## EUR 4250 e

## EUROPEAN ATOMIC ENERGY COMMUNITY EURATOM

# REFLOS <br> A CODE FOR THE REFINED EVALUATION OF FUEL LOADING SCHEMES 

by
W. BÖTTCHER * and E. SCHMIDT *
in co-operation with

W. DE HAAN *, F. HARDT *, J. LIGOU **

P. TAUCH * and G. VEILHAN **

* Euratom
** GAAA


## LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Communities.

Neither the Commission of the European Communities, its contractors nor any person acting on their behalf:

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4


When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by Guyot, s.a.
Brussels, April 1969

This document was reproduced on the basis of the best available copy.

## EUR 4250

REFLOS - A CODE FOR THE REFINED EVALUATION OF FUEL LOADING SCHEMES by W. BOTTCHER * and E. SCHMIDT * in co-operation with W. DE HAAN *, F. HARDT *, J. LIGOU **, P. TAUCH * and G. VEILHAN **

* Euratom
** GAAA
European Atomic Energy Community - EURATOM ORGEL Program
Joint Nuclear Research Center - Ispra Establishment (Italy)
ORGEL Project
Luxembourg, April 1969-132 Pages - FB 175
REFLOS represents a code for the refined evaluation of fuel loading schemes in heavy water moderated reactors or, more generally, in reactors with wealily absorbing moderator. Its scope is to determine reactivity behaviour, powerdistribution, attainable burn-up and fuel cycle cost for both the running-in period and the equilibrium of a power reactor.


## EUR 4250 e

REFLOS - A CODE FOR THE REFINED EVALUATION OF FUEL LOADING SCHEMES by W. BÖTTCHER * and E. SCHMIDT *, in co-operation with W. DE HAAN *, F. HARDT *, J. LIGOU **, P. TAUCH * and G. VEILHAN **

## * Euratom

** GAAA

## European Atomic Energy Community - EURATOM

ORGEL Program
Joint Nuclear Research Center - Ispra Establishment (Italy)
ORGEL Project
Luxembourg, April 1969-132 Pages - FB 175
REFLOS represents a code for the refined evaluation of fuel loading schemes in heavy water moderated reactors or, more generally, in reactors with weakly absorbing moderator. Its scope is to determine reactivity behaviour, powerdistribution, attainable burn-up and fuel cycle cost for both the running-in period and the equilibrium of a power reactor.

REFLOS has been written in FORTRAN IV for the IBM $360 / 65$ computer. The report gives a survey about the methods applied in the individual subroutines of REFLOS, a detailed description of the input parameters and an example for input and output.

REFLOS has been written in FORTRAN IV for the IBM $360 / 65$ computer. The report gives a survey about the methods applied in the individual subroutines of REFLOS, a detailed description of the input parameters and an example for input and output.

## EUR4250e

# REFLOS <br> <br> A CODE FOR THE REFINED EVALUATION <br> <br> A CODE FOR THE REFINED EVALUATION OF FUEL LOADING SCHEMES 

by

W: BÖTTCHER * and E. SCHMIDT * in co-operation with
W. DE HAAN *, F. HARDT *, J. LIGOU **, P. TAUCH * and G. VEILHAN **

> * Euratom
> ** GAAA


## ABSTRACT

REFI,OS represents a code for the refined evaluation of fuel loading schemes in heavy water moderated reactors or, more generally, in reactors with weakly absorbing moderator. Its scope is to determine reactivity behaviour, powerdistribution, attainable burn-up and fuel cycle cost for both the running-in period and the equilibrium of a power reactor.

REFLOS has been written in FORTRAN IV for the IBM $360 / 65$ computer.
The report gives a survey about the methods applied in the individual subroutines of REFLOS, a detailed description of the input parameters and an example for input and output

## KEYWORDS

R-CODES
REACTIVITY
FUEL ELEMENTS
LOADING
BURNUP
FUEL CYCLE
HEAVY-WATER MODERATOR
COST
REACTOR

## CONTENTS

Pare
INTRODUCTION ..... 5
THE SUBROUTINE ORACLE I ..... 8

1. Scope of the program ..... 8
2. Main physical concepts of ORACLE 1 ..... 9
3. The heterogeneous constants ..... 15
THE REACTOR CODE ..... 21
4. Principles of the heterogeneous method and assumptions in Trihet ..... 21
5. Modifications of Trihet making it applicable to Reflos ..... 23
THE ECONOMY PART ..... 25
6. Survey about the calculation technique ..... 26
7. Formulae ..... 28
TECHNICAL INFORMATIONS CONCERNING REFLOS ..... 40
8. Identification ..... 40
9. Survey about the construction ..... 41
10. Sequence of the input cards ..... 42
11. Explanation of the meaning of the used symbols for the input ..... 49
12. Output description ..... 92
13. Coding informations ..... 98
SAMPLE FOR INPUT AND OUTPUT ..... 100
14. Problem description ..... 100
15. Print of input and output data ..... 102
FERENCES ..... 130

- 

```
REFLOS, a Code for the Refined Evaluation of Fuel
==ニニ==
Loading Schemes.*)
```

1. INTRODUCTION ${ }^{* *)}$

REFLOS is a code for the refined evaluation of fuel loading schemes for heavy water-moderated reactors, or, more generally, for an heteregeneous reactor containing a weakly absorbing moderator. It has been developed for the design calculations for the ORGEL Prototype reactor. The necessity for its development follows from two points :
a) During the design of the ORGEL reactor a certain number of nuclear standard codes has been employed. In order to facilitate their utilization and to reduce the source oferrors arising by different definition of the terms, it has been tried to generate a consistent system of some codes which are needed to simulate the reactor life.
b) Besides this more technical point of view the pretensions concerning the quality of the code may be formulated as follows : if one wants to assess the potentialities of any reactor system, one will normally execute simple fuel cycle calculations applying point models. By means of a typical piece of fuel of the reactor the isotopic and reactivity changes are taken into account. But since nuclear power is becoming progressively more competitive,

[^0]a higher accuracy concerning the economic predictions is needed. One has to take the fuel cycle calculations to the stage where they provide accurate indications of performance attainable in engineering designs. In order to do this, the non-uniform power distribution in an operating reactor as well as the influence of the chosen kind of fuel management must be considered.

REFLOS consists essentially of slightly changed versions of codes developed at ISPRA, as PLGTHARCO (Ref. 1) and RLT-4 (Ref. 2), which have been coupled in ORACLE 1 (Ref. 3) and of the code TRIHET (Ref. 4) (Ref. 5), developed by GAAA under contract with EURATOM. The part of the code which governs the fuel movement in the core has been kept quite generally, hence, a lot of imaginable kinds of radial fuel management schemes can be investigated, namely all combinations of :

- batch re-loading or continuous (element-wise) re-loading;
- movement of the fuel from outside to inside of the core or vice-versa;
- inversion of the re-loading scheme on the edge of two neighboring core zones or no inversion.

After having determined the core states characterizing the equil brium period and having decided the fuel re-loading scheme for the running-in period of the reactor life, the execution of the cost-part of the code is possible. Apart from the fuel cycle cost for a f ( f given life periods, following in its evaluation the proposals of (Ref. 6), the mass flows of heavy atoms into and from the reactor are
evaluated. Having as input parameters the re-loading plan and the desired power, REFLOS could be taken as a tool for the automatic control for the fissionable materials fed in, and discharged from, a power station. This can be also done for small operation intervals of the reactor, because the mass balances are given for each re-loading event.

The flow-diagram of REFLOS may be described briefly as follows. ORACLE 1 calculates for at maximum ten different kinds of fuel elements heterogeneous constants as function of the burn-up. The initial reactor state is defined by the spatial distribution of the kinds of fuel and the burn-up rate of the individual fuel element pieces in the reactor core. Then, the flux and power distribution, normalized to the desired total power, is calculated by the aid of the threedimensional heterogeneous reactor code TRIHET. Assuming a constant flux distribution for a specified time interval, a new burn-up state is defined and the cycle of calculations may be re-started. The surplus reactivity may be compensated by iterating for the depth of control rod insertion into the core. Against this, at present, there is no possibility in REFLOS to simulate the reactor control by moderator poisoning or heating, taking into account the influence of these effects on the spectrum and by this on the conversion rate. This could be important lack in the case of high-reactive initial cores.

The scheme for the re-loading of the fuel elements is described by a matrix what has to be specified by the user. The re-loading is automatically released; if one of the following criteria is fulfilled :

- the prescribed life of the reactor is reached;
- the effective multiplication factor falls below a specified level;
- the power form factor falls below a given limit.


#### Abstract

The fact, that in REFLOS only from outside imposed fuel loading schemes are applicable, is not taken as a serious restriction. After having got some experience referring to the fuel management in the considered reactor, the user will be able to choose the suitable re-loading plans.


The code is in its application rather variable. Thus, instead to derive the heterogeneous constants by ORACLE 1, one could procure them in any other way and introduce them by punched cards into the code. The program may be used for only one criticality calculation skipping the burn-up part or it may be employed for the investigation of the burn-up behaviour of a reactor without applying any fuel shuffling. Also the economy part may be omitted, if the knowledge of the corresponding data is not of interest. This variety in the execution of the calculation run is obtained by assembling the single parts of REFLOS by means of AIM-cards. Hence the user may deviate easily from the normal flow diagram of the code.
2. THE SUBROUTINE ORACLE 1
2.1. Scope of the program

ORACLE 1 is a lattice cell burn-up code which provides the heterogeneous constants and the composition of the fuel, needed in REFLOS, as function of the mean burn-up of the fuel in the cell.

The nuclear properties of the lattice cell are changed during the burn-up process by two different effects; firstly, by the alternation of the isotope densities of the heavy atoms and of the reactor poisons itself and, secondly, by the influence of the changement of the isotope composition on the thermal neutron spectrum and by this on the effective microscopic cross-sections for thermal and epithermal neutrons. Corresponding to these two problems a lattice cell burn-up code involves the following stages :

A lattice cell code evaluates the cell reactivity, the heterogeneous constants, the effective microscopic cross sections and other cell parameters for the fresh umpoisoned fuel. Then the effective cross sections and the isotope composition of this cell state are introduced into a depletion code. After having irradiated the fuel, for a specified time with a defined flux level, the strongly absorbing poisons are forced into equilibrium, the new isotope composition is evaluated and a new lattice calculation will take place. The sequence of cell lattice and depletion calculations is carried out till a prescribed upper limit for the irradiation time is reached.

### 2.2. Main physical concepts of ORACLE 1

The lattice cell code

The lattice cell code, incorporated in ORACLE 1, is PLUTHARCO, a plutonium, uranium, thorium assembly reactivity code for heavy water lattice cell calculations. The method is intended for design survey type calculations and for preliminary fuel cycle analysis. It is based on the four-factor--formula, the two group theory and the Westcott cross section formalism.

Subsequently, a survey about the physical features of PLUTHARCO shall be summarized. For more details the reader is refered to (Ref. 1).

The effective cross-sections are defined by :

$$
\sigma_{e f f}=\sqrt{\frac{\pi T_{0}}{4 T}} \hat{\sigma}=\sqrt{\frac{\pi T_{0}}{4 T}}(g+r s) \sigma_{2200}
$$

where $T, g, r, s$ mean the neutron temperature and the well--known Westcott-factors. For Pu-c39 and Pu- 40 the s-Value is calculated depending on the corresponding concentrations. In the case of $U-238^{\circ}$ and $T h-a 3<$ s is put equal to zero and the resonance absorption is evaluated taking into account correctly the self-shielding

The thermal multiplication factor, $\boldsymbol{\eta}$, is defined as the ratio of generated neutrons in fissionable materials to absorption in the fuel mixture, applying the above defined cross-sections.

For the calculation of $T$ the Canadian formula, correlated to experiments which have been executed with Candu lattices, may be chosen. Other possible choices are the introduction of Termidor parameters or spectrum constants derived by any other technique.

The fast fission factor, $\varepsilon$, is calculated using the method of Fleishman and Soodak; however, the scheme was simplified to a two-groups structure instead of a three-group one. The two groups are separeted by the fission threshold of U-238. The fission source as well as the source of the neutrons next generation is supposed to be flat. In the second group
fission and inelastic scattering is not permitted. Atoms with fissioning capacity beneath the $U-\subset 38$ fission threshold are corrected for the fact that sub-threshold fissioning is not permitted, i.e., the fast fission in the second group is added to the first one.

The calculation run for the resonance escape probability can be divided into three parts. First, the effective surface per gram of fuel for the cluster is evaluated by the method of Hellstrand. After having derived this, the cluster is identified with an effective rod with the same surface per gram and the resonance integral, I, is calculated by :

$$
I=A+B \sqrt{\frac{S}{M}}
$$

interpolating tables which give $A$ and $B$ as function of the physical temperature and the composition of the fuel. A and $B$ have been derived by fitting of resonance integrals calculated by the aid of the method of Nordheim. Finally, the resonance escape probability, $p$, is calculated by taking into account the disadvantage-factor of the epithermal flux, what results from the heterogeneous build-up of the lattice cell.

The thermal utilization factor, $f$, is evaluated by :

$$
f=f_{f c} \cdot \mathbf{f}_{c c}
$$

where $f_{f c}$ represents the fuel to cluster utilization factor and $f_{c c}$ the cluster to cell utilization factor. Both factors
are calculated following the proposals of Amouyal and Benoist. For calculating $f_{c c}$ the lattice cell is approximated by a cylindrical homogeneous fuel zone at the center, being surrounded by five cylindrical regions: outer coolant, pressure tube, insulating gap, calandria tube and moderator.

The diffusion area for the lattice cell, $L^{2}$, follows from the diffusion area of the moderator, $L_{m}^{2}$, and from the diffusion area of the central non-moderator region, $L_{c}^{2}$ :

$$
L^{2}=L_{m}^{2}(1-f)+f L_{c}^{2}
$$

The slowing-down area of the moderator $\tau_{m}$ is automatically corrected for the perturbation of the fission spectrum by inelastic scattering in the fuel and for the presence of hydrogen atoms.

In (Ref. 1) an extensive conformation of PLUTHARCO results and experiments (Expo, Cise, Savannah River, Chalk River) has been described. Generally, the four factors of the four-factor-formula were in good agreement with the measurements. Against this, remarkable discrepancies appeared in $L^{2}$ and $\tau$. The differences in the buckling lay normally within $0.3 \mathrm{~m}^{-2}$. For small pitches, however, there is a systematic underestimating of the buckling obtained by PLUTHARCO. It is assumed that these discrepancies arise due to inaccuracies in the technique describing the epithermal flux disadvantage factor and due to the fact that the Westcott formalism is no longer appropriate to hardened thermal neutron spectrums.

The depletion code

As depletion subroutine for ORACLE the slightly changed code RLT4 (Ref. 2) has been employed. Thus, it is possible to consider the Uranium burn-up chain. Fon specified products of thermal neutron flux and irradiation time, $\phi . t$, the isotope densities for heavy elements and fission products are calculated. The application of the cross-section

$$
\sigma_{\text {eff }}=\sigma_{2200}(g+r s) \sqrt{\frac{\pi}{4} \cdot \frac{T o}{T}}
$$

```
in the burn-up equations means, that \emptyset represents the
average thermal neutron flux.
```

The neutron temperature $T_{n}$ and the epithermal flux fraction $r$ are re-calculated after each irradiation interval $\Delta(\phi t)$ by means of PLUTHARCO.

In the case of the fertile elements Th-232 and U-238 the cross-sections $\hat{\boldsymbol{\sigma}}$ are corrected for the resonance absorption defining the effective cross-sections $\boldsymbol{\sigma}$,

$$
\sigma=\sigma_{\text {eff }}(1+\omega)
$$

$\omega$ means the ratio of fast and epithermal to thermal absorptions. It is re-calculated after each irradiation interval $\Delta(\varnothing t)$.

In the depletion code the following heavy atoms are considered :

Th-232, Pa-233, U-233, U-234, U-235, U-236, U-238,

Pu-239, Pu-240, Pu-241.

The decay of Pa-233 into $\mathrm{U}-233$ is taken into account by a half-life of 27.4 days. This is the only decay constant introduced in the burn-up equations. Hence, it is assumed that the $(n, \gamma)$-process in Th-232 leads instantaneously to Pa-233. Although the neutron absorption in Pa-233 becomes important only at fluxos above $10^{1}\left(\frac{n}{\mathrm{~cm}^{2} \mathrm{sec}}\right)$, this reaction mechanism is taken into account assuming an immediate build-up of $U-\angle 34$ and neglecting thus the build-up and decay of Pa-23it.

Referring to the uranium-chain it may be shown by comparing the reaction rates released by neutrons with the spontaneous reactions, that the decays of $\mathrm{Pu}-239, \mathrm{Pu}-240$ and especially of Pu-241 play an important role in the depletion calculations anly for fluxes smaller than $10^{12}\left(\frac{n}{\mathrm{~cm}^{2} \mathrm{sec}}\right)$. Since this is a flux level which will hardly appear in a power reactor, it is supposed that the neglect of these decay-mechanism does not represent a significant restriction for the application of the code. It may be still mentioned that also the delay in the generation of $\mathrm{Pu}-239$, caused by the build-up and decay of U-239 and Np-239 by absorption in U-238, is not taken into account.

The fission products with high absorption cròss-sections are treated explicitly in the depletion code. For Sm-149, Sm-151, Cd-113, Eu-155 and Gd-157 the differential equations are exactly solved while the Xe-135 is always treated to be in equilibrium. The low cross-section fission products have been collected in three pseudo-fission products following the proposals of the Canadians as Hurst and Walker.

It is foreseen to extend some parts of the depletion code in the next future.

### 2.3. The heterogeneous constants

ORACLE calculates the heterogeneous constants
by two different techniques applying once an analytical approach and the other time the multi-region theory of Amouyal and Benoist. Since in the past only the constants derived by the second method has been used, the following explanations shall remain restricted to this theory.

The heterogeneous constants needed in REFLOS are defined by 4 terms :
$-\quad$ ALFA $=\frac{1}{2 \pi D} \times \frac{A}{\emptyset_{a}}$
$D, A$ and $\varnothing_{a}$ mean the diffusion coefficient for thermal neutrons in the moderator, the absorption rate in the source region and the asymptotic thermal neutron flux on the edge of the source region.

- $\quad M U \quad$ ALFA $\quad x \frac{P}{A}$
$P$ represents the production rate of neutrons.
- GAMA

It means the generated power in MW per cm length of the source region and per unit of $\emptyset_{a}$.

- BETA

It gives the ratio of mean thermal neutron flux in the fuel to $\emptyset_{a}$.

In the multi-region Amouyal-Benoist theory the lattice cell is thought to be divided into a number of concentric rings. Let $n$ be the number of rings into which the channel is divided (assuming that the lattice cell consists of moderator and the channel), $f_{i}$ the absorption fraction within the $i^{\text {th }}$ ring zone, and $Q$ the total source of thermal neutrons, then the channel absorption rate is simply defined as

$$
A=Q \sum_{i=1}^{n} f_{i}
$$

If $D$ is taken to be known, the only variable still to evaluate is the asymp totic flux, in order to determine ALFA. The direct results of the theory of Amouyal and Benoist are the neutron streams going in and coming out from the region $i\left(\mathcal{f}_{i}^{-}\right.$and $\mathcal{J}_{i}^{+}$, respectively). To obtain the asymptotic flux, two considerations have been made :
a) It is assumed that the flux on the edge of the channel can be found by

$$
Y_{n}=\emptyset_{a}=2\left(\mathcal{f}_{n}^{-}+\mathcal{J}_{n}^{+}\right)
$$

which corresponds to an approximation of the diffusion theory, but using streams derived by means of the theory of collision probability.
b) The flux given under a) can be corrected in order to obtain the true diffusion theory value using considerations of (Ref. 7). It has been found that the moderator to fuel absorption ratio ( $\frac{1}{f}-1$ ) of the two theories differs by the term $\Delta \varphi_{m}, \quad$ where the result of the integral theory has to be modified by $\Delta \mathscr{Y}_{\mathrm{m}}$ in order to find the diffusion theory value. It holds

$$
\frac{\sum_{m} v_{m} \Delta y_{m}}{\sum_{f} V_{f} Y_{f}}=\frac{v_{m} \sum_{m}}{\pi a}\left(\frac{3}{2} \lambda-1\right)
$$

and thus

$$
\Delta \varphi_{m} \approx \frac{A}{\pi a}\left(\frac{3}{2} \lambda-1\right)
$$

The subscripts $f$ and $m$ refer to fuel and moderator, respectively. The term $f$ means the thermal utilization factor of the cell, and $\Sigma$, $V$, a, $\lambda$ mean the cross-section, the volume per unit of length, the channel radius and the extrapolation length in terms of mean free path of the moderator on the edge of the channel.

Introducing the correction for $\varnothing_{a}$ into the formula of ALFA, one obtains

$$
\text { ALFA }=\frac{1}{2 \pi D} \cdot \frac{A}{2\left({\gamma_{n}^{-}}_{\pi}^{-}{f_{n}^{+}}_{n}+\frac{A}{\pi_{a}}\left(\frac{3}{2} \lambda-1\right)\right.}
$$

It may be noted that the discrepancies between the techniques a) and b) were generally smaller than $1 \%$.

The source parameter MU can be derived from the ratio of production to absorption of neutrons in the single group concept

$$
\frac{M U}{A L F A}=\frac{\varepsilon p \eta f}{A}=\frac{k \infty}{A}
$$

and, consequently,

$$
M U=A L F A \quad x \frac{k \infty}{A}
$$

$\varepsilon, p, \eta, f$ are the factors of the four-factor-formula, $k_{\infty}$ means the infinite multiplication factor of the lattice cell.

$$
\begin{aligned}
& \text { The heterogeneous constant GAMA may be written as } \\
& \text { GAMA }=B E T A \quad x \quad K \times \frac{d M}{d z}
\end{aligned}
$$

BETA will be defined below and $\frac{d M}{d z}$ gives the tons of fuel per cm of source length in axial direction. The specific power per unit of neutron flux within the fuel can easily be written as

$$
K=\frac{E \Sigma_{f}(1+\Delta)}{P_{f}}
$$

where $E, \Sigma_{f}, \Delta$ and $\rho_{f}$ mean the energy released per fission, the thermal macroscopic fission cross section of the fuel, the yield to the fission rate by the fast fission process and the density of the fuel.

## Finally, it remains to evaluate BETA. Taking

again into consideration the $n$ concentrical regions of the channel, the fuel absorption rate $A_{f}$ and the total channel absorption rate $A$ can be expressed as

$$
A_{f}=\sum_{i}^{n} \sum_{a, f}^{i} \quad \varphi_{i} \quad v_{i}
$$

and

$$
A=\sum_{i}^{n} \sum_{1} \sum_{a}^{i} \quad \rho_{i} v_{i} .
$$

We are looking for the reaction rate in the fuel per unit of neutron flux on the surface of the channel

$$
\frac{A_{f}}{\emptyset_{a}}=\frac{A_{f}}{A} \cdot \frac{A}{\emptyset_{a}}=\frac{A_{f}}{A} \cdot 2 \pi D \quad x \quad A L F A^{D}
$$

The neutron flux ratio BETA on its turn is related to this term by

$$
\frac{A_{f}}{\emptyset_{a}}=\operatorname{BETA} \times \sum_{i}^{n} \sum_{i}^{i} \quad v \operatorname{BETA}_{i} \times \sum_{a, f} \cdot v
$$

and thus

$$
\text { BETA }=\frac{1}{\sum_{i=1}^{n} \sum_{a, f}^{i} v^{i}} \cdot \frac{A_{f}}{\varnothing_{a}}=\frac{1}{\sum_{i=1}^{n} \sum_{a, f}^{i} v^{i}} \frac{A_{f}}{A} \pi_{2} \mathrm{D} \times \mathrm{ALFA}
$$

The parameter $A_{f}$ can be found as

$$
\sum_{i=1}^{n} \frac{\sum_{a, f}^{i}}{\sum_{a}^{i}} f
$$

and $A$ is equal to the sum of the $f_{i}$ for the individual regions within the channel.

Hence the generalized formula for BETA reads :


For a single region of the channel this expression may be simplified to

$$
\mathrm{BETA}=\frac{2 \pi \mathrm{D} \quad \mathrm{x} \quad \text { ALFA } \times \mathbf{f}_{\mathrm{f}}}{\left(1-\mathbf{f}_{\mathrm{m}}\right) \mathrm{V}_{\mathrm{f}} \sum_{\mathrm{a}, \mathrm{f}}}
$$

## $\mathbf{I}_{1}$ means the absorption fraction within the fuel.

```
    The choice of TRIHET (Ref. 4) (Ref. 5) as a
subroutine for REFLOS in order to calculate reactivity
and neutron flux distribution of the considered reactor
was suggested by
    - its availability at Ispra and the experience
    already made with the code ;
    - the relatively short running-time, taking into
        account that TRIHET is a three-dimensional reactor
        code ;
    - the fact that a heterogeneous reactor code facilitates
        a suitable simulation of fuel shuffling with multi-
        -batch or with element-wise re-loading.
            Originally, TRIHET has been established for calculations
concerning the test-reactor ESSOR. The basic aspects and
the modifications which were made to apply the code in REFLOS
are discussed below.
```

3.1. Principles of the heterogeneous method and assumptions in TRIHET

```
Essentially, there are two techniques to treat
heterogeneous reactors. The first one is respented by the
well known unit-cell method of Wigner and Seitz replacing then the heterogeneous assembly by a partly homogeneous one. The other way to evaluate a heterogeneous reactor has been developed by Feinberg and Galanin. They treated the reactor as an assembly consisting of fuel channels and moderator. The fuel channels are taken to be line sources of fast and line sinks of thermal neutrons. The fast source-neutrons are slowed down within the moderator and by means of the Fermi age equation and by superimposing the yields of all existing sources of the assembly, the sources for
```

thermal neutrons are computed. $\quad$ The thermal neutron
flux distribution in the moderator is then calculated
by simple diffusion theory. Apart from geometrical
data, the influence of the fuel channels on the flux
distribution in the moderator is taken into account by
the heterogeneous constants, describing the fission and
absorption properties of the channel divided by the
asymptotic neutron flux on the edge of the channel.

TRIHET represents an extension of the theory of Feinberg and Galanin in so far that the reflector may be considered as finite for thermal neutrons, the slowing-down of the neutrons may be treated by two energy groups, where one of them is governed by age-theory, corrections for the finiteness of the channels have been added and the axial decomposition of the fluxes (expansion of the fluxes in axial direction in Fourier series) has been employed, resulting in a three-dimensional model.

Assumptions representinga certain limitation of the TRIHET code and contained in REFLOS are listed in the following subsection :

- The heterogeneous constants are derived applying the unit-cell model. Consequently, although the thermal flux distribution is calculated later on for the real heterogeneous assembly, the computation is not heterogeneous in the stringent sense of the word.
- The situation is still worse concerning the resonance absorption. The resonance escape probability is introduced in the one-group heterogeneous constant, describing the generation of neutrons. The distribution of the resonance flux is not
calculated in TRIHET. Thus, concerning the resonance absorption, the code does not represent an heterogeneous one.
- The reflector must consist of the same material as the moderator.
- The fluxes in the two fast groups do not fall down to zero at the outside edge of the reflector but in infinity. This approximation means that the results of the reactor code will be in good agreement with the reality, if the tickness of the radial reflector amounts to nearly $4 \sqrt{\tau}$ or a greater number. $\tau$ is the slowingdown area.
- The fuel channels behave as line sources of fast neutrons. This assumption leads to the requirement that the radii of the channels must not be too great or the channels must not be too closely packed.
- The slowing-down properties of the materials within the channel as, e.g., the organic coolant, are not treated separately but must be included in a suitable way by modifying the slowing-down behaviour of the moderator.


### 3.2. Modifications of TRIHET making it applicable to REFLOS

The necessary informations, which must be provided by the subroutine TRIHET, are :

- the $k_{\text {eff }}$ for the given reactor state or the position of a specified control rod bank to reach the desired keff;
- the specific power for each fuel element channel at $j$ points along the channel in units of $\left(\frac{\mathrm{NW}}{\mathrm{cm}}\right)$
- the average specific power for each axial piece of the fuel elements, defined by the $j$ points in units of $\left(\frac{\mathrm{MW}}{\mathrm{cm}}\right)$
- the mean thermal neutron flux in the fuel ( $\frac{n}{\mathrm{~cm}^{2} \mathrm{sec}}$ ) for each fuel channel at $j$ points within the channel
- the power form factorgiving the maximum ( $\frac{\mathrm{MW}}{\mathrm{cm}}$ ) divided by the mean $\left(\frac{M W}{c m}\right)$ of the reactor.

The formulas for the specific power, together with other items referring to the modification of TRIHET, are described in (Ref. 8).

In occasion of the work for REFLOS, some parts of TRIHET have been simplified, reducing so the possibilities of the subroutine to a measure which corresponds to the necessity to evaluate real power reactor. Hence, the version of TRIHET used in REFLOS can investigate only reactors with axial reflectors and with channels, which are occupied by fuel elements of the same length. The search of criticality by varying the absorption rate within the fuel elements has been left out.

The heterogeneous constants, defining points within the reactor, are taken to depend linearly on the length of the axial fuel pieces. Moreover, two important features has been added: first, TRIHET has been formally splitted in Prevol and Trevol, whereat Prevol creates a matrix depending only on


#### Abstract

geometrical data and moderator properties. The terms within the matrix remain constant during all the reactor life and are to evaluate consequently only once. The matrix is fed into Trevol, what takes in consideration the composition of the fuel and, thus, the time-dependent component in a reactor。 This feature leads to an appreciable saving of computation time in the case of fuel shuffling investigations.


Secondly, a new symmetry has been introduced, resulting also in a reduction of calculation time, but, and this is of higher importance, also in an increase of the assembly calculable by the code. In contrast with the old rotation symmetry, the new one represents a specular symmetry, whereat the mirror line is the angle bisector of the sector of the assembly defined by the input. Note that a combination of both symmetries is allowed.

THE ECONOMY PART

The scope of this subroutine of Reflos consists of the evaluation of the fuel cycle cost and the consumption of nuclear fuels for the reactor in consideration. In order to contribute to a certain standardization in the field of cost calculations, the applied technique has been based on the procedure established by a group of European firms in cooperation and under contract with EURATOM, which is explained in (Ref. 6). In the sense of the terminology of this reference, the quantities calculated here are necessarily "a priori costs".

Since credits and expenditures caused by the fuel cycle occur at different points of time, one has to actualize them to the same point of time before striking the balance. So, the losses and gains of interest will be taken into account. Commonly, this method is named present-worth method.

It may be noted that the equilibrium fuel cycle cost of a reactor may be determined with a certain approximation by balancing simply the real credits and expenditures. In the case of the transient period, however, the present-worth method represents the only reasonable technique because there is no proportionality between energy generation (corresponding to credits) and expenditures and, moreover, because the expenditures occur strongly discontinuously.

### 4.1. Surveyabout the calculation technique

The course of the calculations is most easily explainable, if one considers the life-time scale of the reactor which is defined by the start-up of the reactor and by charging and discharging events of fuel elements. Mass and composition of the charged and discharged fuel are determined by the applied loading scheme, the kind of the used fuel and the burn-up rate of the fuel. All these terms are known after having executed the nuclear subroutines and the fuel management subroutine of Reflos.

Because expenditures and credits for the irradiated fuel do not occur directly at the time-point of the loading event, but are rather distributed around it, one has still to investigate the life-time scale of the fuel elements, in order to be able to derive the worth of one kilogram of fuel actualized to the time of the charging or discharging event, respectively. This is done by taking into account the following time intervals of the "history" of the fuel elements:

```
- Transport time for the fresh raw material*.
- Fabrication time of the fuel elements.
- Waiting time for fresh fuel elements before
    insertion into the reactor.
- In-core time of the fuel elements.
```

- Cooling time for fuel elements, which have been discharged from the reactor.
- Waiting time for the discharged fuel, in order to accumulate sufficiently great batches for the reprocessing.
- Transport time for the irradiated fuel from the reactor to the reprocessing plant.
- Time needed for the reprocessing.

Partly, in the above-cited time intervals, many working processes will be summarized. Thus, e.g., during the fabrication time, an eventually necessary conversion of the fuel into the needed form, the pellet sintering and the fuel element fabrication will be done and, during the reprocessing time, the remaining fuel will be reconverted into a valuable form.

The mass losses of the fuel materials during the individual working processes are taken into account by suitable factors and influence consequently the costs. The costs for the first core may be weighed by the excess elements on reserve。

It is possible to introduce a tax-rate on the worth of the capital bound in the fuel cycle. This tax-rate is paid for the half of the fuel element life on the worth of the fresh element and for the other half of the life on the worth of the discharged fuel.

After having derived such values for one kilogram of fresh and irradiated fuel, the total expenditures and credits per reloading event are derived multiplying the specific values by the charged and discharged masses. Then, the total values per reloading event are summed up for intervals prexcribed by input. Normally, these intervals will correspond to running-in, equilibrium and running-out period of the reactor. The running-out may be simply
defined as a fraction of the equilibrium period, since this yield will be normally of negligible influence on the total fuel cycle costs extended on the reactor life time.

### 4.2. Formula

```
Waiting times (innmoths) :
If ITWA = 1 and I > 1 :
```



If $I+I K-1>$ Maximum (LIMIT 1), the calculation of a new TWA is omitted and the last computed value is employed. TN and $I$ refer to the table number and to the step of the discharging event.

```
If ITWE = 1 and I > 1 :
```


*) The symbols used here, are explained in subsection 5.4.

If $I+I M-1\rangle$ Maximum (LIMIT 1), the calculation of a new TWE is skipped and the last computed value is used.

Specific cost for enriched or depleted Uranium in w er Foetal):

$$
\begin{aligned}
K C R_{2}= & (2.6 x K Y C+K C) \cdot \frac{y-R}{0.711-R}+\frac{C T}{100}\left[(2 y-100) \ln \frac{y}{100-y}-\right. \\
& -\frac{y-R}{0.711-R}(2 \times 0.711-100) \ln \frac{0.711}{100-0.711}+ \\
& \left.+\frac{y-0.711}{0.711-R}(2 R-100) \ln \frac{R}{100-R}\right]
\end{aligned}
$$

If $\mathrm{KCR}_{2}<\mathrm{KR}$, the code puts automatically:
$K C R_{2}=K R$

The so-calculated value is always used, if BCA is determined. It is employed for the calculation of BCE only, if the value, specified in the input, is equal to zero.

Calculation of BCA, BCE (in \# per Kg metal charged or discharged) :

If IRP $=0$
$\mathrm{BCA}_{\mathrm{I}}^{\mathrm{TN}}=\mathrm{KL} \mathrm{x}(1+0.01 \mathrm{PM})^{-\left(T K+T T A+T W A_{I}^{T N}\right)}$

```
I.f IRP = 1
```

$\mathrm{BCA}_{\mathrm{I}}^{* T N}=\left(\mathrm{XINU}_{1} \times \mathrm{WPC}_{1}^{\mathrm{I}, \mathrm{TN}}+\mathrm{XINU}_{2} \mathrm{xWPC} \underset{4}{\mathrm{I}, \mathrm{TN})} \cdot \mathrm{KCR}_{2}+\right.$ $+\sum_{K=3}^{I S \phi} \operatorname{XINU}_{K} \times \operatorname{WPC}_{K}^{I, T N} \times \operatorname{KCR}_{K}$

$x\left[1-\frac{S T}{12} 0.01\left(T K+T T A+T W A^{T N}+T R P^{T N}+0.5 I C T_{I}^{T N}\right)\right] x$ $\mathbf{x}(1.0+0.01 \mathrm{PM})-\left(T K+T T A+T W A^{T N}+T R P\right)$

The expression within the second bracket of $B C A_{I}^{T N}$ is put automatically zero, if $B C A T N$ results in a value with negative sign.

For I = LC (last core)

$$
\begin{aligned}
& B C A_{L C}^{T N}=\left[B C A_{L C}^{* T N}-\left(W P C C_{1}^{L C, T N}+W P C{ }_{2}^{L C}, T N\right) K R C C_{2}-\sum_{K=3}^{I S \phi} W P C_{K}^{L C}, T N \quad x K R C_{K}-\right. \\
& \left.-K_{R P}{ }^{T N}-K T R^{T N}\right] x\left[1-\frac{S T}{12} 0.01\left(T K+T T A+T R P+0.5 \mathrm{ICT}_{L C}^{T N}\right)\right] x \\
& x(1.0+0.01 P M)-(T K+T T A+T R P)+ \\
& +R H \varnothing\left[\mathrm{BCA}_{\mathrm{LC}}^{* T N}-\left(\mathrm{WPC}_{1}^{\mathrm{LC}, T N}+\mathrm{WPC}_{2}^{\mathrm{LC}, T N}\right) \mathrm{KRC}_{2}-\sum_{\mathrm{K}=3}^{\mathrm{IS} \varnothing}\left(\mathrm{WPC}_{\mathrm{K}}^{\mathrm{LC}, \mathrm{TN}} \mathbf{x}\right.\right. \\
& \left.\left.x K R C_{K}\right)-K R P^{T N}-K T R^{T N}\right] \times 1-\frac{S T}{12} \cdot 0.01(T K+T T A+T R P+ \\
& +0.5 \times 12 \times \mathrm{VIE})] \times(1.0+0.01 \mathrm{PM})-(\mathrm{TK}+\mathrm{TTA}+\mathrm{TRP}) \\
& \mathrm{BCE}^{*}{ }^{\mathrm{TN}}=\left(\mathrm{XIM}_{1} \times \mathrm{WPC}_{1}^{1, \mathrm{TN}}+\mathrm{XIM}_{2} \times \mathrm{WPC}_{2}^{1, \mathrm{TN}}\right) \mathrm{KCR}_{2}+ \\
& +\frac{\sum_{K=3}^{I S \varnothing}}{x I M_{K} \times \operatorname{WPC}_{K}^{1, T N}} \cdot \mathrm{KCR}_{K}
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } I=1 \text { (initial core) : } \\
& B C E_{T}^{R N}=B C E^{X T N}\left[1+\frac{S T}{12} \cdot 0.01\left(T T O+T F O^{T N}+T W E O^{T N}+0.5 I C T I\right)\right] \mathbf{x} \\
& x(1+0.01 \mathrm{PM})^{\mathrm{TTO}}+\mathrm{TFO}^{\mathrm{TN}}+\mathrm{TWEO}^{\mathrm{TN}}+ \\
& +\sum_{j=1}^{N N O} \frac{K F^{T N}}{N N O}\left[1+\frac{S T}{12} \cdot 0.01\left(T F O^{T N} \frac{N N O-j}{N N O-1}+T W E O^{T N}+0.5 I C T_{I N}^{T N}\right)\right] x \\
& \mathbf{x}(1+0.01 \mathrm{PM})^{\frac{\mathrm{NNO}-\mathrm{j}}{\mathrm{NNO}-1}} \mathrm{TFO}^{\mathrm{TN}}+\mathrm{TWEO} \mathrm{TN}^{\mathrm{TN}}+ \\
& +\mathrm{RH} \varnothing\left\{\mathrm { BCE } ^ { * T N } \left[1+\frac{\mathrm{ST}}{12} \cdot 0.01\left(\mathrm{TTO}+\mathrm{TFO}{ }^{\mathrm{TN}}+\mathrm{TWEO}{ }^{\mathrm{TN}}+0.5 \times 12 \mathrm{x}\right.\right.\right. \\
& \mathbf{x} \text { VIE })] \quad \mathbf{x}(1+0.01 \mathrm{PM})^{\mathrm{TTO}}+\mathrm{TFO}^{\mathrm{TN}}+\mathrm{TWEO}^{\mathrm{TN}}+ \\
& +\sum_{j=1}^{N N O} \frac{K F^{T N}}{N N O}\left[1+\frac{S T}{12} 0.01\left(T F O^{T N} \times \frac{N N O-j}{N N O-1}+T W E O^{T N}+0.5 x\right.\right. \\
& \left.x 12 \mathrm{x} \text { VIE) }] \mathrm{x}(1+0.01 \mathrm{PM})^{\frac{\mathrm{NNO}-\mathrm{j}}{\mathrm{NNO}-1} \mathrm{TFO}}{ }^{\mathrm{TN}}+\mathrm{TWEO}{ }^{\mathrm{TN}}\right\}
\end{aligned}
$$

> If $I>1$ :
> $B C E_{T}^{I N}=B C E^{* T N}\left[1+\frac{S T}{12} \cdot 0.01\left(T T+T F^{T N}+T W E^{T N}+0.5 I C T_{I}^{T N}\right)\right] x$
> $\mathbf{x}(1+0.1 \mathrm{PM})^{\mathrm{TT}}+\mathrm{TF}^{\mathrm{TN}}+\mathrm{TWE} \mathrm{TN}^{\mathrm{TN}}+$
> $+\sum_{j=1}^{N N} \frac{K F^{T N}}{N N}\left[1+\frac{S T}{12} 0.01\left(T F^{T N} \frac{N N-j}{N N-1}+T W E^{T N}+0.5 I C T^{T N}\right] x\right.$
> $x(1+0.01 \mathrm{PM})^{\frac{\mathrm{NN}-\mathrm{j}}{\mathrm{NN}-1} \mathrm{TF}^{\mathrm{TN}}+T W E^{\mathrm{TN}}}$

If the expression $N N-1$ becomes zero, it is treated to be 1 during the evaluation of $B C E_{I}^{T N}$.

Calculation of KF ${ }^{\mathrm{TN}}$ :
If the input value $K F^{T N}$ is equal to zero, the code evaluates the following formulas :

$$
\begin{aligned}
& \text { If } y=\frac{W P C_{1}}{W P C_{1}+W P C_{2}} \cdot 100<1.0: \\
& \mathrm{KF}^{\mathrm{TN}}(\$ / \mathrm{KgU})=67.0+0.047 \mathrm{KCR}_{2}
\end{aligned}
$$

If $y \geqslant 1.0$ :
$\mathrm{KF}^{\mathrm{TN}}(\$ / \mathrm{kgU})=76.5+0.047 \mathrm{KCR}_{2}$

Calculation of BKA and BKE :
$\mathrm{BKA}_{\mathrm{I}}^{\mathrm{TN}}(\$)=\mathrm{DF}_{\mathrm{I}}^{\mathrm{TN}} \times \mathrm{FHA}^{\mathrm{TN}} \times \mathrm{BCA}_{\mathrm{I}}^{\mathrm{TN}}$
$\mathrm{BKE}_{\mathrm{I}}^{\mathrm{TN}}(\$)=\mathrm{CF}_{\mathrm{I}}^{\mathrm{TN}} \times \mathrm{FHA}^{\mathrm{TN}} \times \mathrm{BCE}_{\mathrm{I}}^{\mathrm{TN}}$
$\mathrm{BKA}_{\mathrm{I}}(\$)=\sum_{I=1}^{\mathrm{NN}} \mathrm{BKA}_{\mathrm{I}}^{\mathrm{TN}}$
$\mathrm{BKE}_{\mathrm{I}}(\$)=\sum_{I=1}^{\mathrm{TN}} \mathrm{BKE}_{\mathrm{I}}^{\mathrm{TN}}$

Discharged and charged materials :

$$
\begin{aligned}
& \mathrm{DF}_{\mathrm{I}, \mathrm{~K}}^{\mathrm{TN}} \text { (to) }=\sum_{\begin{array}{l}
\text { reloaded } \\
\text { axial } \\
\text { pieces }
\end{array}} \quad \mathrm{WPC}_{\mathrm{K}}^{\mathrm{I}, \mathrm{TN}} \times \mathrm{DF}^{\mathrm{TN}} \times \mathrm{FHA}^{\mathrm{TN}}
\end{aligned}
$$

$\mathrm{DMHA}_{\mathrm{I}}^{\mathrm{TN}}$ (to) $=\mathrm{DF}_{\mathrm{I}}^{\mathrm{TN}} \cdot \mathrm{FHA}^{\mathrm{TN}}$

$$
\mathrm{CMHA}_{\mathrm{I}}^{\mathrm{TN}}(\text { to })=\mathrm{CF}_{\mathrm{I}}^{\mathrm{TN}} \cdot \mathrm{FHA}^{\mathrm{TN}}
$$

$$
\mathrm{DF}_{\mathrm{K}}^{\mathrm{M}} \quad(\mathrm{to}) \quad=\sum_{\mathrm{TN}} \sum_{\mathrm{I}=\mathrm{n}_{1}}^{\mathrm{n}_{2}} \quad \mathrm{DF} \underset{\mathrm{I}, \mathrm{~K}}{\mathrm{TN}}
$$

$$
\mathrm{CF}_{\mathrm{K}}^{\mathrm{M}} \quad(\mathrm{to}) \quad=\sum_{\mathrm{TN}} \sum_{\mathrm{I}=\mathrm{n}_{1}}^{\mathrm{n}_{2}} \quad \mathrm{CF}_{\mathrm{I}, \mathrm{~K}}^{\mathrm{TN}}
$$

M varies from 1 to LIM 2.

If $M=1: n_{1}=1$

If $M>1: n_{1}=\operatorname{LIMIT} 2(M-1)+1$
$\mathrm{n}_{2}=$ LIMIT $2(\mathrm{M})$.

Effective expenditures for Mintervals of the reactor life
$\mathrm{BK}^{\mathrm{M}}(\$)=\sum_{\mathrm{I}=\mathrm{m} 1}^{\mathrm{m} 2}\left(\mathrm{BKE} \mathrm{I}_{\mathrm{I}}-\mathrm{BKA}_{\mathrm{I}}\right)(1+0.01 \mathrm{PM})^{-\frac{\mathrm{LIFE}(\mathrm{I})}{30.4}}$

The index $M$ varies from 1 to LIM 1.
If $M=1: m 1=1$
If $M>1: m 1=\operatorname{LIMIT} 1(M-1)+1$
$\mathrm{m} 2=\operatorname{LIMIT} 1(\mathrm{M})$.

Cost for the first core

BKO (\$) $=\mathrm{BK}^{\mathrm{M}}$ with $\mathrm{M}=1 \rightarrow \mathrm{~m} 1=1$ $\mathrm{m} 2=\operatorname{LINIT} 1(1)=1$

Cost for the transient period of the reactor
$B K \operatorname{TRANS}(\$)=\sum_{M} B K^{M}-B K O-S R^{*}$

Cost for one equilibrium period of the reactor
$S R^{*}=B K^{M}$

```
M = LIM 1 
    m1 = LIMIT 1 (LIM 1 - 1) + 1
    m2 = LIMIT 1 (LIM 1)
```

Duration of one equilibrium period of the reactor

TFEC (days) $=$ LIFE (IE2) - LIFE (IE1)

LIFE (IE1) = LIFE LIMIT 1 (LIM 1)
LIFE (IE2) = LIFE LIMIT 1 (LIM 1-1)

Number of equilibrium periods during the whole reactor life

$$
\text { NEC }=\frac{\text { VIE } \times 365-\text { LIFE (IE1) }}{\text { TFEC }}
$$

If this value is not equal to an integer, NEC is decreased to the next integer.

Total cost for all equilibrium periods of the reactor

BKG $(\$)=\mathrm{SR}^{*} 1-(1+0.01 \mathrm{PM})-\frac{\text { NEC }}{30.4}$

$$
1-(1+0.01 \mathrm{PM})^{-\frac{\mathrm{TFEC}}{30.4}}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{N E C R} *(1+0.01 \mathrm{PM}) \frac{\text { LIFE (IE1) }}{30.4} \times \\
& \quad x(1+0.01 \mathrm{PM})
\end{aligned}
$$

Begin of the running-out period

TXF (days) $=$ LIFE (IE1) + NEC $x$ TFEC

Cost for the running-out period


Total fuel cycle cost
$\mathrm{BCF}(\$ 2=\mathrm{BK}(1)+\mathrm{BK}(\mathrm{LIM} 1-1)+\mathrm{BKG}+\mathrm{BKR}$

```
Variable and fixed cost for the extrapolated fuel cycle
BCF2 ($) =
SR*(1+0.01 PM) [- LIFE (IE1)
BCF1 = BCF - BCF2
Energy produced in the whole reactor life_and discounted to LIFE_= 0
BE (kWh)=12 < m VIE (1+0.01 PM )
Energy produced in the transient period and discounted to LIFE_=_O
BEA (kWh) = N N=1 W\emptysetRK x (1 +0.01 PM)
    x (1 + 0.01 PM) - - % 
y
Ny1 = largest integer of y % .
```

Energy produced in one equilibrium period and discounted
to the beginningoof the equilibrium period

BEG (kWh) =
$\sum_{j=1}^{N y 2}(1+0.01 P M)^{-j} W \emptyset R K+W \not \subset R K\left(y_{2}-N y 2\right)(1+0.01 P M)^{-y_{1}}$
$y_{2}=\frac{\text { TFEC }}{30.4}$
$\mathrm{Ny} 2=$ Largest integer of $\mathrm{y}_{2}$.

Fixed specific fuel cyclecost :
$\mathrm{BCF} 1 *\left(\frac{\text { mills }}{\mathrm{kWh}}\right)=\frac{\mathrm{BCF} 1}{\mathrm{BE}} \cdot 10^{3}$

Total specific fuel cyclecost :
$\mathrm{BCF} 1^{*}\left(\frac{\text { mills }}{\mathrm{kWh}}\right)=\mathrm{BCF} 1^{*}+\mathrm{BCF}^{*}$

Specific fuel cost for transition period
$\operatorname{BCFE}\left(\frac{\text { mills }}{\mathrm{kWh}}\right)=\frac{\mathrm{BK} \text { TRANS }+\mathrm{BKO}}{\text { BEA }} \circ 10^{3}$

BCFE* $\left(\frac{\text { mills }}{\mathrm{kWh}}\right)=\frac{\mathrm{BK} \text { TRANS }}{\mathrm{BEA}} \cdot 10^{3}$

```
Specific fuel cost for one equilibrium period
\(\mathrm{BCFG}\left(\frac{\mathrm{mills}}{\mathrm{kWh}}\right)=\frac{\mathrm{SR}^{*}(1+0.01 \mathrm{PM})+\frac{\mathrm{LIFE}(\mathrm{IE} 1)}{30.4}}{\mathrm{BEG}} \cdot 10^{3}\)
```


## 5. TECHNICAL INFORMATION CONCERNING REFLOS

5.1. Identification

| Name | REFLOS (Refined Evaluation of Fue Loading Schemes) |
| :---: | :---: |
| ID-Number | 68.8125 |
| Codification | FøRTRAN IV |
| System | IBM 360/65 (300 K) |
|  | 2 library tapes |
|  | 2 scratch tapes (disc) |
|  | 1 calcomp tape |
| Origin | ORGEL Project, CCR Ispra, December |

5.2. Survey about the construction of the code

The following flow-chart shows the subdivision of REFLOS.

PART 1 - ORACLE 1
Cell burn-up by Plutharco - RLT4, performance : writes on tape tables
for heterogeneous constants and
fuel composition in function of
burn-up.


PART 21 - PREVOL
Groups the time-independent computations of the TRIHET code;
performance : creation of matrix tape.

PART 22 - STATUS
Reactor burn-up; cycle : core status, interpolation of heterogeneous constants, reactivity by TREVOL (2nd part of TRIHET)
fuel management if necessary, new core state; reads ORACLE tape and PREVOL tape, performance: writes fuel cycle data on tape for economical calculation.

PART 3 - CøST
Evaluates the fuel cycle costs for initial core, transition, equilibrium and running-out period; reads fuel cycle data tape.

E N D

### 5.3. Sequence of input cards



Time card

- 1 card FøRMAT

CLøCK
I 3
Total execution time at disposition of the program

## ORACLE 1

- 1 card
A IM 1
I 3
$=0$ ORACLE 1 is/was not used; ORACLE 1 data block is omitted,
$=1$ execute ORACLE 1 ; the appropriate data block follows,
$=2$ don't execute ORACLE 1 , ORACLE 1 data block is omitted; previously calculated tables at disposition on tape.

The ORACLE 1 data block is composed of two sets of cards
for each calculation (i.e., for each table).

- 1. A set of two identity cards, in which any message may be punched in col. 1-72. This will be printed out on listing before starting the calculation.
- 2. Data cards. The data cards contain the desired input data which are only marked by an index number (input-list location). The data will remain unchanged during the execution of ORACLE 1 as long as a new input overwrites them. We thus need only to replace the entries which have to be changed after a calculation, instead of giving all the data again.

The set-up is as follows (FøRMAT : A1, $2 I 3,6 \mathrm{~F}$ 10.5) :

Col. 1 Any figure (numeric or alfabetical card countif.i.) may be entered here. An asterisk(*) however must be used only in the last card of the set, which forms part of one calculation.

Col. 2-4 The input-list location which will be modified by the first of the six data fields on the card.

Col. 5-7 The input-list location which will be modified by the last (between 1 and 6) data field of the card.

Col. 8-17
Data fields. The decimal point
18-27 may be placed on the places
28-37 $10 \mathrm{n}+12(\mathrm{n}=0,5)$.
38-47 If no decimal points are entered, the point
48-57 is supposed to be between
58-67 col. $10 n+12$ and $10 n+13(n=0,5)$.

The last card of the last calculation is immediately followed by a card, which contains in columns 1 to 3 the letters END.

PREVOL

- 1 card

AIM21

- card

ABC1
$\mathrm{COA}_{4}$

- 1 card

FLDEUX, TAU2, H, R2
4 F .12 .6

- 1 card

NR, NE, KPLEC, IP, KR2, IZNUL, NSYR, NSYE, NTE, IMAT, NANA, NANA1, NANA2, NANA3, ITRI. 1513

- (NR - NSYR) + (NE - NSYE) + NSYR + NSYE cards AAI, BI, AI, TI, NI

4E12.8, I3

- Only if (NSYR + NSYE) not equal $O$, punch
(NR - NSYR) + (NE - NSYE) values, 24 per card

NGS
2413

- only if NR not equal 0 , punch NR-NSYR values, 6 per card

HIR
6E12. 8
ARIR
6E12.8
ARSR
6E12.8

- always present

NTE values, 6 per card
XE
6E12.8

- NE-NSYE values, 6 per card
ARIE
6E12. 8
ARSE
6E12. 8


## STATUS

- 1 card
AIM2'2
13
- 1 card

TAB, UNIT1, NR, PRINT1, RUN, UNIT2, PRINT2, PRINT3, PRINT4, PRINT5, PRINT6, CYCLE, PUNCH, PERFO

- only if CYCLE >1
- 3 cards (j=1...6 6)
$\underbrace{\text { NUM, TEST } 1, \text { TEST2, }}_{j=1} \underbrace{\text { NUM, TEST1, TEST2 }}_{j=2} \quad 2(I 6,2 E 12.7$
- only if CYCLE $>1$
- 1 card

D'r
E12.7

- only if CYCLE $=3$
- 9 cards
LøAD
- always present
- 1 card

NRL, NEL, NTL, IBANAL, IMAT, NCøD, NRM, NAN1, NAN2, NAN3, NAN4

- 1 card

C, FKSIø, RKSI, DKSI, WTR, ERREUR 6E12.7

- only if NRL>0
- NRL values, 6 per card ZIR
- only if $\mathrm{NC} \varnothing \mathrm{D}=2$
- NRM values, 20 per card NGR
- only if $T A B=2$
- 1 card

K, J, DENS

- J cards

BU, ALFA, MU, GAMA, BETA
NR times 2I6, E12.7

5E12.7

- only if $\mathrm{TAB}=3$
- $N Z=$ NEL $x(N T L-1)$ cards

M, ALFA, MU, GAMA, BETA
I6, 6X, 4E12.7

- only if RUN $=1$
- 1 card

LIFE, FKSIø
2E12.7

- 1 card

IM $\varnothing V E$, IP
216

- 1 to NEL (NTL - 1) cards

NM, NG, K1, K2, CT, BU, BUM
4I6, 3E12.7

## CøST

- 1 card


## AIM3

- 1 card

NCALC, TN, IS $\varnothing$, LIM1, LIM2, ITWE,
ITWA, NN, IRP, NNO
1013

- 1 card

LIMIT 1
1013

- 1 card

LImit 2
1013

- IS $\varnothing$ cards

XINU, KCR, KRC, XIM
4 E 12.7

- TN cards

IK, KRP, KTR, TRP, TWA, FHA
I12, 5E12.7

- TN cards

IM, $\mathrm{KF}, \mathrm{TF}, \mathrm{TWE}, \mathrm{TFO}$
I $12,4 \mathrm{E} 12.7$

- 1 card

TK, tTA, TT, TTO, TWEO
5E12.7

- 1 card

ST, PM, RHø, KL
4E12. 7

- 1 card
vIE, WøRK
2E12.7
- 1 card

KYC, KC, R, CS, KR 4E12.7

- only if $T N<0$
- 1 card

K, J,

- 1 card

BU, MPL, WPCU235, WPCU, WPCPUFI

- 1 card

WPC PUFE, WPC TH, WPC U233


### 5.4. Explanation of the meaning of the used symbols for the input

## ORACLE 1

1. Compaund index for fuel
2. Metal
3. Oxide
4. Monocarbide
5. Dicarbide
6. Other fuel (cross-sections to be entered in NRS 72-89)
7. Diluent spectr. const. ( ${ }^{\circ} \mathrm{K}$ )
8. ----
9. Canning spectr. const. ( $\left.{ }^{\circ} \mathrm{K}\right)$
10. Coolant index
O. Void
11. Gilotherm (Santowax)
12. Diphenyl
13. Heavy water
14. Other organic coolant (data to be entered in NRS 90, 91, 10ít and 105)
15. Other coolant (cross-sections to be entered in NRS 137-149 AND 167-179)
16. Coolant and inner filler spectr. const. ( $\left.{ }^{\circ} \mathrm{K}\right)$
17. ----
18. Outer coolant and outer spectr. const. ( ${ }^{\circ} \mathrm{K}$ )
19. Pressure tube spectr. const. ( ${ }^{\circ} \mathrm{K}$ )
20. Insulation index
O. Void
21. Gilotherm (Santowax)
22. Diphenyl
23. Heavy water
24. $\mathrm{Al}_{2} \mathrm{O}_{3}$
25. $\mathrm{Si} \mathrm{O}_{2}$
26. Other organics
27. Other material (cross-sections to be entered in NRS.152-164)
28. Insulation spectr. const. ( ${ }^{\circ} \mathrm{K}$ )
29. Occupied (KHET)
30. Calandria spectr. const. ( $\left.{ }^{\circ} \mathrm{K}\right)$
31. Moderator spectr. const. ( $\left.{ }^{\circ} \mathrm{K}\right)$
32. Physical temperature fuel ( $\left.{ }^{\circ} \mathrm{K}\right)$
33. Physical temperature coolant ( $\left.{ }^{\circ} \mathrm{K}\right)$
34. Physical temperature insulation ( ${ }^{\circ} \mathrm{K}$ )
35. Physical temperature moderator ( ${ }^{\circ} \mathrm{K}$ )
36. -1. Correlated spectr. const. O. Other spectr. const. 1. Termidor spectr. const. (enter data in NRS. 195-200)
37. Poisoning coefficient, only for irradiated fuel. Absorption in poisoned fuel devided by absorption in unpoisoned fuel.
38. SGR Filler density (Graphite) relative to reference density (1.65 GR/CNi3)
39. ALFA, Weight percentage of AL2 03 in SAP (value between 0 and 1 )
40. RHO-SAP SAP density (in GR/CM3)
41. HBR Percentage of high boiling residues in Santowax (in percents)
42. SAL Effective absorption section (averaged over a maxwellian flux at fuel temperature $t(n)$ due to alloys contained in the fuel.
43. PU Purity of heavy water (value between 0 and 1 )
44. CHW Additional heavy water absorption section due to impurities other than light water (value at $2200 \mathrm{~m} / \mathrm{sec}$ ).
45. EXSAP Extra absorption in SAP due to impurities (value at $2200 \mathrm{~m} / \mathrm{sec}$ times 1.0 E 5 ).
46. S Cylindrical geometry Outer radius of first (outer) tube All other geometries Fuel rod radius
All geometrical data in CM
47. S 1
7-Rod Hexagonal
6-Rod Hexagonal
18-Rod Hexagonal
19-Rod Hexagonal
19-Rod Circular
22-Rod
4-Rod
Single rod
Cylindrical

Clad rod radius
Radius of central rod
Clad rod radius
Cladding inner radius
Inner radius of first (outer) tube
32. S 2

22-Rod
Single rod
Cylindrical
6-Rod (DUMM2)
18-Rod (DUMM3)
Radius of second-ring rods
Cladding outer radius
Outer radius of second tube
External radius of central tube
External radius of central tube
33. S3 22-Rod Cylindrical

6-Rod (DUMM2)
18-Rod (DUMM3)
34. A All geometries
Radius of thrid-ring rods
Inner radius of second tube
Internal radius of central tube
Internal radius of central tube

Internal radius of pressure tube

| 35. | A 1 | All geometries | External radius of pressure tube |
| :---: | :---: | :---: | :---: |
| 36. | A2 | All geometries | Internal radius of calandria tube |
| 37. | A3 | All geometries | External radius of calandria tube |
| 38. | R | 4-Rod | External radius of central filling |
|  |  | Cylindrical | Outer radius of third tube |
|  |  | 6 -Rod | External radius of filler tube |
| 39. | OR | 4-Rod | Thickness of central filling tube (Same composition as cladding) |
|  |  | Cylindrical | Inner radius of third tube |
|  |  | 6-Rod (DUMM2) | Thickness of filler tube |
| 40. | Geometry index for the fuel cluster <br> -- Comment -- With negative values for these clusters the introduction of the Dancoff correction factor (see Head 126) is supposed. |  |  |
|  |  |  |  |
|  | 1. | 7-Rod Hexagonal |  |
|  | 2. | 19-Rod Hexagonal |  |
|  | 3. | 19-Rod Circular |  |
|  | 4. | 22-Rod |  |
|  | 5. | 4-Rod |  |
|  | 6. | Single Rod |  |
|  | 7. | 3-Rod geometry |  |
|  | 8. | Cylindrical |  |
|  | -9. | Special geometry | be entered in NRS. 107-126) |
|  | 10. | 6-Rod geometry |  |
|  |  | 18-Rod geometry |  |
| 41. | D | 7-Rod Hexagonal | Axial distance from rods in |
|  |  |  | hexagonal geometry |
|  |  | 19-Rod Hexagonal | Axial distance from rods in |
|  |  |  | hexagonal geometry |



```
4o. Occupied
49. ----
50. Printing index
    O. Output with intermediate results
    1. Output without intermediate results
51. Second flight correction Correction factor to make allowance
                                    for non-uniformity of neutron density
                                    after first collision.
52. Atomic fraction TH-232
53. Atomic fraction U-233
54. Atomic fraction U-235
55. Atomic fraction U-236
56. Atomic fraction U-238
57. Atomic fraction Pu-239
58. Atomic fraction Pu-240
59. Atomic fraction Pu-241
60. Mixed fuel density in G/cm}\mp@subsup{}{}{3
61. Mixed fuel molecular number
62. Spectr. const. (`}\mp@subsup{}{}{\circ}\textrm{K})\textrm{TH}-23
```

```
63. Spectr. const. ('0K) U-233
64. Spectr. const. ('0}\textrm{K})\textrm{U}-23
65. Spectr. const. ('0K) U-236
60. Spectr. const. (' K) U-238
67. Spectr. const. ('K) Pu-239
68. Spectr. const. (' K) Pu-240
69. Spectr. const. (' K) Pu-241
70. Lattice cell index
1. \(\mathrm{VM} / \mathrm{VF}\)
2. Square pitch
3. Hexagonal pitch
71. Value of \(V M / V F\) (dimensionless) or pitch (cm)
    Cross-sections_for special fuel (seed 1; Compound index) / 1/cm_7
72. Absorption (Thermal) (SACT)
73. Fission (Thermal) (SFCT)
74. Scattering (Thermal) (SSCT)
75. Transport (Thermal) (STRCT)
76. Scattering (Epithermal) (SSCE)
77. Transport
(Epithermal) (STRCE)
```

| 78. | Slowing down | (Epithe | (SXSCE) |  |
| :---: | :---: | :---: | :---: | :---: |
| 79. | Total | (Fast) | (STCF) |  |
| 80. | Elastic | (Fast) | (SECF) | Above the fission |
| 81. | Inelastic | (Fast) | (SICF) | threshold of U-238 |
| 82. | Fission | (Fast) | (SFCF) |  |
| 83. | Capture | (Fast) | (SCCF) |  |
| 84. | Nu times fiss | (Fast) | ( SNUCF |  |
| 85. | Total 2 | (Fast) | (STCF2) | Needed for the evaluation of the fast fission effect |
| 86. | Scattering 2 | (Fast) | (SSCF2) | for the group below the fission threshold of Ua238 |
| 87. | Capture 2 | (Fast) | (SCCF2) |  |
| 88. | A- Res. Int. |  | ( U 1$)$ | If $R I=A+B \sqrt{S / M}$ |
| 89. | B- Res. Int. |  | (U2) | $\begin{aligned} & \mathrm{U} 1=\mathrm{N} \cdot \mathrm{~A} \cdot \mathrm{~F} \\ & \mathrm{U} 2=\mathrm{N} \cdot \mathrm{~B} \cdot \mathrm{~F} / \sqrt{\rho \mathrm{F}} \\ & \mathrm{~F}=\text { Atomic fraction } \\ & \rho=\text { density } \\ & \mathrm{N}=\text { Atoms } / \mathrm{cm}^{3} \end{aligned}$ |
| 90. | Organic densi $\mathrm{G} / \mathrm{cm}^{3}$ | at 0 ce | (see | . Coolant index) |
| 91. | (Density temp | oeff.)t | (see | 5. Coolant index) |
| 92. | Nu times fiss | (Therm | (SNUF | T) |

$\left.\begin{array}{l}\text { 94. } \\ \text { 95. }\end{array}\right\}$ Not occupied
96. Table-number in that the results are to be stored; ( $\leqslant 10$ ). If this value is negative, it is set positive and the tables are also punched on unit 7 .
97.

- Internal occupied 102.

103. Not occupied
104. Number of C-Atoms/organic molecule (see j. Coolant index)
105. Number of H -Atoms/organic molecule (see j. Coolant index)
106. 

Geometrical data for special geometry (see 4o. Geometry index)
107. VC $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ Volume of combustible in the cell
108. VG $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ Volume of canning in the cell
109. Vo $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ Volume of coolant in the cell
110. VT1 $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ Volume of pressure tube in the cell
111. VT2 $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ Volume of insulation gap in the cell
112. VT3 $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ Volume of calandria tube in the cell
113. $\mathrm{VM}\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ Volume of moderator in the cell
114.
115.
116. VBT Volume $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ included in a rubberband strung around the canned cluster
117. $\mathrm{ABT}=\sqrt{\mathrm{VBT} / \pi}$
118. VOIT $=V B T-V C-V G$
119. VOET $=V O$ - VOIT
120. VBF Volume $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ included in a rubberband strung around the uncanned cluster
121. $\mathrm{ABF}=\sqrt{\mathrm{VBF} / \pi}$
122. VGIF Volume $\left(\mathrm{cm}^{3} / \mathrm{cm}\right)$ of can inside of VBF
123. VOIF $=V B F-V C-V G I F$
124. SU Surface $\left(\mathrm{cm}^{2} / \mathrm{cm}\right)$ of fuel in the cluster
125. SF Surface ( $\mathrm{cm}^{2} / \mathrm{cm}$ ) of the rubberband as defined for VBF
126. Dancoff correction factor
127. Organic fraction of filler tube holes in 6-Rod clusters
128. Periferical filler rod center distance to cluster center
129. 6-Rod cluster: Metal identification of central pin
130. Max. integrated flux for burn-up calculation [-Neutrons/kilobarn_7
131. Step in integrated flux for burn-up calculation [ Neutrons/kilobarn] (maximum : 50 burn-up steps)
132. Actuel integrated flux for burn-up calculation [- Neutrons/kilobarn_7
133. Occupied
134. Effective (energy averaged 1) thermal neutron flux existing in fuel element (for TH-U233 chain and Xe-equilibrium; in units of $10^{13} \mathrm{n} / \mathrm{cm}^{2} \mathrm{sec}$ ).
135. ----
136. ----

Cross-section for special coolant (see 5 . Coolant index) [1/cm_7
137. Absorption (AT $2200 \mathrm{~m} / \mathrm{sec}$ ) (SANT)
138. Scattering (Thermal) (SSNT)
139. Transport (Thermal) (STRNT)
140. Scattering (Epithermal) (SSNE)
141. Transport (Epithermal) (STRNE)

| 142. Slowing down | (Epithermal) | (SXSNE) |
| :--- | :--- | :--- |
| 143. Total | (Fast) | (STN) |
| 144. Elastic | (Fast) | (SEN) |
| 145. Inelastic | (Fast) | (SJN) |
| Capture | (Fast) | Above fission <br> threshold <br> of U - 238 |

147. Total 2 (Fast) | (STN2) |  |
| :--- | :--- |
| 148. Scattering 2 | (Fast) |
| (SEN2) |  |\(\left\{\begin{array}{l}Below fission <br>

thereshold <br>
of U-238\end{array}\right.\)
150.
151. Occupied

Cross-sections for special insulation (see 11. Insulation index) $/ 1 / \mathrm{cm} 7$
152. Absorption (AT $2200 \mathrm{~m} / \mathrm{sec}$ ) (SANT)
153. Scattering (Thermal) (SSNT)
154. Transpor
155. Scattering (Epithermal) (SSNE)
$\begin{array}{lll}\text { 156. Transport } & \text { (Epithermal) } & \text { (STRNE) } \\ \text { 157. Slowing down } & \text { (Epithermal) } & \text { (SXSNE) } \\ \text { 158. Total } & \text { (Fast) } \\ \text { 159. Elastic } & \text { (Fast) } & \text { (STN) } \\ \text { 160. Inelastic } & \text { (Fast) } & \text { (SEN) } \begin{array}{l}\text { Above the fission } \\ \text { threshold } \\ \text { of U - 238 }\end{array} \\ \text { 161. Capture } & \text { (Fast) } & \end{array}$


```
180. - 194.
Termidor cross=sections (see 20. spectral_constant index)
```

195. Spectrum mean microscopic U-235 absorption cross-section
196. Spectrum mean microscopic U-235 fission cross-section
197. Spectrum mean microscopic PU-239 absorption cross-section
198. Spectrum mean microscopic PU-239 fission cross-section
199。 Spectrum mean microscopic $1 / V$ absorption cross-section/barn
( $2200 \mathrm{~m} / \mathrm{sec}$ ) in fuel
199. Spectrum mean microscopic $1 / \mathrm{V}$ absorption cross-section/barn
( $2200 \mathrm{~m} / \mathrm{sec}$ ) in moderator
Volume fractionsof structural material for canning
200. Air
201. Berylium
202. Graphite
203. Lead
204. SAP
205. Stainless steel
206. Zircaloy-2
209。-210。

Volume fractions of structural material for pressure tube
211. Air
212. Berylium
213. Graphite
214. Magnesium
215. Lead
216. SAP

217。 Stainless steel
218. Zircaloy-2
219. - 220. Occupied

Volume fraction of structural material for calandria tube
221. Air
222. Berylium
223. Graphite
224. Magnesium
225. Lead
226. SAP
227. Stainless steel
228. Zircaloy-2

229 ．
Occupied
230。

Volume fractions of structural material for inner filler

231．Air

232．Berylium

233．Graphite

234．Magnesium

235．Lead

236．SAP

237．Stainless steel

238．Zircaloy－2

239．－240．Occupied

Volume fractions of structural material for outer filler

241。 Air

242。 Berylium

243．Graphite

244．Magnesium

245．Lead

246．SAP

247。 Stainless steel

2ヶ\＆。 Zircaloy－2

240．－250．Occupied

350．If 0 ，no intermediate results at the individual burn－up steps are printed out；output consists only of input and tables．

If 1 ，intermediate results are printed．

AIM21 $=1$ execute PREVOL, creation of a new matrix tape IMAT. $=2$ skip PREVOL, matrix tape at disposition.

ABC 1

FLDEUX

TAU2
Any alpha - numerical information referring to the case being studied (TITLE card).

Diffusion area of thermal neutrons in the moderator ( $\mathrm{cm}^{2}$ )

Slowing-down area ( $\mathrm{cm}^{2}$ ).
It holds TAU2 $+T I=$ Fermi-age of thermal neutrons $=\boldsymbol{\tau}_{t h}$. The meaning of TI has been explained further below. TAU2 defines the energy range of fast or epithermal neutrons which is treated by diffusion theory. Putting zero this term means application of Fermi-age theory for the whole fast group and existence of only one fast group.

Comparisors with experiments and homogeneous theory suggest, to use the $\tau_{t h}$ for the cell instead of the one of the moderator if inside of the channel a remarkable moderation exists.

Extrapolated height of the reactor (cm), including physical height of core and reflectors as well as an average extrapolation lenght for neutrons. This value is used for all energy groups. It is impossible to evaluate a reactor without axial reflectors.

R2
Extrapolated radius of the reactor (cm). The definition corresponds to that given for $H$.

Leave blank if there is an infinite radial reflector.

```
NR Number of groups oi channels occupied by control
rods in the reacto:.
NE Number or groups of chamnels occupied oy inel
elements in the reactor.
\begin{tabular}{rl} 
Limitation \(:\) & \(N R+N E-N S Y R-N S Y E \leq 00\) \\
& \(\leq 00\)
\end{tabular}
Sce below for the meanimg of NS\R A:E NSVE.
By means of NR and NE a rocarion sy=u:r:% is represented.
```



```
is a repetition oi the desig: a, z =ertata sectom ol the
```



```
Channels may be gathered to a gacaz it the zoliowimg
conditions are fuli\Mlaj :
```







```
must be equal to 2 }
```




```
direction.
Limitation : NPEEN \leqslant :2
It is proposed to uFE NELIO = LS
```






```
number or havmzabzs is meseat.
Limitation: NR - MT = IR S-B
    F
```

$=0$ if the considered reactor has a iinite radial reflector.
$=1$ if the radial extension of the reflector is infinite.

Number of symmetry for channels occupied by fuel elements. NSYE = NE minus (number of fuel element channels situated on the symmetry line), divided by two.

Leave blank if this symmetry shall not be used or does not exist.

In contrast to the rotation symmetry expressed by gathering of individual channels in groups of channels, NSYR and NSYE mean a specular symmetry without inversion. For instance, a configuration of the kind of figure 1 may be calculated by $\mathrm{NE}=4$ and $\mathrm{NSYE}=0$.


Fig. 1


Fig. 2
(The points in the figures mean channels). One has to introduce in this case only the necessary data for one of the channels. After a specified angle $\mathcal{\alpha}$ the configuration of the reactor is repeated. In the case of Fig. 1 we would treat really a quarter of the reactor. In the case of Fig. 2, one could again apply $N E=4$ and $N S Y E=0$. Using the fact that the line $C$ is a symmetry line, one could also calculate this configuration by $N E=4$ and NSYE $=1$. Note that also here all data for the two channels in a quarter of the reactor must be introduced and that the code reduces automatically the assembly to be calculated. The advantage of this possibility is

- a smaller calculation time for the same number of ( $\mathrm{NR}+\mathrm{NE}$ ) 。
- that a greater assembly is calculable (see limitation of (NR + NE).

Note that, using NSYR and/or NSYE $\neq 0$, one has to introduce the AAI, BI, a.s.o., first, for the control rod channels of the first bisector, secondly, for the fuel element channels of the first bisector (in both sequences the channels on the symmetry line are included), thirdly, for the control rod channels in the second bisector and at the end for the fuel element channels in the second bisector.

Number of axial pieces of the fuel element channels included the reflector. Consequently the fuel element consists of (NTE - 2) axial pieces, while the other are the bottom and the top reflectors.

Limitation : $3 \leqslant \mathrm{NTE} \leqslant 20$

This subdivision is valid for all fuel channels.
It may be noted that, apart from the reflector, if there are two neighboring axial pieces with strongly different
nuclear properties, one has to foreseen an artificial axial piece of small thickness between these ones, in order to avoid errors which would arise by the fact, that the heterogeneous constants for any point are calculated by interpolation of the values of the two neighbouring axial pieces.

Symbolic tape unit on which the matrix is written. Put 11.
\(\left.\begin{array}{l}NANA <br>
NANA 1 <br>
NANA 2 <br>

NANA 3\end{array}\right\}\)| Technical information referring to the code PREVOL. |
| :--- |
| $=0$, if this information shall not be printed |
| $=1$, if this information shall be printed. |

ITRI $\quad=0$, if the sequence of channels given in the input is definitive.
$=1$ means, that the given sequence of fuel element channels is tested by the code and rearranged in a sequence of ascending radii and angles with the $x$-axis.

If NSYR + NSYE $\neq 0$, one has to use ITRI $=0$.

AAI Locating the origin of coordinates in the center of the radial section of the reactor, $A A I$ means the $x$-coordinate of the $I^{\text {th }}$ channel in the reactor, measured in cms. AAI may be also a value with negative sign.
$1 \leqslant \mathrm{I} \leqslant \mathrm{NR}+\mathrm{NE}$

BI The $y$-coordinate of the $I^{\text {th }}$ channel in cms. Values with negative signs are allowed.

The radius of the $I^{\text {th }}$ channel ( cm ). Its definition must correspond with that one of the heterogeneous constants. Often it is defined so, that autside of this radius there is only moderator.

Fermi-age of thermal neutrons ( $\mathrm{cm}^{2}$ ) for the $I^{\text {th }}$ channel. TI defines the energy range of fast neutrons which is treated by Fermi-age theory. $T I=O$ means, that the calculations are carried out with one fast and one thermal energy group and application of diffusion theory for the fast group. For more details see the definition of TAU2 given above. Note, that TAU2 $+T I=$ Fermi-age of thermal neutrons.

Put 0 , if this channel is a control rod channel, or more general, a channel which does not represent a source of neutrons but only a sink (ALFA $\neq 0$, $M U=0)$. For the definition of ALFA, MU see below.

Quantity of channels which may be gathered to the group whose member the $I^{\text {th }}$ channel is (see definition of group, given under item NE).

NI may be different for each group !
If (NSYR + NSYE) $=O$, the sequence of AAI, BI, AI, TI, NI, must be given in the order, that first all control rod channels appear.

If (NSYR + NSYE) $=0$, give thissequence as prescribed under item NSYE.

Prepare a quantity of (NR + NE) cards of this kind. Together with the applied symmetry conditions all channels of the reactor must be covered.

This cards appear only, if (NSYR + NSYE) $\ddagger 0$. Give (NR $-N S Y R)+(N E-N S Y E)$ values.

In the case of (NSYR + NSYE) $\neq 0$, there is a symmetry line in the sector of the reactor. This sector is characterized by the channels $1 \leq i \leqslant(N R+N E)$. The symmetry line is the angle bisector. Specify the numbers $i$ of the channels which are reflected with respect to the
angle bisector in the order of increasing $i$, situated in the first bisector. If a channel
is located on the symmetry line, one has to introduce a nought. The subsequent figure gives an example. The symmetry line may be the angle bisector of a quarter of the reactor. The specified numbers are the numbers $i$ of the channels.


Consequently, the values NGS to be introduced would be : 23; 0; 25.

Appears only if NR $\ddagger 0$. Introduce (NR - NSYR) values. The first value characterizes the first control rod channel, a.s.o. HIR means the length ( cm ) of the central piece of the control rod channel, considering the control rod channel in axial direction as a channel which consists of a bottom reflector piece, a central piece and a top reflector piece.

ARIR

ARSR

Appears only if NR $\neq 0$. Introduce (NR - NSYR) values. The sequence of the input data is as for HIR.

ARIR means the ALFA of the control rod channel for the bottom reflector piece as well as for the top reflector piece. For the definition of ALFA see below.

Appears only if NR $\neq 0$. Introduce (NR - NSYR) values. ARSR means the ALFA for the central piece of the control rod channel.

XE

ARIE

TAB

ARSE

The distances of the end points ( cm ) of the NTE axial pieces of a fuel element channel, counted from the bottom end of the reactor. Thus, the first value represents the distance between the bottom end of the reactor and the beginning of the fuel element, while the last value represents $H$ and the last but one value is the distance between the top end of the fuel element and the bottom end of the reactor. Introduce NTE values.

ALFA's for the axial bottom pieces of the fuel element channels. If NE values are introduced, than each channel is evaluated by means of its own ALFA. The sequence of these values must correspond to that one of AAI, BI a.s.o. for fuel element channels. It exists the possibility, to introduce only one value being valid for all bottom pieces of the fuel element channels.

ALFA's for the axial top pieces of the fuel element channels. The prescription given for ARIE are also valid for ARSE.

## STATUS

Put 1, if the heterogeneous constants characterizing the fuel element channels as function of the burn-up have been calculated by ORACLE1.

Put 2, if the heterogeneous constants are given as tables on punched cards and entered on symbolic tape unit UNIT1.

Put 3, if the heterogeneous constants are given point-wise for the whole reactor in form of punched cards (for the reactor state in investigation). In this case only one calculation for the existing state of the reactor is possible.

UNIT1 Leave blank, if TAB=1 or 3 . Put symbolic tape unit on which the tables are charged, if $T A B=2$.

Put 5, if tables are entered by cards.

NR Quantity of introduced tables of heterogeneous constants, $N R \leq 10$.

By this, up to 10 different kinds of fuel may be incorporated in the reactor.

PRINT1 Put 1, if the subsequent data shall be printed in the output.

Put $0, i f$ no print is desired.
The tables of heterogeneous constants may be printed.

RUN XEQ - index.
Put 1, if the initial run of the STATUS calculation will be carried out.

Put 2, if the STATUS calculation is a continuation of a previous one.

UNIT2 Symbolic tape unit which contains the reactor core specification.

Put 12.

PRINT2 Print index as under PRINT1. The reactor core specification may be printed in the output before each burn-up step and before and after each reloading event. The core specification consists of a table which gives for each point in the core (at each point (XE - 1) of each fuel channel group)

- the table number $K 1$ of fuel located there;
- the charge number K2 describing occasional which charging event the fuel has been inserted in the reactor ;
- the incore-time (days), CT, of this fuel under irradiation ;
- the burn-up ( $\left.\frac{M W d}{\text { to }}\right)$, $B U$, of the fuel at this point ;
- the burn-up ( $\left.\frac{M W d}{\text { to }}\right)$, BUM of the (NTE - 2) axial pieces of each fuel channel group.

PRINT3 Print index as under PRINT1.
At the same points of time and space as under PRINT2 the mean thermal neutron flux ( $\mathrm{n} / \mathrm{cm}^{2} \mathrm{sec}$ ) may be printed in the output.

PRINT4 Print index as under PRINT1.
At the same points of time and space as under PRINTa, the specific power ( $\mathrm{MW}_{\mathrm{th}} / \mathrm{cm}$ ) may be printed in the output.

PRINT5
Print index as under PRINTi.
At the same points of time as under PRINT'2 the mean specific power $\left(\mathrm{MW}_{\mathrm{th}} / \mathrm{cm}\right)$ for the (NTE - 2) axial pieces of each fuel channel group may be printed in the output.

| PRINT6 | Print index as under PRINT1. |
| :--- | :--- |
|  | At the same points of time as under PRINT'2 the |
|  | interpolated heterogeneous constants used for the |
|  | evaluation of the reactor may be printed in the |
|  | output. |

CYCLE

PUNCH

PERF $\varnothing$

NUM

Put 1, if the reactivity and the power distribution of only one reactor state shall be evaluated. Put 2, if the history of a reactor under irradiation shall be investigated without to execute any fuel movement.

Put 3, if radial fuel movement shall happen, prescribed in the input-vector $L \emptyset A D$ (see below).

Appears only if CYCLE $>1$.
Kind of management decision which shall initiate the reloading
process. All the tests specified by the input are executed in the given sequence. The reloading process is released by the first positive test in the given sequence.

Put 1, if the life time LIFE of the reactor serves for the descision process. The following decision will be made :

LIFE $\geqslant$ TEST'己 (days) $\rightarrow$ calculation is stopped ; at the time TEST2 the core is discharged.

LIFE $=$ n. TEST 1 (days) $\rightarrow$ reloading is executed as prescribed by $L \varnothing A D$ (see below).

LIFE $\ddagger \mathrm{n}$. TEST1 (days) $\rightarrow$ no reloading is executed, the calculation run is continued.
n means any integer $1,2 \ldots$

Put 2, if the effective multiplication factor keff of the reactor serves for the decision process. The following decisions will be made :
keff $\geqslant$ TEST1 (desired keff) $\rightarrow$ no reloading, the calculation run is continued.

TEST1 $>$ keff $\geqslant$ TEST2 (desired keff) $\rightarrow$ reloading is executed as prescribed by $L \not{ }_{\mathrm{A}} \mathrm{AD}$.

TEST2 $>$ keff $\longrightarrow$ the code itself searches for the life of the reactor, at which the desired keff is reached and carries out the fuel movement prescribed by LøAD at this point of time.

Put 3, if the power form factor ( $\frac{M W}{c m}$ ) mean / ( $\frac{M W}{c m}$ ) max, FFPW, serves for the decision process. The following decisions will be made :

FFPW $\geqslant$ TEST1 $\longrightarrow$ no reloading, the calculations run is continued.

TEST1 $>$ FFPW $\geqslant$ TEST2 $\rightarrow$ reloading is executed as prescribed by LøAD.

TEST2 $>$ FFPW $\rightarrow$ the code itself searches for the life of the reactor, at which the desired FFPW is reached and carries out the reloading as prescribed by LøAD.

Put 4, if the calculation run shall be interrupted after having executed a certain number of reloadings REi. The following decisions will be made :

REL $<$ TEST1 $\rightarrow$ calculation run is continued
REL $=$ TEST $1 \rightarrow$ calculation run is stopped. The core is not discharged.

TEST2 is not used.

LøAD

The upper limit for the management decision. Depending on the kind of the applied management decision, this term has different meanings (see under item NUM l).

As TEST1, but the lower limit for the decision process.

The time intervall (days) of reactor operation without taking into account an alteration of the reactor state by the burn-up process, if no fuel movement happens. Consequently, nuclear composition and power distribution remain constant during DT.

Note, that independent on $D T$ at each reloading process a new core state is defined. Counting from the time point of the reloading process the next definition of the core state occurs after DT days, if in the meantime there did not happen a reloading process.

Vector to govern the radial fuel movement. All groups of channels have a number $I$, $1 \leqslant I \leqslant 60$. The position of these groupsin the reactor is known (see AAI, BI). Let us take a sequence of groups of channel numbers L1, L2, L3, L4, L5...., a sequence of table names (kind of fuels 1) K1, K2, K3, and an index $Z$. By this one can prepare a vector. $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~K}_{1}, \mathrm{Z}, \mathrm{L} 4, \mathrm{~L} 5, \mathrm{~K}_{2}, \mathrm{Z}, \mathrm{a}, \mathrm{s} . \mathrm{o}$.

Let us moreover name L1, L2, L3, $K_{1}, 7.2$ the first sub-vector a.s.o., defining as a sub-vector a sequence of numbers of groups of channels terminated by a table name and by $Z$.
Thus, the information of the above cited vector means : If fuel movement has to be carried out, the fuel of the groups of channels named by $L 1$ is discharged from the reactor. The fuel of the group LC is reloaded to the group L1, the fuel of the group L3 is reloaded to Li and in the group L3 is introduced fresh fuel of the table $K_{1}$. The same will happen for the second sub-vector : the fuel of 24 is discharged, the fuel of $L 5$ is reloaded to $L 4$ and in $L 5$ is charged fresh fuel of the kind defined in table K2.

The axial positions of the fuel after the reloading process remain unchanged.

Fay attention that each group, included in the same sub-vector, must contain the same quantity of channels !

If all the information included in the vector are read and the calculation run is not terminated, the code returns automatically to the beginning of the vector.

If the calculation run is interrupted because, for instance, the required calculation time was to small, the code will storage the correct position of the vector and starts to read the commands of the vector at this position in a continuation run. The index $Z$, finally, provides the information, how many sub-vectors shall be considered during one reloading event.

Put $Z=71$, if reloading specified in the following subvector shall happen at the same point of time as the preceding one.

Put $Z=72$, if the reloading specified in the following subvector shall happen on occasion of the next reloading event.

NRL Put (NR - NSYR) (see above).

NEL Put (NE - NSYE) (see above).

NTL Has the same meaning as NTE (see above).

IBANAL Symbolic tape unit for scratch tape used by TREVOL. Put a z.

NC $\varnothing \mathrm{D} \quad$ Put i, if the keff of the existing reactor configuration with the specified positions of the groups of control rods shall be searched; iteration for keff. Put 2, if the control rod position is searched in order to reach the required keff of the reactor $k K S l$ (see below). Iteration for ZIR (see below).

Put O, if NC $\varnothing \mathrm{D}=1$.
Put the quantity of groups of control rod channels which shall participate in the iteration process, if $N C \varnothing D=2$. This quantity will be consequently used to control the reactor, while the rest, (NRL - NRM) of control rods, remains at its position, given by the input.
$\left.\begin{array}{l}\text { NAN1 } \\ \text { NAN2 }\end{array}\right\} \begin{aligned} & \text { Put 1, if intermediate results of TREVOL shall be printed. } \\ & \text { If no print is wished, put } 0 .\end{aligned}$

NAN 3
Put 0 , if the print of the axial power distribution is not wished.
Put a quantity < 100. Then, the specific power ( $\frac{\mathrm{MW}}{\mathrm{cm}}$ ) along all fuel element channels is printed in the output at the given quantity of equidistant points in axial direction. The first point lies at the beginning of
the fuel element. If $P E R F O=1$, the specific power distribution is also punched on cards.

| NAN4 | Put O, if no print is wished. <br> Put a number $\dot{\neq} 0$, in order to obtain in the output the individual harmonics and the unnormalized thermal neutron fluxes on the edge of each channel at 40 equidistant points in axial direction, distributed about core and reflectors. |
| :---: | :---: |
| C | Convergence coefficient, depending on the reactor geometry. It is calculated by the code automatically if a nought is introduced here. |
| FKSIø | Initial value (guess) of the iterated quantity. <br> If $N C \not \subset D=1$, put an estimate for the existing keff. <br> If $N C \not \subset D=2$, put the estimated ZIR (see below for the definition) for the $N R M$ control rod groups in cms. In order to save calculation time, it is better to overestimate the value of $Z I R$, than to underestimate it. |
| RKS I | If $N C \varnothing D=1$, put FKSI $\varnothing$. <br> If $N C \varnothing D=2$, put the desired keff, for which the control rod positions shall be searched by the iteration process. |
| DKSI | Put 0 , of $N C \not \subset D=1$. <br> Put a guess of the total efficiency of the completely inserted NRM control rod groups (in units of keff), if $N C \not \subset D=2$. |
| WTR | Total fission power to be generated in the reactor (MW). |


| ERREUR | Desired precision for the iterated quantity in units of keff. ( $=$ in units of $10^{5} \mathrm{pcm}$ ). |
| :---: | :---: |
| 2IR | Omit this cards, if NRL=O. Introduce NRL values, if NRL * 0 . ZIR gives the distances between the middeof the value $H I R$ and $H / 2$ in $c m s$ in the same sequence as HIR, if the control rods are inserted in the reactor. This value may be also of negative sign. In the case of $N C \varnothing D=2$, the $Z I R$ - values for the NRM control rods are all equal and as specified under FKSIø, while the ZIR-values of the (NRL - NRM) control rods can be arbitrary. |
| NGR | The numbers of the NRM groups of control rod channels, specified by the sequence of the corresponding AAI, BI, a.s.o. |
| K | Table number which represents the name of the table, $1 \leq K \leq 10$. |
| J | Quantity of burn-up steps in the corresponding table. Limitation : $1 \leq J \leq 50$. |
| DENS | Mass of fuel ( $\mathrm{UO}_{2}$, for instance) in metric tons per unit of the channel (to $/ \mathrm{cm}$ ). |
| BU | Burn-up state (MWd/to). <br> Extracted energy from one metric ton of fresh fuel (consequently, e.g., of uranium oxide). |
| ALFA | Heterogeneous constant characterizing the absorption of neutrons by the considered fuel element channel. |
|  | $\begin{aligned} & A L F A=\frac{1}{2 \pi D} \times \frac{\text { Absorption of thermal neutrons }}{\text { Asymptotic thermal neutron flux on the surface }} \\ & \text { of the channel } \end{aligned}$ |
|  | D means the thermal diffusion coefficient of the moderator. |

MU

GAMA

BETA Mean thermal neutron flux in the fuel divided by the asymptotic thermal neutron flux on the edge of the channel.

M

IM $\varnothing \mathrm{VE}$
Current index, $1 \leq M \leq N Z \quad(N Z=N E L \quad x$ (NTL - 1) ) for the individual points in the reactor. The order to count the points in the reactor, is the following : Point 1 is situated at the bottom end of fuel channel 1, the point (NTL - 1) is situated at the top end of fuel channel 1 , the point NTL is situated at the bottom end of fuel channel 2, a.s.o.

Initial value (days) for the reactor life.

See definition on page 77 .

Starting the calculation run with an intermediate reactor state and using the fuel management decision process NUM $=1$, it may happen that the code is not able to decide whether or not the necessary reloading process is already executed.
Put 2, if $N U M=1$ and the required fuel movement for the time step LIFE has been already executed.
Put 1, if NUM $\neq 1$ or if $N U M=1$ and the required fuel movement for the time step LIFE has not yet been executed.

Starting the calculation run with an intermediate reactor state and using $P E R F \varnothing=1$, the code is not able to decide, whether the specific power distribution must be punched or not.
Put 1, if the specific power distribution of this initial intermediate reactor state shall be punched. Put 2, if the specific power distribution shall be punched beginning with the first reloading event which occurs in this calculation run.

Lower delimiting point for a region in the reactor with the same state $1 \leqslant N M \leqslant N E L \quad x \quad$ (NTL - 1 ).

Upper delimiting point for a region in the reactor with the same reactor state. The way to count the points in the correct manner is explained under item M.

Table number of heterogeneous constants of fuel located in the reactor region delimited by $N M$; NG.

Charge number of fuel located in the reactor region delimitated by NM; NG.

This number gives the charging event occasional which the fuel has been inserted in the reactor, starting with a number 1 for the initial core.

Incore-time (days) of the fuel located in the reactor region delimited by $N M$; NG. The incore-time takes into account only the irradiation time.

Burn-up (MWd/to) of the fuel at all the points delimited by NM and NG (the burn-up means generated energy per metric ton of fresh fuel; consequently, e.g., of Uranium oxide).

Burn-up ( MWd/to ) of the axial fuel pieces situated in the region delimited by $N M$ and $N G$. For definition, see under BU.

## CøST

Put 1, if the execution of the CøST sub-routine shall be made.

Put 2, if this execution is not desired.

## Block A

Current number of the calculation run, starting with 1. It is possible to evaluate the same fuel cycle data with different economical input data, changing a few input data and repeating the whole block $A$. If $T N<0$, put NCALC everytime equal to 1 , when the input data of block $B$ will be changed.

The quantity of used tables which characterizes the possibly different fuel channels in the reactor as function of the burn-up $|T N| \leq 10$.

Put $T N$ with a positive sign, if the tables are calculated by ORACLE 1 in the first run of REFLOS.

Put TN with a negative sign, if the tables are calculated in any other way and given in the subsequent Block $B$.

Maximum identification number of isotope (or mixture of isotopes) of heavy atoms which appears in the tables. IS $\varnothing \leqslant 6$. The identification numbers are related to the isotopes in the following way :
$\mathrm{K}=1 \quad \mathrm{U}-235$
$K=2 \quad U-234, U-236, U-238$ (fertile uranium)
$K=3$ PU-239, PU-241 (fissile plutonium)
$K=4$ PU-240 (fertile plutonium)
$K=5 \mathrm{Th}-232$
$K=6 \quad U-233$

LIM 1

LIM2 Quantity of intervals of the reactor life, for which
the mass balances of certain heavy atoms are printed.
LIM2 $\quad$ Quantity of intervals of the reactor life, for which
the mass balances of certain heavy atoms are printed. $1 \leq$ LIM $2 \leq 10$.
Quantity of intervals of the reactor life for which economical data of the fuel cycle shall be accumulated and printed.
$1 \leqslant$ LIM1 $\leqslant 10$

Index indicating whether TWE has to be calculated (see below for the meaning of TWE).

Put O, if TWE shall be taken as specified in the input. Put 1, if TWE shall be calculated by the code itself.

Index indicating whether TWA has to be calculated (see below for the meaning of TWA).

Put $O$, if TWA shall be taken as specified in the input. Put 1, if TWA shall be calculated by the code itself.

Quantity of instalments for the fabrication costs of the fuel elements.

Index indicating whether reprocessing of the burnt-up fuel. is wished.

Put 0 , if the burnt-up fuel shall not be reprocessed. Put 1, if the burnt-up fuel shall be reprocessed.

As $N N$, but for the initial core.

Put LIM1 numbers which specify the individual reloading events delimiting the intervals for which the in these intervals accumulated economical data are calculated. An interval extends from 1 or the proceeding reloading event plus 1 up to and including the specified reloading event.

LIMIT2 As LIMIT1, but the here defined intervals are valid for the mass balances of certain heavy atoms.

XINU

Reprocessing-loss factor (1), giving the fraction of mass of each specified isotope coming out from the reprocessing plant, if the feeding mass amounts to one.

Specific expenditures or credits (\$ per kg heavy atoms) for the isotopes or mixtures of isotopes mentioned under IS $\varnothing$. If for U-235 and U-fertile a zero is inserted, the corresponding values are calculated by means of a formula which follows from the theory of the ideal cascade. It is valid for both, enriched and depleted uranium (Ref. 9).

Reconversion costs ( $\$ / \mathrm{kg}$ ) for the isotopes or mixtures of isotopes mentioned under IS $\varnothing$. Hence, this value contains the expenditures to convert the regained heavy atoms in a form usual in trade. Take thesequence given under ISØ.

Fabrication-loss factor (1), giving the mass of heavy atoms which must be feeded to the fabrication plant in order to obtain a mass equal to unity as fabricated fuel element. Take the sequence given under IS $\varnothing$.

Quantity of discharged fuel batches, dependent on the table number, which shall be accumulated before the irradiated fuel is given to the reprocessing plant. Put O, if ITWA $=0$.

The sequence of input preparation is the one of increasing table numbers.

KRP

KTR

Expenditures for reprocessing, dependent on table number ( $\$ / \mathrm{kg}$ ).
Expenditures for transport and insurance of the
irradiated fuel, dependent on table number ( $\$ / \mathrm{kg}$ ) .
Time needed for the reprocessing (months); dependent
on the table number.

Average time (months) during which the discharged fuel will be accumulated, before it is transferred to the reprocessing plant, in order to get sufficiently great batch sizes for feeding the reprocessing plant, dependent on the table number.

Put O, if ITWA $=1$.

Weight-fraction of heavy atoms (metal) in the fuel compound.

Quantity of fuel batches which shall be accumulated for a greater batch size for the fabrication process, depending on the table number.

Put O, if ITWE $=0$.

Fabrication costs ( $\$ / \mathrm{kg}$ ) for the fuel elements, containing 1 kilogram of heavy atoms. Dependent on table number.

Fabrication time (months), dependent on the fuel type.

Average time (months) for the storage of fresh fuel in order to obtain sufficiently great batch sizes for the fabrication process. Dependent on table number.

Put $O$, if ITWE $=0$.

```
TFO
    TK
    Cooling time of the discharged irradiated fuel
    (months).
    TTA
    TT
    TTO
    TWEO
    ST
    Tax rate for the invested capital (per cent/year).
PM Monthly interest rate (per cent/month) (= present worth
rate).
RH\varnothing
KL Expenditures for storaging of the irradiated fuel ($/kg),
    if no reprocessing is wished.
    Put O, if IRP = 1.
VIE
WøRK
Produced electrical energy per month (kWhe/month).
```



```
= Fission power x \mp@subsup{\eta}{1}{} < < \mp@subsup{\eta}{2}{}}
```

```
\eta 1 means the fraction of the energy released by
    fissions, which is transferred to the coolant. means the plant efficiency, giving the fraction of thermal energy in the coolant which is converted in electrical energy.
\(k\) means the load factor of the plant.
```

KYC

KC

R

CS

KR

J

BU

MPL

Cost of yellow cake $\left(\mathrm{U}_{3} \mathrm{O}_{8}\right)$ ( $\$ / \mathrm{lb}$ ).
Actual USAEC-value : $8 \$ / \mathrm{lb}$.

Conversion cost for the process $\mathrm{U}_{3} \mathrm{O}_{8} \rightarrow \mathrm{UF}_{6}(\$ / \mathrm{kg})$. Actual value : $2.66 \$ / \mathrm{kg}$.

Tail assay (weight-procent). Actual value $0.2 \%$.

Cost of the separation work unit ( $\$ / \mathrm{kg}$ ).
Actual value : $26 \$ / \mathrm{kg}$.

Minimum value of depleted uranium.
Actual value : $3 \$ / \mathrm{kg}$.
The actual values are taken from (Ref. 9).

Block B

This block appears only, if $T N<0$ and $N C A L C=1$.

Number of the table, $1 \leq K \leq 10$.

Number of burn-up steps included in this table.

Burn-up in MWd/to (burn-up means generated energy per metric ton of fresh fuel, consequently, e.g., of uranium oxide).

Mass of fuel per length unit of the fuel element channel (to/cm ).

WPC.U 235
WPC $U$ Weight fractions of U-235, fertile Uranium, fissile WPC PUFI
WPC PUFE
WPC TH WPC U 233
plutonium, fertile plutonium, thorium and $U-233$ in the mass of heavy atoms (for each burn-up step normalized to one).
5.5. Output description

All executed program parts print out the corresponding input data, using the same symbols as described in the input description.

ORACLE 1
Amongst a lot of other cell data, ORACLE 1 provides the heterogeneous constants as function of the burn-up

ALFA, MU, GAMA, BETA,
the mass and the composition of the fuel as functinn of the burn-up,
MPL, WPC for the individual isotopes or mixtures of isotopes and $\tau_{t h}$, FLDEUX.

These data are also automatically written on magnetic tape and may be optionally punched on cards.

## PREVOL

The calculated matrix, representing the coupling between the sources, sinks and peripheral thermal fluxes, defined in the theory of Feinberg and Galanin without to employ the fuel properties, is not printed but automatically storaged on a tape and will be kept unchanged during the whole reactor life. In order to facilitate the control of the specified co-ordinates of the channels, the reactor configuration is plotted by CALCOMP.

STATUS
After each DT and before and after each reloading process for each fuel channel group CH and for each point (NTE-1) in this channel are printed :

- the core state, defined by $K_{1}, K_{2}, C T$, $B U$, BUM (optionally for the $D T$ steps!),
- the specific powers (MW/cm) and powers per channel (MW) (optionally),
- the mean specific powers for each axial fuel piece (NTE-2 values per channel!) (MW/cm) (optionally),
- the reactor life under irradiation LIFE (days)
- the iterated value
it Value
- the form factor for the specific power FFPW (corresponds to mean $M W / \mathrm{cm}$ divided my maximum $\mathrm{MW} / \mathrm{cm}$ ),
- the fission power of the reactor [ MW] POWER
- the $\mathrm{keff}^{\text {-value of }}$ the reactor K EFF
- the maximum specific power in the reactor $\angle \frac{-M W}{c m} 7$ PSLMAX
- the channel number and the point in this channel counted from the bottom end of the core, where CH and PT the maximum of the specific power is situated
- the kind of used fuel movement

CYCLE

If wished, the specific power distribution in axial direction is printed and punched on cards for all channels.

## CøST

For each loading event and each table are given :

- the reactor life $\mathbf{L I F E}$ [days], when the loading event happened
- the mass of the total discharged fuel [to] DF
- the mass of the discharged heavy atoms (metal) [to JDM HA
- the mean burn-up of the discharged fuel $\left[\frac{-M W d}{\text { to }} 7\right.$ MEAN-BU
- the in-core time of the discharged fuel / days7 ICT DF
- TWA [months] (see input)
- the value of the heavy isotopes which are contained , in the discharged fuel $\angle \overline{\$} / \mathrm{kg} 7$ BCA*
- the credits for the fuel arter reprocessing and reconversion to a form usual in trade, discounted BCA to the time point of discharging of the fuel
$\langle \$ / \mathrm{kg}]$
A negative value means, that this value must be spent, in order to regain the irradiated fuel.
- the credits for the discharged fuel, discounted

Again, a negative value means that the reprocessing is connected with net expenditures.

- the discharged masses of

| Uranium- 335 | DM | U | FI |
| :--- | :--- | :--- | :--- |
| fertile Uranium | DM | U | FE |
| Fissile Plutonium | DM | PU | FI |
| fertile Plutonium | DM | PU FE |  |
| Thorium | DM | TH | O3 |
| Uranium-233 | DM | U | 23 |

- the mass of the charged heavy atoms (metal) CM HA
- the fabrication costs $I^{-} \$ / \mathrm{kg} 7 \mathrm{KF}$
- the in-core time of charged fuel [- months_7 ICT CF
- TWE [-months_7 (see input)
- the value of the heavy isotopes which are contained in the charged fuel $/ \$ / \mathrm{kg} 7 \quad \mathrm{BCE}^{*}$
- the expenditures for the charged fuel, including fabrication costs, discounted to the time point of charging of the fuel $/ \$ / \mathrm{kg} 7$

BCE

For the initial core the so defined value is automatically increased for the value of the fuel elements on reserve.

- the expenditures for the charged fuel, discounted to the time point of charging the fuel [\$_7. For the initial core (step nr. 1) the so BKE defined value is automatically increased for the yield of RHø.
- the charged masses of

Uranium-235 CM U FI
fertile Uranium CM U FE
Fissile Plutonium CM PU FI
Fertile Plutonium CM PU FE
Thorium CM TH 03
Uranium-233
CM U 23

- For each time interval, defined by LIMIT 2 , the total discharged and charged masses for all isotopes, mentioned above, are printed.

DISCHARGED MATERIALS<br>CHARGED MATERIALS

- For each time interval, defined by LIMIT 1, the effective expenditures $\varliminf^{-} \$ 7$ for the fuel cycle, discounted to the time point of beginning of power production (corresponds to LIFE $=0$ ) are given under BK
- In the subsequent line these effective expenditures [\$_7 are summed up to LIMIT 1 for the whole preceding reactor life, excepted the expenditures concerning the initial core.

Finally, the following cost data for the fuel cycle are summarized :

- the expenditures for the initial core [ $\$ 7$ including the fuel elements on reserve, and discounted to LIFE $=0$.

BKO

- The effective expenditures during the transition period of the reactor $\mathbb{K}^{\$} \$ 7$, discounted to LIFE $=0$, apart from the initial core.

BK TRANS
Included in the transition period are all
loading events which occur up to the reactor life, and including this time, defined by the number (LIM1-1) of LIMIT 1.

- The effective expenditures during the sum of the individual equilibrium periods of the reactor [\$_7, discounted to LIFE $=0$. BKG The equilibrium period is represented by the reactor life limited by the loading events (LIM1-1) and LIM1 of LIMIT 1, at which the loading
event (LIni-1) is not added to the equilibrium period wheras LIbil is added to it. The addition happens for all $n$ integer equilibrium periods, of which the reactor life (VIE - transition period) consists.
- The effective expenditures during the running-out period of the reactor $\mathbf{Y}^{-} \mathbf{Z}$, discounted to LIFE $=0$. Here, the reloading events of the part of the reactor Iife (VIE - transition period - $n$ x equilibrium period) and the discharging of the last core are taken into account.
- The total net expenditures for the fuel cycle during the whole reactor life, included the expenditures for the initial core, discounted to LIFE $=0, i^{-} \overline{7}$.

BCF

- The present-worth value (discounted to LIFE = 0 ) for the "variaile cost" part of the extrapolated fuel cycle, ${ }^{-}$- $\overline{-}$. This cost part is proportional to the produced energy.

BCF 2

- The present worth value of the "fixed cost" part
 cost part does not direcily depend on the amount of produced energy.
- The present-worth vaiue (discounted monthly to LIFE $:=0$ ) of the total electrical energy produced '「KWhe $^{-} \bar{\prime}$.
- The "fixed cost" part of the specific fuel cycle cost $\frac{-\mathrm{mill}}{\mathrm{kWhe}}-7$. $\mathrm{BCF} 1 *$
- The "variable cost" part of the specific fuel cycle cost $/-\frac{m i l l}{k W h e}-7$.
- The total specific fuel cycle cost - mill $_{\mathrm{kWhe}}^{\mathbf{-}}$. $\mathrm{BCF}{ }^{*}$
- The pesent-worth value of the electrical energy produced in the transition period / $^{-} k W h e / 7$.
- The present-worth value of the electrical energy produced during the first equilibrium period I' $^{-}$kWhe 7 BEG
- The specific fuel cost for the transition period /- mill $\frac{\text { kWhe }}{}$ - included the cost for the initial core BCFE
- The specific fuel cycle cost for the transition period [- mill $\frac{\text { kWhe }}{}$ 7, excepted the costs for the initial core.

BCFE *

- The specific fuel cycle cost for the first equilibrium period [- mill $\frac{\text { kWhe }}{\text { _ }}$. BCFG


### 5.6. Coding lnformation

Deck-composition

FORTRAN-deck numbered
REF 0001 to REF 7032

Tape formats
The program uses 2 library tapes, 2 scratch tapes and 1 calcomp tape, which contain the following information :

| Number of data sets | DESCRIPTION |
| :---: | :---: |
| 4 |  |
| 1 | scratch tape placed on disc    <br> PARTS OF MATRIX-TAPE E   <br>  0 <br>  <br>  <br>  <br>  <br>  <br> Symb. UNIT 2   |
| 1 | scratch tape placed on discINTERMEDIATE RESULTS FOR CøST    <br>    CALC. <br>     <br>     <br> symb. UNIT 4   |
| 1 |  |

## Timing

## PART 1 ORACLE 1

about 2 min. for 1 case (about 15 burn-up steps)

PART 21 PREVOL
about 3 min. ( 60 channels)

## PART 22 STATUS

about 0,45 min. per cycle ( 60 fuel channels)
interpolation $: \frac{\text { time }}{\text { cycle }}=0,45\left(\frac{\text { fuel channels }}{60}\right)^{2}$
PART 3 CøST
about 3 min. for total cost evaluation.

## Printed lines

PART 1 ORACLE 1
about 50001 ines/case (about 15 burn-up steps)
reduced out-put : ( $50+6 \mathrm{x}$ burn-up steps) lines/case.

PART 21 PREVOL
about 150 lines

PART 22 STATUS
depends on desired output quantity
$1000 \frac{\text { lines }}{\text { case }}+$

+ 300 (PRINT2 + PRINT3 + PRINT4 + PRINT5) lines x ( ${ }^{\circ}$ cycle cyes
PART 3 C $\varnothing$ ST
about 1000 Iines.


## 6. SAMPLE FOR INPUT AND OUTPUT

### 6.1. Problem description

In order to give an example, an arbitrary reactor concept has been chosen. It may be emphasized that the numbers given in this example do not correspond to any special design. Similarly, the cost data shall give only a formal impression, they must not mean realistic numbers.

Coolant :Organic liquid

Fuel :Natural and slightly enriched uranium carbide
Fuel element :19-rod-bundle
Reflector :Heavy water

Number of
fuel channels 168
Number of
control rods 8

Electrical power 250 MW

Fission power 707 MW

The design of the core allows to utilize during the reactor calculation a rotation symmetry 4. Thus, only a quarter of the core must be treated. Moreover, there is a specular symmetry, too, in the $\frac{\pi}{2}$-sector of the core, so that the number of channels in the reactor, which must be explicitly considered, amounts to 24 fuel channels and one control rod channel. Since also the axial symmetry condition is fulfilled, the needed calculation time will be reduced by applying this symmetry condition in the present computation.

```
Concerning the fuel management, it is to say that the
initial core consists of a central zone loaded with
natural uranium (56 fuel channels) and an outer zone
loaded with enriched uranium (112 fuel channels).
The management is executed if keff falls below the specified
limit. Then, the central zone is always discharged,
the fuel elements of the outer zones are transferred to the
middle of the core and new enriched fuel is introduced to
the empty channels (radial out-in fuel movement with
three zones).
```

The flux-distribution calculations are carried out by applying one fast and one thermal energy group. The control rods are not used to compensate the exess reactivity of the reactor.

It may be mentioned that the input sample was prepared, following the sequence given in section 5.3 .
6.2. Print of input and output data


**PARTI - ORAKEL 1 (CELL B:JRIJUP C.JIEI***
*** ORAKEL 1 ***
(CELL BURN-UP CODE, SPECIAL VERSION FOR USE IN REFLOS)

| YOUR INPUT CARD ARRANGEMENT WAS AS FOLLOIS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 1 | 6 | 0.30000001 | 0.54000003 | 0.0 | 0.54000003 | 0.10000001 | 0.54000003 |
| 7 | 12 | 0.0 | 0.50000003 | 0.0 | 0.45000003 | 0.0 | 0.40000003 |
| 13 | 18 | 0.0 | 0.370nOD 03 | 0.350000 03 | 0.93300003 | 0.59100003 | 0.0 |
| 17 | 24 | 0.33800003 | -0.100000 01 | 0.0 | 0.0 | 0.700000-01 | 0.27000001 |
| 25 | 29 | 0.15000002 | 0.0 | ก. 99800000 | 0.0 | 0.0 |  |
| 30 | 31 | 0.73360000 | 0.36789100 |  |  |  |  |
| 36 | - 37 | 0.52516001 | 0.53716001 |  |  |  |  |
| 40 | 41 | 0.30000001 | 0.18496001 |  |  |  |  |
| 6) | 61 | 0.13321002 | 0.25000003 |  |  |  |  |
| 64 | 66 | 0.54000003 | 0.0 | 0.54000003 |  |  |  |
| 71) | 71 | 0.20190001 | 0.243701102 |  |  |  |  |
| 130 | 134 | 0.30000001 | 0.10000000 | 0.0 | 0.0 | 0.41500001 |  |
| 206 | 296 | 0.10000001 |  |  |  |  |  |
| 216 | 216 | 0.10 .00001 |  |  |  |  |  |
| 223 | 228 | 0.10000001 |  |  |  |  |  |
| 34 | 35 | 0.46317001 | 0.43532 D 11 |  |  |  |  |
| 54 | 56 | 0.714000-02 | von | 0.99286000 |  |  |  |
| * 90 | 96 | U.10)0U0:1 |  |  |  |  |  |

\#*TABLEA 1**

|  |  |
| :---: | :---: |
|  |  |
|  | 垵 <br>  <br>  <br>  <br>  <br>  |
| $\begin{aligned} & \pm \\ & 0 \\ & 1 \\ & \underset{\sim}{1} \end{aligned}$ |  1111111111111111111111111111111 แй <br>  |
|  |  |
|  |  |
| * |  |
|  |  <br>  |
| - |  |




| P1) FISS. | PU | TH |
| :---: | :---: | :---: |
| 272975D-04 |  | 0.0 |
| 2780830-04 | 1 | 0 |
| 2.4880830-04 |  |  |
| 40755001D-04 |  | 。 |
| 5. $8125970-04$ |  | 0 |
| 20-04 |  | 0.0 |
| D-04 | 7.3855530-05 | 0.0 |
| D-03 | 1.0524180-04 | 0.0 |
| D-03 | 1.4044340-04 | 0 。 |
| 12831 -03 | 1.7890370-04 | 0.0 |
| D-03 | 2.201315D-04 | . 0 |
| 6898D-03 | 2.6369020-04 | 0.0 |
| $64308 \mathrm{D}-03$ | 3.0919130-04 | 0.0 |
| $631160-03$ | 3.5628720-04 | 0.0 |
| 40830-03 | 4.0476840-04 | 0.0 |
| $7901 \mathrm{D}-03$ | $4.545582 \mathrm{D}-04$ | 0.0 |
| 15199D-03 | $5 \cdot 042112 \mathrm{D}-04$ |  |
| $30-03$ |  | 0.0 |
| $52460-03$ | 6. $0595550-04$ | 0.0 |
| 134210-03 | 6.5718080-04 | 0.0 |
| 03 |  | O. 0 |
| $221380-03$ | 7.5957740-04 | 0.0 |
| $470642 \mathrm{D}-03$ | 8.1049720-04 |  |
| 5684D-03 | 8.6108930-04 | $0 \cdot 0$ |
| $575590-03$ | 9.112645D-04 | 0.0 |
| $965340-03$ | 9.6094490-04 | 0.0 |
| $632853 \mathrm{D}-03$ | 1.0100630-03 |  |
|  |  |  |
|  |  |  |
| 2002D-03 | 1.153513D-03 |  |
|  |  |  |
| 817370-03 |  |  |
| $2.8061580-03$ |  |  |

*** DRAKEL 1 ***
(CELL BURIJ-UP CODE, SPECIAL VERSION FOR USE IN REFLOS)
YOUR INPUT CARD ARRAJGEIEJT WAS AS FOLLDHS
SAMPLE PROBLEM REFLOS FUEL NR. 2 (G19 UC-SAP, Y=1. 15 PC REL)

5456
0. $821000-02$
0.0
0.99179000

- 96960.20309001

$\stackrel{k}{k} \quad 34$

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

OOOOOOOOOCOOOOOOODOOOEOCOOUOODOS
 ORNGM,








0.9
 10316193101


1232
$000000000000000.000=0 こ 0002000$
00000000000000000000000000

00000000.20000000000000300 .0000000
000000001000000000000000000000000

## 

| $\begin{aligned} & \text { FLDEUX } \\ & 0.1322140 E \text { 05 } \end{aligned}$ | $\begin{aligned} & \text { TA!J2 } \\ & 0.1119390 \mathrm{E} \end{aligned}$ | $\stackrel{H}{0.4300090 E} 03$ | $\begin{gathered} R 2 \\ 9.2210000 E 03 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| NR | $\begin{aligned} & N E \\ & 42 \end{aligned}$ | $\begin{gathered} \mathrm{KPLEC} \\ 12 \end{gathered}$ | 19 | $\mathrm{KR}_{\mathrm{O}}$ |
| $\underset{O}{\text { I ZNUL }}$ | NS ${ }_{1}^{\text {YR }}$ | $\begin{gathered} \text { NSYE } \\ 18 \end{gathered}$ | NTE | $\begin{aligned} & \text { IMAT } \\ & 11 \end{aligned}$ |
| $\begin{gathered} \text { NANA } \\ 0 \end{gathered}$ | $\underset{O}{\text { NANAI }}$ | $\underset{0}{\text { NANA2 }}$ | $\underset{\%}{\text { NANA }}$ | ITR I |

GRRANGEMENT OF FUEL CHANNELSi. ANE CONTROL RODSG,
Sample problem reflos fuel 1/2 2 groups


```
F
    000000010000000000000000 0 0000000000000000000
```




$\stackrel{\rightharpoonup}{\sim}$
-10


$c^{\circ}$


がo




 mminminiminkin




| $\stackrel{m}{c}$ |
| :---: |
|  |  |
|  |
| Or |
| －N |
|  |  |
|  |
| $\square$ |
| $\stackrel{0}{0}$ |

NNaNNNAMNmmmmmmmmmmmmmmm ococcoccococccoccocoocec
 00000งのN＋





N๙Nanmmmmmmmmmmmmm ccceoocccocooronce

نا oconinnancanmmcoenas
 －mom－N－THJEmmor－000


 $\therefore 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}$
～NMNNNNNNNNNNNNNNMMNNNNMN


 in nininirgming vin minnatmoningamy



응 NONNNMNMMMMMMMMMMM
 แயшшшயшшшшшшшшшш 800 coのanのnn ininty tmymmo 0 moo ofor triccaegammamrmima oocinisurcemmomirmirmis

0.1579500503


[^1] in $=$
$\qquad$

CAJAUX-BARRES JE CTHTRJLE ( TRJNUNS)

HI ALFA(REFLE), ALFA(BARRE)
1 0.360:3000E 03 0.9997996E-4) (169979)96E-0

## 

meme jecoupage Eif 12 truncions

## 

ALFA/REFLEC.SUH

1. $9939990 \mathrm{E}-010.9999996 \mathrm{E}-01$
*C HARGEMENT dE LA GANDE PREVOL TERMIINE*
**PARTZI TERMINATED

## **PART22 - REACTOR CALCULATION AND FIJEL YANAGEMENT SAMPLE PROBLEH REFLOS FUEL $1 / 2$ GROIJPS

## **INPUT DATA**

| AIM | XEQ ${ }_{1}$ TIME |
| :---: | :---: |
| PRINTI | 15 |
| PRINT4 | RUN |
| P | I |
| PRINT5 |  |

TAB
1
UNIT2
12
PRINTG
$\underset{n}{2}$

| UNIT1 | NR |
| :---: | :---: |
| 0 | 2 |
| PRINT2 | PRINT3 |
| CYCLE | n |
| 3 | PUNCH | PERFJ


no36nnnnne 03
0.2500000E 02

CHANNEL CORRESPOVDEVCES FOR RADIAL MTVEMENTS



| NRL | NE |
| :---: | :---: |
| 1 |  |

IMAT
${ }_{24}^{N E L}$
NCOO
1


NSC
IBANAL
NAN2

## NAN 0

NAN4
NAN1
0.0

ก. 1 FKSIOANE nl
C. RKSI 0 OODOE OI
$n_{0} 0^{\text {DKS I }}$
no HOTRONOOF 03
ERREUR
$0.9999995-04$
ZIR VALUES (POSITIJN :JF CUNTROL ROOS)

```
*********堷***********
```

| ITI IT 2 | KSI | PC | DEL |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{lll}1 & \\ 1 & \mathbf{1} \\ 1 & & \mathbf{2} \\ 1 & & 4 \\ 1 & & 4 \\ 1 & 5 \\ 1 & & 6 \\ 1 & & 7 \\ 1 & & 8 \\ 1 & & 9\end{array}$ |  |  |  |  |
| XEQ TIME $=0.11$ |  |  |  |  |
| $0.0{ }^{\text {LIFE }}$ | $\begin{aligned} & \text { ITVALUE } \\ & \text { O.IOB9332E O1 } \end{aligned}$ | FFPW <br> 0.5268804 E 00 | $\begin{aligned} & \text { POWER } \\ & 0.7069983 E \text { O3 } \end{aligned}$ |  |
| $\begin{gathered} \text { PSLMAX } \\ 0.2218685 \mathrm{E}-01 \end{gathered}$ | $\mathrm{CH}_{9} \mathrm{PT}_{6}$ | $0.0^{\mathrm{c}}$ |  |  |

## 

| IT1 IT2 | KSI | PC | DEL |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll}1 & 1 \\ 1 & \frac{2}{2} \\ 1 & 3 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \\ 1 & 6 \\ 1 & 7 \\ 1 & 8\end{array}$ |  |  |  |  |
| XEQ TIME $=0.05$ |  |  |  |  |
| $0.7649377 E \quad 02$ | $\begin{aligned} & \text { IT VALJEE } \\ & \text { O. IOCOS65E } \end{aligned}$ | $\therefore .6$ F52.768E OC | $\begin{aligned} & \text { OOWER } \\ & \text { O. } 7069985 \mathrm{E} \text { O3 } \end{aligned}$ |  |
| $\begin{aligned} & \text { PSLMAX } \\ & 0.1931318 E-01 \end{aligned}$ | $\mathrm{CH}_{1} \mathrm{PT}_{6}$ | $0.0{ }^{\text {c }}$ |  |  |



```
**ZONE-SPECIFICATITNS** FDRMAT*TABLE-INDEX,CHARGE NUMBER, INCORE-TIME, SURNUP, MEAN-BURNUP*
```



``` RADIAL MOVEMENT WITH FIXED LOADING SCHEME, LOAD 9 CHANNEL(S)
```

** LONE-SPECIFICATI ONS** FIJR:1AT*TABLF-INTEX, CHARGE NUMBER, INCORE-TI ME, B'JPNIJP, MEAV-BURNIJP*

＊＊ZONE－SPECIFICATI ONS＊＊FOR：1AT＊TABLE－INNEX，CHARGE NIHBER，INCORE－TIME，BURNUP，MEAN－BURNUP＊ CH21

| 2 |  |  |
| :--- | :--- | :--- |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |
| 2 | 2 | 0 |



$n$
0.0
0.0
0.0
0.0
0
0.0
0.0
0
0
0.0
0.0
CH 23

| 2 |  |  | $0_{0} n$ |
| :--- | :--- | :--- | :--- |
| 2 | 2 | $0_{0}$ | $n_{0}$ |
| 2 | 2 | $n_{0}$ | $n_{0}$ |
| 2 | 2 | $0_{0}$ | $0_{0}$ |
| 2 | 2 | $n_{0}$ | $0_{0}$ |
| 2 | 2 | $n_{0}$ | $n_{0}$ |
| 2 | 2 | $0_{0}$ | $n_{0}$ |
| 2 | 2 | $0_{0}$ | $n_{0}$ |
| 2 | 2 | $n_{0}$ | $0_{0}$ |
| 2 | 2 | $0_{0}$ | $0_{0}$ |
| 2 | 2 | $0_{0}$ | $n_{0}$ |
|  |  |  | $n$ |



CH 24
NAJNNNNNNNN
NNNNNNNNNNN

がc゚c̊ccicicicié
00000000000
$0.000^{\circ} 00^{\circ} 00^{\circ} 0^{\circ}$

## 0000000000 0000000000

## HARMMNIQUES

ITI IT2
K S I
PC
DEL


XEQ TIME= 0.06
$0.7649377 E \quad 02$
PSLMAX
0. $2151638 \mathrm{E}-01$

## 2. 1000565 E $\begin{array}{lll}0 . & 1030161 E & n \\ 0 & 1031649 E & 0 \\ 0.1031655 E & n \\ 0.1031617 E & n \\ 0 & 103159 n E & n \\ n & 1031573 E & n \\ 0.1031564 E & 0 \\ 0.1031559 E & n\end{array}$ <br>  <br> $\mathrm{CH}_{1} \mathrm{PT}_{6}$

FFPW
0.5432985 E 00
$0 . n^{c}$


POWER
$0.7069985 E \quad 03$

K KFFF
10315595
$1 T 1 \quad 1 T 2$
KSI
PC
DEL

ITVALUE
$0.10 त 1743 \mathrm{E}$
$\mathrm{CH}_{9} \mathrm{PT} \mathrm{P}_{6}$


FFPW
642700
$0.64279^{\text {NGG }} 00$ $\mathrm{CoO}{ }^{\mathrm{C}}$

## 

PDWER
n. 7 n6998R
ก. KNE:743F 01
**PA RT - FUEL CYCLE COSTS **
**INPUT DATA**


```
INTERVALS FOR SEPARATE COST-EVALUATIONS
INTERYALS FOR SEPARATE MATERIAL-ACCUMULATIONS
```

DATA DEPENDING FROM ISOTOPES


|  |  |  | \%: ${ }_{\text {fet }}$ |  | 8: $0^{\text {BCA* }}$ | $8: 8^{\text {BCA }}$ | ก: $\mathrm{fl}^{\text {RKA }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{om}_{0}^{\text {O/E }}$ |  |  | ${ }_{\text {pa }}^{\text {Pa }}$ | d. $\mathrm{mbl}^{\text {dim }}$ | ¢M ${ }^{2} 3$ |  |  |




STEP NR. 2 (LIFE=7.649377E O1)




STEP NR. 3 (LIFE=1.244231E J2)





STEP NR. 4 (LIFE=1.711718E 02)




STEP NR. 5 (LIFE=2.270736E O2)

STEP NR. 6 (LIFE=2.770735E 02)


*DISCharged materials*

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $8 . \mathrm{FE}$ 1- 1 U |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| *Charged materials* |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| PUFE 1-1 PUFE 2- 4 PUFE $5-7$ |  |  |  |  |
| *acc. Costs for defined intervals |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | 1.023133E 05 |  |  |
| 4. $\mathrm{BCF1}_{68840 \mathrm{E}} 06$ 2.769596E 10 |  |  | 3. 355114 ERF 00 | 1.607765E 09 |
|  |  | ${ }_{3.185946 E ~}^{\text {BCF }}$ |  |  |

```
[TRef. 1_7 W. De Haan, R. Meelhuysen
        Plutharco, a Plutonium, Uranium, Thorium,
        Assembly Reactivity Code
        EUR-3141 e, (1966)
    [Ref. 2_7 W. De Haan, R. Meelhuysen
        RLT-4, a Long Term Reactivity Program for
        Survey Calculations
        Private Communication (1967)
    /-Ref. 3_7 ORACLE - To be published.
    LRef. 4_7
    J. Ligou, C. Mignot
        Tridimensional Theory of Heterogeneous Reactors
        Nuclear Science and Engineering, 19, 58-73, 1964
    /-Ref. 5_7 J. Ligou
    \_Ref. 6_7 M. Willems, H. Huber, A. Al, L. Barazzoni
        Euratom Economic Handbook
        EUR 3079 e, (1966)
    L_Ref. 7_7 A. Amouyal, P. Benoist
        Nouvelle méthode de détermination du facteur d'utili-
        sation thermique d'une cellule.
        CEA 571 (1956)
        /-Ref. 8_7 Application des méthodes hétérogènes aux réacteurs
        ORGEL; cycles de combustible
        Contrat EURATOM/G.A.A.A. no 266-66-5 ORG F
        Rapport trimestriel : période juillet-septembre 1968
```

```
/-Ref. 9_7 M. Benedict, T.H. Pigford
Nuclear Chemical Engineering, Mc Graw-Hill,
p. 401.
```


## NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year: US\$ 15, £6.5) or free specimen copies please write to:

Handelsblatt $\mathbf{G m b H}$
"Euratom Information"
Postfach 1102
D-4 Düsseldorf (Germany)

Centrale de vente des publications
des Communautés européennes
37, rue Glesener
Luxembourg

To disseminate knowledge is to disseminate prosperity - I mean general prosperity and not individual riches - and with prosperity disappears the greater part of the evil which is our heritage from darker times.

## SALES OFFICES

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

## GENTRALE DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES

37, rue Glesener, Luxembourg (Compte chèque postal No 191-90)

## BELGIQUE - BELGIE

MONITEUR BELGE
40-42, rue de Louvain - Bruxelles
BELGISCH STAATSBLAD
Leuvenseweg 40-42 - Brussel

## DEUTSGHLAND

BUNDESANZEIGER
Postfach - Köln 1

## FRANGE

SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
26 , rue Desaix - Paris $15^{e}$

## ITALIA

LIBRERIA DELLO STATO
Piazza G. Verdi, 10 - Roma

## LUXEMBOURG

CENTRALE DE VENTE
DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
37, rue Glesener - Luxembourg

## NEDERLAND

STAATSDRUKKERIJ
Christoffel Plantijnstraat - Den Haag


[^0]:    *) This work has been performed in co-operation between EURATOM and the "Groupement Atomique Alsacienne Atlantique (GAAA)" in the frame of the contract EURATOM/GAAA $n^{\circ}$ 266-66-5 ORG F.
    **) Manuscript received on 7 February, 1969.

[^1]:    C  000

