recommended by Johnson (Refs. 2 and 

5), who was the first to use them. An interesting aspect of (5) 

is that confidence belts can be constructed. For this purpose the 

tables for ̂ (p) " .05 and .95 are provided. Their use is immediate: 

they permit of stating that the unknown real probability é(t ) 

m 

lies, with 90$ probability, in the interval bounded by Ρ __ and 

m .93 

m
P
.05' 

3.2.4 Mean ranks and modal value 

Other interesting aspects of the distribution of the 

cumulative probabilities ^(p) can be found by calculating, in 

addition to the median already noticed, the mean value and the 

modal value; as regards the mean value we have: 

φ = χ (φ )Φ αΦ (6) 
m Ι η m m m 

■Ό 

Noting that: 

1 

i 
ΦΓηίΐ-Φ )n~md* = r ( m + 1 ) r<n-m+i> V 1 V m Γ(η+2) o 
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we have 

Φ = m(
n
) ■

n
;<"-'")

;
 = JL. ( 7 ) 

m m' (n+1)! n+1
 V/; 

The modal value is obtained from (3) as the solution of χ' r o 
η 

~ m-1 

*m - η^ϊ (8) 

The advantage of these estimates as against the median ranks is 
their very simple form which permits of immediate calculation 
for all values of m and any size of sample. 
Furthermore the confidence level which, by means of (5), can be 
associated with each estimate is not constant as for the median 
ranks, but varies with m or with the sample size. 

k. METHOD OF PROBABILITY PAPERS 

4.1 General 

This method has the same objectives as the method described 
in Section 2, i.e., it aims at deriving a distribution from the 
sample. 

As in the parametric method, the first step in this method 
is to choose a form of distribution, and then to select a "paper" 
in which that form of distribution is linear. 

Having chosen the paper and therefore the linearization 
of the function, we now have to represent the sample values. 

Next we trace, by means of a suitable regression, the 
straight line which best interpolates these points, and in this 
way we obtain the parameters of the desired basic distribution. 
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4.2 Linearization 

Let $(t, of, β ) be the cumulative probability of a 

statistical variable t and let oc, β» be the distribution para­

meters. If there is a linear transformation 

y = oi(t ­ β) (1) 

such that the distribution 

F(y) = Φ(β+γ/α, α, 8) (2) 

is independent of the parameters CK, (3, it is possible to con­

struct a probability paper for the distribution i. On this 

i(t, oc, |î> ) will then be represented by the straight line (1). 

F(y) is called the "standard form" of the distribution and is 

usually tabulated. If there are three parameters of, β , τ , there 

is more than one linearization possible. For instance in the 

case of a complete Weibull distribution 

W( t) = 1 ­ e­[(t­ß)a]
Y
 (3) 

it is possible, for each fixed value of T, to effect the line­

arization (1) and hence to refer to a standard form relating to 

the fixed Ύ value. Generally, however, the Weibull distribution 
is used in the incomplete form obtained with ρ= 0. Obviously 
linearization of type (1) is then out of the question. In that 
case we effect a logarithmic transformation which leads to 

1 , 1 
loß ln

 l­w(t)
 = log t + log α (4) 

ι 
which on log­log paper with coordinates

 t
» ^

n
 i­w(t) is a line­

arization of (3). In this case one can no longer speak of a 

standard form for the distribution. 
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4.3 The Plotting Position 

As already remarked, the crucial problem in using prob­
ability papers lies in the choice of the probability value to 
assign to the generic value of the sample. It will be seen that 
the manner of choice can be exacting, taking into account the 
type of distribution that the data have to fit, or approximate 
(although fulfilling certain criteria), disregarding that dis­
tribution. 

4.3.1 Distribution-dependent plotting 

We have already seen in Section 3 that in an ordered 
sample of size n the m-th position designates, through all the 
possible ordered samples extractable from the population, a new 
distribution, that of the m-th value, whose density function is: 

φ (t ) = m(nHm_1(t ) Γΐ - Φ(ΐ )ln"V(t ) (5) 
n m m m L m J m 

the transformation (1) will provide a value corresponding to 
each t , namely 

y = a(t -β) (6) 
JB m 

belonging to the distribution of the m-th reduced value. 
Applying the mean operator to (6), we obtain: 

E(t ) = β + - E(y ) (7) 
m a m 

The plotting position proposed by Weibull (Ref. 5, p. 198) is 

Pm = F(E(y )) (8) 
m m 

F being distribution (2), i.e., the standard form of the hypoth­
esized distribution. 

Consequently, with the m-th observation of the ordered 
sample we must associate a cumulative probability given by the 
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value of the standard distribution at the mean of the reduoed 
variables relating to the m-th position; the least squares will 
therefore be effected on the points t , E(y ). The mean E(y ) 

m m m must be calculated from the distribution of y which is deter­em 
mined by F(y) and is thus independent of the unknown parameters. 
The distribution of y is found by operating in (5) the change 

m 
of variables given by (1): 

w > -C '̂V [l - «vf^.' (9) 

Benee E ( y » ) = L y» e* (y» )dy» (10) 
or else, writing 

F(y) = u , y = G(u) (11) 

E(y ) = f1 n(n) G(u) um'1(l-u)n""du (12) 

It will be seen from (12) that E(y ) depends only on 
m 

m, n and on the standard form of the assumed distribution. If 
the plotting position (8) is used and the fitting is done with 
the least-squares method (minimizing the deviations At.) the 

A A 

estimates oc, β, are not affected by systematio errors (Ref. 5, 
p. 198). It must be pointed out that position (8) can only be used 
when the distribution can be brought to a standard form by means 
of (1). This is not the case, for instance, with the usual Weibull 
distribution, with β = 0 (see (3)). 
4.3.2 Distribution-independent plotting 

Whilst the plotting position (8) recommended by Weibull 
is the strictest because it does not introduce systematic errors 
in the parameter estimates, it has the drawback of depending on 
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the preselected form of distribution and hence of requiring the 
use of tables of the values E(y ). 

m 
Where these tables are not available and one can make do 

with a certain degree of approximation in the estimate, it is 
possible to use other plotting positions which are independent 
of the distribution and have very simple forms. 

For example, if the sample is in order of increasing 
values we can, by convention, assign the cumulative probability 
m/n to the ordered value t . If, on the other hand, the sample 

m ' 
is in order of decreasing values, by the same convention we shall 
assign to the value t (which is the (n - m + 1) away from the 
highest value) the probability 

1 - n - ° + 1 = ¡4-1 (13) 
n n 

Hence it is clear that the choice of a distribution-
independent plotting position involves a certain arbitrariness 
and at the same time an ambiguity which can be resolved only 
where a criterion is specified for the most rational choice of 
position. 

The problem has been tackled by Gumbel (Ref. 4, p. 29) 
who set some criteria for the purpose. They can be summed up as 
follows: 
a) the plotting position must be such that all the sample 

observations can be represented on the probability paper. 
This criterion is not met by the positions m/n and (m - 1)/n, 
since a probability 1 corresponds to tn in the first and a 
probability 0 to t, in the second. Furthermore, as the prob­
ability papers are constructed for unlimited variables, they 
do not contain the probability values 0 and 1 . 

An attempt to overcome this difficulty has been made 
by introducing the position 

5Lz_V2 (1if) 
n 
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the arithmetic mean of the two previous positions (mid-ranks). 
But this position, too, is not very satisfactory if tested with 
the following criterion: 

b) the return period of a value equal to or greater than the 
largest observation (i.e., the number of trials needed on 
average to obtain a value greater than or equal to the 
largest observation) and the return period of a value 
smaller than the smallest observation (i.e., the number 
of trials needed on average to obtain a number smaller 
than the smallest observation) must tend to n, the number of 

observations. The return period is defined as the mean of the 
geometric distribution, relative to an event with probability p. 
Given an event with probability ρ at each test, the probability 
that it will occur for the first time at the v-th test will be 

w(v) = pq q » 1 - ρ 

The mean value of ν is ν = 1/p and represents the return period 
of the event with probability p. 

Hence the return period of a value greater than or 
equal to the m-th value of an ordered sample is: 

T (t ) = 1 (15) 

So the return period of t , using position (14), is: 
η 

τ (t ) * - o„ C6) 
V V " I η-1/2 - 2η 

η 
which corresponds to an admission that an event t , which has 
occurred once in η trials, occurs on average once in every 2n 
trials. Similarly, considering the return period of a value 
smaller than t1, we have: 

W · -xh -2n <17) 
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position (14) consequently gives an over­optimistic result 

precisely at the extreme values which, in many circumstances 

and in failure phenomena in particular, are the most significant 

ones. Moreover, the position m/n and (m ­ 1)/n are not satisfactory 

from the standpoint of the return period; the return period of a 

value greater than or equal to t , for the position m/n, is: 

m 
τ (t ) = j ; ds) 
s m 

n ­ m 

and is no longer defined for t , while the return period of a 

value smaller than t , for the position (m ­ 1)/n, is: 

m 

(19) 

and is no longer defined for t.. 

T,(t ) ­ ­ 4 
i m m ­ 1 

It is interesting now to consider, from the standpoint of 

the plotting position, the magnitudes discussed in Section 3 and 

defined on the basis of the distribution % (ï ) of the probabil­

n m 

ities appropriate to the m­th value of an ordered sample. 

The modal value 

Φ = Eli
 (20) 

m n­1 

is not acceptable since it does not satisfy either the first or 

the second of the preceding criteria. 

The median value i defined by 

m 

m~z\ (?>♦* (1 ­S)»"
1
* 1/2

 (21
> 

ι ι m m 

satisfies the first criterion but not the second. The return 

period for t has the value 
η 

Tit ) = ­ Ì V (22) 
s η 1­Φ 

But from
 n 

(21) we find ­1/n and therefore, for high values of n, 
Φ =2 
η 

T (t ) * l.W η (23) 

s η 
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Also it can happen that T.(t„) s T (t ), so that the use rr i 1 s n 
of the median ranks as plotting position attributes to the 
extreme values a return period which exceeds n by 44$ and there­
fore does not satisfy the second criterion. 

Lastly, the mean of X_(*_) 

Φ = -i- (24) 
m n+1 

satisfies both criteria, at any rate for high values of n, since 
the return period for the extremes has the value η + 1. 

This plotting position (mean ranks) appears to Gumbel (Ref. 
4) to be the recommendable. 

4.4 Least Squares Method 

Let us briefly review the formulae expressing the distribution 
parameter estimates obtained by the least squares method. The 
values of the estimates are naturally different according to 
whether we minimize the deviations on the observed variable or 
on the reduced variable. It should be remarked that if the mean 
of the reduced variables y is used as plotting position, esti­
mates free of systematic error will be obtained only by minimizing 
the deviations of the observed variable (Ref. 5, Ρ· 198). With 
reference to (1) we then have: 

n o Α) Σ (t-t Γ = min .m m 

A η 
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where 

­ l
n
 ­ l

n
 — 1

 n 

t = ­ Σ t , y = ­ Σ y , ty = ■=· Σ ty 
η . m m η . m 'm

 J
 n 1 m nrm 

~2 1 " 2 2 ~~2 ­2 
y = — Σ y c = y ­ y 
3
 n . m ̂ m n

 J J 

Note that, the plotting position and distribution having been 

chosen, β is a function of the sample size only. 
τ
 η 

Β) Σ m (v­vm)
2
 = min 

2 

4­ = ­ ^ ­ r SB = t ­ y/aB (26) 

where 

aB ty ­ ty 

2 _ ¡J. ­2. _n_ 
s
t =

 (t
 "

 X )
 n^T 

C) A third parameter estimate consists in minimizing the 

deviation of the points in parallel to a straight line determined 

by the condition ty = 0. The gradient of this line is equal and 

opposite to (1). In this case: 

— = (­——) (27) 
a
C
 a

A
 a
B 

ßc = t - / (ΐ - ßA)(i - ßß) 

If the observations are highly concentrated around (1), i.e., 
if the degree of correlation is high, the difference between the 
estimates obtained in the first two systems are small and the 
parameters estimated with the third system are roughly the arith­
metic mean of the parameters estimated with the first two. 



­ 37 ­

4.5 Building of Control Band 

Having solved the fitting problem, i.e., determined the 
Α A 

estimate values οχ, β, our next task is to construct a control 
A A 

band on either side of the straight line y = oKt­ß), i.e., to 

delimit a zone within which, with a pre­established confidence 

level, we shall find the m­th observation of an ordered sample 

extractable from the population. 

For this purpose the distribution of the m­th value of 

the sample, expressed by (5), must be taken into consideration. 

Naturally ψ (t ) is unknown, because é(t ) is unknown; on the 
n m m 

other hand, © (y ) is known, since it is expressed by (9) as a 
n m 

function of the standard form F(y ). Furthermore, the two dis­
si 

tributions are formally equal and hence the properties of the 

one that leave the parameters out of account are also properties 

of the other. In particular it has been shown (Ref. 4, p. 48) 

that the asymptotic form of (5), for central values of m, is 

normal with a mean value t obtainable from: 

m 

Φ(ϊ ) = -Η- (28) 
m n+1 

and variance 

2,„ , *(tm)(l-*(tm)) (29) 
σ (t ) = τ— 

η Φ' (t ) m 

If o (t ) were known, then the control band problem would m 
be solved, at least under the conditions for the validity of the 

2 
asymptotic form. But d (t ) is not known because it depends on 
é'(t ). It is therefore necessary to use the preceding obser-m 
vation which also has an asymptotically normal distribution 
0 (y ) with variance n m 
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2 F(y )(1­F(y )) 
o
2
(y ) = £­_; Ü— (30) 

m
 π

2
/ " X 

n F' (y ) 
m 

which is independent of the of, β parameters and can only be 

calculated on the basis of the adopted distribution. 

The standard error for the reduced variable y is therefore a pure 
HI 

number 

^a(y)=^ÍEñ (3D 
m
 F,2 

which can be determined, for each m, from the knowledge of 
F(y ) ■ m/(n +1) and also of F'(y ) which can be found in the 

m m 

standard form tables beside F(y ). 

m 
The s t a n d a r d e r r o r on t i s then ob ta ined from ( ï ) and (31 ) : 

m 

,<t ) = E-i e t t ; = =-=. (32) 
m Γ α /n 

and i f a has been e s t i m a t e d , (32) can be used to c o n s t r u c t the 

c o n t r o l c u r v e s . These w i l l be ob ta ined by connecting the p o i n t s 

t ¿ ktf(t ) (33) 
m m 

t being a point on the estimated straight line and k a coefficient 
m 

dependent on the degree of confidence attributed to the control 

band. For example, k = I.96 expresses the probability 0.95 that 

for any m ­ within the limits of the hypothesis on the central 

values ­ the observation t of the generic sample lies within 
Α Λ m 

the interval t Ì 1 .96 ô*(t ) · On these bases it is not possible 
m m 

to calculate the control band at the extreme values. As a rule 

one assumes that the foregoing considerations are valid in the 

probability interval O.15 ­ O.85. Outside that interval the 

asymptotic distribution of t ceases to be normal (Ref. 4, p. 49). 

Another way of constructing control bands, which has the 

advantage of being independent of the standard form of the dis­

tribution adopted and of being valid even at the extreme sample 
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values, is the method which is mentioned at the end of Section 3 
and is based on knowledge of the tabulated values of ρ for a 
certain confidence level ij (p). 

5. APPLICATIONS 

By way of example, three sets of data concerning times 
and breaking stresses of mechanical components are processed 
below by the methods we have described. One of the samples ex­
amined is incomplete, i.e., this is a case of failure times 
drawn from a sample which includes components still in operation; 
the other two samples are complete. The available data are pro­
cessed with the KTEST code (Appendix 1) to establish which dis­
tribution interprets them best. Owing to the smallness of the 
samples, the Kolmogoroff test is ineffective in two cases because 
the level of significance reaches the max. value 1 in three out 
of the four distributions tried. For the third set, however, 
(stresses to failure) the test gives as the limit level of signi­
ficance the values 97.6% for the Weibull distribution, 98.5# for 
the log-normal, and 97*5% for the normal and the exponential. 

For greater simplicity and for the purposes of example, 
we shall assume, however, that the sets of data can be interpreted 
by a Weibull distribution, linearized as in expression (4), 
Section 4. 

The scales of (1 - R), R being the reliability, and of 
Y = log ln 1/R are entered on the two horizontal axes of the re­
levant probability paper, whilst the observed variable and its 
logarithm are entered on the vertical axes. 

5.1 Intermetallic Weld Failure Stresses 

The following results were obtained from a series of 
shearing strength tests: 
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2 σ. (kg/mm ) 
6.73 , 6.74 , 10.1 , 10.5 , 10.7 , 12.6 , 13.3 , 13.8 
14.7 , 14.75 , 15. , 15.5 , 16.3 , 16.7 , 17.1 , 17.2 
17.24 , 17.3 , 17.5 , 18.1 , 18.24 , 20.2 , 20.3 , 21.2 
21.9 , 22.6 , 23.1 , 24.5 

Assuming a Weibull distribution and using the non-parametric 
method of mean ranks on probability paper, we obtain: 

- (^-)3 19 R(o) = e y 

The maximum-likelihood method, however, gives: 
. σ .4.13 

D, . ' 47.95' R(o) = e 

Fig. 1 shows the two corresponding straight lines. The following 
table compares the strength values obtained with the two methods 
for given values of reliability R. 

max. l i k e l i h o o d 
mean ranks 

°.95 

8.7 

7.2 

0 .99 

5.88 

4.2 

°.9999 

1.93 

0.89 

2 
If, however, we set a working strength of 6 kg/mm , the max. 
likelihood method gives a reliability value of .989 and a lower 
limit, with confidence level of 98%, given by 

.989 - oR ζ > 9 5 = .975 

where 6^ is the reliability variance calculated from (31) in R 
Section 2 (d„ = 6.9I.IO"0) and r __ is the reduced normal variable 

R . 7P 
at the 35% level. 
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Similarly, the non­parametrio method gives a reliability 

value of .969 and a lower limit of .92 with confidenoe level 95$· 

The lover limit value is obtained by extrapolating the straight 

line which interpolates the 35% ranks calculated with the RANKS 

code. 

5.2 Mechanical Seals on Pumps 

A series of endurance tests yielded the following 

results: 

t. (hours) 

750, 900, 1018, 1200, 1250, 1500, 15OO, 

Assuming a Weibull distribution, we obtain the following expres­

sions for the reliability: 

a. with the max. likelihood method 

R(t) ­ exp (­ (^l^)
5
·
09
) 

b. with mean ranks plotting position on probability paper 

R(t) ­ exp (­ (τ^)
3 , 5

) 

o. with median ranks plotting position on probability paper 

R(t) « exp (­ (:j§õõ
)3
'
9) 

The corresponding straight lines are shown in Figs. 2 and 

3* The table below gives the time­to­fallure values with the three 

methods for set reliability values. 

'.95 

'.99 

max. 

likelihood 

700 

515 

mean 

ranks 

56O 

355 

median 

ranks 

596 

400 
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On the other hand with a set mission time of 600 hours, 
the maximum-likelihood method gives a reliability value of .979 
and the lower limit, with confidence level 95$ is: 

.979 - o*R 1.65 = .932 

where 6T » 8.02.10- is the variance of R(600) calculated from 
(3D, Section 2. 

For Τ at 600 h the non-parametric methods give .954 (median 
ranks) and 0.937 (mean ranks). The lower limit, with confidence 
level 95$, calculated by extrapolating the 0.95 ranks, is .82. 

5*3 Electromagnetic Valves 

A set of twelve electromagnetic valves was reduced to 
six components in working order after a service of 3250 hours. 
The failure times of the eliminated components were: 

t. (hours) 

1200, 1450, 2100, 2600, 3000, 3250 

This sample cannot be treated by the maximum-likelihood 
method because the information contained in the fact that six 
valves are still working would be lost. With the non-parametric 
methods, however, this information can be taken into account 
and the reliability estimate is naturally different from what 
it would be if a sample of six were considered. 

Again assuming a Weibull distribution, the use of probab­
ility papers gives a reliability estimate in accordance with the 
following expressions: 

a^ plotting with mean ranks 
_,.» , ,_t Λ 1.854* 
R(t) . exp (- (1J555) y ) 

b. plotting with median ranks 

R(t) - exp (- (^) 2· 2 3) 

represented in Figs. 4 and 5· 
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For set reliability values, the two estimates give the 
following values: 

mean median 
ranks ranks 

te95 900 1050 

t#99 357 510 

5.4 Comments on the Results Obtained with the Various Methods 

It emerges very clearly from the results that for the 
lower extreme values of the distribution 

- the maximum-likelihood method gives more optimistic 
results than the median ranks method, which in turn 
gives more optimistic results than the mean ranks 
method; 

- the difference between the results obtained with the 
various methods increases directly with the reliabil­
ity sought and inversely with the Weibull distribution 
parameter at; 

- these differences in results are not tied to the sample 
size but rather depend on the statistical behaviour of 
the extreme values, which is evaluated differently with 
each method. 

When, as in the case of mechanical components, the chief 
concern is to evaluate the extreme values, the use of the para­
metrio method and probability papers offers advantages of greater 
simplicity than the classical maximum-likelihood method and also 
permits a far more realistic evaluation. 
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It amounts to obtaining a reliability estimate with a 
confidence level AC 0.5· 

For, referring ot (5), Section 3, and considering the 
first value of an ordered sample, we have: 

Λ,(ρ) = 1 - (1 - p ) n 

or, calling the confidence level A and the reliability R: 
A » 1 - Rn 

This relation is graphed in Fig. 6 in respect of various 
values of n. The median rank relating to the lower end of the 
sample is obtained, for each n, from the intersection of the 
corresponding curve with the horizontal A « 0.5· If, however, 
the points corresponding to the reliability estimated with the 
mean rank are plotted on the curves, it will be seen that these 
estimates are equivalent to those obtained from (5), Section 3, 
for A> 0.5· If the maximum-likelihood estimates were plotted 
instead, one would find values for A smaller than 0.5· Another 
interesting consideration is that, in Fig. 6, the curves grow 
denser as η increases. This means that, given a certain value 
for the confidence level A, the reliability gain in the extreme 
sample value is progressively slighter as η increases; hence 
one could evaluate a maximum sample size such that trials on bigger 
samples would not introduce significant improvements in the relia­
bility values. 
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APPENDIX 1 - Description of KTEST code 

With reference to Section 2.3.2, the KTEST code, written 
in FORTRAN H for IBM 36O/65, performs the Kolmogoroff test on the 
Weibull, normal, log-normal and exponential distributions. The 
estimated distributions are determined from the sample data by 
the method of probability papers, i.e., the fitting to the data 
is done with the linearized form of the distribution (Section 4), 
after each sample value has been assigned its appropriate proba­
bility according to the non-parametric method selected. 

The code performs the following operations: 

a) It defines the regression variables for each of the distributions 
studied and calculates their values to correspond with the 
sample data. 

b) It performs the fitting by the least-squares method (minimizing 
the deviations of the measured variable) and then determines 
an estimate of the parameters of each distribution. 

c) It calculates the cumulative probabilities appropriate to the 
sample values, using the estimated distribution. 

d) It performs the Kolmogoroff test, comparing the calculated 
probabilities and those assigned to the sample values by the 
non-parametric method adopted. 

The regression variables χ , y. are defined as follows, 
t. being the i-th value of the ordered sample and P, the probability 
value attributed to t.: 

1. Weibull distribution 
1 x± = log t± y± = log ln 1 _ p 

with reference to (4), Section 4.2. 
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2. Normal distribution 

χ. = t. y. obtained by solving the equation 

_1 f
y±
 ­n

2 

e
 η
 dn + 0.5 ­ P. = 0 

o 

3. Log­normal distribution 

χ. = log t. y. as for the normal distribution 

4, Exponential distribution 

x
i ■ *i y±= lo

8 TZ ρ 
1_ 

Ρ 

i 

The regression in every case is of the form y = oKx ­ β)« 

The coefficients of, (i> , tied to the distribution parameters, are 

determined by the least­squares method. 

In applying the test the boundary level of significance 

is determined for each distribution, i.e., the level that consti­

tutes the upper limit of the probability with which the distri­

bution hypothesis can be accepted. Hence the data are interpreted 

best from the distribution that has the highest boundary level of 

significance. Referring to Section 2.3.2, this level is given by 

ot ■ 1 ­ Q(A) 

where λ = D /η and 0(λ) is the function (12). 
η 

¿iubprogrammes employed: 

1. FUNCTION ZER0(A1, B1, P, PREC) 

Calculates by the bisection method the regression variable y 

in the case of normal or log­normal distribution. A1, B1 are 

the limits of the interval containing the desired radix 
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(A1 at -3, B1 s 3), Ρ is the value of the non-parametric 
estimate, PREC is the precision with which y is obtained. 

2. FUNCTION DMAX(A,K) 

Calculates the largest of the values (all positive) of a 
matrix A of Κ dimensions. It is used to determine D , 

η 
the maximum difference between the calculated probabili' 
and that attributed to the generic value of the sample. 

3. FUNCTION Q(Y) 

Calculates the value of the asymptotic distribution of 
D /η, for a given Y, with reference to (12) of Section η 
2.3.2. 
This subprogramme is supplied by the IBM library under the 
name of SUBROUTING SMIRN. Reference should be made to the 
library for a description of the method employed. 

Input data 

Ν Sample size (max 40) 

ND Number of distributions examined 

VITA(J) Matrix of sample values 
PR(J) Matrix of probability values attributed to the sample 

values 



c 
C QJESTÛ PROGRAMMA ESEGUE IL TEST 01 KOLMOGOSOV SU DIVERSE DISTRIB. 
C STATISTICHE CHE VENGONO STIMATE, Λ PARTIRE ΠΛΙ DATI DEL CAMPIONE, 
C ESEGUENDO IL FITTING CON LE FORME LINEARIZZATE­ VIENE COSI 
C DETERMINATA LA DISTRI3WZI0NE CHE MEGLIO SI ADATA AI VALORI DEL 
C CAN?IÛNE­
C 

ISN OO02 DIMENSION VITA (40) ,pRl *0) ,X( 40 ) , Y('»0), VRD(40) ,0140) ,CLL ( 10) ,PRC (41 

ISN 0003 READ ( 5, 1 ) N,ND 
ISN 0ÛJ4 l FORMAT 1213) 
ISN 00)5 READ (5,2) (VITA ( J) , J»l, N) 
ISN 00J5 2 FORMAT (3EIÒ.5) 
ISN 0007 READ (3.3) ( ?R( J) , J=l, N) 
ISN 0018 3 FORMAT (3E10.5) 
ISN 0009 WRITE (6,4) 
ISN 0010 4 FORMAT t//30Χ·FITTING A DISTRI3UZI0NE DI WEIBULL»Î 
ISN 0011 WRITE (6,5) 
ISN 0012 5 FORMAT ( ///10X

#
 J» ,7X» VITAt J) »,3X»PR( J ) · , 11X» X( J) ■ ,11X» Y( J) · ,9X» PR<*. 

HJ)»,11X'D(J)»//) 

C DEFINIZIONE VARIAS. P.EGR. PER DISTRIß. DI WEIBULL 
C 

ISN 0013 1=0 001 
001 ISN 0014 10 DO 100 J = 1,N w 

ISN 0015 XÏJ)=AL03lO(VlTAUn 
ISM 0016 IOC Y(J)=ALOG10ULOG(1. / (1 . -PR(J))) ) 
I SN 0017 GO TO 2000 

C 
C DEF INI Ζ. VARIAS. REGR. PER DISTRIB. LOG-NORMALE 
C X(J) COME IN DO 100 
C 

ISN 0018 2J DO 2Ü0 J=1,N 

ISN 0019 20J YTJ)=ZER0(­J.»3.,PR(J),1.C­4) 

ISN 0020 WRITE (6,11) 

ISN 0021 11 FORMAT I//30X'FITTING A OISTRIBUZ. LOG. NORMALEM 

I SN Û022 WRITE (6,5) 

ISN 002 3 GO TO 2C00 
C DEFINIZ. VARIAS. REGR. PER DISTRIB. NORMALE 
C Y(J) COME IN DO 200 
C 

ISN 0024 30 DO 300 J = 1,N 
ISN OC25 300 X(J)=VITAU) 
ISN 0026 WRITE (6,12) 
ISN 0027 12 FORMAT (7/30X»FITTING A DISTRIBUI. NORMALE») 
ISN 0028 WRITE (6,5) 

sO 



ISN 0029 

ISN 
ISN 
ISN 
ISN 
ISN 
ISN 

ISN 
ISN 
ISN 
I SN 
I O l 
ISN 
ISN 
ISN 
I SN 
ISN 
; * N 
' SN 
ISN 
ISN 
ISN 
ISN 

ISN ISN ISN ISN ISN ISN ISN ISN ISN ISN ISN 

0030 0031 0032 0033 OC 34 0035 

0036 00 37 003G 0039 0040 0041 0042 
004 3 0044 0045 0046 0047 0048 0041 005 0 0051 

Q052 
0053 
0054 
005 5 
0056 

005 3 
005 Ί 
00r>0 
dÖ61 
00 02 

C 
C 
c 
C 
C 

40 
400 

13 

C 
C 

c 
c 

GO TO 2000 

DEFIN IZ . VARI Aß. R Ì S I . PER DISTRIB. ESPONENZIALE 
X ( J ) COME IN DO 300 

DO 400 J = 1,N 
.Y( J ) = A L 0 G ( 1 . / ( 1 . - P R ( J ) ) ) 
WRITE ( 6 , 1 3 ) 
FORMAT ( / / i O X ' FITTING A DISTRIBUI . ESPONENZIALE») 
WRITE ( 6 . 5 ) 
GO TO 2000 

CALCOLO COEFF. REGRESSIONE LINEARE Y=ALFA*(X-BETAÌ 
0EVIA2. OUADR. MIN IN DIREZ. Χ 

2000 

C 
C 
c 
c 

SXY=0. 
SX=0. 
SY=0. 
SY2=0. 
DÜ 2001 0 = 1,Ν 
SXY=SXY+X(JJ*Y( J) 
SX=5X+X( J) 
SY = SY+Y( J) 

2001 SY2 = SY2+Y( J ) * * 2 
Z=N 
ALFA = (Z *SY2-SY**2 ) / lZ *SXY-5X*SY) 
BET=SX-SY/ALFA 
Β=ΤΑ=ΟΞΤ/Ζ 
I F ( I ) 2 1 0 , 2 1 0 , 2 0 9 
CONTINUE 
GO TO ( 2 2 0 , 2 3 0 , 2 4 0 ) , ! 

Ol 
O 

20Ò2 
20 J3 

2 39 

CALCOLO PROB. CON DISTRIB. DI WEIBULL STIMATA 

210 B=10.**BETA 
DO 215 J=1#N 
P R C { J ) = 1 . - Í . / E X P ( ( V I T A I J ) / B ) * * A L P A ) 

215 D(0)=A3S(PR( J)-PRC( J) ) 
WRITE ( 6 , 6 ) U | V I T A ( J ) i P R ( J ) , X m , Y ( J ) , P R C ( J ) , D I J ) , J = 1 

6 FORMAT ( 8 X , I 3 i 6 E 1 5 . 5 ) 
DMX=DMAX(D,N) 
WRITE (6 , l í » ) D MX 

14 FORMAT (78X, »l)HX='F15.5) 
FM= FLOAT (¡M) 
TETA=ûMX*SORT(FN) 



ISN 0063 CLL(1)=1. -Q(TETA) 
ISN 0 0 6 4 WRITE ( 6 , 7 ) ALPA.BETA 
ISN 0 0 6 5 7 FORMAT Γ / / / 3 Χ » I COEFF. DELLA REGRESSIONE SONO ALFA=·E15.5,3X»BETA« 

1 » Ξ 1 5 . 5 ) 
ISN 0 0 6 6 WRITE ( 6 , 8 ) CLL(l) 
ISN 0 0 6 7 8 FORMAT l / / 9 X » I L LIVELLO DI CONF. LIMITE SECONDO IL TEST DI KOLMOGO 

lR'JV E " = » F 1 5 . 5 ) 
ISN 0 0 6 3 1=1*1 _ 
ISN 0 0 6 9 GO TO 20 

C 
C 
C CALCI· O PROB. CON DISTRIB. LOG-NORMALE STIMATA 
C 

ISN 0070 ZZO DU 22.5 J = l , : i 
ISN 0 0 7 1 VRDÍ Jj = A L P M ^ Í A L O G 1 Ü ( V I T A ( J) )-BETA) 
ISN 0 0 7 2 2 ¿ i PRCUJ=Ü.5+U.5 *ERF(VRDIJ)) 
ISN 0Ü73 225 D( J)=ABS( PR( J)-PRC t J) ) 
ISN 0 0 7 4 WRITE ( 6 , ò ) ( J , V I T A ( J ) , P R ( J ) , X ( J ) , Y ( J ) , P R C ( J ) , 0 ( J ) , J = l , Ν ) 
ISN 00^5 D 1X=DMAX(D,N) 
ISN 007 j WRITE ( 6 . 1 4 ) D"X 
ISN 0077 F: 1= FLOAT (Ν) 
ISN 0078 TETA=pMX*SQRT(FN) 
ISN 0 0 7 9 CLL ( 2 ) = ! . - ¿(TETA) 
ISN 0 08 M W.UTE ( 6 , 7 ) ALFA, Β STA 
ISN 0 0 3 1 WRITE ( 6 , 3 ) CLLÍ2) 
ISN 0 0 3 2 1=1+1 
ISN 0 0 3 3 %- GO TO 30 

Sø 

C CALCULO PROB. CON DISTRIB. NORMALE STIMATA 
C 

ISN 0 0 3 4 2 3 0 DO 2 3 5 J = l , N 
ISN 0035 VRD(J) = ALFA*(VITA(s)l-3ETA) 
ISN 0 0 8 6 231 P R C ( J ) = 0 . 5 * 0 . 5 * E R F ( V R O ( J ) ) 
ISN 0 0 8 7 235 D ( J ) = A B S ( P R t J ) - P R C ( J ) ) 
ISN 0 0 3 8 WRITE ( 6 , 6 ) ( ) , V I T A ( J ) , P R I J ) , X ( J ) 1 Y ( J ) , P R C ( J ) , D ( J ) , J = l , N ) 
ISN 0 0 8 9 DMX=DMAX(D, J) 
ISN 0090 WRITE (6 .1* , ) D MX 
ISN 0 0 9 1 FN=FLOAT(N) 
ISN 0 0 9 2 TETA=OaX*SQRT(FJ) 
ISN 0 0 9 3 CLL(3) = l . - j ( T E T A ) 
ISN 0 0 9 4 WRITE ( 6 , 7 ) ALFA.BÇTA 
ISN 009 5 WRITE ( 6 , 8 ) CLL(3) 
ISN Q096 1=1+1 
ISN 0097 GO TO 40 

C 
C 
C CALCOLO PROB. CON OÏSTRIB. EXP. STIMATA 

αϊ 



I Sri 
I SN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 

ISN 
ISN 

009B 
Q­J99 

0100 
0101 
0102 
0103 
010'» 
0105 
0106 
0107 
U103 
0109 
OHO 
O l l i 
0112 

0113 
0114 

240 DO 243 J=1,N 
VROU) = ALFA*(VITA( J)-8ETA) 
P R C ( J ) = l . - l . / E X P ( \ ' R D l J ) ) 

245 D(J)=ABSUM( J Î -PRCl J) ) 
WRITE ( 6 , ó ) l J , V I T A ( J ) , P R ( J ) , Χ ( J ) , Y ( J ) , P R C ( J ) , 0 { J ) , J = l , Ν ) 
DMX=DMAX(0,N) 
WRITE ( 6 , 1 4 ) DMX 
FN=FLUAT(N) 
TETA=DMX*SQRT(

C
N) 

CLL(4 )=1 . -Q(7ETA) 
WRITE ( 6 , 7 ) ALFA,BETA 
WRITE- ( 6 , 3 ) CLL(4) 
CLMX=DMAX(CLL,NO) 
WRITE ( 6 , 0 ) CL MX 

9 FORNAT l / / / 8 X » L A DISTRIB. CHE MEGLIO INTERPRETA IL CAMPIONE E»»QUE 
ILLA 'ION CLL=»E15.5) 

STOP 
END 

ui 
ro 
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I S N 0002 

I S N 00 J3 
ISN 0 0 0 4 
ISN 000 5 
ISN 0 0 0 6 
ISN 0 0 9 3 
ISN 0 0 0 9 
ISN 0010 
ISN 0 0 1 1 
I S N 0012 

ISN 0 0 0 2 

ISN O003 
ISN 0 0 0 4 
ISN «JOO 5 
I S N 0 0 0 6 
ISN J3Û7 
ISN 000 3 
ISN 0009 
ISN 0 0 1 0 
I S N 0 0 1 1 
ISN 0 0 1 2 
ISN 0 0 1 3 
ISN 0 0 1 4 
ISN 0 0 1 5 
ISN 0 0 1 6 
ISN 0 0 1 7 
ISN 0 0 1 3 
ISN 0 0 1 9 

C 

c 

c 

c 
c 

c 

3 

1 
3 

4 
5 

t, 

0 

7 

2 
9 

FUNCTION ΡΜΑΧ(Α,Κ) 

DIMENSION A l l ) 
X = A ( 1 ) 
DO 3 1=2 ,Κ 
I F ( A I I ) . L E . X ) GO TO 3 
X = A ( I ) 
CONTINUE 
DMAX=X 
RETURN 
END 

FUNCTION Z E R 0 ( A 1 , B 1 , P , 

A=A1 
B=B1 
I F U 8 S ( A - 3 ) - P R 5 C ) 2 , 2 , 3 
C = 0 . 5 * ( A + B ) 
P P = 0 . 5 - P 
W = 0 . 5 * E R F I A ) +*»P 
U = Õ . 3 * E R F ( C ) * ? P 
I F ( U * N ) 6 , 7 , 3 
B=C 
GO TO 1 
A=C 
GO TJ 1 
ZERO=C 
GO TO 9 
ZERO=A 
RETURN 
ENO 

C 
c 

ISN 0002 FONCTION O(Y) 
C 

ISN 3003 I F ( Y - , 2 7 ) 1 , 1 , 2 
ISN 000 4 1 Q=0 .0 
I SN 00-J5 GO TO 9 
ISN 0006 2 I F ( Y - 1 . 0 ) 3 . 6 . 6 
ISN 0 0 0 7 3 Q 1 = E ; Í P ( - 1 . 2 3 3 7 0 1 / Y * * ¿ > 
ISN Ü003 Q2=Ql ¡«01 
ISN 0009 Q4=Q2*Q2 
ISN 0 0 1 0 Q3=Q4*Q4 
ISN 0 0 1 1 I F ( 0 3 - 1 . 0 E - 2 5 ) 4 , 5 , 5 
ISN 0 0 1 2 4 Q 3 = 0 . 0 
ISN 0 0 1 3 5 Q = ( 2 . 5 0 6 5 2 3 / Y ) * Q 1 M 1 . 0 + Q 8 * l l . 0 + 0 . 3 * 0 8 ) 
ISN 0 0 1 4 GO TO 9 
ISN 0 0 1 5 ó I F ( Y - 3 . 1 ) 8 , 7 , 7 
ISN 0 0 1 6 7 Y = 1 . 0 
ISN 0 0 1 7 GO TO 9 
ISN 0 0 1 3 3 Q 1 = E X P ( - 2 . 0 * Y * Y ) 
ISN U019 Q2=Q1*Q1 
ISN 'JÕ20 Q4=Q2*Q2 
ISN 0 0 2 1 Q8=Q4*Q4 
ISN Οζ»22 Q = 1 . 0 - 2 . 0 * ( Q 1 - 0 4 + Q 8 * ( Q 1 - 0 3 ) ) 
ISN 0 c 2 3 9 RETURN 
ISN 002 4 END 
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APPENDIX 2 ­ Description of VITA code 

With reference to Section 2.5.2 of the text, the VITA 

code programmed in FORTRAN H for IBM 36O/65 performs the 

following operations : 

a) It estimates the shape and scale parameters, 04 λ of the 

incomplete Weibull distribution. 

b) It calculates the estimate variances α, λ, inverting the 

matrix (29) and making use of (5). 

c) It calculates the reliability value at a given mission time, 

d) It calculates the reliability variance, making use of 

relation (31)· 

e) It tabulates the estimated Weibull distribution and its 

probability density. 

As regards a) above, we may note that the resolving 

equation is as follows: 

1 1 ( A 2 . 1 ) 
â fi 

η Σ. t . l og t . - Σ . t . Σ. l o g t . 
1 1

 &
 1 1 1 1

 &
ι 

obtained by substituting (26) in (27). 

The value for oc that starts the iteration is obtained from (28), 

Σ t
a 

equivalent to, i i 
l o g

­ n — 
o = (A2.2) 

m 
log 

Γ(1+1/ο) 

m being the sample mean. 
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Both (A2.1) and (A2.2) are equations of the type £= f(Ç) 

which can be solved by an iteration process represented by 

the formula (Ref. 1, p. 184) 

£ . to . JVLL¿_ <«.3) 

where ζ is a trial initial value, ζ, = ί(ζ ), ζΛ = f(ζ, ) o 1 o 2 1 1 and < the initial value for the second iteration. The process 
~ o 

usually converges very fast, if f' (ζ) ¿ 1 where £ is the desired 

radix, because the error for each successive iteration is an infi­

nitesimal of higher order than the one in the preceding iteration. 

Subprogrammes employed: 

oc 1. FUNCTION TETA(A) calculates 1± t 

2. FUNCTION STAR1(A) calculated the function (A2.2) 

3. FUNCTION STAR2(A) calculates the function (A2.1) 

4. FUNCTION ZERO(Y, STAR, PREC) carries out the iteration aocording 

to (A2.3) on the generic function STAR, where Y is the trial 

initial value. It stops the process when the result of the 

difference in the values of two successive interations is 

smaller than PREC, i.e., than the set precision value. 

Input data: 

Ν Sample size 

A1 Initial value for the iteration on (A2.2) 

PREC Precision of iteration process 

NOIT Limit number of iterations permitted 

Τ Mission time 

TB Control indicator to effect (TB ¿ 0) or not 

effect (TB = 0) tabulation of the distribution 

values 

VITA(J) Is the whole of the sample values, for J ■ 1,...,N 



C PROGRAMA PRINCIPALE 
C 

ISN 0002 DIMENSION TM(100),P(100),PP(100),S(130),Z(100) 
ISN 0C03 CO«1MON/PI

D
PO/Vî7A(100ï//N, J, ß, TJOtT 

C 
ISN 0004 READ(5,1)N,AI,PREC,NOIT.T.TB 
'SN 0C05 1 FOPvMAT ( 12, 2E0.2 ,1 4,E O , 12 ) 

REAÖ (5,2) (V5TA(J),J=1,M) 
2 FORMAT (6E10.3) 

ISN OOO'i 

ISN 0 00 7 
ISN 09^8 WRITE (5,100) 
ISN OC )Q 100 rOR'IAT (JOX'DMI DI PARTENZA'///) 
ISN OC IC WRITE (6,101) 

ISN 9911 101 FORMAT (lOX'TEMPI 91 VITA'//) 
ISN 0C12 WRITE (6,102) ( J.VITA ( J ), J=l, f!) 
ISN 0013 132 F0?.MA7 ( 10X. 15 , E13.4) 
ISN 0014 WRITE (6,103) Al,PREC 
ISN 0015 _ 103 FORMAT (//lOX·Al=»"9.2,3X,»PREC=·F9.2///) 

VALQ.ÌE DI PRIMO TENTATIVO 
C 

ISN 901 ó N = N 
ISN 001? j=j 
ISN 0018 EX

T
ERNAL STARI 

ISN 0910 CO = ZEJtO(Al,5TARl,PREC) 

ISN 0923 IF(CO) 10,10,15 

ISN 00 21 15 CONTINUE 
ISN ^9 2¿ VJRITE (6,104) 
ISN 0923 104 FORMAT l 35X » R.Ï SULTATI ' // ) 
ISN 0024 WRITE (6,105) CO,Β 
ISM 0025 10.: FORMAT Τ lOX ' C0= · F12. 4 , 3X, · Nu ITERAZIONI PER C0=«F4.0/) 
ISN 0^26 WRITE (6,106) 
13iN 0 9¿7 105 FORMAT I15X'PARAMETRI WETß'JLL'/) 

r 
C WEIBULL SHAPE PARAMETER ALFA 

ISN 00¿3 EXTERNAL STAR2 

ISN 002« ALFA=IÊR0(C0,STAR2|PREC) 
O 
O N H B U L L SCALE PARAMETER AMDA 
0 

ISN OCIO AN-N 
ISN 0 0 3 1 T I = T E T A ( A L F A ) 
ISN OC 3 2 ΑΜ0Α=ΛΝ/ΤΙ 
ISN 0 0 9 3 WRITE (4. , 107) Λ ί Γ < \ , 3 , ν ΐ Ρ Λ 
ISN 0094 107 FORMA" ( 5 X » A L r A = * F l 2 . 3 , 2 X ' N O I T E R A I . PER A L F 4 = « F 3 . 0 , 2 X · A M D A = « E 1 2 . 3 

i ) 
r 
C CALCOLI T . T i l C r . CT.'API ΛΝΖ'* 
r 

LT. 



ISN 0035 SL1=0 
ISN 0036 SL2=0 
ISN 0C37 DO 30 J=1,N 
ISN 0033 S( J)=YTTA(J)**ALFA*(ALOG(VITA(J)))**2 
ISN 0C39 SL1=SL1+S(J) 
ISN 0040 Z( J)=VITA(J)**ALF.\*ALOG(V!TA( J)) 
ISN 0041 33 SL2=SL2+Z(J) 
ISN 004 2 31 F1=­AN/ALFA**2­AMDA*SL1 
ISN 0043 32 F2=­AN/AMDA**2 
ISN 0C44 33 F12=­SL2 
ISN 0045 34 DET^TT*F2­F12**2 
ISN 1946 IF(DET)35,39,35 
ISN 0047 35 VARl=­F2/nET 
ISN 0048 36 VAR2=­F1/DET 
ISN 004Q 37 CVR12=F12/DET 
ISN 0050 WRITE (6,33) VAR1,\'AR2.CVR12 
ISN 0051 33 FORMAT (Z/5X*VAR.ALPA=«E12.3,2X'V*R.AMDA=»E12.3,2X*CVR.ALFA­AMOA=» 

1E12.3//) 
ISN 0052 GO TO 41 
ISN 0^53 39 WRITE (6,40) 
ISN 0054 40 FORMAT (//5X»DETERMIN\NTE=0') 

C CALCOLO RELIA3ILITY E SUA VARIANZA 
C 

ISN 09S5 41 R=1./EXP(AMDA*
T
**ALFM m 

ISN 9956 42 VR1=
T
**( 2.*ALFA)/EXP ( 2.*AMDA*

T
**ALFA ) S 

ISN 005" 43 VP.2=AM3A**2*AL0G(T)**2*VAR1+VAP.2 + 2.*AMDA*AL0G(T)*CVR12 
ISN 0058 44 VARR=VR1*VP.2 
ISN i~5Q WRITE (6,45) ­"­»R.VARR 
ISN OC60 45 FORMAT (//SX'PFR Τ=»Ρ<5. 3,2X'LA RELIABILITY E='F9.5,2X»LA SUA VARI 

1ANZA E­=
f
E12.4//) 

C 
C TA3ULAZI0NE WEIBULL 
r 

ISN 9061 IF(TB)46.11,46 
ISN 0062 46 TMX=2.*VITA(Ν) 
ISN 0063

 T
MIN=0.1*VITA(1) 

I?W 0064 TM(1)=THIN 
ISN 006 5 30 5 0 K=l,39 
ISN 0066 ΤΜ(Κ+1)=ΤΜ(Κ)+(ΤΜΑΧ­τΜΙΜ)/09. 
I SN 0067 ?MK)=1.­1./EXP(AMDA*TM{K)**ALFA) 
ISM 9066 50 PP(K)=AMDA*ALFA­M

T
H(K)**(ALFA­l.))*(l­P(K)) 

ISN 006 9 WRITE (6,103) 
ISN 0070 103 FORMAT (//30X·TABULAZIONE WEIBULL'//) 
ISN 0071 WniTE (6,109) ("M(K),Ρ{K).PP(X),K=1,100) 
ISN 007/2 109 FORMAT ( 5X, E16. 3,E23. 4, E23.¿) 
ISN 007 3 GO TO 11 
ISN 0074 10 WRITE (6,0) 
ISN 0075 9 FORMAT" (3X»PRIMA ITERAZ. NON CONV. ' ) 
ISN 0076 11 STOP 
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ISN 0002 FUNCTION TETAIA) 
ISN 0003 DIMENSION T{100) 
ISN 0004 C0MM0N/PIPP0/VITA(100)//N,J 
ISN 0005 TETA=0 
ISN 0006 DO 10 J=L,N 
ISN 0007 T(J)=VITA{Ji**A 
ISN 0008 10 TETA = TETA*­T(J) 
ISN 0009 RETURN 
ISN 0010 ÉN0 

ISN 0002 FUNCTION STARl(A) 

ISN 0003 CUMM0N/PIPP0/V!TA(100)//N,J 

ISN 0004 TI=TETA(A) 

ISN 0005 AN=N 
ISN 0006 TETAl = ALriG(TI/AN) 
ISN 0007 SM=0 
ISN 000<3 DU 10 J=1,N 
ISN 0009 10 SM=SM+VITA(J) 
ISN 0910 EDIA=SM/AN 
ISN Ü O l l X = l . + 1 . / A 
I SPsI 0012 TETA2=AL0G(E0 IA /GAMMA(X) I 
ISN 0 0 1 4 STAR1=TETA1/TETA2 
ISN 0 0 1 4 RETURN 
ISN 0015 ONO 

ISN 0002 FUNCTION STAR2U) 
ISN 0009 CUMM0N/PIPP0/VITA(100)//N,J 
ISN 0004 DIMENSION S( 100),Ζ(LOO) 
ISN 0005 TI=TETA(A) 
ISN 0006 AN = N 
ISN 0007 TETA3=AN*TI 
ISN OOOB SL=0 

I SN 0009 DO 10 J= 1,N 

ISN 0010 S(J)=VITA(J)**A*AL0G(V1TA(J)) 
ISN 0011 10 SL=SL+S(J) 
ISN 0012 TirTA4 = AN*SL 
ISN 0013 SZ=0 
ISN 0014 DU 20 J=1,N 
ISN 0015 ZÍJ)=ALQG(VITA(J)) 
ISN 0016 20 SZ=SZ+Z(J) 
ISN 0017 TETA5­­­SZ*TI 
ISN 0018 TETA6=TETA4­TETA5 
ISN 0019 STAR2=TETA3/TETA6 
ISN 0020 RETURN 
ISN 0021 END 

ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
I SN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 
ISN 

0002 
000 3 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
001 l 
0012 
0013 
0014 
0015 
0016 

5 
6 

20 
21 

12 
10 

FUNCTION ZERÜ(Y,STAR,PREC) 
COMMON N,J,3,NHIT 
3 = 0 

5 C1 = Y 
6 X1=STAR(C1) 

IF I ABS ( XI­CD ­PREC) 10,10,20 
20 X2=STAR(Xl) 

21 C2 = Cl­HXl­Cl)**2/(2.*Xl­Cl­

C1=C2 
u ­ η 4. ι 
ß = B+l 
IF(B­N0IT>6,12,12 
ZER0=0 
ZER0=X1 
RETURN 
LNO 
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APPENDIX 3 - Description of RANKS code(1) 

With reference to Section 3.2.3, the RANKS code, written 
in FORTRAN H for IBM 36O/65, solves the following equation in pt 

m-1 
Ι-η(ρ) - t i φ P^l-P) 5 ° <Α3.1) 

ο 
for given values of ty(p), n, m, and all values of i between 0 and 
m-1. The biseetion method is used for the solution. 

Subprogrammes employed: 

1. FUNCTION PIPPO(Z) calculates the function (A3.D 

2. FUNCTION ZER0(A1, B1, Y, PREC) applies the bisection method 
to the Y function to find the Y radix in the interval A1, B1 
with precision PREC. 

Input data: 

AI(K) values of confidence level v\ (p) for Κ β 1»2,3 

Remarks : 

- the sample dimensions must be ̂ 40 
- the precision of the bisection method is 3*10 
- A1 - Ο, B1 » 1 

( Th· original version of the code, in F2V3 on IBM 7090, is 
given in Ref. 12. 
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C QUESTO PROGRAMMA CALCOLA UNA STIMA 
C NUN PARAMÉTRICA DELLA PROBARIL IT \ · CUMULATIVA 
C COMPETENTE AL VALORE J-ESIMO 01 UN 
C CAMPIONE ORDINATO D! DIMENSIONI Ν -
C E5SA E' OTTENUTA RISOLVENOO RISPETTO 
C A Z L'EQUAZIONE 
C 
C 
C ( I-A)=SOMMA( ( Z * * I ) M 1 - 2 ) * * ( N - I ) ) * N / I [ ( N - l H 
C 
C 
C PER I VARIABILE TRA 0 E ( J - l ) 
C A RAPPRCSENTA I L LIVELLO DI CONFIDENZA 
C DELLA STIMA-LA RISOLUZIONE E' EFFETTUATA 
C CON IL METODO DI BISEZIONE 
C PROGRAMMA PRINCIPALE 
C 

C 

C 

DIMENSION RANK (40,40) , A K 3 ) 
COMMON Ν,J,Λ 
READ (5.1) AI 

1 FORMAT (3E1Q.4) 
DO 10 K=l,3 
A=AI(K) 
DO 10 J* 1,40 
DO 10 J=1,N 
N=N 
J = J 
EXTERNAL PIPPO 
RANKIN,J)=ZERO(0.,1.,PIPPO.5. E­5) 
WRITE (Ó .2 ) J , Ν , A . R A I K ( N , J Í 

2 FORMAT ( l l l , 3 X , · J= ' 12 , 5X , * N= · I 2 , 5X , ·Λ=· E 1 0 . 4 , 5X, · RANK = ' E l l . 5) 
10 CONTINUE 

STOP 
EMO 

FUNCTION PIPPD(Z) 

DIMENSION Τ { 5 0 ) 
COMMON N , J , A 

IF { J - L ) 98 ,99 ,OR 
98 T ( 1 ) = 1 . - A 

T{ 2 ) = - ( l . - Z ) **N 
B = Z / ( 1 . - Z ) 
DO 100 K = 2 , J 

100 T ( K + 1 ) = T ( K ) * B * F L 0 A T ( N - K + 2 ) / F L 0 A T ( K - l ) 
S=0. 
J0=J+1 
DJ 110 L = 1 , J 0 

11J S=S+T(L) 
PIPP0=3 
GO TO 12 ) 

9 9 P I P P O ^ l . - A - l l . - Z ) * " ! 
120 CONTINUE 

RETURN 
END 

C 
C 

FUNCTION ZER0(A1,B1,Y,PREC) 

A=A1 
B = 31 

21 IF ( A B 5 { A - B ) - P R E C ) 2 Q , 2 0 , ? 2 
22 C = J . 5 * ( A + B ) 

IF ( Y ( A ) * Y ( C ) ) 2 3 , 2 4 , 2-î 
23 D=C 

GO TO 21 
2 5 A=C 

GO TO 21 
24 ZER3=C 

GO TO 26 
20 ZERO^A 
26 RETURN 

END 
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.0500 .0253 
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.0169 
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.3684 

4 

.0127 

• 0976 

.2486 
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.0764 
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10 

.0051 
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.2224 

• 3035 
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­4931 

.6053 

•7411 

11 

.0045 

•0333 

.0783 

.1351 
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• 3453 

.4356 

• 5299 

• 6356 

.7616 

12 

.0042 

.0305 
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• 3152 
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14 
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.0511 
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.325O 
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.46OO 
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.5146 

.7032 

.3073 

15 

.C0J4 

.C242 

.0563 

.0957 

.1417 

.1909 

• 2437 

.JOCO 

.3556 

.4225 

.4392 

.5602 

.6365 

.7206 

.ei£5 

16 

.0032 

.0227 

• 0531 

.C902 

.1321 

.1773 

.2257 

.2736 

• 3334 

• 3910 

•4516 

.5156 

.5S34 

.5562 

•7360 

.3292 
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17 

.CC30 

.0213 

.0493 

.0346 

• 1237 

.1554 

.2119 

.2601 

.3103 

• 3640 

.4197 

• 4731 

.5394 

.6043 

.6738 

.7498 

.8384 

»lì. ­

13 

.0025 

.0201 

.0470 

• 0797 

.1154 

.1563 

.1559 

.2440 

.2912 

• 3405 

• 3922 

.4460 

.5022 

.5511 

.6233 

.6897 

•7623 
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S 

19 

• CC27 

.ci 90 

.0445 

• 0753 
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• 2739 

.3201 
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.4700 

• 5242 
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.7042 

.7736 

•8541 

20 

.CC25 

.01 δο 

.C421 

.0713 

.1C41 

• 1395 

• 1773 

.2170 

.2585 

• 3019 

• 3469 

• 3936 

.4420 
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.5444 
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.7Π4 
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1 

2 

3 

4 

5 

6 

7 

6 

9 

10 

11 

12 

13 

14 

15 

l á 

Π 

18 

19 

20 

1 2 

.5000 .2929 

.7071 

3 

.2063 

.5000 

.7937 

4 

.1591 

• 3857 

.6143 

.8409 

5 

.1294 

.3138 

.5000 

.6862 

.8705 

6 

.1091 

.2644 

• 4214 

• 5786 

•7355 

.8909 

Τ 

.0943 

.2285 

• 3641 

• 5000 

.6359 

.7715 

-9057 

8 

.0830 

.2011 

• 3205 

.4402 

• 5598 

.6795 

.7989 

•9170 

9 

.0741 

• 1796 

.2862 

• 3931 

• 5000 

.6069 

.7137 

.8204 

•9259 

10 

.0670 

.1623 

.2585 

• 3551 

• 4517 

• 5483 

.6449 

.7414 

.8377 

.9330 

11 

.0611 

• 1479 

.2358 

.3238 

.4119 

• 5000 

• 5381 

.6762 

•7642 

.8520 

•9389 

12 

.0561 

.1360 

.2167 

.2975 

• 3785 

•4595 

• 5405 

.6215 

.7024 

.7833 

.8640 

• 9438 

13 

.0519 

.1253 

.2004 

.2753 

.3502 

.4250 

.5000 

• 5749 

.6498 

•7247 

.7995 

.8742 

•9481 

Η 

.0483 

.1170 

.1865 

.2561 

• 3257 

.3954 

.4651 

• 5349 

.6046 

.6742 

•7439 

.3135 

.8830 

• 9517 

15 

.0451 

.1094 

• 1043 

.2394 

.3045 

• 3697 

.4348 

• 5000 

• 5652 

.6303 

• 6955 

• 7606 

.8257 

.3906 

• 9548 

16 

.0424 

.1027 

.1636 

.2247 

.2859 

• 3470 

.4082 

.4694 

• 5306 

•5918 

.6529 

• 7141 

.7752 

•8363 

•8973 

•9576 

Stupì · 

17 

■ 0399 

.0968 

.1542 

.2118 

.2694 

.3270 

.3847 

• 4423 

.5000 

• 5576 

.6153 

.6729 

• 7306 

.7882 

.8458 

.9032 

.9600 

■ i t . -

18 

.0377 

.0915 

.1458 

.2002 

.2547 

.3092 

.3637 

.4182 

.4727 

• 5273 

.5818 

.636J 

.6908 

.7453 

•7997 

.3542 

.9085 

.9622 

S 

19 

.0358 

.0868 

.1382 

• 1899 

.2415 

.2932 

.3449 

• 3966 

.4483 

.5000 

.5517 

.6034 

• 6551 

.7068 

.7585 

.Θ101 

.8617 

.9132 

.9642 

20 

.0341 

.0825 

.1315 

.1803 

.2296 

.2788 

.3279 

.3771 

.4262 

• 4754 

.5246 

• 5737 

.6229 

.6720 

.7212 

• 7703 

.8194 

.8685 

.9175 

►9659 

ι 

INJ 

I 
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Saapl· als· 

10 11 12 13 14 15 16 11 18 15 20 
1 .9500 .7764 .6316 

2 .9747 .8646 

3 .9830 

20 

• 5271 

.7514 

•9024 

•9872 

•4507 

•6574-

.8107 

• 9236 

•9398 

• 3930 

.531S 

•7286 

.8468 

• 9371 

.9915 

• 3481 

• 5207 

• 6587 

.7747 

.8712 

• 9466 

• 9927 

.3123 

• 4707 

• 5997 

.7108 

.8071 

.8689 

• 9536 

•9936 

.2831 

.4291 

• 5496 

• 6550 

•7486 

.8312 

• 9023 

• 9590 

• 9943 

•2589 

• 3941 

• 5069 

.6066 

.6964 

•7776 

.6499 

•?127 

•9632 

• 9949 

.2334 

.3643 

.4701 

• 5644 

.6502 

.7287 

.8004 

.8649 

.9212 

.9657 

.9953 

.2209 

.3387 

•4381 

• 5273 
.6091 

.6848 

•7547 
.8190 

.8771 

-92£i 

•9695 

•9957 

.2058 

• 3163 

.4101 

•4946 

• 5725 

.6452 

.7129 
•7760 

.8343 

.8673 

•9339 

.9719 

• 9960 

.1926 

.2967 

•3354 

.4656 

• 5400 

.6096 

.6750 

.7364 

•7939 

• 8473 

•6959 

•9369 

•9740 

•9963 

.1810 

.2794 

• 3634 

•4398 

• 5107 

• 5774 

.6404 

.7000 

•7563 

.8091 

.8583 

.9033 

•9431 

.9758 

•9966 

.1707 

•2639 

• 3438 

.4166 

.4644 

• 5483 

.6090 

.6666 

.7214 

•7733 
.8222 

• 8679 

•9097 

• 9466 

• 9773 
•9962 

.1616 

.2501 

.3262 

• 3956 

.4605 

.5215 

• 5803 

.6360 

.6891 

•7399 
.7881 

.8335 

.3762 

.9153 

.9501 

-9787 

•9948 

.1533 

.2376 

.3102 

.3767 

.4389 

•4978 

• 5540 

.6C7S 

.6594 

.7038 

.7560 

.8010 

•8436 

• 8835 

• 9203 

.9530 

.9795 

.9930 

.1458 

.2263 

•2958 

.3594 

.4191 

•4758 

.5299 

.5519 

.6319 

.6799 

.7260 

.7703 

.8125 

.6525 

.6901 

.9247 

•9555 
.9610 

.9909 

.1391 

.2161 

.2826 

• 3437 

.4010 

•4556 

•5078 

• 5580 

.6064 

.6530 

.6890 

.7413 

•7629 

.8227 

.8604 

-6959 

.9286 

•9578 

•9819 

.9886 
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