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ABSTRACT
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of the distribution of the failure probability of a mechanical component
using the experimental data obtained by tests on the component itself.
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STATISTICAL PARAMETRIC AND NON-PARAMETRIC METHODS OF DETERMINING
THE RELIABILITY OF MECHANICAL COMPONENTS %)

1. INTRODUCTION

1.1 Subject Matter

The theory of reliability can be divided into two main sec=-
tions. The first deals with the ways of handling the available
experimental material so as to discover a posteriori the statis-
tical law of behaviour of a component. (The notion of a "component"
or "system" is not to be associated with any image of a physical
complex, The component is the elementary unit under consideration,
for which the statistical law of behaviour is to be defined. The
system is the result of the functional connexion of a number of
components.,)

The second section starts from the assumption of knowledge
of the statistical properties of the components to deduce, by means
of appropriate probabilistic models that simulate the functional
relations between components, the properties of a system,

This report is a contribution to the first section. To process
the experimental material, which consists of data (lifetime, break-
ing stresses, etc.) corresponding to events considered as random,
one uses statistical methods already developed to a large extent
for an immense variety of applications. The specific application
of these mathematical methods to reliability problems depends on
the type of component in question, the context and the purpose of
the application,

The method that can and must be employed to assess the
reliability of mass-produced electronic components in a design
study for a data bank, for instance, is of little use to someone
who wants to evaluate the reliability of mechanical components of
a plant in operation so that the management can be duly adjusted

at once,

*) Manuscript received on 2 March 1970



In this report we adopted the position of someone concerned
with the reliability of mechanical and electromechanical components,

i.e., components for which:
-~ the dimemnsions of the available sample are always fairly smallj;

- the deterioration of the properties (through wear, corrosion,
fatigue, etc.) with time is significant with respect to the

lifetimes regarded as usefulj

= the reliabllity analysis effected during operation, taking into
account the damage that has occurred on only a fraction of a
series of functioning components, can be of more immediate in-
terest than the reliability analysis that can be obtained when
the sampling procedure is completed in full.

Adopting this point of view, to which 1s not yet given
enough consideration in the literature on reliability, we have
set out the typical and suitable methods of analysis, developing

for each the appropriate digital programmes.

1.2 Plan of the Report

Section 2 briefly describes the main outlines of what are
called parametric methods for the statistical analysis of samples,
i.e., the methods most commonly used in the case of large numbers
of samples. We have dwelt more particularly on the application of
these methods to cases of exponential and Weibull distributions
of failure.

The range of reference works available for this matter is
enormous as far as the general principles are concerned, but is
far more limited when it comes to specific application to Weibull
distributions. We referred chiefly to the excellent book by Lloyd
and Lipow (Ref. 1).

Section 3 shows a non-parametric method which can be regarded
as a direct application of a general property of the statistical

variables associated with ordered events (order statistics).



This method has been insistently advocated and illustrated
by L.G. Johnson (Refs. 2 and 3) of General Motors, precisely in
the context of its application to mechanical components.

The method is extremely simple when suitable tabulated
values are available; for small samples it is better than the
parametric methods and, unlike them, enables one to take into
consideration incomplete samples, such as occur in the case of
a set of in-service components only a fraction of which is dam-
aged. We describe the method and have also developed a digital
programme by which the tabulated values can be obtained for
samples composed of 1-50 elements and for various degrees of

confidence.

Section 4 contains a critical analysis of the method of
"probability papers'", a method which combines the advantages of
the non-parametric method with the potentialities inherent to
the parametric methods. For this method we referred principally
to the works by Gumbel (Ref. 4) and Weibull (Ref. 5).

Lastly, in Section 5, the various methods mentioned are
applied to some real cases and the results are compared with

reference to the extreme values.

1.3 Some General Concepts

1e3¢1 Definition of reliability

Out of the various definitions of reliability we quote the
one adopted by the IEC: "The characteristic of an item expressed
by the probability ‘that it will perform a required function under
stated conditions for a stated period of time'". The probability
indicated, a function of time, is the complement to 1 of the
probability of non-function or probability of failure.

Considerations on reliability are based on the considerations
on the failure distribution, since the failure is the physically

observed event.



1.3.2 Failure distribution function and failure rate function

The functions of failure distribution versus time are also
indicated as life characteristics of the given component. We shall
take F(t) to be the failure distribution, i.e., the probability
that the component will fail before time t, and f(t) the correspond-
ing density. It is also expedient to introduce a "failure rate"

v(t) defined as

v(t) = £(t)

1 - F(t)

This function is also known as the "force of mortality",
"mills ratio", "intensity function" or "hazard rate". The failure
rate function is useful because amongst other things, it allows
of dividing the distribution functions into two main categories -
the failure rate functions that increase with time, and those
that decrease with time.

The fact of belonging to one or other of these categories has
an immediate physical significance: an increasing f.r.f. corresponds
to the existence of wear or fatigue phenomena, a decreasing f.r.f.
to the running-in situation, for instance; but the subdivision
also has an important formal significance: one need only know
that a distribution belongs to one or the other category to be
able to deduce limit statistical properties of the component
concerned or of the system consisting of a number of components

(Ref. 6).

1.3.3 Most commonly used continuous failure distributions

Exponential distribution

-At

F(t) = l-e tz2z0,Xx>0
£(t) = e Mt
v(t) = A

Mean = 1/x = 1



Weibull distribution

F(t) =1 - e"(t‘e)u t>0,0620,12>0,a>0
£(t) = A a(t-0)%1 A (-0)°

v(t) = A u(t-e)a-l

Hean = Al/ur(1+1/a)

Normal distribution

vt T ; 2
F(t) = J e dt
-o /27 ¢
1 (12
£(t) = —L 2 o
/21 o
_ 1 touy
e 2 ( g )
v(t) =
[oF5,
t
Mean = u

Log-normal distribution

If y = 1lnt is a normal variate with mean /u and variance 6, the

distribution of t is known as log-normal:

L it -2 (Eh?
F(t) = f e 7 gy
o /21 J-w
L r -1 (lnt-u)2 dt
= IeQO t
o /2n o
1 (lnt-u)Q
£(t) =.% 1 .2 o
o /2
2

Mean _ eu+a /2
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The exponential distribution is characterized by a constant
rate of failure function (A). The reciprocal of , is the mean time
between two failures (MTBF).

This law interprets failure phenomena corresponding to
purely random events and it also interprets phenomena of failure
of complex systems, when the number of components tends to become
very large, independently of the law of failure of the individual
components. Furthermore it takes advantage of the fact that a
system consisting of components characterized by an exponential

law will likewise have an exponential failure law.

The normal and log-normal distributions are used mainly to
interpret failure phenomena due to wear. They are characterized

by failure rate functions that increase with time.

The Weilbull distribution, with three parameters, is more
flexible than the foregoing ones. Its limit case, for o = 1, is
the exponential distribution, and it too can be used to interpret
failure due to wear. Moreover it is suitable for a linear repre-
sentation on log-log paper, so that it does not require special
probability papers. Lastly it is an asymptotic distribution of
the extreme values of a wide class of distributions (Ref. 4),
for which reason it appears in particular to be inherently suited
to represent the phenomena of material failure, interpreted as

the failure of the weakest 1link in a chain.

For these reasons this distribution, proposed originally
by Weibull to interpret data on tensile and fatigue failure of
materials, has been increasingly used in the field of electro-

mechanical components which we shall be considering in particular.
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1¢3.4 The reliability function

The reliability function R is defined as the difference
between the failure distribution values corresponding to the
extremes of the event (period of time intended and operating

conditions encountered).

R = F(t2) - F(tl)

In general one assumes for -
the time interval (tg' tl)’ (=T)s g0 that:

R(T) = 1 - F(T)

The time T is often indicated as '"mission time".
On the basis of this definition R(t) is to be deduced
straightaway in the cases F(t) indicated.

2. PARAMETRIC METHODS

2.1 General Scheme

The term "parametric" applied to these methods is due to
the fact that, starting from the sample, they evaluate the para-
meters of the distribution of failure and hence of reliability,
a distribution hypothesized a priori. Roughly speaking, their
stages of use are as follows:

(*)

i) availability of a complete set ‘of values (sample) referring

*

) An incomplete set is one of defined dimensions but only partially
defined values. Take, for instance, a fixed number of components
being tested simultaneously. The set of lifetimes will be complete
when the last surviving component fails; it will be incomplete for
all the preceding times.



ii)

1i1)

iv)

v)

vi)

-12 -

to the component's characteristic used for the reliability
estimate (lifetime, breaking stress, etc.). These values
obviously have to be obtained from tests or operating expe-
rience on components belonging to the same statistical popu-

lation.

Assumption of one or more forms of statistical distribution to

which the sample is assumed to belong.

Estimate of the distribution parameters, based on the sample
values. The most practical and suitable procedure for this

purpose is the one based on the principle of maximum likelihood.

Test for goodness of fit on the various assumed distributions
to see which one fits the interpretation of the sample best

for a given significance level.

Determination of the variances of the estimated parameters

and, if appropriate, of their confidence intervals.

Calculation of the reliability value, by means of the distri-
bution adopted and the estimated parameters. This reliability
value will likewise be an estimated value. Hence a confidence

interval will have to be established for it.

2.2 Estimate of Parameters

2.2+1 The maximum-likelihood method

This very general method is mentioned in all text-
books on statistics. Considering, for simplicity's sake, a
distribution with a single parameter o, f(t,s&), of which the

mathematical form is assumed to be known, we form from the sample

(t1. tz,..., tn) the function
n
L(tl,t2,...,tn;a) = I, f(ti,a) (1)

-
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known as the function of likelihood of the sample. It corresponds
to the compound probability of n random independent variables,
each with the same probability distribution, i.e., it corresponds
to the probability of obtaining the sample under study out of

all the possible samples of the same size. The method consists

in determining which value of the parameter o renders it most
probable that the sample under study will turn up. Thus, if

we call that value o' it must satisfy the equation

(3L 0 (2)
laa a:a‘

(or 3, =0 with &

known as the likelihood equation.

log L)

Under very general conditions, the maximum-likelihood
estimate has a normal distribution when the sample dimensions
tend to o4. This asymptotic property of the maximum-likelihood
estimates is most useful, because it means that the properties
characteristic of a normal distribution can be attributed to
those estimates. At the same‘time, inasmuch as it is an asymp-
totiec property, it is the chief limitation of the method, since
small samples cannot be taken into consideration (according
to Ref. 1, page 172, the correct use of the normal approximation

calls for sample sizes of not less than 50).

2¢241 Determination of the variances of the estimated parameters

A distribution dependent on two parameters «, A is con-
sidered. Let é‘xand-;\- be the values of these parameters esti-
mated by the maximum-likelihood method from the sample values.
It has been shown (Ref. 7) that by using the asymptotic property
of the estimated parameters, approximated values of the b(and.l

variances are obtained by constructing the matrix
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AL %
302 oad

A= (3)
dadi 3)2

Between A and matrix

Yar a  Cov (a,))

B = .. X (4)
Cov(a,X) Var A

there is the simple relation:
- -1
B=-A (5)
It will be noted that A is a function of the real para-
meters o, A} approximated values are obtained by substituting
for the real, unknown values the estimated values &, x.

In the case where the distribution depends on a single parameter

a, we obtain from the foregoing formulae:

- 2r _
Var a = -~ (21%) 1 (6)
da

2.3 Goodness of Fit

The choice of the form of distribution to which the data
are assumed to belong is, a priori, arbitrary. Hence, the
distributions adopted, whose parameters have been estimated on
the basis of the sample, must be teated to decide which fits
best with the sample. Let us briefly describe two widely used
tests, namely the chi-squared test and the Kolmogoroff test,
The first applies to the density of distribution, the second
to the distribution. The efficiency of both methods is limited
by the size of the sample. The first method is not applicable
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to small samples because it calls for division of the sample
into classes and calculation of the frequency for each class.
The second method does not have this drawback. But being based
on asymptotic properties, neither is very significant when it

comes to small samples.

2.3.1 The chi-squared test (Ref. 8)

The data for the sample of size n are classified in k

intervals

Ati
x5 1=1,—k

and the valuesv1 are considered, corresponding to the numbex

of sample data comprised in the i-th generic interval.
If £(t) is the density function of the assumed distributiom

+ Ati/?

e

s
"

I f(t)dt (7)

ti - Ati/2

will represent the probability that the statistical variable
in question belongs to the i-th interval.

If the assumption concerning the distribution is valid,
then

lim P(Ivi - npil <e)=1 (8)

noe
Hence a measurement of the data's goodness of fit with
the hypothesis is related to the complex of differences
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With a choice owed to Pearson, we can establish the

following magnitude as the measurement of thia goodness of

fit: 2
22 . X (vg - npy) (9)
L1 np,

and it can be shown that Az is a random variable distributed,
with n?*°, according to an¥2 law with k-1 degrees of freedonm,
in the event that the parameters of the assumed distribution
are known.
If, on the other hand, the parameters are estimated from
the sample, the number of degrees of liberty will be lower
than k-1 by as many units as there are estimated parameters.
For practical application of the test, having caleculated
NG and set a level of significance or, we find from the tables a

value Xi.such that:

P(x2_>_ xi) N (10)

The assumed distribution satisfies the test if

For a valid application of the teast the sample dimensions
must be such that

npi>10 i=1s'—sk

2.3+.2 Kolmogoroff test (Ref. 9)

This i8 a test which examines the cumulative distri-
bution. Let F(t) be this distribution assumed to be continuous
and let Sn(t) be the empirical distribution of the sample of

dimensions n, arranged in ascending order of values.
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Furthermore let:

D = mx |F(t) - Sn(t)l (11)
~-®m< X <o
w 2.2
Q) = T -1k 22 A>0 (12)

The test 1s based on Kolmogoroff's theorem which states:

1in P(D_ < -}) = Q) (13)
oA

n-ree
For application purposes, once Dn has been calculated and a level

of significance o has been chosen, we find in the tables value Ay

for which
Q(Xa) =1l-a (1n)
The distribution in question will satisfy the test if

P <\ /vVn
n a

In Appendix 1 will be found the description of the KTEST
code, programmed in IBM 360/65 to effect the Kolmogoroff test on
various distributions. The normal, log-normal, Weibull and expo=-

nential distributions are considered.

2.4 Reliability Estimate

When the failure distribution parameters have been
estimated, we can estimate the reliability value corresponding
to a time T.

R(r) = (&, X, 1)

Now comes the problem of evaluating the confidence we
can have in this estimate.

The general method, which is valid only for numerous
samples and does not require knowledge of the distribution of

A A
the parameter estimates, i.e., of &, A, etc., makes use of R's
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property of being asymptotically normal (Ref. 1, page 192). Hence
A L
it is necessary to know E(R) and Var R, i.e., the mean value and

variance of the estimate.

It has been shown (Ref. 10, page 354) that

E[R(a,1)] = R(a,A) + O(1/n) (15)
Var[R(;,;)] = (3-&)2 Var ; + (Eg)i Var ; +
% A (16)

+ 223 2B cov(a, 1) + o(1/n*)
a A
3a 9A
1.
Both 0(1/n 5) and 0(1/n) are terms which tend towards
A
zero as the sample dimensions increase. An estimate of E(R) and
A A

Var(R) can be obtained by substituting'&,l, for o, Ain (15) and
(16).

This general procedure is not necessary in cases where
the reliability is a function of a single parameter (see exponen-
tial distribution). In such a case a reliability confidence in-
terval can be found directly from the parameter confidence inter-
val. For this purpose one must know the parameter distribution
or else apply the property of normal asymptotic behaviour of

the estimate using the variance caltulated in Section 2.2.1.

25 Applications

2541 Exponential distribution

The fajilure distribution density is given by:
-At
f(t,A) = X e t=0,Xx>0

Starting from the sample (t1""’tn) the maximum-likelihood

function will be:

L= A" -2 ziti (17)
= e
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and from the maximum-likelihood equation

3 log L =0
YN

we obtain

L Y4 (18)

n

> |

i.e., the mean of the sample is the inverse of the estimate of

parameter A. An estimated value of the reliability at time T will
be given by: -

R = R(T,;) = e-XT (19)

The calculation of the confidence interval of this esti-
mate can be done by two different routes as already mentioned in
Section 2.4. One procedure, which we might call general, entails
calculation of the variance of the distribution parameter, followed

by calculation of the ﬁ variance and, using the normal approximation,

U ad
the R confidence interval. From (6) we obtain
PS 2 -1 2
Var A = - (2—22%—E) = A
2\ n

and from (15) and (16)

E(R) = e-XT
- "2 - 2 .2 -2T.)
Var R = (iﬁ) Var A = A_T e
'\ A n

o = T.)\ e-AT _ R log 1/R - R log 1/R

R /n /n /n

The variable

n= B EE) (20)

R
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is asymptotically a standardized normal variate. Having established

a confidence level x, we find the confidence interval for the
reliability:

R+ °i T N(14v)/2

A second procedure, valid only in the case of exponential
distribution, allows one to avoid the repeated use of the asymp-
totic approximations employed in the previous procedure.

This second route is based on two characteristics of the

exponential distribution:

A
= the distribution of the estimated parameter A is known;

- the reliability is a monotonic function of the parameter.

It has been shown (Ref. 11, page 190) that the estimated

parameter ¢ =-% has a gamma distribution:

- _ 1
P(r < x) _ﬂn—)J (;) t e dt (21)
(o]

2
by putting X = 2n — this distribution can be reduced
to a chi-squared distribution with 2n degrees of freedom.

Thus (21) is equivalent to:

P(x2< y) =

1 r’ »1 2 g (22)

2"r(n) Jo

By using (22) we can obtain an exact evaluation of the
A A
confidence limit on R = R(¥) at a given confidence level v.

For having fixed a value for ¥, we obtain from (22):

~

P(Q;T <T1) =Y (23)
AX1-Y
Tnus ; - 2nT_ represeunts a lower limit of T with confidence level 7.

xl-v
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T/T

As the reliability R = e is an increasing funection of
T, it follows that a lower 1limit for the reliability at time T,
with confidence level v, will be given by:
2
R
2n T4 (2u4)

It is important to note that we have been able to transfer
A
to the reliability the confidence 1limit calculated for T only
inasmuch as the distribution has only one parameter. In general

this i8 not possible where there is more than one parameter.

2¢5.2 Weibull distribution

The most general form of this distribution has three
parameterst
a
F(t) = 1-e A (t-0)

for the sake of simplicity, we shall assume @ = O; the probability
density function therefore is:

a
£(t) = ax 22 et t20,a>0,1>0

The log of the likelihood function, for a sample (t1oo--,tn) is

given by:
n n
{ =nlogea+tnilogh+(a-1)I, logt, -rcL, t® (25)
! 1 O

By imposing the maximum likelihood conditions on«ix

ad, ad _
—_ =0 —a-i' 0
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we get two equations for the determination of the estimated
A

A
values &, A, of the two parameters:

LY

N (26)

o

>

n (27)
= = "
- t,
ALt log t, L log i

The calculation of & andi from these equations is done
with an iteration process programmed on IBM 360/65. To obtain a
reasonable initial value for & the following relation is used,
which expresses equality between the sample mean and the distri-

bution mean:

=AY ra e d (28)
i a

=Rl
1
+

To determine the variance and covariance of the two parameters
it is necessary to invert the matrix

2% 224
2
3a 309 (29)
228 224
3ad) ar’

A A
Having calculated Var & Var A, Cov(&A) in this way,
we can find the variance of the estimated reliability value.

If T is the mission-time for the component for which the relia-

bility is to be ascertained, then the estimated reliability

value is -

Also, by reference to (15) and (16)

A ol
E(R) = e~ T (30)
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2a -2T® 2 - - - -
% e (A" log 2 T Var a + Var A + 2X log T Cov(a,\)) (31)

Var R = T
Estimated values for E(ﬁ) and Var ﬁ can be obtained by
replacing ot and A in the previous equations with their estimates

N
™ and A.

Using the normal approximation we can then find a confi-
dence interval for i.

The foregoing calculations have been programmed on
IBM 360/65. Appendix 2 gives a description of the VITA code
employed.

3+ NON-PARAMETRIC METHODS
3.1 General

Given a fairly small sample (with fewer than, say, 20
values) the mathematically laborious method described in the
previous chapter yields results whose significance is not pro-
portionate to the effort required.

The method we shall give here, however, enables the
reliability corresponding to the measured values to be easily
and directly evaluated, even with very small samples.

It also permits of evaluating a confidence interval,
likewise in respect of the measured values.

Lastly, it allows the sample size to be taken into
account in cases where the sample is incomplete: from this
standpoint it offers a poasibility not allowed by the method
described in the previous chapter.

On the other hand, as it does not aim to evaluate the
distribution but confines itself to evaluation of a series of
discrete values, it does not provide indications for interpola-

tion or extrapolation.
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3,2 Statistical Properties of Ordered Samples

3.2.1 Distribution of the m-th value

==yt ooy tn) be a sample of size n with
values in order of increase. The distribution I(t) from which the
sample was taken is unknown. The problem is to estimate the
cumulative probability §(tm). using for the purpose the sample's
property of being ordered. If the population is sampled again,
the value t;, arrayed in the m-th position, will in general be
different from tm and one can say that the sample order position
m characterizes, by means of all the samples extractable from
the population, a set of values, the tm values, which will be
distributed according to their own law of probability, whose
density is:

tlty) = B ) [1 - e )P orce,) (1)

This law can be determined at once by using the poly-
nomial distribution and the sample's property of order. It is
a known fact that, given three events with probabilities Pir Py
and p3 at the instant of a test, the probability that in n tests

the event with probability P, will occur n, times, that of prob-

1
ability P, D, times, and that of probability p3 n3 times is:

n! n, By, M3

1T a1 -1 P P, P
nll nzl n,! 1 2 3

If we now let the event "value of t lying between tm

"
and tm + dtm correspond to Pqo then
P, * E(tm)dtm

where £(t) = ¢'(t)
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Similarly let the event "value of t=.t" correspond to

p2, then
Py, = ¢(t )

and lastly let the event "value of t3>tm" correspond to p3, 80

that
p3=1-0(t)
m

It n, = 1, n, =m - 1, n, = n - m, the probability law

2 3
obtained is actually that of the population of tm values repre-
sented by (1). Naturally (1) and therefore the mean Em’ the
median gm and the modal value';; are unknown, in our case,

because $(t) is unknown.

3e2¢2 Probability distribution for m-th value

By performing in (1) the variate transformation

¢ = ¢(t) (2)
m m

we obtain

_ w1, . .n-m (3)
x (#) = m(HT (170 )

in which
0<¢ =1
m

Thus xn(om) represents the probability density for the distribution of
the cumulative probability values appropriate to the values of t..

The chief interest of (3) lies in the fact that i’.he§"l
distribution does not depend on the unknown ¢ (t) distribution.
It will be recognized that xn(Om) is 2 beta distribution.
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In general the probability density for the beta distri-
bution is:

I'(a+8+2)

a 8
T(a+l) T(B+1) x " (1-x)

E(x) =

for Oz x=1 with entire o, g7 - 1.

With & = m - 1 and P=n - m one obtains expression (3).

3.2.3 Estimate of the ¢(t ) probability - Median ranks

If 3(p) is taken to represent the cumulative distribution
of ¢ , then
m

P
n(p) = fo xn(@m)d@m

It is readily apparent that, integreting item by item successively,
we shall obtain

=]

np) =z (Mpta-pi (4)

3

or
n(p) = 1 - mzli o pl(1-p)" 7 (5)
o

Relation (5) enables us to solve the problem stated at
the outset, namely, that of obtaining an estimate of the prob-
ability f(tm) and assigning a confidence level for that estimate.

For in (5), p is a value of 4m such that the probability
of a value §m:Ep is M(p); hence it can be said that p is the
estimate of *(tm) with confidence level % (p).

In other terms this means that if we assign the cumulative
probability p to the sample observation tm, there will be 100 4 (p)
samples, out of 100 extractable from the population, in which the
value é(tm) will be lower than p. It is perhaps needless to re-

mark that the use of (5) to estimate i(tm) does not entail
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knowledge of the value tm; it is merely assumed that tm is the
largest of the m values observed, i.e., that the sample is ordered
in increasing values.

Hence (5) lends itself to the construction of tables for p,
each one characterized by a value of % (p). These are double-entry
tables in which, for every n, the p values are given in line with
m=1, 2, _, n. It can be shown that with 4 (p), m, n fixed, there
is a single solution of (5) lying between O and 1.

Appendix 3 gives the text of the RANKS programme processed
on IBM 360/65 for the solution of (5), and also, for %(p) = .05,
e5, ¢95, the tables of the p values obtained, for sample sizes up
to 20, The p values obtained with %(p) = .5 are known as "median
ranks" and are particularly recommended by Johnson (Refs. 2 and
3), who was the first to use them. An interesting aspect of (5)
is that confidence belts can be comructed. For this purpose the
tables for m(p) = .05 and .95 are provided. Their use is immediate:
they permit of stating that the unknown real probability }(tm)
lies, with 90% probability, in the interval bounded by mP.95 and
mP.OS'

3.2+.4 Mean ranks and modal value

Other interesting aspects of the distribution of the
cumulative probabilities 4(p) can be found by calculating, in
addition to the median already noticed, the mean value and the

modal valuej; as regards the mean value we have:

1
¢ = JO xn(om)omdom (6)

Noting that:

F(m+1) T'(n-m+1)
r(n+2)

1
J " (1-¢ )" Mde =
o m m m
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we have

3 - oy mi(n-m)! _ m
*n = m(m) (n+1)! 7 n+l (7)

The modal value is obtained from (3) as the solution of Xﬁ =0 :
~ _m-1
*n ¥ o1 (8)

The advantage of these estimates as againat the median ranks is
their very simple form which permits of immediate calculation
for all values of m and any size of sample.

Furthermore the confidence level which, by means of (5), can be
associated with each estimate is not constant as for the median

ranks, but varies with m or with the sample size.

4, METHOD OF PROBABILITY PAPERS
4,1 General

This method has the same objectives as the method described
in Section 2, i.e., it aims at deriving a distribution from the
sample.

Asa in the parametric method, the first step in this method
is to choose a form of distribution, and then to select a '"paper"
in which that form of distribution is linear.

Having chosen the paper and therefore the linearization
of the function, we now have to represent the sample values.

Next we trace, by means of a suitable regression, the
straight line which best interpolates these points, and in this

way we obtain the parameters of the desired basic distribution.



- 29 -

k.2 Linearization

Let $(t, o, P ) be the cumulative probability of a
statistical variable t and let o« A be the distribution para-

meters. If there is a linear transformation
y = ot - p) (1)

such that the distribution

F(y) = ¢(B8+y/a, a, B) (2)

is independent of the parameters o, P, it is possible to con-
struct a probability paper for the distribution 4. On this

#(t, «, P) will then be represented by the straight line (1).
F(y) is called the "standard form" of the distribution and is
usually tabulated. If there are three parameters o, p, T, there
is more than one linearization possible. For instance in the

case of a complete Weibull distribution
- [(1:-8)a]Y
W(t) =1 - e (3)

it is possible, for each fixed value of r, to effect the line-
arization (1) and hence to refer to a standard form relating to
the fixed Y value. Generally, however, the Weibull distribution
is used in the incomplete form obtained with p= O. Obviously
linearization of type (1) is then out of the question. In that

case we effect a logarithmic transformation which leads to

log t + log a (4)

1 1
y 108 In Ty =

1
which on log-log paper with coordinates s 1P 7577y 4s a line-
arization of (3). In this case one can no longer speak of a

standard form for the distribution.
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4.3 The Plotting Position

As already remarked, the crucial problem in using prob-
ability papers lies in the cholce of the probability value to
agsign to the generic value of the sample., It will be seen that
the manner of choice can be exacting, taking into account the
type of distribution that the data have to fit, or approximate
(although fulfilling certain criteria), disregarding that dis-
tribution.

4,3.1 Distribution-dependent plotting

We have already seen in Section 3 that in an ordered
sample of size n the m-th position designates, through all the
possible ordered samples extractable from the population, a new

distribution, that of the m-th value, whose density function is:

bt = me" e 1 - et )]“'“‘o'(t ) ()
n m m m m m
the transformation (1) will provide a value corresponding to
each tm’ namely
Yp = a(tm-B) (6)

belonging to the distribution of the m-th reduced value.
Applying the mean operator to (6), we obtain:

= 1
E(t,) = B + = E(y) n

The plotting position proposed by Weibull (Ref. 5, p. 198) is

P = F(E(y,)) (8)

F being distribution (2), i.e., the atandard form of the hypoth-
esized distribution.

Consequently, with the m-th observation of the ordered

sample we must associate a cumulative probability given by the
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value of the standard distribution at the mean of the reduced
variables relating to the m-th position; the least squares will
therefore be effected on the points t , E(ym). The mean E(ym)
must be calculated from the distribution of Y which is deter-
mined by F(y) and is thus independent of the unknown parameters.
The distribution of Y is found by operating in (5) the change
of variables given by (1):

0,07, = m@F Ny [1- F(ym)]n-m}"(ym) (9)
Hence -
E(ym) =z I Y en(ym)dym (10)

or else, writing

F(y) =u, y =G(u) (11)
1 n m-1 n-m

E(ym) = I n(m) G(u) u “(1-u) “Tdu (12)
o

It will be seen from (12) that E(ym) depends only on
m, n and on the standard form of the assumed distribution. If
the plotting position (8) is used and the fitting is done with
the least-squares method (minimizing the deviations At ) the
estimates oq ﬁ, are not affected by systematic errors (Ref. 5,
p. 198). It must be pointed out that position (8) can only be used
when the distribution can be brought to a standard form by means
of (1). This is not the case, for instance, with the usual Weibull
distribution, with P = 0 (see (3)).

4,3,2 Distribution-independent plotting

Whilst the plotting position (8) recommended by Weibull
is the strictest because it does not introduce asystematic errors

in the parameter estimates, it has the drawback of depending on
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the preselected form of distribution and hence of requiring the
use of tables of the values E(ym).

Where these tables are not available and one can make do
with a certain degree of approximation in the estimate, it is
possible to use other plotting positions which are independent
of the distribution and have very simple forms.

For example, if the sample is in order of increasing
values we can, by convention, assign the cumulative probability
m/n to the ordered value tm. If, on the other hand, the sample
is in order of decreasing values, by the same convention we shall
assign to the value tm (which is the (n - m + 1) away from the

highest value) the probability

1 - n -m+ 1 - m - 1 (13)

n n

Hence it is clear that the choice of a distribution-
independent plotting position involves a certain arbitrariness
and at the same time an ambiguity which can be resolved only
where a criterion is specified for the most rational choice of
position.

The problem has been tackled by Gumbel (Ref. 4, p. 29)
who set some criteria for the purpose. They can be summed up as

follows:

a) the plotting position must be such that all the sample

observations can be represented on the probability paper.

This criterion is not met by the positions m/n and (m - 1)/n,
since a probability 1 corresponds to tn in the first and a
probability O to t1 in the second. Furthermore, as the prob-
ability papers are constructed for unlimited variables, they
do not contain the probability values O and 1.

An attempt to overcome this difficulty has been made

by introducing the position

m - 1/2 (14)

n
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the arithmetic mean of the two previous positions (mid-ranks).
But this position, too, is not very satisfactory if tested with
the following criterion:

b) the return period of a value equal to or greater than the

largest observation (i.e., the number of trials needed on

average to obtain a value greater than or equal to the

largest observation) and the return period of a value

smaller than the smallest observation (i.e., the number

of trials needed on average to obtain a number smaller

than the smallest observation) must tend to n, the number of
observations. The return period is defined as the mean of the
geometric distribution, relative to an event with probability p.
Given an event with probability p at each test, the probability
that it will occur for the first time at the v-th test will be

-1
w(v) = pq" qQ=1-0p
The mean value of v is v = 1/p and represents the return period
of the event with probability p.
Hence the return period of a value greater than or
equal to the m-th value of an ordered sample is:

o1 1
T (t) = 1-e(t_) (15)

So the return period of tn' using position (14), is:
1 (16)

n-1/2 = 2n
n

T (t ) =

s n 1 -
which corresponds to an admission that an event tn' which has
oocurred once in n trials, occurs on average once in every 2n
trials. Similarly, considering the return period of a value

smaller than t1. we have:

S
Ti(tl) = m—l-y = 2n (17)
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position (14) consequently gives an over-optimistic result
precisely at the extreme values which, in many circumstances
and in failure phenomena in particular, are the most significant
ones. Moreover, the position m/n and (m - 1)/n are not satisfactory
from the standpoint of the return period; the return period of a
value greater than or egqual to tm' for the position m/n, is:

T (t ) = o (18)

n-m

and is no longer defined for tn' while the return period of a
value smaller than o for the position (m - 1)/n, is:

n (19)

m -

Ti(tm) =
and is no longer defined for t1.

It is interesting now to counsider, from the standpoint of
the plotting position, the magnitudes discussed in Section 3 and
defined on the basis of the distributionmn Xn(§m) of the probabil-
ities appropriate to the m-th value of an ordered sample.

The modal value

(20)

E
[o

¢ =
m n-

[o

is not acceptable since it does not satisfy either the first or

the second of the preceding criteria.

(%4

The median value ém defined by

m-1 . v s
. M-t =2 (21)
01 1 m m

satisfies the first criterion but not the second. The return

period for tn has the value

T (t) = o= (22)
n 1-¢
But from n
(21) we find o = ,~1/n and therefore, for high values of n,
n

T (t ) =~ 1l.44 n (23)
s n
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Also it can happen that Ti(t1) = Ts(tn), so that the use
of the median ranks as plotting position attributes to the
extreme values a return period which exceeds n by 44% and there-
fore does not satisfy the second criterion.

Lastly, the mean of xn(¢m)

p = (24)

satisfies both criteria, at any rate for high values of n, since
the return period for the extremes has the value n + 1.
This plotting position (mean ranks) appears to Gumbel (Ref.

4) to be the recommendable.

L,4 Least Squares Method

Let us briefly review the formulae expressing the distribution
parameter estimates obtained by the least squares method. The
values of the estimates are naturally different according to
whether we minimize the deviations on the observed variable or
on the reduced variable. It should be remarked that if the mean
of the reduced variables Y is used as plotting position, esti-
mates free of systematic error will be obtained only by minimizing
the deviations of the observed variable (Ref. 5, p. 198). With

reference to (1) we then have:

g 2
A) z (t-t )° = min
L m m

A y/a (25)

[~

> Ip—a
n
t
Q 1
SN
™ >
L1}
tt
]
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where
n n n
t = l-z t ,y= l-Z Y. ?; =1 I_ty
n m m n,m>m n,m mm
1 1 1
2 _1 g 2 o2 = 92 . 32
Y 1 L™ Im n 7

Note that, the plotting position and distribution having been

chosen, Gn is a function of the sample size only.

n 2
B) I, (yy )" =min
1
52 -
%—-: ::TE—:: B, = t - §/GB (26)
ap ty - ty
where
2 _ /.2 _z2,_n_
s, = (t t7) o1

C) A third parameter estimate consists in minimizing the
deviation of the points in parallel to a straight line determined
by the condition ty = O. The gradient of this line is equal and

opposite to (1). In this case:
1 )0.5

~ - ~ ~

% %a %B

IH

(27)

B =t -/ (t - 8,)(t - By)
If the observations are highly concentrated around (1), i.e.,
if the degree of correlation is high, the difference between the
estimates obtained in the first two systems are small and the
parameters estimated with the third system are roughly the arith-

metic mean of the parameters estimated with the first two.
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4,5 Building of Control Band

Having solved the fitting problem, i.e., determined the
estimate values ;Q é, our next task is to construct a control
band on either side of the straight line y = ;Kt - é), i.e., to
delimit a zone within which, with a pre-established confidence
level, we shall find the mw~th observation of an ordered sample

extractable from the population.

For this purpose the distribution of the m-th value of
the sample, expressed by (5), must be taken into consideration.
Naturally Vn(tm) is unknown, because é(tm) is unknown; on the
other hand, Gn(ym) is known, since it is expressed by (9) as a
function of the standard form F(ym). Furthermore, the two dis-
tributions are formally equal and hence the properties of the
one that leave the parameters out of account are also properties
of the other. In particular it has been shown (Ref. 4, p. 48)
that the asymptotic form of (5), for central values of m, is

normal with a mean value Em obtainable from:

Tt ) =" 28
°(tm) T n+l (28)
and variance
) i ®(t )(1-8(t ) (29)
o (¢ ) = 5T
n ¢' (tm)

If 62(tm) were known, then the control band problem would
be solved, at least under the conditions for the validity of the
asymptotic form. But dz(tm) is not known because it depends on
§'(Em)' It is therefore necessary to use the preceding obser-
vation which also has an asymptotically normal distribution

On(ym) with variance
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F(y,)(1-F(y_)) (30)

2

o (y ) =
m 2 -

nF (ym)

which is independent of the «, B parameters and can only be

calculated on the basis of the adopted distribution.

The standard error for the reduced variable yn is therefore a pure

number

VF(1-F) (31)
F'2

which can be determined, for each m, from the knowledge of

F(§m) = m/(n + 1) and also of F'(;m) which can be found in the

standard form tables beside F(§m)'

/n U(ym) =

The standard error on tm is then obtained frouw (1) and (31):

[ 000,
a /n

and if o has been estimated, (32) can be used to construct the

o(t ) = (32)
m

control curves. These will be obtained by connecting the points

Y

t x kd(tm) (33)

;m being a point on the estimated straight line and k a coefficient

dependent on the degree of confidence attributed to the control

band. For example, k = 1.96 expresses the probability 0.95 that

for any m - within the limits of the hypothesis on the central

values - the ?bservation Em of the generic sample lies within

the interval t Y 1.96 d(tm). On these bases it is not possible

to calculate the control band at the extreme values. As & rule

one assumes that the foregoing considerations are valid in the

probability interval 0.15 = 0.85. Outside that interval the

asymptotiec distribution of tm ceases to be normal (Ref. 4, p. 49).
Another way of constructing control bands, which has the

advantage of being independent of the standard form of the dis-

tribution adopted and of being valid even at the extreme sample
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values, is the method which is mentioned at the end of Section 3
and is based on knowledge of the tabulated values of p for a

certain confidence level % (p).

5. APPLICATIONS

By way of example, three sets of data concerning times
and breaking stresses of mechanical components are processed
below by the methods we have described. One of the samples ex-
amined is incomplete, i.e., this is a case of failure times
drawn from a sample which includes components still in operation;
the other two samples are complete. The available data are pro-
cessed with the KTEST code (Appendix 1) to establish which dis-
tribution interprets them best. Owing to the smallness of the
samples, the Kolmogoroff test is ineffective in two cases because
the level of significance reaches the max. value 1 in three out
of the four distributions tried. For the third set, however,
(stresses to failure) the test gives as the limit level of signi~-
ficance the values 97.6% for the Weibull distribution, 98.5% for
the log-normal, and 97.5% for the normal and the exponential.

For greater simplicity and for the purposes of example,
we shall assume, however, that the sets of data can be interpreted
by a Weibull distribution, linearized as in expression (4),
Section 4.

The scales of (1 - R), R being the reliability, and of
Y = log 1n 1/R are entered on the two horizontal axes of the re-
levant probability paper, whilst the observed variable and its

logarithm are entered on the vertical axes.

5.1 Intermetallic Weld Failure Stresses

The following results were obtained from a series of

shearing strength tests:
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o, (kg/mm2)

6.73 , 6.74 , 10.1 , 10.5 , 10.7 , 12.6 , 13.3 , 13.8
14,7 , 14,75 , 15. , 15.5 , 16.3 , 16.7 , 17.1 , 17.2
17.24% , 17.3 , 17.5 , 18.1 , 18.24 , 20.2 , 20.3 , 21.2
21.9 , 22.6 , 23.1 , 24.5

Assuming a Weibull distribution and using the non-parametrio
method of mean ranks on probability paper, we odbtain:

( )
R(g) = e

The maximum-likelihood method, however, gives:

- (=2 )u.13
R(g) = e 17.95

Fig. 1 shows the two corresponding straight lines. The following
table compares the strength values obtained with the two methods
for given valuee of reliability R.

g g

.95 .99 9 9999

8.7 5.88 .93
max, 1likelihood 1.9

mean ranks 7.2 4.2 0.89

If, however, we set a working strength of 6 kg/mma. the max.
likelihood method gives a reliability value of .989 and a lower
limit, with confidence level of 98%, given by

.989 - ¢ = .975

R .95
where 6 is the reliability variance calculated rrom (31) in
Sectlon 2 (d = 6.91.10 5) and ¢ .95 is the reduced normal variable

at the 95% level.
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Similarly, the non-parametric method gives a reliability
value of .969 and a lower limit of .92 with confidence level 95%.
The lower limit value is obtained by extrapolating the straight
line which interpolates the 95% ranks calculated with the RANKS

code.

5.2 Mechanical Seals on Pumps

A series of endurance tests yielded the following

resultss

t1 (hours)

750, 900, 1018, 1200, 1250, 1500, 1500,

Assuming a Weibull distribution, we obtain the following expres-
sions for the reliability:

a, with the max. likelihood method

(=2—)2+99)

R(t) = exp (- 7270

b. with mean ranks plotting position on probability paper

R(t) = exp (= (7555)°")

6. with median ranks plotting position on probability paper

R(t) = exp (- (-1-%3)3'9)

The corresponding straight lines are shown in Figs. 2 and
3. The table below gives the time-to-failure values with the three
methods for set reliability wvalues.

max. mean median
likelihood ranks ranks
t.95 700 560 596
t 515 355 Loo

099
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On the other hand with a set mission time of 600 hours,
the maximum-likelihood method gives a reliability value of .979
and the lower limit, with confidence level 95% is:

0979 - dR 1.65 = 0932

where di = 8.02.10-4 is the variance of R(600) calculated from
(31), Section 2.

For T = 600 h the non-parametric methods give .954% (median
ranks) and 0,937 (mean ranks). The lower limit, with confidence
level 95%, calculated by extrapolating the 0.95 ranks, is JS82.

5¢3 Electromagnetic Valves

A set of twelve electromagnetic valves was reduced to
six components in working order after a service of 3250 hours.

The failure times of the eliminated components were:

ti (hours)

1200, 1450, 2100, 2600, 3000, 3250

This sample cannot be treated by the maximum-likelihood
method because the information contained in the fact that six
valves are still working would be lost. With the non-parametriq
methods, however, this information can be taken into account
and the reliability estimate is naturally different from what
it would be if a sample of six were considered.

Again assuming a Weibull distribution, the use of probab-
ility papers gives a reliablility estimate in accordance with the

following expressions:

a? plotting with mean ranks
1.854

R(E) = exp (- (7355) )
b. plotting with median ranks
R(t) = exp (- (2% %)

represented in Figs. 4 and 5.
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For set reliability values, the two estimates give the

following wvalues:

mean median

ranks ranks
t.95 900 1050
t.99 357 510

5.4 Comments on the Results Obtained with the Various Methods

It emerges very clearly from the results that for the

lower extreme values of the distribution

= the maximum-likelihood method‘gives more optimistie
results than the median ranks method, which in turn
gives more optimistic results than the mean ranks

method;

-~ the difference between the results obtained with the
various methods increases directly with the reliabil-
ity sought and inversely with the Weibull distribution

parameter al;

- these differences in results are not tied to the sample
size but rather depend on the statistical behaviour of
the extreme values, which is evaluated differently with

each method.

When, as in the case of mechanical components, the chief
concern is to evaluate the extreme values, the use of the para-
metric method and probability papers offers advantages of greater
simplicity than the classical maximum-likelihood method and also

permits a far more realistic¢ evaluation.
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It amounts to obtaining a reliability estimate with a
confidence level AZ 0,5.
For, referring ot (5), Section 3, and considering the

first value of an ordered sample, we have:
4(p) =1 - (1 -p)°

or, calling the confidence level A and the reliability R:
A=1-R"

This relation is graphed in Fig. 6 in respect of various
values of n. The median rank relating to the lower end of the
sample is obtained, for each n, from the intersection of the
corresponding curve with the horizontal A = 0.5. If, however,
the points corresponding to the reliability estimated with the
mean rank are plotted on the curves, it will be seen that these
estimates are equivalent to those obtained from (5), Section 3,
for A> 0.5. If the maximum-likelihood estimates were plotted
instead, one would find values for A smaller than O.5. Another
interesting consideration is that, in Fig. 6, the curves grow
denser as n increases. This means that, given a certain value
for the confidence level A, the reliability gain in the extreme
sample value is progressively slighter as n increasesj hence
one could evaluate a maximum sample size such that trials on bigger
samples would not introduce significant improvements in the relia-

bility values.
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APPENDIX 1 - Description of KTEST code

With reference to Section 2.3.2, the KTEST code, written
in FORTRAN H for IBM 360/65, performs the Kolmogoroff test on the
Weibull, normal, log-normal and exponential distributions. The
estimated distributions are determined from the sample data by
the method of probability papers, i.e., the fitting to the data
is done with the linearized form of the distribution (Section 4),
after each sample value has been assigned its appropriate proba-

bility according to the non-parametric method selected.

The code performs the following operations:

a) It defines the regression variables for each of the distributions
studied and calculates their values to correspond with the

sample data.

b) It performs the fitting by the least-squares method (minimizing
the deviations of the measured variable) and then determines

an estimate of the parameters of each distribution.

¢) It calculates the cumulative probabilities appropriate to the

sample values, using the estimated distribution.

d) It performs the Kolmogoroff test, comparing the calculated
probabilities and those assigned to the sample values by the

non-parametric method adopted.

The regression variables x y; are defined as follows,

i’
ti being the i-th value of the ordered sample and Pi the probability

value attributed to ti:

1. Weibull distribution

1
Xy = log t y; = log 1n T Pi

i

with reference to (4), Sectiomn 4.2.
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2. Normal distribution

i i vy obtained by solving the equation

Vi
1
— J e dn + 0.5 -P, =0
‘o .

3+ Log-normal distribution

x, = log t yy as for the normal distribution

i i

L, Exponential distribution

X3 =Y y; = log 7 B,

The regression in every case is of the form y = ox - B).
The coefficients o4 , tied to the distribution parameters, are
determined by the least~squares method.

In applying the test the boundary level of significance
is determined for each distribution, i.e., the level that consti-
tutes the upper limit of the probability with which the distri-
bution hypothesis can be accepted. Hence the data are interpreted
best from the distribution that has the highest boundary level of
significance. Referring to Section 2.3.2, this level is given by

a=1= Q)

where 1==Dn/H and Q(A) is the function (12).

Subprogrammes employed:

1. FUNCTION ZERO(A1, B1, P, PREC)

Calculates by the bisection method the regression variable y
in the case of normal or log-normal distribution. A1, B1 are

the limits of the interval containing the desired radix
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(A1 = =3, B1 = 3), P is the value of the non-parametriec
estimate, PREC is the precision with which y is obtained.

2. FUNCTION DMAX(A,K)

Calculates the largest of the values (all positive) of a
matrix A of K dimensions. It is used to determine Dn’
the maximum difference between the calculated probability

and that attributed to the generic value of the sample.

3. FUNCTION Q(Y)

Calculates the value of the asymptotic distribution of

Dn /;, for a given Y, with reference to (12) of Section
2.3.2.

This subprogramme is supplied by the IBM library under the
name of SUBROUTING SMIRN. Reference should be made to the
library for a description of the method employed.

InEut data

N Sample size (max 40)
ND Number of distributions examined
VITA(J) Matrix of sample values

PR(J) Matrix of probability values attributed to the sample

values
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APPENDIX 2 - Description of VITA code

With reference to Section 2.5.2 of the text, the VITA
code programmed in FORTRAN H for IBM 360/65 performs the

following operations:

a) It estimates the shape and scale parameters, o, A of the

incomplete Weibull distribution.

~ ~

b) It calculates the estimate variances «, A, inverting the

matrix (29) and making use of (5).
¢) It calculates the reliability value at a given mission time.

d) It calculates the reliability variance, making use of
relation (31).

e) It tabulates the estimated Weibull distribution and its
probability density.

As regards a) above, we may note that the resolving

equation is as follows:

nIYy (A2.1)

n L, t? log t. - Z.t? I, log t,
i i i i"i "1 i

=
1

obtained by substituting (26) in (27).
The value for « that starts the iteration is obtained from (28),

a
equivalent to zi Y

log
a = (A2.2)

log —M
°8 T(1+1/a)

m being the sample mean.
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Both (A2.1) and (A2.2) are equations of the type $= £(¥)
which can be solved by an iteration process represented by

the formula (Ref. 1, p. 184)

2
(z, - ¢)
= 4 1 "o (A2.3)
o ° L. - _
Cl CO C2
where { is a trial initial value, g, = f(co), g, = f(cl)

1
and go the initial value for the second literation. The process

usually converges very fast, if f' (T) # 1 where Y is the desired
radix, because the error for each successive iteration is an infi-

nitesimal of higher order than the one in the preceding iteration.

Subprogrammes employed:

1. FUNCTION TETA(A) calculates I, t;‘

2. FUNCTION STAR1(A) calculated the function (A2.2)
3, FUNCTION STAR2(A) calculates the function (A2.1)

Lk, FUNCTION 2ERO(Y, STAR, PREC) carries out the iteration according
to (A2.3) on the generie function STAR, where Y is the trial
initial value. It stops the process when the result of the
difference in the values of two successive interations is

smaller than PREC, i.e., than the set precision value.

Input data:

N Sample size

A1 Initial value for the iteration on (A2.2)
PREC Precision of iteration process

NOIT Limit number of iterations permitted

T Mission time

TB Control indicator to effect (TB # O) or not

effect (TB = O) tabulation of the distribution
values

VITA(J) Is the whole of the sample values, for J = 1,...,N



- 56 -

'F4,0/)

PEZR ALFA='F3.,0,2X'AMDA='E12.3

-— c
(@] (@
(-]
- ol
~ 37
~ — [a
- ~~
— ~ —
o ~ =
o ) o
-1 * —-— ]
- (el ~ (o8]
= u! 4 <
oy - - o X
~C ~ [] W e~ w
= ~ - [ - N [ and
O w ~ - (3] [— -
— - — o -t
~ o~ e~ <7 N a 3 4 <« <L O
a= ~NON) - Z T u [a] Z .
C o Ot -~ - ™ - - [ DR | z - T
~ = e W « o > C —~ o - g L <> ~4
—_~~ -~ -~ b b M > N X oW - c.e bl
O~ +— ot o - = N M 3 O = - -
O O 1t T e b - - -~ d W w <M -
—C oW Q. Te~) o < (] — = [~ S L) c’
Ul =~ Z e —$Lic - wl - s O g cC w et -
o O et~ — e ety Z o g N - E - X ! b
=T ~— O™ [ > e W c. e W N <« ~
O e~ U e — i w] - der E o d o< Lo (W)
—~— OpF N oWt v DO~ < « < < ~ i
O Ont O ek~ p T o< Q [’47s) VIt r a - a < < L
Z > «Own < WU e x — < - O <« (3% L. (&
-— D N 7 = P Yan P o Y R e ~— X+ = \.IR\IC)P uw of » W ~ ) >t
X Z0 <<CI—OCe —~m "l =N 2 e o AL A LR 1 a g < [T I
o -0l -~ n HOMOXOHKCA O P~ i OXOXOX L ¢ < U Cue |
[ ZOle~ A C e d C 4O N CVird o A HACHIN T (N O ) lemd -
T Zre 0O T e ed N - Ll o) L o T B B Vs ] QO v <[} o h
E Q0. e N O OO O e e LAD - D O e —y)—
xXxX —a - 10 — e mes -— - s TN — ~— I R 4 T T _J <{ 2~ -
<L OZ Wb - - W ZH~2Z =~ = - o 20 - 1 —
ol T sl CWWIIW U ot WOr T itint 2 g1t D [VERIRINEE S o
O Wi QAXOSY-"TPFIZI-Z-X O WrJCC- X=X MO WeT o ZJIHE O
O I ALl e = ] 2T N e Z et - Ll e ) QX -
o 1O WOWOXOXOCO D < I pXOWOxXOorOC W ¥ ) i Z2~Ego <
Co OO0 QU ELZTLOTOTUW U > Z9OOWe--+ORK L L X wg T <bwXd~ U
-4
—~ ] O [7a TN SR R N ] ~
D D N O —~N O O © o
— 4 e - .4 e 4
(19 (&) (W, Ol LN OO LU
[aR 10 BIREN o3V o SR S ViR e Nab TOI N T XN of 70 ) OR QCO - NI N D MG Qe 3
QO OQOOT " rlrlmirtris P e Ll a S Ta Y o A TN E R T N, V] Ay a2 Yeatsatsn
QL O0SOCLOCULOCOO OCQCOoOC Qoo OO OOWVOO
QC OCQCOCTOC OO TCoQOOQOCQCOO0 QO QOOCO
L ZZZTTT 2L ZZTZ 2L Z2ZTEZZT 7% Lz Z2LZZ2Z
[Vl SR Al ValSolRalRal SR T Ral Sal Sn T ¥elRel ¥s) AV SN [HeT¥e] ["a18aT el Rel el
>4 e A T T T S TSR S TR TS Sy S T [ Y e e T Y e I Y ] e N [ ] * by —ev bk 4 I+



£124352X'"VARLAMDA="EL12.3,2X'CVR.ALFA-AMDA="

(o]

+*

¥

oS

-—

— o™~

-3 -

- ™

« - o

[ o <3 [t -

— - o

p-TR o 1]

- > 3 (75

O - 8] —

QO ~ L 4

- O [T «’

< J wv [- 2a 4 =

¥ ¥ < =4 b x4

g «< O o< o

W L X — ¢ w

- d < o~ ore -

< < | L'y <7 w

# £ O Ney e >> [m)

F* N O HY N e ~ -

mememndt 3 O - L e —~
STITITITILI LI A own
rHefNIN LT NS NCT o L

i = 4 = e <L U AN Ot et Qo e

e LR LT N T T T80 T W TUCUSIRL NN, e
A I2ZZN T LU i -
QOO NV NN | H.W I ## N<CenOL«"
NN e~ | NGt ob—}-X
—Ay TN Nl ] e
IO S S d N K I D40 e O
DNCOIDNODL WU C1=>> 2> O IO L.

-

Ot INGE VO~ oo

AN M ™ [aaks
DAN MO ' MNITINONDT Ot NNNT
o lalaTia Yo p PC T 2T SO X B X BPad Vo UV SV XV, YT Y
QOO0 O00OPLOOQC OO0 OCO
COVO000CO0OOCOTOOD000 OO0
ELEZLZZZI2ZZZZZZZZZ ZZTZ
AN AL RN et
A 10 b 4t At bt b e A ar AP (P -t

CALCOLO RELIA3ILITY E SUA VARIANZA

- 57 -

14VAR2+2 ,2AMDAXALOG(TI%CVR]12

DAXTRXALFA)

e BAM
*VLR
Pa3,2X'LA RELTABILITY E="'F9.5,2X"LA SUA VARI

)
2
2

AXT
~LEA
ALO

. = " RT.IA
el G I
Nt Z
C>>ZU <

—t
—Neym - W
5 oS LN (X RN o

QOO

nNO! Wo O
U NnNNY
CCoOC0O
CCO0T O

ZZZZZZ
NN TN
LR Y T L]

TASULAZIONE WEIBULL

—
-~
h'
a o
t (@]
et
- N » -
¥ Nl -
— = | *
LT LY 4 >
- 0 -t - N
<Ll D o
w | [~ %3 v
o <L rimoem
Ol WG Z
N L e o
Nt | - <
— (T3 PN o\
Pt 4 B a4 TV | .
et Oee w rd
ET~ o <L
FEX Moo
| — L~ w
NILE IxN [
<O Dl "~
ETwe OF »
- < <] M <
Ll ——al e @ b
Do v +0ULU o (e -
$Z <t It o
s MULI<TCOIOOY a.
L4 M OO e
2> Z wE XN~ O X
[oan idlonianl shleal I 0 NIE " Fo [}
O | | O Q—rd O~
[C oL Y S Y N L S e et
~ s edll b~ }- f-

O O $ WO

[l [ IS [T Ao 3 g o S 3 o Aod - &
I\VAIU\ — Yt O B HC O
ULXZEXEOE~C.c20O 00O
—h-F -G ATWLRLOZXUL WD

0 O 1 O O
- r4

QLW

G NSNS OO0 C eIt IND
e lNe it B et ol olNe Rot ool bl il ik ind ol By
cooooc o oCcC O CcCo
ccoccCcoocoococococ O

LTI I ZZZTZTZZZZ
[SoTRa Y Palig Vo TRe Y Fal NoY KoY Eal Bef Voo Y ¥al SalVal o'
Ll Y R T e e Y ey e R L ] e L L T ) o ]



- 58 -

A(100)//N,J

o =<
ZA =
O "™l
—-—_Nn2Z20 D=2
—2CNo N e
OUWT L rmiantD
ZET - =0
DO~ Z
U QO = Qb b=

o
—

aNMFN OO0 0O
OCOCOOOCO~
[eleolele]lolalelala
COQOOCOO0

2Z22Z222Z2
VNN NNNNW
Laad T L LT LT ]

-
L 3

Z -

~ -

~ b4

o <

o =

~ -

- <
~< - N
<L P N
—— < <
- -~ -—t
[« S — - S
<0 - ) TN
—a el - — —
o=~ O -IZ <

— O A IO-
Z0O~— NN
ONgE & DO>F ot
—Z— |l +N— N
—OW — O+ Ny

O =2 q0~Ng oI D

ST Nl e e e
DO ZWUTOTZT AN LW Z
WO L NN LXK N X LY

o
-

NOAFNONDI QNN FIN
COOOCOC O —Ardrird i
slolalelolalsleinlelololela
COCIO0OTOOIIO00O00

EZZ2Z22772222222
VTNNNNNNNIAVNNND

Bt B b Bt Gt Bt o ot G b ] bt e v

—-—

= =

L 3 —r

pid «

~ -

N, L

-0 >

oo ~—

O et (&)

e [ond

- - -
—l ~ <t -— no
—— < ~— [l
N>O 3 < WL L
LN~ * — (S
<O~ —~ — I~
~a v —_ Z d Z> =M
(75 ¥ N S S S = () o e < T
—Zt # A O -
ZOATDw— Z lieeZ DL
O~ << D NT AN
— N i >4 it <4+ NNz
O M o dd CuNe ool

OF U ZAdAC A~ LN —NICI XD

ZESH NN SlUell Dl
DOt Z W IO I UN D N Ul Z
L O LN DN N NN N e = A LU

o] ]
it N

NEFTNONTOC~NMT DO ORO -
COOCOOCO O mirmdrimd mdymd ed et ed =l IO
cCCcooooccocoocoooCcood
OOCCDO0O0DCIDOTCOCOCD

Z2Z2222Z2222222222222Z22
VNN LV NVDNNNNNNNNNNN

Dt g fmand et et Bt o (et b $veed (e b et e et = e bt et S

1)-PREC)IL10,10,29
1)#%2/(2,%X1-Cl-X2)

yJe By NDIT

)

C

)

C
NOITY6412412

—

=z OoOxXZ
= Dt Nt | X
T >UVNINOV+C 0D
ECH Ne it 1| | XX 0O

UNCTION ZERUI(Y,STAR,PREC)

NAFN IO O=NOEF N D
[elelanlelalalalar P r
[elalalslalaielalalelelafalele)
COOCOOCCOOOO0O00

2z2222222222222
NNVDNANNNN NN NN

Dt g b et et Svmd et $ed et It et Pl Bomng B Bt



- 59 .

APPENDIX 3 - Desoription of RANKS codo(1)

With reference to Section 3.2.5, the RANKS code, written
in FORTRAN H for IBM 360/65, solves the following equation in p3

m-1 -
1on(p) - T4 (M pla-p™ =0 (A3.1)
[

for given values of y(p), n, m, and all values of i between O and
m-1, The bisection method is used for the solutien,

Subprogrammes employed:

1. FUNCTION PIPPO(Z) caleculates the function (A3.1)

2., FUNCTION ZERO(A1, B1, Y, PREC) applies the bisection method
to the Y function to find the Y radix in the interval A1, B1
with precision PREC,

Input data:
AI(K) values of confidence level w(p) for K = 1,2,3

Remarks:

- the sample dimensions must be <40

~ the precision of the bisection method is 5.10"-5

- A1 = 0, Bl a1

) The original version of the code, in F2V3 on IBM 7090, is

given in Ref. 12,
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TABLE 1 - 0.05 2ANKS

Sasple size & 3
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 13 19 20
1 -0500  .025) .0169 .0127 .0102 .0035 .00T3 .0064 .0057 .0051 .0035 .CO42 .0039 .0036 .COM  .0032 .CC30 .0025 .CC2T  .CC25
2 -2236  .135) .0976 .076{ .0628 .033: 0364 .0410  .0367 .0333 .0305 .0280 .0250 .C242 .0227 .0213  .C208  .C190 .0180
3 -3684  .2486  .1892  .1531  .1288 .11 L0977 .0872 .0783 .O7T19 .0550 .0511  .0553  .0531 .Ci53 .0L70  .0445  .C421
P «4729  .3c26 L2713 L2253  .1929  .168]  .1500 L1351  .1228 .1126  .1040 .0957 .C902 .C346 .GI9T  .0T53 0712
3 <5493 4182 L3312 L2892 L2513 L2224 L1995 1310 1655 L1527 1417 1321 L1237 1154 L1059  .1C43
6 -6069 4793 .4003  .3449  .3035  .2712  .2453  .2219  .2031  .1909 1773 .156%  .1583 L1475  .114%
1 +6518  .5293  .8503  .3934 L3258 .3152  .2B7C L2635  .2437  .2257  .2119  .163 1815 <1773
8 +68TT  .5709  .4921  .3356 .3503 .35i8 .3250 .30CO  .2786  .2661 .2530 .2297 .2170
9 -7169 6053  .5299  .4727  .327: L3504 .35S5  .3334  .31C3  .2912  .2739 .2585
10 +T411  .6356  .5619  .3053  .4600 .4225 .3910 .364C .3405  .3201  .301§
1 7616 L6513 .5399  .5343  .4392  .4515  .£197  .2922  .3681  .3{59
12 «TT91 6837  .6145  .5602  .5155 4781 L2260  .4181  .3936
13 47942 L7032 .6365 .5834 .5394 .5022 4700  .4220
7] L8073  .T7206 .5562 .604) .5211  .5242 .4522
15 -B189  .7360 .6738 .62)3 .SB09  .5444
16 -8292 .7498 .6897 .6406 .3950
17 -8384 .7623 .7042 .6553
18 -£467  .TTIS  .T174
19 -8541  .783%
20

05509

-‘[9-



TABLE 2 - 0.5 RANKS

Sample size = N

1 2 ) 4 5 § 7 8 9 10 " 12 13 94 15 16 17 18 19 20

1 #5000  .2929  .2063  .159%1  .1294 .109%1  .0943 .0830 .0741 .0670 .0611  .0561 .0519 .0483  .0451 .0424 .0399 L0377  .0358  .03a1

2 <7071 .5000  .3857 .3138  .2644 .2285 .2011  .1796 L1623  .1479 .1360 .1258  .1170  .1094 L1027 .0968 .0915 .0368  .0825

3 <7937 .6143  .5000  .4214  .3641  .3205 .2862 .2585 .2358  .2167 .2004 .1865 .1043 L1636 .1542 .1458 .1382  .1315

4 <8409  .6862 .5786 .5000 .4402  .3931  .3551  .3238  .2975  .2753 .2561  .2394 .2247 .2118 .2002 .1899  .1805

5 28705  .7355 <6359 5598  .5000 L4517 4119 L3785 L3502 <3257 L3045 L2859  .2694  .2547 2415  .2296

6 «8909 L7715 .6795  .6069  .5483  .5000 .4595 4250  .3954 L3697 .3}70 .3270 .3092 .2932 .2788

T -9057 7989  .T137  .6449 .5881  .5405 .5000 .4651  .4348  .4082 3847  .3637 .3449  .3279

8 <9170 .8204  .T414  .6762  .6215 5749  .5349 L5000 4694  .4423  .4182  .3966  .3771

9 29259  .8377 7642  .T7024 .6498  .6046  .5652 .5306 .5000 .4727 .4483  .&262

10 <9330 8520 . T833 L7247 .6742 .630) 5918  .S5T6 L5273 .5000 .4754
11 <9389 8640 .T7995 .T439  .6955 .6529 .6153  .5818  .5517  .S246
12 94138 «8742 .8135 + 7606 <7141 <6729 .638) .6034 -5737
13 -9481  .8830 .8251 .7752 .7306 .6908  .6551  .622%
14 <9517  .8906 .8363 .7882 .T7453 .7068  .6720
15 <9548  .B973  .8458  .799T .7585 .7212
16 .9516 .9032 .8542 L8101  .T703
17 .9600 .9085 .8617  .8194
18 «9622 .9132 .8685
19 9632 N5
20 9659

_29_



TABLE 3 - 0.95 HARKS

Sazple sise = N
) 2 3 4 5 é 7 8 9 10 " 12 13 194 15 16 bk ] 18 19 20
1 <9500 7764 .6316  .52T1  .4507  .3930 .34B1  .3123 .2B31 .2589 .2384 .2209 <2058 .1926  .1810 .1707  .1516  .1533  .1458 1290
2 <9747 .B646 L7515 6574 .5818 L5207 L4707 .4291  .3941  .3643 L3387 3163 .2967 <2794 .2639 .2501 2375  .2263  .2161
3 9830 .5024  .B107T  .7286 .6587 .5997 .5496 .5069  .4701  .4381 4101  .3354 .3634 .3438 .3262 .3102 -2958 .2826
§ -9812  .9236  .B26B  .TT4T  .T10B  .6550 6066 .5644 .5273  .4946  .4656 4398 4166  .3956 .3767 <3594  .3437
s -9598  .9377  .B712 .BO71  .7486 .6964 .6502 .6091 .S5T25 .5400 .5107 .4B844 <4605 .4389 .4191  .4010
6 -9915 .9366  .B889 .B312 .T176 L7287 .6848 .6452 .609§ .57174 .5483 .5215 .4978 4758  .4556
7 «9927 .9536 .9023  .Bic -804 L7547  .T129  .6750 .6404 .609C  .5803 .5540 .5299 .5078
8 +9936  .9590  .2127 .BK49  .B1S0  .7760 .7364 L7000 .6666 .6360 601  .S519  .5580
9 -9942  .9632 .9212  .BT7V 8243 7929  .7563  .7214  .6891  .6598 .6319 .6064
10 +9949  .3€57  .9281 L8272 .3473 .80S1  .7733 .7299 .7038 .6759 .6530
" <9953  .9695 .9339 .5959 .8583 .8222 .7BB1 .7550 .7260 6890
12 <9957 .9719 .9389 .9033 .8679 .B335 .8010 .T703 .7413
13 <9960  .9740  .9431  .9097 .8762 .8536 .B125 .7629
14 -9963 9758 .9468 .9153 .8835 .6525 .8227
15 «99€6 .97T13 .9501 .9203 .6901 .6€Os
16 <9962 .9187 .9530 .9241 .£9%9
7 -9948  .9795 .9555 .9286
1] .9930 .9510 .9578
19 9909 .9819
20

-9886
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