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This report t reats principally the mechanical properties (till 600 °C) of the 
four SAP-grades (Sintered Aluminium Poλvder) fabricated by ISML (Istituto 
Sperimentale Metalli Leggeri, Novara - I taly). 

Most of the results, described in this report, were realised between 1960 and 
1967 in three research centers : JRC-Ispra, ISML, Novara, and Battclle Inst i tut , 
Frankfurt . 

The first chapter describes in short the fabrication process of the semi­
finished products (bars and tubes) and finished products (canning tubes and 
pressure tubes). 



The second chapter deals with the mechanical properties of the SAP-alloys 
in general. Essentially the chapter consists of : 
— talks with results of tension-, compression-, creep- and fatigue tests at 

various temperatures; 
— diagram with the mechanical properties as a function of temperature or 

percentage of aluminium oxide. 
The third chapter describes the experimental conditions and some physical 

properties of SAP. 
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A B S T R A C T 

This report treats principally the mechanical properties (till 600 °C) of the 
four SAP-grades (Sintered Aluminium Powder) fabricated by ISML (Istituto 
Sperimentale Metalli Leggeri, Novara - Italy). 

Most of the results, described in this report, were realised between 1960 and 
1967 in three research centers : JRC-Ispra, ISML, Novara, and Batteile Institut, 
Frankfurt. 

The first chapter describes in short the fabrication process of the semi­
finished products (bars and tubes) and finished products (canning tubes and 
pressure tubes). 

The second chapter deals with the mechanical properties of the SAP-alloys 
in general. Essentially the chapter consists of : 
— talks with results of tension-, compression-, creep- and fatigue tests at 

various temperatures; 
— diagram with the mechanical properties as a function of temperature or 

percentage of aluminium oxide. 
The third chapter describes the experimental conditions and some physical 

properties of SAP. 
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INTRODUCTION 
Under the Orgel Program, Euratom envisaged the possibility 
of using aluminium alumina composites (Sintered Aluminium 
Product) for cladding fuel elements (temperature 450 C) and 
for pressure tubes (temperature 450°C and pressure 20 atm.). 

The most important work done on such products with the aim 
of making them suitable for use in the nuclear field was car­
ried out either under contracts, specially with the ISML (Is­
tituto Sperimentale dei Metalli Leggeri, NOVARA, Italy), and 
in the laboratories of Euratom's Joint Research Center at Is-
pra, Italy, especially in the Metallurgy and Ceramics Division. 

The research program at ISML was sponsored by Mr; D. GUALANDI 
(ISML) and Mr. P. JEHENSON (Euratom) (Ref. 1 to 23). 

1. MANUFACTURING PROCESS 
1.1 Improvement, of the Starting Powders (Ref. 22) 
The SAP powders used were commercial products which were manu­
factured by AIAG* up to 1962, after which they were further de­
veloped by the West German firm of Eckart-Werke. 
1.1.1 SAP Powders Produced by AIAG-
The SAP powders of the following grades 

SAP 960 about 4 wt.# A1„0, 
SAP 930 
SAP 895 
SAP 865 

II γ II 

"10-11 " 
"13-14 " 

II 
II 
•1 

were obtained from 99.5$ pure aluminium powders which had un­
dergone fairly lengthy milling at room temperature in a dry 
oxidizing atmosphere in the presence of stearic acid (Refs. 
46-59). Work carried out on several tons of these powders 
showed that the aluminium oxide content of a specific grade 

s Aluminium-Industrie AG (Alusuisse) 
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may differ between extreme limits of - 1 wt.$ of Alp°3 f r o m 

the theoretical percentage for the grade. 

The results of two analyses carried out on two batches are 
given below (wt.$):-

M a t e r i a l 

SAP 930 
SAP 895 

#A1205 

7.50 
10.40 

$ Fe 

0 .27 
0 .27 

" % Si 

0 .12 
0.11 

% Zn 

0 .02 
0.01 

The grain size is generally between 50 and 150 microns. The 
grains have irregular round shapes and are of spongy aspect 
(Illustration 1). 

The work carried out in 1960-62 on these AIAG commercial pow­
ders indicated that it was necessary to obtain better defined 
powders, especially with regard to the homogeneity of the pro­
duct (% Alp0_) and the uniformity of dispersion of the Al 0, 
particles in the aluminium matrix. 

1.1.2 SAP Powders Produced by Eckart-Werke 
The powders were developed by the West German firm in accordance 
with the basic manufacturing procedures established by AIAG. 
They are heavy powders the oxide content of which is mainly due 
to natural oxidation during the milling of the aluminium powder 
at room temperature. The original aluminium is nuclear alumi­
nium of the order of 99.85$ purity. 

The aluminium oxide content must be as follows: 
SAP 930 
SAP 895 

6.5 - 7.5 wt.$Al203 
10 - 11 wt.^AlpO, 

The results of two analyses carried out on two batches are given 
below (wt.$):-
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M a t e r i a l 

SAP 930 
SAP 895 

$ Al 0 
2 3 

7 . 2 5 
1 0 . 3 5 

υ/6 F e 

0 . 0 7 
0 . 0 8 

$ S i 

0 . 0 5 
0 . 0 6 

$ Zn 

0 . 0 1 
0 . 0 1 

io c 

0 . 2 0 
0 . 2 5 

1.2 Cold-compression and Vacuum Treatment (Ref. 22, 111. 2) 
Commercial products exposed to high temperatures (500-600 C) 
for several hours showed surface blisters and internal micro-
cracks, and consequently insufficient structural stability for 
nuclear uses (Ref. 36). This serious drawback was due to the 
high residual gas content (mainly hydrogen) of the finished pro­
ducts. While the lowering of the hydrogen content is of funda­
mental importance, a study has been in progress since 1960 aimed 
at eliminating this gas by vacuum treatment. The treatment se­
lected, described in patent No. 13.532, registered in Italy on 
30 May 1961, has the following main features: 

ρ 
- cold-compression of the powders at about 20 kg/mm before 
heating in the vacuum furnace; 

- treatment in the 590-620°C range for a period of 20-24 hr; 
-4 -5 

- vacuum between 10 and 10 mm Hg. 
The extruded products contain only a small amount of residual 
gas, the quantity of which seems to be a function of the oxide 
content. 

M a t e r i a l 

SAP ISML 4 $ A 1 2 0 3 

SAP ISML 7$ " 
SAP ISML 10$ " 
SAP ISML 14$ " 

Gas c o n t e n t 
ppm 

1-3 

2 - 5 
3-6 
4 - 8 
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Illustration 1 Structural aspect of Al-AlpO, 
powders grade 960 
Etching HF 0.5$ 
Magnification 500 χ 



Density 1­13g/cm' ­ 5 ­ Æh STARTING POWDER 

Pressure 20 Kg/mm 

Time : 60 mn 

Density 2­ 2,2g/cm* 

1 

COLD COMPRESSION 

I 

I 
Temperature between 590­620°C 

Time: 20­ 1Uh 

Vacuum : 10"^ 10 mm Hg 

Pressure: 50Kg/mm 

Time: 1 mn 

Density about 2,7 g/cm 

{Ξ3 
VACUUM 

TREATMENT 

I 
HOT COMPRESSION 

i 

i 
Temperature between 5A0­590°C r = ­JJI ι a EXTRUSION 

Œ 

MANUFACTURING PROCESS FOR
 Œ 

THE PRODUCTION OF FINISHED CZ 

PRODUCTS (ref. 23) ^ 

Illustration 2 

Œ 

* DRAWING OR 

^ ROLLING 
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extrusion direction 

'.·. v.­■­...« 

Illustration 3 Longitudinal microstructure of 
bars of SAP ISML 7$ 

Magnification 500 χ 2 

Etching HF 0.5$ 
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1.3 Hot-compression and Extrusion (Ref. 23, 111. 2) 
1.3.1 Hot-compression 
After the vacuum treatment the billet, wrapped in an aluminium 
foil, is immediately inserted in the container of the press and 
subjected to a specific pressure of 5C kg/mm for 30 min. 

The process is carried out with a 250 t press for billets 80 mm 
in diameter and with one of 500 t for billets 110 mm in diameter. 
At the end of the process, the density of the product is of the 
order of 2.7 g/cm . The crust is then removed and the billet 
pickled. 

1.3.2 Extrusion 
The compacted billets (diameter 110 or 80 mm) are preheated at 
a temperature of between 540 and 590 C for 3 hr. The temperature 
of the extrusion container is about 330 C. The process is car­
ried out on one of the three presses, the characteristics of 
which are given below:-

Max. force 
tons 

250 

500 

2700 

Diameter of 
starting billet 

(mm) 

80 

80 
110 

250 

Utilization 

smooth tubes 
rods 

finned tubes 
rods 

pressure tube 

The extrusion velocity varies between 8 m/sec (pressure tube) 
and 16 to 20 m/sec (rods and finned tubes). In order to obtain 
rods and tubes, a double extrusion is usually carried out. 

The extruded product constitutes the starting material for the 
rolling and cold drawing processes, which followed in some cases 
by heat treatment, lead to the finished products. 
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Illustration 4 Electron micrograph of a bar 
of SAP-ISML 7$ AlpO, 
Electron microscope magnifica­
tion χ 8,000 
Total magnification χ 20,000 
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1.3.3 Structure of the Extruded Product 

The extruded product seems to have a very fine dispersion of 

AlpO, particles inside the aluminium matrix. The dimension 

of the particles is between 0.0­2 and 0.1 micron and the inter­

particle distance is of the order of 0.1 to 0.2 micron (see Il­

lustrations 3 and 4). 

1.3.4 Definition of the Extrusion Ratio 

Any time extruded products (rods, thick­walled tubes, finned 

tubes) are handled, the strictest definition we can give is 

the following:­

A1 A1: section of the container 
■gi _ L ' 

Ap Api section of the die 

However, in current practice another relation which gives quite 

reliable results is used: 

SH S1: section of the container 

E — ' 

Sp Sp: section of the extruded 

product 

It is the latter relation which will be taken into consideration 

in our study. 

1.3.5 Influence of the Extrusion Ratio on the Mechanical 
Properties 

It is interesting to note that the value E is not sufficient 

to characterize the state of deformation of the material. For 

example, a finned tube or a round rod extruded at the same ex­

trusion ratio will not give an equivalent strain hardening and 

consequently the mechanical properties will not be comparable. 

For instance, the final extrusion ratio for rods 0 9.5 and for 

finned tubes are approximately the same (comprised between 70 

and 80). However, the longitudinal strength of finned tubes 

is 18$ higher (see Section 3.4.2 and Histograms Fig. 117). 

In order to examine this influence in the simple case of rods, 

we performed tensile tests at 20 and 450°C on rods of SAP ISML 

7$ and 10$ of various extrusion ratios respectively prepared 

from the same batch of powder. The characteristics of the ma­

terial are listed in the table below:­
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$A1203 

Ho 

10$ 

Ba:r 0 
(mm) 

9.5 
16 
21 
23 

9.5 
16 
21 
23 

Extrusion 
ratio 

76 
27 
14 
13 

76 
27 
14 
13 

Batch No. 
(extrusion) 

3,504/3 
3,448/1 
3,447/1&2 
.3, 504/1 &2 

3,240/1 
3,239­3,240/2 
3,237­3,238 
3,234­3,235­3,236 

Batch No. 
(powder) 

M 133 

M 129 
II 

M 133 

M 4041 

For the 9.5 mm 0 bar, the test specimen was as represented on 

Fig. 3, but for the others, the cross section was greater in 

order to maintain constant the ratio 

Ρ specimen cross section fì ·,β 
bar cross section 

However, for all specimens, the ratio length 
diameter 

tained, constant (see Section 3.1.1.1.1 and Fig. 1.2.3). 

7.5 was main­

ine results obtained show that the extrusion ratio influences 

only the values of elongation at breaking point ( e ·,). 

1.4 Drawing (Ref. 23) 

This procedure has mainly been used for the fabrication of 

smooth tubes and pressure tubes. The deformation ratio as a 

percentage, obtained either by drawing or by rolling without 

intermediate annealing, is given by the following relation: 

Η : ratio of cold­deformation in % 
S : initial section of the material 

H = S ­ s 
s 

χ 100 

s : final section of the material 

1.5 Rollins (Ref. 23) 

The starting material consists of plates of 50 χ 12 mm or 

30 χ 2.5 mm. These are either directly cold­rolled or partly 

hot­rolled (40<H<70$) and then finished at room temperature. 
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1.5.1 Hot-rolling 
The extruded rough shapes are first preheated to 530 C for 24 hr 
and then rolled transverse to the extrusion direction until a 
deformation ratio of 50$ is obtained, and then parallel to the 
extrusion direction until a ratio of 70$ is reached. 

1.5.2 Cold-rolling 
This is carried out either directly on the extruded material or 
on materials that have already undergone hot-rolling deformation. 
The table below gives the deformation ratios obtained by the two 
methods: 

Deformation ratio values (%) 

$A1205 

4 
7 
10 
14 

hot-rolling 

73 
37 
19 
10 

extrusion 

32 
20 
8 

>0, Before cold-rolling, an annealing treatment of 2 hr at 530 C is 
necessary. In the case of SAP ISML 4 and 7$ deformation ratios 
of 99$ are obtained. 

1.6 Fabrication of Rods (Ref. 23) 
Up to the end of 1965 (batch No. 2500) the starting billet 
(hot-compacted) had a diameter of 78.5 mm. The results of the 
mechanical tests on rods presented in this document concern only 
the extruded materials made from billets 78.5 mm in diameter. 

Characteristics of the first extrusion 
diameter of container: 80 mm 
dimension of starting billet: 78.5 χ 140 mm 
diameter of billet obtained: 58 mm 
extrusion ratio: E = 1.9 
extrusion rate: 1.3 m/min 
temperature: 568°C 
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Afterwards the second extrusion is carried out directly on the 
final diameter of the rod with the same temperature conditions. 
The extrusion ratios relating to the various diameters of rods 
extruded from compacts of O.D. 80 mm are given in the following 
table. 

1st Extrusion 2nd Extrusion 

Diameter 
(mm) 

58 

Extrusion 
ratio 

1.9 

Diameter 
(mm) 
23 
21 
16 
12 
9.5 

Extrusion 
ratio 
6.8 
8.2 
14 
25 
40 

f— 
Final 

Extrusion 
ratio 
13 
14 
26.6 
47.5 
76 

1.7 Fabrication of Cladding Tubes (Ref. 23) 
The smooth tubes are fabricated by extrusion followed by cold-
drawing, the finned tubes by extrusion only. 

1.7.1 Smooth Tubes 
Since the mechanical tests were only carried out on 'tubes 
13.1 x 14.7mm in diameter we can limit ourselves to indicating 
the fabrication conditions of smooth tubes of these dimensions 
only. 

1.7.1.1 Extrusion 
The starting material is a cylindrical hollow billet through 
which a lubricated, slightly conical mandrel is passed which 
is of the same diameter as the internal diameter of the tube 
after extrusion (extrusion by free floating mandrel). 

In the case considered here, the extruded tube has diameters 
of 16 and 14 mm (E = 59). The extrusion temperature is 571°C 
and the velocity is between 16 and 20 m/min. 
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1.7.1.2 Cold­drawing 

The cold­drawing characteristics for the tubes concerned are 

given below:­

1st step 

2nd step 

diameter of 
die (mm) 

15.0 

14.7 

diameter of 
mandrel (mm) 

13.4 

13.1 

wall thickness 
of tube (mm) 

0.8 

" 0.8 

ratio of final cold­deformation 

cold­drawing rate : 12 m/min 

H 25$ 

.1.7.2 Finned tubes (Ref. 23) 

The extrusion is carried out in two steps on a 500 t press at 

a temperature of 575 C starting from a hot­compacted billet 

110 mm in diameter. The first extrusion gives a billet either 

80 mm in (E = 2) diameter of 60 mm (E = 4). The extrusion rate 

is 1.3 m/min. Afterwards a central hole­ with a diameter equal 

to the final internal diameter of the hole is drilled. A se­

cond extrusion at rates between'16 and 20 m/min'results in "the 

desired profile. The extrusion ratios are between 17 and.20. 

The method is the same as that applied for extruding smooth 

tubes (free floating mandrel). The fins may be straight or 

helicoidal. 

1.8 Fabrication of Pressure Tubes 

These are tubes of large diameter (about 100 mm). As in the 

case of smooth tubes, they are first extruded and then cold­

drawn. 

1.8.1 Extrusion 

The process is carried out at a temperature of 570°C on 'a'2700 t 

press followed by annealing for 2 hr at 540°C. The .extrusion 

rate is of the order of 8 m/min. The dimensional­characteristics 

are listed in the table below: ·...,.··. ·■ 
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dimension of the extruded tube 

I 

1st extrusion 
2nd extrusion 

before 
ID mm 

98 
97 

extrusion 
OD mm 

250 
198 

after extrusion 
ID mm OD mm 

97 198 
96 102 

At the end of the process the extruded tube is annealed for 2 hr 
at.540°C. 

1.8.2 Cold-drawing 
The cold-drawing is carried out in two steps; after each step 
annealing for 2 hr at 540 C is necessary. The dimensional cha­
racteristics are given below:-

dimension of the drawn tube 

1st step 
2nd step 

before 
ID mm 

96 
94.05 

cold-drawing 
OD mm 

102 
100.4 

after 
ID mm 

94.05 
92.2 

cold-drawing 
OD mm 

100.4 
98.4 

2. STUDY OF THE MATERIAL 
2.1 Research Laboratories 
Euratom has undertaken studies on the improvement of this material 
in the laboratories of the Ispra Joint Research Center and has 
concluded contracts with several companies. 

With the Italian firm of Montecatini, it has drawn up two con­
tracts: a research contract to be carried out in the laboratories 
of the Istituto Sperimentale dei Metalli Leggeri (ISML), Novara, 
and a contract for the production of bars, cladding tubes and 
pressure tubes on a semi-industrial scale. 

A research contract concerning creep tests has also been concluded 
with the Battelle Institute, Frankfurt, Germany. 
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Some other results, reported here, were obtained by the Danish 
Atomic Energy Commission at its Riso research establishment. 
Other tests were conducted by the Civilian Atomic Power Depart­
ment of the Canadian General Electric Company Ltd. (Peterborough, 
Ontario) and reprinted in the AECL publications (Atomic Energy 
of Canada ltd., Chalk River, Ontario). 

2.2 Presentation of Results 
The main results will be presented in the form of diagrams when­
ever possible; the experimental conditions, the comments and 
some complementary results in tabular form will be found with 
all the references in an appendix at the end of the report. 

2.2.1 Denomination of Material 
The material is characterized by its percentage number (4, 7,10 
or 14$ principally). This refers to the nominal percentage of 
AlpO, by weight in the aluminium matrix. Often the real weight 
percentage differs by at least - 1 wt.$ of A1?0_. The results 
refer only to SAP produced in standard conditions (see Section 1). 
In addition, all the results concern SAP manufactured by ISML, 
which is named SAP ISML in order to distinguish it from, for ex­
ample: SAP AIAG 

FRITTOZAL (TLH) 
APM alloys, etc. 

The material is also given a batch number at the beginning of 
the fabrication process. The batch numbers are allocated chro­
nologically, so this number indicates'the fabrication period. 
The principal fabrication characteristics for a given batch 
number are collected in tables published in the quarterly pro­
gress reports of ISML, Novara. 

Table 1 gives a list of the batch numbers for the specific 
quarterly progress reports and for the various types of powders 
used. 
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Table 1 

Fabrication Data of the Various Batches of SAP 

' 
No. of 
Batch 

1 
82 
128 
173 
251 
347 
441 
555 
734 
851 
926 
1137 
1241 
1 344 
1636 
1831 
1939 
2209 
2353 
2483 
2680 
3172 
3440 
3740 
3827 

Date 

1 
30 
31 
15 
15 
31 
30 
28 
31 
30 
31 
30 
31 
31 
30 
31 
31 
30 
31 
31 
30 
31 
31 
30 
31 

of fabrication ; 

- 5 -
- 7 -
- 10 -
- 2 -
- 5 -
- 7 -
- 11 -
- 2 -
- 5 -
- 9 -
- 12 -
- 4 -
- 8 -
- 12 -
- 6 -
- 10 -
- 12 -
- 4 -
- 8 -
- 12 -
- 4 -
- 8 -
- 12 -
- 4 -
- 8 -

1960 
1960 
1960 
1961 
1961 
1961 
1961 
1962 
1962 
1962 
1962 
1963 
1963 
1963 
1964 
1964 
1964 
1965 
1965 
1965 
1966 
1966 
1966 
1967 
1967 

Ref. 

...1 

. . .2 

. . .3 

. . .4 

.. .5 

...6 

. . .7 

...8 

...9 

..10 

..11 

..12 

..13 

..14 

..15 
.16 
..17 
.18 
.19 
.20 
.21 
.21A 
.21B 
.210 

Type of powder employed 

4$ lio 10$ 14% 

i' ψ Λ/ Φ 

AIAG 

AIAG 

j 

Mo 

Eckart-Y/erke 
and AIAG 

Eckart-Werke 

/ v > \ 

7$ 10$ 

AIAG 

/ 

Λι 

\ 

Mo : 
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2.2.2 Presentation of Diagrams 
Normally metric units were used, but whenever the references 
employed British units, both are reported. As far as possible 
standard scales were adopted for the different graphs in order 
to facilitate comparison. The dimensions of specimens often 
influence the results, so they were given. For every cumula­
tive diagram, reference is made tó the figure numbers in the 
original individual diagrams and their respective document 
reference numbers. 

The general scheme of presentation of the results will be the 
following* 

- a table and a figure (Table 2 and Illustration 5) show 
all the symbols and terms used in English, French and German 
to characterize the mechanical properties in tensile and com­
pression testing. 

- seven tables summarize the main mechanical properties 
of the four grades of SAP for bars, smooth tubes and finned 
tubes (Tables 3 to 9). 

- an index of all the measured mechanical and physical pro­
perties of SAP with reference to the corresponding figures 
(Tables 10 and 11). 

- the figures gathered according to the type of test: 
Semi-finished products 

• Mechanical properties 
Tensile tests 
Compression tests 
Creep tests 
Relaxation tests 
Impact strength tests 
Hardness tests 
Fatigue tests 
Evolution of rod production 

. Physical properties 
Finished products 

Various mechanical tests like tensile tests, compression 
tests, burst tests and fatigue burst tests. 





SYMBOLS 
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j Symbol' 

V 
P
0.2 

Ρ 
u 

A 
0 

L 

pu 

pb 

L 
0 

. 

V 
S
0.2 

S 
u 

V 

e
pb 

E 

Definition 

V
A
o 

P
0.2/

A
o 

Ρ / A 
u ' 0 

ÓL 
­ ^ χ 100 

0 

AL , 
­ ^ χ 100 

0 

S 
e 

Unit 

kg 

kg 

kg 

mm 

mm 

mm 

mm 

p 

kg/mm 
j 

o 
kg/mm 

kg/mm 

$ 

io 

o 
kg/mm 

Engli sh 

Proportional elastic load 

0.2 offset yield load 

upper load 

original gauge cross­
section 

plastic uniform 
elongation 

plastic elongation at 

breaking point 

original gauge length 

engineering proportional 
elastic limit 

engineering 0.2 offset 
yield stress 

engineering maximum 
tensile stress 

engineering plastic 
uniform strain 

engineering plastic strain 
at breaking point 

Young's Modulus of 
elasticity 

French 

charge à la limite 
de proportionnalité 

charge à la limite 
élastique à 0, 2J¿ 

charge maximum 

section originale 

allongement plastique 
réparti 

allongement plastique 
à la rupture 

base de mesure 

contrainte â la limite 
de proportionnalité 

limite élastique â 
0,2$ 

contrainte maximum 

allongement plastique 
(unitaire) réparti 

allongement plastique 
unitaire â la rupture 

module élastique 
(module d'Young) 

German 

Kraft an der Proportionali­
tätsgrenze 

Kraft an der 0,2 Streck­
grenze 

Maximum­Kraft 

originaler Querschnitt 

plastische Gleichmass­
verlängerung 

plastische Verlängerung 
beim Bruch 

originale Messlänge 

technologische Proportiona­
lität sgrenze 

technologische 0,2 Streck­
grenze 

technologische Zugfestig­
keit 

technologische plastische 
Gl ei climas sdehnung 

technologische plastische 
Bruchdehnung 

Elastizitätsmodul 

ι . .... 



/£ 
¡c ' 

ILLUSTRATION 5 - 1 9 " 

GENERAL FORM 
OF TENSION 

AND 

Tension 

specimen' lo=30mm 
.(f ig-3) 

e pu 
/ 

/ 

/ 

n / 

/ 

/ 

/ 
/ / 

/ 

AND COMPRESSION CURVES 
SYMBOLS EMPLOYED 

Stress 
2 

S(Kg/mm) 
t I 
Su 

sq,2 

0 
KJI 

/ 

* li 

A / 

B 

A/ / / 

/ / / i ƒ / / 
Λ* / / 

epu epb 
% — : — ► 
stram 

s0#2 

Compression 

S' s P e c i m e n \ l 0 = 4 m m 



SUMMARY OF THE MAIN 
MECHANICAL PROPERTIES 
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MAIN MECHANICAL PROPERTIES 

Type of Material 
bars SAP 4% 
bars SAP 1% 
bars SAP 10% 
bars SAP 14$ 
smooth tubes 
smooth tubes 
finned tubes 

SAP 4% 
SAP 1% 
SAP Ho 

Table 
3 
4 
5 
6 
7 
8 
9 
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Table 3 
Main mechanical properties of SAP ISMI 

Type of 
test 

Tensile 

test C'
1
> 

Compres­
sion tests 

Creep tests 
(Maximum ad­
missible 
stress for 
10·, 000 hrs 
life). 

Fatigue 
limit in 
rotating 
bending 

Young' s 
Modulus 
(kg/mm

2
) 

Room temperature properties. 

S 

u 2 

(kg/mm ) 

20.0 

24.5 

34.8 

32.8 

S
0.2 2 

(kg/mm ) 

13.2 

18 

21.2 

19.6 

V 

9.6 

12.2 

16.0 

15.3 

V 
w 
19.8 

25.8 

ρ 

Maximum stress (kg/mm ). 

8.5 

7,200 

High temperature properties 

Test 
tempera­
ture °C 

400 

400 

400 

426 

400 

400 

■ 

S
­ 2 
(kg/mm ) 

5.9 

6.5 

7.8 

S
0.2 2 

(kg/mm. ) 

4.5 

6.2 

6.2 

Max. stress 
2 

(kg/mm ) 

4.3 

3.1 

V 
0.6 

0.7 

9.0 

2.5 

11.0 

Elongation at 

rupture (%) 

ρ 

Maximum stress (kg/mm ) 

4.8 

4,400 Ì 200 

Test 
tempera­
ture oc 

450 

450 

460 

S
­ 2 
(kg/mm. ) 

5.0 

6.1 

6.7 

S
0.2 2 

(kg/mm ) 

4.0 

6.0 

6.0 

Max. stress 
p 

(kg/mm, ) 

3.2 ± 0.1. 

V 
(#) 

0.6 

0.8 

6.7 

pb 

(Sí) 

4.3 

9.6 

Elongation 

at. -nip-hinp (fi) 

0.5 i 8:2 

450 4,100 - 100 

^References 
of FigiirïS 

11-12 (Eur) 
20-22-2.5-28 

(ISML) 
32-33 (AECL) 

34 (Riso) 

35-36-37 

40 

55-56 

­ 60 — 

75 

93 

(1) 6 to 15 specimens for each temperature 
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Main Mechanical Properties of SAP ISML 

Type of 
test 
Tensile 

tests ( 1 ) 

Compres­
sion tests 
Creep tests 
(Maximum ad­
missible 
stress for 
•10,000 hrs. 
life). 

• Fatigue 
limit in 
rotating 
bending 

Young's 
Modulus 
(kg/mm ) 

Rojom temperature properties 

S- 2 (kg/mm ) 

20.0 
25.5 
40.3 
40.0 

S0.2 2 
(kg/mm ) 

14.3 
20.4 
22.7 
22.0 

e 
pu w 
7.9 
12.7 
20.8 
18.7 

epb 

15.0 
23.2 

p 
Maximum stress (kg/mm ) 

7.5 
.—. , 

7,200 

High temperature properties 
Test 
tempera­
ture0 C 

400 

400 ' 

400 

420 

400 

400 

S 
u 2 (kg/mm ) 
8.3 
9.0 

9.4 

S0.2 g 
(kg/mm ) 

7.8 
8.1 

8.3 
Max. stress 

(kg/mm ) 
5.8 

5 - 0.3 

e 
P.u 

0.7 
0.8 

5.7 

epb 
«) 
1.8 
6 ..3 

Elongation at 
rupture (#) 

Maximum stress (kg/mm 

6 

5,000 ± 5° 

Test 
tempera­
ture^. 

450 

450 

460 

450 

S- 2 (kg/mm ) 

7.5 
7.8 

8.2 

S0.2 2 
(kg/mm ) 

7.0 
7.6 

7.2 

Max. stress 
(kg/mm' ) 

4.5 - 0.2 

V 
0.4 
0.6 

5.3 

epb 
(50 
3.5 
6.4 

.Elongation 
at rupture (#) 

°· 6 - 0.3 

4,700 ± 50 

uererences 
of Figures 
13-14 (EUR) 
20-22-25-28 

(ISML) 
34 (Riso) 

35-36-37 
41-42 
43-44 

55-57-58 
60 

76 

93 

(1) 5 to 10 specimens for each temperature 
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Main Mechanical Properties of SAP ISML 10# 

Type of 
t e s t 

T e n s i l e 

t e s t s ( 1 ) 

Compres­
sion tests 

Creep t e s t s 
(Maximum ad­
m i s s i b l e 
s t r e s s f o r 
10,000 h r s 
l i f e ) . 

F a t i g u e 
l i m i t i n 
r o t a t i n g 
bending 

Young 's 
Modulus 
(kg/mm ) 

Room t e m p e r a t u r e p r o p e r t i e s 

S u 2 
(kg/mm ) 

29 .8 

30 .8 

47 .6 
46 .4 

S 0 . 2 2 
(kg/mm ) 

21 .5 

24 .8 

28 .6 
26 .7 

V 

6.9 

8 .2 

21 .3 
21 .0 

e p b 

12.0 

18 .0 

Maximum s t r e s s (kg/mm ) 

9 .5 

7,500 

ι _ — . 

High t e m p e r a t u r e p r o p e r t i e s 

Tes t 
t empera­
t u r e C 

400 

400 

400 

426 

400 

400 

S u 2 
(kg/mm ) 

11.0 

12.5 

11.6 

S 0 . 2 2 

(kg/mm ; 

9 .4 

12.0 

10.3 

Max. s t r e s s 
(kff/mm ) 

6 .8 

6.2 

e p u 

0 .3 

0 .4 

7 .7 

pb 

1.0 

3 .8 

EHongatdcm at 
rupture (%) 

Maximum s t r e s s (kg/mm ) 

5.8 

5,150 ± 150 

Test 
t empera ­
t u r °r. 

450 

450 

460 

450 

S 
u 2 

(kg/mm ) 

9 .5 

10 .0 

10.1 

S 0 . 2 ρ 
(kg/mm ) 

8 ,0 

9 .9 

8 .9 

Max. s t r e s s 
(leg/mm ) 

5.9 

< 
e 

pu 

0 . 3 

0 .6 

6 .0 

2 . 6 

5.2 

E i o n g a t i o r 
at rupture ftS' 

4 ,850 

Re fe r ences 
o f TH gij-rpa 

15­16 (Eur) 

20­22­25­28 
(ISML) 

34 ;(Risö) 

35­36­37 

45 

60 

77 

93 

(1) 6 to 11 specimens for each temperature 
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Main Mechanical Properties of SAP ISML 14^ 

Type of 
t e s t 

T e n s i l e 

T e s t s ( 1 ) 

Compres­
skn t e s t s 

Creep t e s t s 
(Maximum ad ­
m i s s i b l e 
s t r e s s f o r 
10,000 h r s . 
l i f e ) . 

F a t i g u e 
l i m i t i n 
r o t a t i n g 
bend ing 

Young 's 
Modulus 
(kg/mm ) 

Room t e m p e r a t u r e p r o p e r t i e s 

S 
u 2 

(kg/mm. ) 

36 .0 

3 7 . 7 

57 .2 
47 .6 

S 0 . 2 2 
(kg/mm ) 

2 6 . 0 

30 .7 

34 .7 
33 .6 

e 
pu 

6.6 

7 .0 

21 .3 
19,0 

e p b 

(íO 

8 .0 

12.0 

p 
Maximum s t r e s s (kg/mm ) 

12 

7,700 

, 
High t e m p e r a t u r e p r o p e r t i e s 

Tes t 
t empera ­
t u r e C 

400 

400 

400 

400 

400 

S 
u g 

(kg/mm ) 

14.0 

14 .5 

14.2 

S 0 . 2 g 
(kg/mm ) 

12 .0 

14 .3 

12 .3 

Max. s t r e s s 
(kfí/imn ) 

7 .5 

V 
(50 

0 . 3 

0 .5 

5.0 

pb 
(?) 

0 . 8 

2 . 3 

Elongation a t 
rupture (.%) 

ρ 
Maximum s t r e s s (kg/mm ) 

7 

5,300 Í 50 

Tes t 
t empera­
tiiT"f> π 

450 

450 

450 

450 

S u 2 
(kg/mm ) 

11 .8 

13 .0 

12.3 

S 0 . 2 2 
(kg/mm ) 

10 .5 

12.6 

11 .2 

Maximum s txe s s 
(kg/mm ) 

7.1 

V 
(50 

0 . 3 

0 .4 

4 . 3 

e p b 

(50 

1.0 

2 .6 

Elongaticn 
at rapture {%) 

5,100 - 50 

I ^ 

Refe rences 
of Fi givres 

17­18 (Eur) 
20­22­25­28 

(ISML) 

34 (R i so ) 

35­36­37 

46 

78 

93 

I 

(1) 4 to 6 specimens for each temperature. 
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Table 7 

Main Mechanical Properties of 
Smooth Tubes in SAP ISML 

, _ 
Type of 
test 

Tensile 

test 

Creep 
under 
internal 
gas 
pressure 

Mechanical and 
thermal treat­
ment 

Extruded 
then 
annealed 

Extruded, 
Cold-drawn, 
then annealed 

Annealed 

Room temperature properties 

Su 2 
(kg/mm ) 

22,5 

25 

S0.2 2 (kg/mm ) 

22o3 

H 

8 

- - ι 

High temperature properties 

Test 
tempera­
ture 

450 

450 

400 

450 

"» 2 
(kg/mm ) 

6o0 

5.0 

S0.2 2 (kg/mm ) 

4.5 

4.0 

epb 

5±1 

5±1 
Maximum stress (kg/mm^) 
for a life of 2,000 hrs. 

5.1 
1.9 i 0.6 

Reference 
figures 

105 
106 
107 

108 
109 



­ 26 ­

Table 8 

Main mechanical properties of 

smooth tubes in SAP ISML 1% 

• — ■ 

Type of 
test 

Tensile 

Test 

Creep 
under 
internal 
Gas 
pressure 

Mechanical and 
thermal treatment 
of the material._ 

Extruded 
then 

annealed 

Extruded, 
Cold­drawn 
then annealed 

Annealed 

CoId­drawn 

CoId­drawn 
then annealed 

Room temperature properties 

u ρ 
(kg/mm") 

27.3 

30 

S
0.2 2 

(kg/mm ) 

14.5 

22 

pb 

Ho) 

10 

5 

- » ■ ■ ■ ■ ■ ■ ■ ■ — ' ■ ■ ■ - ■ - — — ■ " 

High temperature properties 

Test 
tempera­
ture C 

450 

450 

400 

450 

400 

400 

S
u 2 

(kg/mm ) 

8.7 

6.8 

S
0.2 2 

(kg/mm ) 

6.5 

4.5 

3±0.8 

3­0.8 

Maximum stress for a 
life of 1,000 hrs. 

4.1 

3.5 

4.4 

3.2 

References 
of figures 

105 

106 

107 

110 

111 
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Main hiffh temperature mechanical properties 
of finned tubes in SAP ISML 7v$ 

Type of test 

Tensile tests 

Compression tests 
Burst test 
(tangential stress) 
Burst test on tubes with 
internal artificial de­
fects (15$ wall thickness' 
Fatigue tests with in­
ternal gas pressure 
(with and without in­
ternal defects) 
Creep tests in compres­
sion 

— ^ — — — — — Ί 

Test 
;empera-
:ure C 

450 

450 

460 

460 

460 

460 

— — ^ — 

1 Rupture stress (kg/mm ) 

Min. 
value 
6.8 
6.9 

5.1 

5.0 

4.1(2: 

Mean 
value 

9 
7 

5.6 

5.3 

4.3(2: 

« 4 ( 5 ) 

Max. 
value 
10.8 
7.4 

6.0 

5.55 

4.45(2) 

• 

Elongation at rupture (%) 

Min. 
value 

1 
0.16(1) 

. 
Mean 
value 
3.2 
0.26(1> 

Max. 
value 

5 
0.39^1) 

■■ 

1 , 

References of 
Sections and 

Figures 

Fig. 112 

Sect. 3.3.2 

Sect. 3.3.2 

Sect. 3.3.2 

Fig. 118 

Sect. 3-3.2 

Fig. 119 

Sect. 3.3.2 

(1) In this case, the elongation corresponds to e 

(2) For a life to rupture of 5,000 cycles. 

(3) For a life to nap-ture of abou, t 5. OOP ho-uncs. 

pu 



INDEX OF FIGURES 





28 ­

Table 10 Index of Figures Mechanical Properties of Semi­fini she d Pro duo t s 

Type of test 

Tensile 

Compression 

Creep 

Relaxation 

Impact 

Hardness 

Fatigue 

Evolution of 
rod production 

Figures as a function of temperature 
for each grade of SAP 

SAP AÍ 

11­12­29 
30­32­33 
19.­20­21­22 
22.­21­25. " 

H­16­n 

40­52­55­56 

48­12­10­11­60 

ål 

68 

69a­72­70a­71­73 

75­82­12 
' ■ 

86­82 

SAP Ho 

13­H 

12­20­21 
22­21­21­21 

11­16­11 

41­42­43­44 
53­57­58 

lZ­4JB­!9_­10 
H­60­61 

64­65a­66 
61 

68 

69a­70a­70b­71­73 

76­83­12 

88­89­90­91 
86­8J 

SAP 10$ 

15­16 

12­20­21 
22­21­21­21 

31­16­12 

45 

18­12­10­11­60 

65 

69a­70a­7l­73 

77­84­22 

86­82 

SAP 14$ 

17­18 

12­20­21­22 
21­21­21 

11­16­12 

46 

18­12­50­11 

70a­70b­71­73 

78­85­21 

86­82 

Figures as a function of 
oxide content 

Room temp. 

10­28­34 

26­22 

69­70 

High temp. 

10­28­34 

26­22 

KB: Underlined numbers refer to cumulative figures. 
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Table 11 Index of Figures 
Physical properties of semi-finished products 

r_ 
Property or Test 

Young's Modulus 
Coefficient of 
thermal expansion 
Electrical 
resistivity 
Thermal 
conductivity 
Density 

' 1 
Figures as a function of temperature for 

each grade of SAP 
SAP 4$ 

91 

£6-12 
99-100-101 

SAP 7$ 
91 

96-22 
99-100-101 

SAP 10$ 

21 

2Â-21 

99-100-101 

SAP 14$ 
91 

96-22 
99-100-101 

Figures as a function 
of oxide content 

Room temp. 
92 
21 

95 

104 - 104A , 

High temp. 

21 

98 

102 - 103 

Mechanical properties of· finished products 

Tensile tests on 
smooth "trübes 
Creep tests with 
internal gas 
pressure on 
smooth tubes 
Tensile tests on 
finned tubes 

108-109-115 110-111-116 

112-113-114 
117 

105-106-107 

J-

105-106-107 

NB: Underlined numbers refer to cumulative figures, 
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2.2.7 Captions of Figures 

SEMI­FINISHED PRODUCTS 

Tensile Tests 

1 and 2 Influence of the gauge length on the engi­

neering plastic elongation at breaking point 

during tensile test. 

3 Euratom tensile specimen (TR1) 

4 ISML tensile specimen 

5 Influence of the extrusion ratio on the 

elongation e , 

6 Influence of test duration on the mechanical 

properties 

7,8,9 Influence of the crosshead speed on the me­

9A,9B,9C chanical properties 

10 The elastic limit of SAP ISML at 20° and 400°C 

obtained through different methods 

11 Tensile tests on SAP 4$ Stress S = f(Τ) 

12 Tensile tests on SAP 4$ Strain e = f(Τ) 

13 Tensile tests on SAP 7% Stress S = f(Τ) 

14 Tensile tests on SAP 7$ Strain e = f(Τ) 

15 Tensile tests on SAP 10$ Stress S = f(Τ) 

16 Tensile tests on SAP 10$ Strain e = f(Τ) 

17 Tensile tests on SAP 14$ Stress S = f(Τ) 

18 Tensile tests on SAP 14% Strain e = f(Τ) 

19 Cumulative Euratom results Stress S = f(Τ) 

20 Cumulative ISML results Stress S = f(T) 

u 

21 Cumulative Euratom results Stress S0 p= f(T) 

22 Cumulative ISML results Stress Sn 0="f(T) 

23 Cumulative Euratom results Strain e = f(Τ) 

pu
 v ' 

24 Cumulative Euratom results Strain e , = f(T) 

pb 

25 Cumulative ISML results Strain e , = f(T) 

26 Cumulative results Stress S & Sfì ? = f($Al 0 ) 

27 Cumulative results Strain e . & e = f($Alp0,) 
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Fig. 
28 Tensile properties as a function of the oxide 

content at 20 and 400°C (ISML) 
29 Results for SAP 4$ after different transformations 

Stress S = f(T) 
30 Results for SAP 4$ after different transformations 

Strain e = f(T) 
31 AECL tensile specimen 
32 AECL results on SAP 4$ Stress S = f(T) 
33 AECL results on SAP 4$ Strain e = f(T) 
34 Curves as a function of percentage of AlpO-, at 

20 and 400°C (Riso data) 

Compression Tests 

35 Cumulative results Stress S ' = f(T) 
36 Cumulative results Stress S0'p = f-(T) 
37 Cumulative results Strain e' = f(T) 

pu 

Creep Tests 

38 Euratom creep specimen 
39 ISML creep specimen 
40 Stress-rupture curves of SAP 4$ at 400 and 460°C 
41 Stress-rupture curves of SAP 7$ (old batches) at 

400 and 460°C 
42 Stress-rupture curves of SAP 7$ ('batch 1722) at 420°C 
43 Stress-rupture curves of SAP 7$ (old and recent 

batches) at 460°C 
44 Scatter of strain-values of SAP 7$ at 460°C 
45 Stress-rupture curves of SAP 10$ at 400 and 460°C 
46 Stress-rupture curves of SAP 14$ at 400 and 460°C 
47 Cumulative stress-rupture curve of SAP 7$ at dif­

ferent temperatures. 
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48 Cumulative stress-rupture curves of different 
SAP grades at 400°C (ISML results) 

49 Cumulative stress-rupture curves of different 
SAP grades at 460 C (Euratom results) 

50 Stress to produce 0.1$ creep elongation at 400 C 
(ISML results) 

51 Creep extension after 1,000 hours at 400°C (ISML 
results) 

52 Stress-rupture curves of SAP 4$ at 460°c after 
heat treatment 

53 Stress-rupture curves of SAP 7$ at 460°C (thermal 
cycling during the creep tests) 

54 Battelle creep specimen 
55 Stress-rupture curve of SAP 4$ at 460°C 
56 Scatter of strain values of SAP 4$ at 460°C 
57 Stress-rupture curve of SAP 7$ at 460°C 
58 Scatter of strain values of SAP 7$ at 460°C 
59 AECL creep specimen 
60 Stress-rupture curves of three grades of SAP at 

426°C (AECL results) 
61 Cumulative stress-rupture curves at 460 C obtained 

by different laboratories on SAP ISML 4$ and 7$ 

Relaxation Tests 

62 ISML. relaxation specimen 
63 Euratom relaxation specimen 
64 Relaxation curves of SAP 7$ at 20°C 
65 Relaxation curves of SAP 7 and 10$ at high 

temperature 
65a Relaxation curves of SAP 7$ at 450°C (Euratom 

results) 
66 Relaxation curves of SAP 7$ at 450°C (ISML results) 
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Impact Strength Tests 

67 Charpy test specimen 
68 Impact strength as .a function of temperature 

for SAP 4 and 7$ 

Hardness 

69 Vickers micro- and macrohardness as a function 
of percentage of AlpO-, at 20 C 

69a Vickers microhardness of SAP ISML vs. temperature 
70 Brinell macrohardness as a function of percentage 

of A1„0, at 20°C 2 3 
70a Brinell macrohardness of SAP ISML vs temperature 

(Buratom results) 
70b Brinell macrohardness of SAP ISML vs. temperature 

(ISML results) 
71 Vickers hardness as a function of the deformation 
72 Vickers hardness as a function of annealing tem­

perature for SAP 4$ after different deformations 
73 Vickers hardness as a function of annealing tem­

perature for different grades of SAP 

Fatigue Tests 
74 ISML fatigue specimen 
75 Fatigue curves for SAP 4$ at 20 and 400°C 
76 Fatigue curves for SAP 7$ at 20 and 400°C 
77 Fatigue curves for SAP 10$ at 20 and 400°C 
78 Fatigue curves for SAP 14$ at 20 and 400°C 
79 Cumulative fatigue curves 
80 ISML notched fatigue specimen for 20°C 
81 ISML unnotched fatigue specimen for 20°C 
82 Notch effect for SAP 4$ at 20°C 
83 Notch effect for SAP 7$ at 20°c 
34 Notch effect for SAP 10$ at 20°C 
85 Notch effect for SAP 14$ at 20°C 
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Evolution of Rod Production 

86 Histograms of mechanical properties of different 
SAP grades at 20°C 

87 Histograms of mechanical properties of different 
SAP grades at 400°C 

88 Histograms of mechanical properties of SAP 7$ 
at 450°C 

89 Evolution of elastic limit SQ ρ as a function of 
batch number (SAP ISML 1%) 

90 Evolution of maximum tensile stress Su as a func­
tion of batch number (SAP ISML 7$) 

91 Evolution of plastic elongation at rupture e Ί 
x po 

as a function of batch number (SAP ISML 7$) 

Physical Properties 
92 Young's modulus as a function of percentage of 

A1203 at 20°C 
93 Young's modulus as a function of temperature for 

different SAP grades 
94 Mean coefficient of thermal expansion as a func­

tion of percentage of A1„0_, 
95 Electrical resistivity as a function of percentage 

of Alo0, at 20°C 2 3 
96 Electrical resistivity as a function of tempera­

ture for different SAP grades (Euratom results) 
97 Electrical resistivity as a function of tempera­

ture for different SAP grades (ISML results) 
98 Electrical resistivity as a function of percentage 

of oxide at 100 and 5u0°C 
99 Tnermal conductivity as a function of temperature 

for different grades of SAP 
100 Thermal conductivity at 100 and 500°C for different 

grades of SAP 
101 Thermal conductivity as a function of temperature 

for different SAP grades (ISML results) 
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Fig. 

102 Thermal conductivity as a function of $ Al 0 

at 500°C 

103 Thermal conductivity as a function of $ AIO, 

at 100°C 

104 Density as a function of $ A^O, (ISML results) 

104A Density as a function of $ AlpO, (AEK Riso results) 

Finished Products 

(ISML Results) 

105 Tensile tests on smooth tubes as a function of 

percentage of AlpO­ at 20 and 450°C 

106 The elastic limit S0 ρ of smooth tubes as a func­

tion of percentage of A1?0^ at 20 and 450 C 

107 The plastic breaking strain e -, of smooth tubes 

as a function of percentage of AlpO^ at 20 and 450 ( 

108 Stress­rupture curve for internal gas pressure of 

smooth tubes of SAP 4$ (Euratom results) 

109 Stress­rupture curve for internal gas pressure 

of smooth tubes of SAP 4$ (Euratom results) 

110 Stress­rupture curve for internal gas pressure of 

smooth tubes of SAP 7$ 

111 Stress­rupture curves for internal gas pressure of 

smooth tubes of SAP 7$ obtained by different fabri­

cation processes 

112 Histograms of mechanical properties S and e ., of 
■̂  u pb 

different finned tubes of SAP ISML 7$ 

113 Mechanical properties (S and e ̂ ) of different 

finned tubes of SAP ISML 1% as a function of batch 

number 

114 Mechanical properties S and e , of tube of SAP 7$ 

(profile ISML­9) as a function of batch number 

115 Stress­rupture curves of rod and tube materials 

(SAP 4$) 

116 Stress­rupture curves of rod and tube material 

(SAP 7$) 
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117 Histograms of tensile test results on bar and 
tube materials of SAP ISML 7$ 

118 Burst tests on finned tubes of SAP ISML 7$ 
(Tangential stress at breaking point vs. depth 
of defect). 

119 Fatigue burst tests on finned tubes of SAP ISML 7$ 
under internal pulsed gas pressure. 
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EURATOM TENSILE SPECIMEN TR 1 

(gauge length= 7.5 X Diameter) 

Fig. 3 

O 

0.5X45 

tf 
■vi 
OO 
τ& 

SSL 
W 1 

C7> 

I f f 

TSL* 

2.75 

V 
SSL 

0.3X45 

55.5 

35.5 

30 

φ/ji*
0
* 

SttL 

Sharp edges 

ISML TENSILE SPECIMEN 

( Gauge length =11.4 Diameter) 

Ref. ISML drawing PDc ΐ3/ΐ 

Fig. A 

ml 
Σ 
CM 

-_J8_ 21 21 18 

22 122 22 

166 



i 
% 
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INFLUENCE OF THE CROSSHEAD SPEED ON THE 
MECHANICAL PROPERTIES OF SAP ISML 4 V. 
(Euratom results Ref: 51) 
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MECHANICAL PROPERTIES OF SAP ISML 7V. 
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MECHANICAL PROPERTIES OF SAP ISML 107. 
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TENSILE TESTS 
Stress S = f ( T ¡ 

ON SAP ISML 4 % (E uratom Results ) Ref. 45--46 

O Su: Engineering maximum tensile stress 
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TENSILE TESTS ON SAP ISML 4 % 
(Euratom Results Ref. 45­46) 

Strain θ = ί ( Τ ) 
Δ epu Engineering plastic uniform strain 
+ epb « '/ strain at breaking point 
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TENSILE TESTS ON SAP ISML 7 '/, 

(Euratom resul ts) Ref 45— 46 

_ Stress S= f ( T ) 
O Su ·. Engineering maximum tensile st ress 

Q Sa2:Engineering 0.2 offset yield stress 
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TENSILE TESTS ON SAP ISML 7%(Euratom resu l t s ) Ref. 45­46. 

Stra in e= f (T ) 

Δ e ^ : Engineering plastic uniform strain 

-\-epl> /. * strain at breaking point. 
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TENSILE TESTS ON SAP ISM L 10 % (Euratom Results) Ref. 45 -46 
Stress S = f ( T ) 
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TENSILE TESTS ON SAP ISML 10 V. 

(Euratom results) ref 4 5 ­ 4 6 . 

Strain e= f ( T ) 

Δ epu: Engineering plastic uniform strain­

+ epb: », » strain at breaking point 
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TENSILE TESTS ON SAP ISML 14% 

(Euratom results) Ref 45­46. 

Stress S = f ( T ) 

O Su: Engineering maximum tensile . 
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TENSILE TESTS ON SAP ISML 14% 

(Euratom resul ts) Ref. 45­46 

S t ra in θ = f ( T ) 
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TENSILE TESTSON SAP ISML (ISML Results Ref. 22 ) CUMULATIVE 
CURVES FOR THE FOUR GRADES OF SAP 
Maximum Stress S = f ( T ) 
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TENSILE TESTS ON SAP ISML ( ISML Results Ref. 22) CUMULATIVE CURVES FOR 
THE FOUR GRADES OF SAP 
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TENSILE TESTS ON SAP ISML ( ISML Results 
CUMULATIVE CURVES FOR THE FOUR GRADES 
Engineering plast ic strain at breaking point 
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1 TENSILE TESTS ON SAP ISML 

1 (Euratom results Ref. 45 ­46 ) 
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TENSILE TESTS ON SAP ISML ( ISML Results Ref. 11) 

Tens i le propert ies vs. oxide content 
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TENSILE -TESTS ON SAP ISML 4 V.. after various thermal 
and mechanical transformations (Euratom results Ref. 2 7 - 4 6 ) 
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SEMI - FINISHED PRODUCTS 

COMPRESSION TESTS 
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COMPRESSION TESTS ON SAP ISML 

(Eu ra tom resu l t s Ref. 32) 
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COMPRESSION TESTS ON SAP I S M L 

(Eu ra tom Resu l ts Ref. 32 )
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SEMI - FINISHED PRODUCTS 

CREEP TESTS 
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STRESS RUPTURE TESTS AT 400°C AND 460°C ON SAP ISML 4 V. 
(Euratom and ISML Results) 
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STRESS­RUPTURE TESTS on SAP ISML TI. a l 40<fc and «OO'c 

(Euratom and ISML r t t u l t t ) 
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STRESS RUPTURE TESTS AT A20°C ON SAP ISML VI. 
(Euratom Results) Ref. 51 
Batch No 1722 Specimen Fig: 38 Bars φ 9.5 mm 
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STRESS RUPTURE TESTS AT «60 C ON SAP ISML VI. 

Euratom results Ref. 51 
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HISTOGRAMS OF ELONGATIONS DURING CREEP TESTS AT 460° C 

ON SAP ISML 7 7. (Euratom Results Ref. 51) Specimen Fig. 38 
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STRESS RUPTURE TESTS AT 400 C AND 460'C ON SAP ISML 14 'I. 
(Euratom and ISML Results) 
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STRESS RUPTURE TESTS ON SAP 7 V. 
(Eura tom r e s u l t s ) 
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STRESS RUPTURE TESTS AT 460C ON THERMAL TREATED SAP 4 7 . 

(Euratom Results ) Ref. 48 
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STRESS-RUPTURE TESTAT 460°C on SAP ISML VI. 
(Euroton results Ref. 49 B a t c h No 1067 ) 
In f luence of thermal cyc l ing 

• Tests at 460'C without t h e r m a l cyc l i ng 

0 Tests wi th the rma l cyc l ing (4cyc les in 24hours be tween 340 and 460 'C) 
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STRESS RUPTURE TESTS AT 460 C ON SAP ISML 4V. 

(Bat te l le Institut Frankfurt Results) Ref. 47 
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HISTOGRAMS OF ELONGATIONS DURING CREEP TESTS AT 460°C ON SAP ISML 4 7. 

(Battel le Ins t i tu t Frankfurt Results Ref. 47) Specimen Fig. 54 Bars ø 21mm Batch No 645-890 
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STRESS RUPTURE TESTS AT 460"C ON SAP ISML 77 . 

(Ba t te l le Ina tu t Frankfurt Results) Ref.47 
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HISTOGRAMS OF ELONGATIONS DURING CREEP TESTS AT 460 C ON SAP ISML 7 7. 

(Ba t te l le Institut Frankfurt Results Ref. 47) Specimen Fig. 54 Bars 021 mm 
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AECL CREEP SPECIMEN Ref. 33 
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COMPARISON OF RESULTS 

FROM DIFFERENT LABORATORIES 



STRESS RUPTURE TESTS ON SAP ISML 4% AND 77. 

Comparison of results from different laboratories 
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SEMI - FINISHED PRODUCTS 

RELAXATION TESTS 
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RELAXATION ■ TESTS AT 20*C ON SAP ISML VI. 
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ĉ 

\ 
^ i 

B
—­ÍD 

■ 

r"^^^·* 

Jatch No % A l 2 0 3 

2455 

2455 

2455 

2455 

2458 

1743 

1743 

152­7 

1527 

1723 

^ · 

\ 

\ 

"^x­* . 

A 

4 

1 

:""Ά 

^ " ■ ~ > 

7 

7 

7 

7 

7 

7 

7 

10 

10 

7 

^ 

> > 

N+ 

• 

^ 

> , 

Temperat. 

CC) 

450 

450 

450 

450 

450 

480 

466 

450 

450 

450 

­*v 

\ 

=«b­

l· 

■« 

A 

thermal 
treatment 

none 

·· 

" 

160h/60°C 

3h/610°C 

5h/600°C 

16h/600<C 

none 

1 

Specimer Symbol 

3 

3 

3 

3 

3 

61 

61 

61 

61 

3 

• 

+ 

• 

o 

A 

G 

■ 

κ 

« 

Β 

Ref. 

58 

58 

58 

58 

58 

57 

57 

57 

57 

60 

­η 

cp 

Ol 

Time hours 
I I I 1 

cyn oj ι io ico 1000 



Γ 7 

^ 2 
Kg /m m 

▲ 

5 

4 

3 

2 

V 

Λ 3 °·
2 

— 

— 

— 

_£_ c 

­ 3
 ö

0.2 

— 

— 

— 

— 

— 

­ l e 
3

 b
0 2 

RELAXATION TESTS AT t 50*C ON SAP ISML 7 V 

\ B 

— 

— 

­­­­­

—· B­

— i ~ . 

I 

! 
I 

I I l 

| 

! 

I 

I 

I 

­

I 

a \ 

»­

f F uptu ­e 

I 1 ^ ^ 

B — _____ 

^ 

S * — ­

\ _L 

*~j ■ _ _ 
■ ""■—­­

1 0.1 1 ίο ~1--~ ί 

"Π 
r3" 

tn 
> 

Tim« (houri ) 



O* 2 
Kg/mm 

î ' 

4 

3 

2 

1 

Q 

RELAXATION TESTS AT A50'C ON SAP ISML 77. 
L·^ ISML Results Ref 21 Batch Ν· 2622 

^""—­­^Jest specimen Fia. 62 

F̂ ­_______̂  

t 

­

­

­

t 

"̂"N ■ ^ 

4 > 

^ ^ " ^ v ^ ^ 

^ ~ ­ ^ H 

* ., 

ι 

( 

J 

Strain 
0.165 

0.120 
0,120 

X 

+ 

• 

r 

•___̂  

ι 
X 

­H 

| ­ ■ ­

r . B 

"~—­̂ . * 
­ X 

­ « I ^ 

Ν χ 

X 

I 
-] 

*
 m 

2| 

en 
ο ι 

Time( hours) 

I I ι I M t l 
0.01 0,1 1 10 100 » 0 0 



SEMI - FINISHED PRODUCTS 

IMPACT STRENGTH TESTS 
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SEMI - FINISHED PRODUCTS 

HARDNESS 
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BRINNEL MACRO­HARDNESS AT 20°C ON SAP ISML 

( ISML Results Ref. 2 ­3 ­4 ) 
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BRINNEL MACRO­HARDNESS OF SAP ISML 7 AND 147. V S . TEMPERATURE 

(ISML Results Ref. 21 Β) 

A HB 2 

(Kg/mm ) 

100 

50 

—­

— 

A 

□ 

▲ 

(f 

(f l 

or 

# 

•or 

n F 

nF 

"ig 

'g 

.7 

7C 

3) 

>) 

■*­/ 
Ν«. 

'·„ 

^f 

· . . 

"•¿ ̂  • .^ 

*­¿ k · . 
* ■ » . k *­. «, 

^■Mtf J 

100 200 300 

SAP ISML 14 7. 

SAP ISML 7 7. 

400 

31 

O 

DD 

T°C 



VICKER HARDNESS AT 20 C ON SAP ISML VS DEFORMATION RATIO 

(Euratom Results Ref.56) Inf luence of cold deformation 
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VICKERS HARDNESS AT 20
e
 C ON SAP ISML AFTER DIFFERENT RATES 

OF COLD WORK VS. ANNEALING TEMPERATURE (Euratom results Ref. 56) 
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VICKERS HARDNESS AT 20° C ON COLD WORKED SAP ISML 
VS. ANNEALING TEMPERATURE 
(Euratom resuis Ref. 56) 
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SEMI - FINISHED PRODUCTS 

FATIGUE TESTS 
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ROTATING BENDING TESTS AT 20°C AND 400°C ON SAP ISML 77.( ISML Results Ref. 12) 
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ROTATING BENDING TESTS AT 20° C AND 400°C ON SAP ISML 147. (ISML Results Ref. 12) ι p . „ „ 
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ISML NOTCHED SPECIMEN FOR ROTATING BENDING TEST AT 20°C(Ref .2) 
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ROTATING BENDING TESTS AT 20°C ON NOTCHED SPECIMENS 

OF SAP ISML 4 7. ( ISML Resu l ts ) Influence of notch 
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ROTATING BENDING TESTS AT 20 C ON NOTCHED SPECIMENS 

OF SAP ISML 107. ( ISML Results) 

Influence of notch. 

Fig. 84 
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HISTOGRAMS OF THE TENSILE PROPERTIES 
AT 20°C OF SAP ISML (Different extrusion ratios ) 
ISML Resul ts (Ref. 11) 
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HISTOGRAMS OF THE TENSILE PROPERTIES 

AT 400°C OF SAP ISML(Different extrusion ratios) 

ISML Results (Ref 11) 
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TENSILE TESTS AT 450° C ON BARS OF SAP ISML77o 

(ISML Results Ref. 35 Batch No 1810 to 2623) 

Histograms of Maximum Tensile Stress(Su) and plastic 
strain at breaking point. 
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TENSILE TESTS ON SAP ISML VI. 
Engineering 0.2 offset yield stress as a function of Batch Number 

(Extruded bar«_. Batch number from 24 to 2623) 
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TENSILE TESTS ON SAP ISML 7% 

Engineering maximum tensile stress as a function of Batch Number. 

(Extruded bars Batch Number from 24 To 2623) 

ISML Results Ref. 35 
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TENSILE TESTSON SAP ISML 7 V. 
Engineering plastic strain at breaking point as a function 
of Batch Number. 

(Extruded bars, Batch number from 24 to 2623) 
ISML Results Ref. 35 
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PHYSICAL PROPERTIES 
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ELECTRICAL RESISTIVITY AT 20 C OF SAP ISML WITH VARIOUS OXIDE CONTENTS (Euratom and ISML results) 
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ELECTRICAL RESISTIVITY AT 100°C AND 500°C OF SAP ISML VS. OXIDE CONTENT 
(Euratom Results Ref 54) 
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TENSILE TESTS ON SMOOTH TUBES OF SAP ISML(ISML Results Ref. 22-31) 
Mechanical Properties vs oxide content. 
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TENSILE TESTS ON SMOOTH TUBES OF SAP ISML (ISML R 

Mechanical Properties vs oxide content . 
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STRESS RUPTURE TEST UNDER INTERNAL GAS PRESSURE ON SMOOTH 

TUBES OF SAP ISML 4V. ( ISML Results) 

Influence of temperature 
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STRESS RUPTURE TESTS UNDER INTERNAL GAS PRESSURE ON SMOOTH TUBES OF SAP ISML 4V. AT ­ .50* C 

(Euratom Results Ref. 52) 
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STRESS, RUPTURE TESTS UNDER INTERNAL GAS PRESSURE 

ON SMOOTH TUBES OF SAP ISML VI. 

(ISML Results) 
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TENSILE TESTS AU50'C ON FINNED TUBES OF SAP ISML 77. 
(ISML Results on various profiles Ref. 35 Batch Ns 2007 to 3570 ) 
Histograms of Maximum Tensile Stress(Su)and plastic strain 
at breaking point ( in black, results concerning the profile ISML9) 
(whole bulk 192 specimens ISML9 93 specimens) 
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TENSILE TESTS AT 450"C ON FINNED TUBES OF SAP ISML TI. 
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TENSILE TESTSAT 450
W

C ON FINNED TUBES (Profile ISML 9 ) 

OF SAP ISML 77. 

Evolution of Mechanical Propert ies as a funct ion of Batch Number 

( ISML Resul ts Ref. 3 5 ­ B a t c h No 2459 to 3120) 

FIG. 114 
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STRESS RUPTURE TESTS ON SAP ISML 4 'I. 

(Euratom and ISML Results) 

Comparison between bars and tubas 

Bars 

SMOOTH TUBES 

%A1 2 0 3 dimtns mm 
Batch 

No 

¿95 

♦13.1x14.7 

299 

440­441 

440 

Test 
temp. 

460 

450 

450 

Type of strew 

Tension 

Internal 
Pressure 
(Tangential 

stress) 

from Fig : 

40 

109 

108 

Symbol 

7ZZZ77Z 

Kg/mm 

For tube s p e c i m e n s ^ represents the tangent ia l s t ress 

Life­hours 



STRESS RUPTURE TESTS ON SAP ISML 77. 

(Euratom and ISML Results) 

Comparison between bars and tubes 
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TENSILE TESTS AT 450°C ON BARS AND FINNED TUBES OF 

SAP ISML 7 7. 

Comparison between finished product and base material 
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Burst Tests on f inned tubes of S A P ISML 7% at A60°C 

Tangential st ress at breaking point ν s. depth of Defect. 

(Euratom Results Ref. 62 bis) 
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FATIGUE BURST TESTS ON FINNED TUBES OF 
SAP ISML 7V. UNDER INTERNAL PULSED GAS PRESSURE ( Temperature 460 ' ) 
(Euratom Result Ref. 62 bis) 

Fig.119 
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3. EXPERIMENTAL CONDITIONS ANO COMPLEMENTARY RESULTS 

3.1 Mechanical Properties of Semi­finished products 

3.1.1 Tensile Tests 

3.1.1.1 Eurajtom and I SML_La b oratory Tejsts 

3.1.1.1.1 Te_st__c_ondi_ti_gn_s 

Test specimen 

First of all, we can analyze the influence of the relation 

χ = rï'­'ατη t ρ a s re
l
a
"t

e(
i "to the specimen, on the elongation 

value on .rupture on SAP ISML 10$ for instance. Pig. 1 shows 

that the elongation decreases with increasing χ because the 

influence of the elongation at necking diminishes with in­

creasing length. 

This effect is more clearly visible in Pig. 2, where the elonga­

1 

tion values have been related to increasing values of — . 

χ 

1 

Pig. 2 also shows the values of — for the specimens used by dif­

_x 

ferent laboratories (Section 2.1) which studied the SAP ISML, 

namely: Euratom 

ISML 

Risö (Ref. 41) 

AECL (Ref. 33) 

TLH (Ref. 67 to 86 Part II) 

The drawings of the specimens used by Eiuratom and ISML are given 

in Pigs. 3 and 4 respectively (dimensions in mm). 
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Testing instruments 
In the Euratom laboratories we used a universal electric testing 
machine (In..trom TTCM). The applied load is measured very accu­
rately between 1 g and 5 t by means of a series of load cells, 
strain gauges being used as transducers. The crosshead speed 
can be varied very precisely within a range from 0.0005 to 
50 cm/min. The influence of the tensile speed on the mechanical 
properties is presented on diagrams Nos. 6,7,8,9,9A,9B,9C. 

In the ISML laboratories a hydraulic testing machine (Amsler) 
was used. The testing speed varies with the load and cannot be 
accurately determined. The measurement of the load is obtained 
directly from the variation of the pressure in the hydraulic 
system. 

Ivleasurement of elongation 
In most of the current tests no extensometer was used except 
for very accurate measurements (as in Pig. 10). 

In the ISML -laboratories, which are primarily intended for fa­
brication control purposes, two marks are engraved on the speci­
men indicating the gauge length. After rupture the two parts 
are put together again and the new distance between the two en­
graved marks measured. Por determination of Young's modulus 
extensometers of the Martens type are used. 

In the Euratom laboratories the elongations are determined from 
the diagrams representing the load (p) as a function of the 
crosshead displacement (/-^L). This latter can be amplified 
over a wide range; generally, during the elastic part an en­
largement of 100 χ was used and during the rest of the test 10 x. 
If we consider the plastic elongation only, then the influence 
of the frame deflection of the machine is eliminated (Ref. 30). 

Por special measurements extensometers with inductive transducers 
or differential methods (specimens of different lengths) are em­
ployed. 
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Determination of the engineering yield stress 

The engineering yield stress was always determined with the aid 
of the Ρ = f (Al) diagrams in continuous tests ( A L was en­
larged 100 x). Afterwards a straight line at 0.2$ plastic e-
longation was drawn parallel to tne elastic line of proportiona­
lity (111. 5 & 6). Intermittent tests, causing a plastic e-
longation of 0.2'yo after unloading, were therefore not carried 
out. The diagrams in Pig. 10 give various values for the en­
gineering yield stress, obtained by several methods at 20 ond 
450 C as a function of the percentage of Al 0, and as a func­
tion of temperature for SAP 7$. The engineering yield stress 
at 0.004$ is clearly lower than at 0.2$ and is very near the 
limit of proportionality. 

3.1.1.1.2 Results 
Feature of_the_l_oad _el0.ngal2i_0n_curye._s 
In Illustration 6 are presented fac-simile of load-elongation 
curves obtained on the Instron recorder. We have chocen two 
representative tests (on SAP 7$ at 20 ana 450 C) in order to 
give an idea of the tensile behaviour of SAP material at room 
and at high temperature. Therefore, the two diagrams have been 
drawn at the same scale. 

It can be seen on these curves that at high temperature, the 
difference between S~ 0 and S is strongly reduced. At the same 

0.2 u 
time, the uniform elongation (e ) decreases till nearly zero, 

pu J 

so that the local necking initiates much earlier. In other words 
the zone of strain-hardening and the plastic reserve have practi­
cally disappeared. 
Pr_operti_es_a_s a func_tio.n_of .temperature for .several grad_es_of SAP 
Por each A1_0-, percentage a diagram of the tensile stresses 
(Sn 0 and S ) and of the tensile strains (e and e , ) is given 0.2 u pu pb 
as a function of the temperature (20 up to 600°C). Each point 
represents the average of at least three different tests. 
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I ausi rai ¡on 6 

LOAD'ELONGATION CURVES OF SAP ISML 7% 

Definition of terms applied 

Stress(S) Load 
(KgAnm*) * 

20'C Test 

Stress(S) . .Load, 
(Kg/mm

1
) 'l.Kg) 

2CL 

s
Hr 

io. 

200­

10Q_^ 

Sü2 

o l 
'θρυ epb 

T " 
io 

TEST CONDITIONS 

Specimen Fig 3 

Crosshead speed: 0.2cm/mn 

Magnification al elongations: 25 

45CTC Test 

e=^k(·/.) 

20 
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SAP ISML 4$ 
The properties were determined on two main batches: one old 
batch (fabrication of May 1961) and one more recent (fabrica­
tion of June 1962) Pigs. 11 and 12. This latter batch has 
slightly better mechanical strength (10$ at 20 C and 20$ at 
450°C) and lower elongation at 20^C. 
SAP ISML 7$ (Pigs. 13 and U ) 
SAP ISML 10$ (Pigs. 15 and 16) 
SAP ISML 14$ (Pigs. 17 and 18) 

Observation of the curves: 
As a general rule, the tensile stresses and the elongation 
both decrease with increasing temperature. Prom about ^00 C 
onwards S mingles with Sn 9, and e reaches its minimum value 
which remains nearly constant up to 600 C. 

Comparison of the four grades of SAP 
Por each property all four grades of SAP were compared (other 
presentation of previous results) on the following diagrams: 

Property 

S u 
S0.2 
V 
epb 

Pig. No. 

Euratom 
results 

19 

21 
23 
24 

ISML 
results 

20 

22 
--

25 

ISML gave averages for the results obtained from production 
control tests of extruded rods, over a three-year period. The 
curves are seen to behave similarly for each type of SAP. 
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Cumulative curves as a function of the percentage of A l 2 Q3 
- Diagrams of the tensile stresses (Pig. 26) and elonga­
tions (Pig. 27) for various temperatures between 20 and 
600°C (values derived from the curves shown in Pigs. 11 
to 18); The tensile stresses increase with increasing-
oxide contents. however, the elongations decrease with 
increasing oxide percentages. 

- Curves of the tensile stresses and elongations at 20 
and 400°C determined by ISML on extruded rods (Pig. 28). 

The latter curves were plotted with the aid of average values 
taken from the histograms (Pigs. 86 and 87), representing 
three years of fabrication. 

3.1.1.2 AECL Laboratory Tests (Ref. 33) 
Test conditions 
The tensile specimens (Pig. 31) were tested on a Hounsfield 
testing machine and the yield strength determined from the 
autographic record. 

Test results 
Only the values for SAP 4$ are reported here. Tests have been 
carried out only at room temperature and above 375°C. The dia­
gram of the stress versus temperature (Pig. 32) shows approxi­
mately the same values as Pig. 11. The diagram of the strain 
versus temperature (Pig. 33) lacks precision between 20 and 350°G 
but the general form of the 400-500 C range is the same as Pig. 12 

3.1.1.3 Riso Laboratory Tests (Ref. 41) 
Test conditions 
The tensile specimen has a diameter of 4.5 mm and a gauge length 
of about 45 mm. Either a 10 t Amsler or a 5 t Instron testing 
machine was used. With the latter (for more precise tests), a 
crosshead speed of 0.1 mm/min v/as applied up to Sn 9, the rest of 
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test being performed at 1 mm/inin. The Amsler or Instron fur­
ι. r\ 

naces were regulated to within ­ 3 C and the soaking time be­

fore testing was about 30 min. At least two specimens were 

tested for each tempera.ture and SAP grade. The S,· ? was al­

ways determined continuously with an extensometer. 

Test results 

Pig. 34 .gives the properties at 20 and 400 C as a function of 

the percentage of A190.,. Compared with the diagrams in Pigs. 

26 and 27 it will be seen that the tensile stresses agree with 

the classical values, but the stra.ins are slightly lower, es­

pecially at 400°C. 

3.1.2 Compression Tests (Euratom results) 

3.1.2.1 Experimental Conditions 

Shape of the test specimen 

We chose the same diameter (4 mm) as for the cylindrical part 

of the tensile specimen (pig. 3). After having studied the com­

pression behaviour of specimens from various heights (three 

times, twice, once the diameter) a cylinder with a height e­

qual to its diameter was taken as a specimen (thus minimising 

the effects of parasitic buckling). 

Testing machine 

Por the compression test we used an Instron TTCM universal 

electrical testing machine. The velocity of the crosshead (1mm/ 

min) was enlarged a hundred times on the load­elongation diagram. 

3.1.2.2 Behaviour of the "Engineering Stress­Strain" Diagrams 

Construction of the curves (Illustration 5, section "Symbols" 

As for the tensile test, we used the "load­elon¿^ation" diagrams 

plotted by the machine. The section of which the tensile stress 

can be calculated is the original section of the specimen. The 

strain is calculated on the basis of the original height of the 

specimen before the test. 
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Observation of the curves 

111. 5 shows the behaviour of the diagrams for a tensile test 

and for a compression test. The symbols used for compression 

are the same as those for tensile tests (see Table 2), but fol­

lowed by an apostrophe. 

In the elastic region the inclination angles o< and c*' of the 

curves are different, since the deflection of the machine is not 

the same. This difference is eliminated by considering only the 

plastic strains. The maximum engineering tensile stress (S'u) 

is assumed to be the stress which corresponds to point B' where 

the curve shows a point of inflection,, this latter also enabling 

the value of elongation e' to be calculated. This is logical, 

whereas in a "true stress/true strain" diagram the tensile and 

compression curves show the same behaviour, since in that case 

the point Β is also a point of inflection. 

3.1.2.3 Results: .Cumulatiye_curve_s for tensile, and .compression 

_stre_sse.s_and_elongations_a_s a func_tion_of the. ­temperature, for 

the four grades of SAP_ISML 

Properties 

S
'u 

S
'o.2 

e' 

pu 
e
'pb 

■ ■ ' 

Results of 

tensile tests 
in Pig. 

19 

21 

23 

24 

Results of 

compression tests 
in Pig. 

35 

36 

37 

The engineering 0.2 offset yield stress (S' 9, Pig. 36) under 

compression is slightly higher than Sn 0 under tensile stress, 
o 

especially at 20 C. The maximum engineering compression stress 

(S'u, Pig. 35) at 20°c is higher than Su (about 30$), but at 

higher temperatures becomes comparable. 
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The engineering plastic uniform strains (e' , Pig. 37) in com­
pression tests are clearly higher than the e -values under 
tensile stress. The minimum values - which were situated a-
round 3C0 C for e - are shifted to about 450 C for e' 
Thus this behaviour of e' looks like that of e , under ten-

pu pb 
sile stress (Pig. 23). 
In conclusion it may be said that both the tensile and the com­
pression test results show a drop in stress and strain for in­
creasing temperature. 

3.1.3 Creep Tests 
3 . 1 . 3 . 1 Euratom-ISML T e s t s 

3.1.5.1-1 Test conditions:-
- Te_st_sp_eç.imensj_ 

The test specimens used by tue Euratom and ISML laboratories 
are given in Pigs. 38 and 39 respectively. The former were 
taken from rods with a diameter of 9.5mm, and the latter from 
rods with a diameter of 21 mm. 

- Testing ma.chine.sj_ 
Euratom tests: 
We used Adamel TAC stress-to-rupture machines fitted with a 
modified electrical accessory permitting magnifications up to 
500 times (this magnification value has always been used for 
tests on SAP because of the low elongation values of this ma­
terial). The extensometer is fixed above the heads of the test 
specimens, i.e., at the two ends. The temperature is controlled 
by two Chromel Alumel thermocouples, and regulation of the fur­
nace keeps the temperature constant to - 1.5 C. 

ISML tests: 
The tests quoted in this report were carried out in the labora­
tories of AIAG/Neuhausen. The extensometer was fixed in two 
grooves in the heads of the test specimen (Pig. 39). The tempera­
ture of the test specimen v/as maintained at - 1°C. 
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3.1.3.1.2 Stress-to-ruoture curves 
•The ISML tests were performed at 400°C and the Euratom tests 
at 420 and 460°C. The stress-to-rupture tests were drafted 
in semi-logarithmic scales up to 10,000 hr. Each of these cur­
ves shows a sudden change in the slope at a point which 
varies with each percentage of A120„. The test specimens show 
no tertiary creep, and no re-acceleration of the elongation just 
before rupture of the specimen. 
SAP 4$: Pig. 40 
SAP 7$: Pig. 41: Results for an old batch (made __n May 1961). 

The results at 460 C show, a slight scatter. 
Pig. 42: Stress-to-rupture at 420 C. Por the same 

batch as before, the scatter is lower. 
Pig. 43: These results refer to more recent batches 

(1964 and 1966) and show very marked scatter; 
around a stress of 5 kg/mm the scatter a-
mounts to 0.35 kg, i.e., 7$. 

Pig. 44: Uniform elongations. These values were ob­
tained with the aid of the tests described 
in Pig. 43 and are tabulated in a histogram. 
The elongations at loading are' of the order 
of 0.5$. At rupture, the average elongation 
is of the order of 0.8$ and the minimum e-
longation 0.4$. 

SAP 10$: Pig. 45 
SAP U#; Pig. 46 

3.1.3.1.3 Cumulative diagrams 
The previous results were tabulated in cumulative diagrams as a 
function of various parameters. 
Stress-to-rupture curves 

- Stress-to-rupture of SAP 7$ at 400, 420 and 460°C (Pig.47), 
The relative position of the curve obtained at 420°C as 
compared with those at 400 and 460°C does not seem to be 
very logical when an attempt is made to interpolate li­
nearly for an intermediate temperature. 
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- Stress-t'o-rupture at 400 C for the four oxide percentages 
(ISML results) (Pig. 48). The changing point of the slope 
for each curve varies somewhat from one oxide percentage 
to another. The relative curve at 7$ seems to be abnor­
mally displaced upwards. 

- Stress-to-rupture at 460 C for the four percentages of 
oxide (Euratom results) (Pig. 49). The curves show rather 
similar slopes. 

Stress to produce creep strain of 0.1$ at 400 C (ISML results, 
Pig. 50) 
Because there is considerable scatter of the results of the e-
longation measurements (see histogram in Pig. 44), this curve 
can only be regarded as a tendency. 

Elongation curves at 4QO C for 1.000. hr as a function of the 
applied stress (ISML results, Pig. 51) 
The values given are very low, but the number of observations 
is very small, so these curves are merely regarded as indicative. 

3.1.3.2 Battelle Institute Tests (Prankfurt) 
Test conditions 
Test specimens (Fig. 54^: taken from rods 21 mm in diameter 

- Testing machine: 
The machines used were designed at the Institute. The knives 
of the extensometer are fixed to the heads (the two ends) of 
the test specimen. The elongation was measured with the aid 
of a microscope. The light-beam passed through a quartz window 
mounted in the wall of the furnace. The absolute accuracy of the 
measurement is to within about 3 microns. The temperature of the 
test specimen is kept constant to - 3 C. 

Stress-to-rupture curves for SAP 4$ and 7$ at 460°C 
Stress-to-rupture curves (Fig. 55): 
The results refer to two batches (batch 645 of March 1962 and 
batch 890 of October 1962). For a given stress-to-rupture time, 
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the scatter of the stress values is of the order of 12%. The 
values obtained for the more recent batch seem to be lower. 

Elongations (Pig. 56): 
The results are so scattered that we preferred to present them 
in the form of histograms. 
Minimum elongation at rupture 0.2 to 0.3%. 
Average elongation about 0.45$ 
SAP 7$: The study refers to three batches (December 1961, Octo­
ber 1962, September 1963). Stress-to-rupture (Fig. 57): 

The more recent batches seem to be less resistant, especially 
for long duration. 
Elongations (histogram in Fig. 58): 
Minimum elongation at rupture 0.2 to 0.3$ 
Average elongation about 0.5$ 

These elongations are comparable to those obtained for SAP 
ISML 4$'. 

The elongation scatter has dropped in comparison with that in 
the Euratom results (Fig. 44) and the mean value of the Battelle 
data is lower (0.5 as opposed to 0.8$). 

3.1.3.3 AECL Tests 
Test specimen (Fig. 59) 
Stress-to-rupture curves of SAP ISML 4. 7 and 10$ at 426°C 
(800°F) (Fig. 60) 
The results obtained by AECL at 426 C are as low as those obtained 
by Euratom at 460°C (see Fig. 49). As far as SAP ISML 7$ is con­
cerned, these results are 15$ less than those obtained by Euratom 
at 420°C (Fig. 47). 

3.1.3.4 Comparison of Results Obtained by Battelle Institute 
and Euratom 
These two laboratories in fact carried out similar tests on SAP 
ISML 4$ and 7$ at 460°C. However, the diameter of the rods froi 
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which the test specimen were taken and therefore the extrusion 
ratio were different, as indicated below:-

rods used 
by Euratom 

rods used by 
Battelle In­
stitute 

diameter of 
rods 
(mm) 

9.5 

21 

extrusion 

74 

15 

ratio 

The stress-to-rupture curves given previously are compared in 
one diagram (Fig. 61) 
SAP 4$ 
The Euratom results are situated in the lower part of the scat­
ter range of the Battelle findings. 
SAP 7$ 
The overlapping areas of the results obtained by the two labo­
ratories refer to older batches (No. 551 and 906). The lower 
values refer to a more recent batch (No. 1300). 

3.1.4 Relaxation Tests 
3.1.4.1 Test Conditions 
Test specimen 
Test specimen TR 1 (Fig. 3) ) 
Test specimen of 7 mm diameter (Fig. 63) i Euratom laboratories 
Test specimen ISML (Fig. 62) ) 

Testing machines 
El___.ctrp_nic_relaxation machine (Euratom) (Ref. 62) 
This machine was developed by Euratom under contract. The test 
specimen, which is placed in a closed room under vacuum, is fit­
ted with two extensometer shafts connected to a transducer of 
capacitive displacement. A dynamometer, also connected to a 
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capacitive transducer, is inserted in the loading system under 
vacuum. The bridges intended for measuring the load and elonga­
tion form a system which is closed in such a way that it is pos­
sible to work at constant load (creep test) or at constant elonga­
tion (relaxation test), thus eliminating the inherent deforma­
tions of the machine frame and the friction forces at the pas­
sages into the vacuum chamber. The upper part of the enclosure 
in which the test specimen is situated is placed in a furnace 
the temperature of which may be regulated to - 1.5 C. 

Machine for creep test (Adamel TR-3 Euratom) (Ref. 57) 
With this apparatus the isothermal viscosity can be tested up to 

2 2 
60 kg/mm and the stress relaxation up to 40 kg/mm on a test 
specimen 4 mm in diameter. The test specimen is put into a fur­
nace (temperature - 1 C). The load is applied with the aid of 
a lever and a spring. The extremities of the two quartz shafts 
of the extensometer are held in two holes drilled in the axis 
at the ends of the heads of the specimens. The displacement of 
the extensometer shafts is mechanically magnified up to 1000 
times. The extensometer actuates an electrical contact which 
starts a motor to change the loading spring. 
:Ëelaxati_on_machine_o_f the ISML_laboratory (Ref. 21) (Baldwin 
modified) 
Essentially the machine consists of an extensometer which is 
fixed to the test specimen and sends out the signal for regulari-
zation of the load. The variations in the load in time are di­
rectly recorded by the machine. The furnace for heating the 
test specimen· is provided with a special regulating system by 
which the temperature can be kept constant at less than 1°C. 

Universal testing machine Instron type_TTCM (Euratom Ref. 60) 
The first orientation tests carried out by Euratom were made on 
this machine, according to a method described by the designer 
(Ref. 61). Essentially it consists in applying a certain load 
after which the movable crosshead is held rigid and the decrease 
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in the load as a function of the time is accurately measured. The 
application of this method is rather tricky because the deflection 
o i she machine frame and the temperature variations have to be ta­
ken into consideration. 

A correction factor for the machine deflection could be estab­
lished approximately from a short test series in the following 
way. An extensometer was used (magnification 1000 χ and an er­
ror of less than 1$); after the desired initial load had been 
applied, the position of the crosshead was corrected manually 
in order to maintain the initial elongation of the specimen. 

The decrease in the load as a function of the time thus measured 
was three times as high as the values found earlier by the sim­
pler method. We therefore applied this correction factor, equal 
to 3, in the following results. 

5.1.4.2 Euratom Results 
We principally studied the SAP ISML 7$ and performed three series 
of tests, applying initial stresses equal to 1/3. 2/3 and 3/3 of 
the yield point at 0.2$ (SQ ? ) . 
at 20°C (Refs. 58-60, Fig. 64) 
The preliminary results give an idea of the behaviour of the 
curves. The decrease in the stress expressed as a percentage 
of the initial stress is indicated in the table below:-

Initial stress 
1/5 S0.2 
2/3 S 0 i 2 

3/3 S 0 > 2 

Decrease in the stress $ 
1 hr 
3 
5 
18 

5 hr 
5 
9 
23 

1 

10 hr 

11 

1 

100 hr 

-

at 450 C (Refs. 57, 58 and 60, Fig. 65) 
Por stresses equal to 2/3 of the yield point, the curves show a 
change in slope which is especially visible in the region of 1 hr. 
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For lower stresses, the slope of the curve is less. The slopes 

of the curves obtained with three different machines are very 

comparable. The decrease in the stresses is reported in the 

table below:­

In Pig. 65a only the relaxation curves obtained with the Instron 

machine are shown. They correspond to initial stresses of 1/3, 

2/5 and 3/3 of Sn 0 at. 450°C. The higher the stress, the steeper 

the slope. 

, . ....... 

Ini tir. 

1/3 

2/3 

3/3 

¡ 

.1 stress 

S
0.2 

S
0.2 

S
0.2 

> 

Decrease in the stress % 

1 hr 

16 

20 

r " ' 

10 hr 

30 

40 

p. ■ 

100 hr 

40 

70 

ruptured after 15 min. 

3.1.4.3 ISML Results (Ref. 21, Fig. 66) 

The partial results given here are for SAP 7$. Preliminary 

creep tests have shown that the deformation imposed at the be­

ginning of the test should not subject the material to­stresses 

2 
in excess of 5 kg/mm (i.e., 2/3 of the yield point). The first 

test specimen underwent a deformation of 0.165%. 

The decrease in the stress is reported in the table below:­

ψ , . ­ ■ — ■ . . ,­_­.,. , ­ ­ — — ­ . ­ , 

Initial stress 

0.55 S 0 > 2 

•— 

Decrease in the stress $ 

1 hr | 10 hr' 

25 

. _ 

40 

..... , 

100 hr 

45 

The behaviour of the curve is very different from that obtained 

on the various machines used by Euratom. The phenomenon seems 

to slow down after 10 hr, whereas in the other cases it speeds up. 
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3.1.5 Impact Strength Tests (Refs. 9 and 10) 
3.1.5.1 Test Conditions 
The standard Charpy specimen was used (Pig. 67). The specimen 
was machined from bar stock 10.3 x 10.3 mm square (Ξ = 60) and 
afterwards annealed for two hours at 500 C. The instrument tised 
was an Amsler machine; the hammer energy applied was 30 mkg. 
With the same hammer lower energies were applied, as indicated 
in Fig. 68. For the high-temperature tests every specimen was 
soaked at its testing temperature for 30 min. Generally five 
tests were performed for each temperature. 

3.1.5.2 Re sult s 
The impact strength of SAP' ISML 4% and 7$ Ai?0-5 versus tempera­
ture is shown in Fig. 68. It is clear that the impact strength 
increases with temperature. The part of the curve shown as a 
dotted line indica.tes values which are too low because at tnese 
points the specimens did not rupture completely. 

The curve for SAP 7$ lies below the 4$ Al 0- curve, thus indi­
cating a lower ductility, which is in agreement with other types 
of mechanical tests. There are two individual points (at 20 and 
400 C) for SAP 4% which are well below the established SAP 4$ 
curve. These points were obtained for a very old batch made under 
quite different fabrication conditions (only simple extrusion was 
applied). 

3.1.6 Hardness Tests 
3.1.6.1 Macrohardness 
Brinell Macrohardness: ISML (Ref. 2-4) measured the Brinell macro­
hardness at 20 C applying a ball diameter of 2.5 mm, a loau of 
62.5 kg and a time of 30 sees. Results as a function of oxide 
contents are given on Pig. 70. 

The same laboratory performed tests up to 400°C on SAP 7 and 14;. 
(Ref. 21b). The test conditions were as follows: ball diameter 
5 mm, load 125 kg maintained during 3 min. Results are given on 
Fig. 70b. 
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Similar tests have been done in Euratom laboratories up to 
600°C with a machine of Euratom construction. The test conditions 
were as follows:-

- ball diameter: 2.5 mm 
- loading speed: 0.4 mm/s 
- load maintained during 3 mins. 
- number of indentations for each temperature: 4 
- maximum difference of temperature between two indenta-
tions: - 3 C. 

Results are reported on Fig. 70 a 

Vickers Macrohardness: Euratom measured the Macrohardness with 
a Tukon-Wilson tester by the Vickers method. A load of 1 or 
2 kg was used as can be seen in Fig. 69. Five different samples 
were prepared for each SAP grade and three separate indentations 
were made on each sample. 

3.1.6.2 Vickers Microhardness (Pîuratom results) 
Euratom measured the microhardness at room temperature with a 
Leitz-Durimet by the Vickers method (load 100 g, time 10 s). 
The arithmetic mean of ten measurements for each grade of SAP 
is reported in Fig. 69· 

Preliminary results of Vickers Microhardness at high temperature 
have also been obtained in the Euratom laboratories with a new 
machine developed under contract (S.E.A.V.O.M./EURATOM)(Ref. 28bis). 
The maximum difference of temperature between two successive 
indentations on the same specimen is reported on the table below:-

Test temperature 
°C 

1,000 
600 
400 

: 
Maximum 
temperature 
difference 

i 8 
± 4 
+ 2 

The indenters are made of diamond. The heating of test specimen 
is obtained through electron bombardment, the vacuum of the cham-
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-5 -6 ber being maintained between 10 and 10 Torr. 

The test conditions were as follows: 
- load: 50 g 
- loading duration: 1 s 
- load maintained during 20 s 
- number of indentations for each temperature: 3 to 4 
- number of measurements possible on one specimen: ̂ >100 
- the measurement of indentation is made at the required 

temperature 
The results are given on Fig. 69A. 

3.1.7 Fatigue Tests oy Rotating Bending (ISML results) 
3.1.7.1 Fatigue Life at 20° and 400°C 
Test conditions (Ref. 8) 
The fatigue test specimen for this series of tests is shown in 
Fig. 74. The surface finish was held between 0.09 and 0.1 mi­
cron and was measured by a Taylor-Hobson roughness meter in the 
longitudinal direction of the specimen. The rotating bending 
fatigue machine was a Schenck-Duplex, turning at 3,000 rpm. 

Results 
The results are shown in Figs. 75-79 for 20 and 400 C. Generally 
speaking, the 400 C curve is about 50$ lower than the 20 C curve. 

o 
The maximum number of cycles was 10 , but the curves did not 
reach the asymptotic value at this point, so the real fatigue 
limit is not known. Thus we can only speak of a fatigue life 
at 10 cycles. 
From the same batch some tensile tests were carried out in order 
to compare the results of the two tests. 

'~̂ _̂_ % Alo0, R a t i o \ ^ 2 3 
S0.2 ^ ^ \ ^ ^ 

at 20°C 
at 400°C 

4 

0.56 
0.92 

7 

0.48 
0.71 

10 

0.49 
0.68 

1 " 

14 

0.49 
0.60 
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In the above table the ratio between the fatigue life at 10 

cycles (P) and the 0.2 offset yield stress is given for four 

SAP grades at 20 and 400°C. 

5.1.7.2 Notch Effect in Fatigue Tests by Rota tin/: Bonding at 20 C 

Test conditions (Ref. 2) 

The unnotched specimen is shown in Fig. 81 and the notched one 

in Fig. 80. The details of the V­ and U­notch are also visible 

in Fig. 80. The surface finish was held 'between 0.09 and 0.1 

micron, as above. The apparatus was an ISML FRS type turning 

at 11,500 rpm. 

Results 

The results are given in Figs. 82­85. Each graph shows the un­
o 

notched and notched (U­form) fatigue results up to 10 cycles 

for a given SAP alloy (4,7, 10 or 14$ Al20 ). 

^ ^ \ ^ $A190, 
Ration! 
at 20°C ^ ­ ^ ^ 

F
n 

F 

4 

0o42 

7 

0.48 

, ■ — — 1 

10 

0.45 

__._... __., 

14 

0.55 

Q 

The ratio of the fatigue life (in) up to 10 cycles for the 

notched (U­form) and unnotched specimen (F) is given above. 

Generally speaking, the notch effect is less severe with in­

creasing Al 0 contents. Besides the U­notch (Neuber coeffici­
ent = 2.2), a V­notch (Neuber coefficient 

two test series on SAP 4$ and 7$. 

.9) was applied in 

Prom Figs. 82 and 83 it can be seen that the form of the notch 

has no major influence, except for low cycle values of the SAP 4$. 

With different conditions, as in Section 3.1.7.1, we can again 

determine the ratio F/SQ 2 at 20 C for the unnotched specimen. 

^~­^_. $A1 0 
Ratio ̂ ^ ^

 p 

at 20 C ^ \ ^ 

F 
n 

S
0c2 

4 

0.60 

7 

0.50 

1 

10 

0.55 

ι 

14 

• 

0.45 
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The ratio between the fatigue life (Fn) at 10 cycles and the 
0.2 offset tensile yield stress is given in the above table. 
The same tendency is visible as in'Section 3.1.7.1» that is to 
say, the reduction in the strain (difference S0 9 - Pn) is more 
severe for a high percentage of Ai 0.. 

5.1.8 Gradual Evolution of Batch Quality (ISML Results) 
3.1.8.1 Scatter of Results (Refs. 11 and 35) 
Histograms of the tensile properties (SA n - S - e , ) of dif-0 ^ 0.2 u pb 
ferent grades of SAP are given in Figs. 86-87-88. 
They originate from:-

a) production controls of the standardized production 
b) controls of major changes in the standardized produc­

tion method 
c) verification of batches destined for special laboratory 

test series (e.g., impact strength, creep,fatigue, hard­
ness, etc. ). 

In Figs. 86 and 87, which give the results for 20 and 400°C, the 
data are not complete because the numbers in the ordinate s of 
the histograms are not listed. Furthermore, the results in 
Figs. 86 and 87 are for very old batches produced before the 
end of 1962. 

The more recent results on complete histograms are given in 
Fig. 88, which contains 43 test results for SAP 7$ at 450°C. 

These 43 tensile tests were selected from batches which were 
fabricated under standard conditions. For the histograms of 
Fig. 88 the scatter can be roughly defined as: 

for the stresses 8'1 ~ j^·8 = 17$ 

for the strains - ^Z = 80$ 2^L 
4.38 
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3.1.8.2 Properties as a Function of Batch Number (Ref. 35) 
Figs. 89-91 showed the curves of the mechanical properties 
(S0.2 - Su - e

Pb ) # 

The tensile test results were selected in order to represent 
only batches made under standard fabrication conditions. 

The method of manufacturing the base material (the starting 
powder) was unchanged until the end of 1962 (batch No. 1,000). 
Furthermore, the tensile testing temperature was changed from 
400 to 450°C. 

The tnree diagrams give an idea of the evolution. There is in­
stantaneous scatter - in the vertical sense, as for batch num­
bers which are close to one another - and long-term scatter -
in the horizontal sense, as with the time axis. These two types 
of scatter are difficult to express in figures owing to the lack 
of results. 

The existence of this "scatter range" also has an effect on the 
85 preceding diagrams. These are results relating to a certain 
batch number and thus these data are not representative for 
SAP as a whole. 

If the results of ¿he previous 85 diagrams are to be used, it 
will be necessary to apply a safety margin, which is related 
to the width of the "scatter range". 

3.2 Influence of the Mechanical and Thermal Treatments on the 
Extruded Product. 

The extruded product is only the base material for the prepara­
tion of the finished products. It has already been stated (Sec­
tion 1.7) that in certain cases (thin-walled tubes, plates, foils) 
it is necessary to use cold-deformation (rolling or cold-drawing). 
The evolution of the mechanical properties after cold-deformation 
as compared with the properties of the extruded product was there­
fore studied. Furthermore, it is nearly always necessary to in-



- 59 -

elude an annealing treatment and often the operating tempera­
ture of the final product is quite high, so the evolution of 
the properties of the material as a function of the annealing-
temperature was examined. 

The main results obtained are given here and the reader is re­
ferred to the specific paragraphs of each type of test for de­
tails of the general experimental conditions. 

5.2.1 Influence of Cold-Deformation 
5.2.1.1 Tensile Tests (Refs. 27 and 46, Figs. 28 and 29) 
The study was carried out on SAP ISML 4$ extruded (E = 2.5) and 
then rolled (H = 92$). At room temperature the rupture strength 
of the rolled product (Fig. 28) is higher than that of the ex­
truded material. At 20 C, as expected, the plastic strain 
(Fig. 29) is lower after cold-deformation. The high-temperature 
tensile tests (heating time + time at temperature 1 hour, so an­
nealing effect cannot be avoided) demonstrate lower strength and 
higher ductility in the 300-500 C range for the cold-deformed 
samples. Near 600 C, however, the differences become negligible, 

3.2.1.2 Vickers hardness tests (Ref. 56) 
The Vickers hardness versus the degree of deformation for alu­
minium and the four SAP ISML alloys is plotted in Pig. 71. For 
the same degree of deformation the absolute increase in the Vic­
kers hardness rises with the Aln0-- content. 

2 o 
3.2.2 Influence of Heat Treatment After Rolling 
5.2.2.1 Tensile Test (Refs. 27 and 46, Figs. 28 and 29) 
The tests were performed on SAP ISML 4$ only. With a treatment 
of 3 hr at 620 C an attempt was made to recrystallize the rolled 
material, or at least to recover it. 

In diagrams (Figs. 28 and 29) this recrystallization effect is 
clearly noted for tensile tests at 20°C, that is to say, for in­
creasing ductility and decreasing strength values. 
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Some strange phenomenon occurs at 300 and 400 C. At 300 C, the 
ductility of the recrystallized material has the same ductility 
values as the extruded material. At 400°C the strength of the 
recrystallized material lies between the rolled and the extruded 
strengths. 

3-2.2.2 Vickers Kardnes,s_(Ref. 56) 
In Fig. 72 the recovery of Vickers hardness from Kv 75 to H^ 52 
is plotted versus the annealing temperature- for SAP' ISML 4%. 
All the specimens were annealed together for one hour at the 
temporatures given in the fig-ares. The specimens were alter­
nately heat-treated, then measured, etc., right through the 
whole temperature range from 2u to 660 C. This figure shows 
that for an alloy which has undergone only 22> deformation com­
plete recovery is obtained only at extremely high annealing 
temperatures. With increasing deformation, the recovery tempera 
ture is shifted to a slightly lower temperature. Fig. 73 shows 
the change in the recovery temperature of different alloys for 
a deformation of 95$. A shift in the recovery temperature to 
higii er values for increasing A1„0_ contents is clearly visible. 
In conclusion, it may be said that the SAP structure is stable, 
recovery and in particular recrystallization being obtained onl; 
by thermomochanical treatment which lay completely outside the 
field of industrial practice. 

J 

, g oj 1). 2.3 influence of the Heat Treatment on SAP 4____ at 460 C (Ref. 
Cree;: tests were carried out on test specimens which were taken 
from the -same batch and had undergone heat treatment at extremely 
high temperature (540 C; melting point of Al = 660 C) for periode 
of between several hours and 3,000 hr. The results are given in 
pig. 52. It can be seen that treatment at high temperature of 
very long duration considerably lowers 'the properties of the ma­
terial . 

3.2.4 Influence of Thermal Cycling During Creep Test (Ref.49,Fig·55 
Thermal cycling of the specimen was effected in the course of a 
creep test at 460 C by switching off the heating furnace four 
times in 24 hr until the temperature reached 340 C. No influence 
on the stress-to-rupture curve was observed. 
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3.2.5 Influence of previous creep test on tensile properties 

3.2.5.1 Euratom results 

In order to see if the elongation of the specimen in creep test 

(at 460°C) does reduce the amount of elongation obtainable in 

tensile tests (at 450°C) we performed tensile tests on specimens 

which had remained unbroken after creep tests at a stress level 

of 0.6 Su. The test conditions, both for creep and tensile tests 

were the standard ones (see Sections 3.1.1.1 and 3.1.3.1) but 

naturally the creep specimen (Fig. 38) was also used for tensile 

tests. 

Tests have been done on an old Batch (No. 275) and a more recent 

one (No. 1720­1722). The final results are given on the table 

below. 

Evolution of tensile properties after creep 

of SAP ISML 7$ related to tensile properties 

without previous creep 

Material: SAP 7$ 

Batch No. 

275 

1720 
1722 

Origin of 
powder 

AIAG 

Eckart­Werke 

1 ■ ■ » ■ ■ ! 

Evolution of tensile properties 

Δ 3
0.2 

(kg/mm ) 

­ 3$ 

+4.2$ 

(kg/mm ) 

­ 2.7$ 

+ 3.2$ 

Δε 
pu 

$ 

­27.3$ 

­40$ 

Δ e , 
po 

$ 

­ 1 3 . 5 $ 

­45.3$ 

The behaviour of the two batches are opposite in strength. However 

for both batches, the elongation shows a tremendous decrease. 

3.2.5.2 ISML results (Ref. U ) 

Tests have been done at 400°C on old batches of SAP ISML 4, 10 

and 14$. The test specimens (Fig. 39) machined from bars 0 21 mm 

have been submitted to creep tests up to 5,000 hours at a stress 

level of 0.66 S , without rupture. Tensile specimens (Fig. 4) 
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were machined out of creep specimens and then tested. As for 
Euratom results, we give on the table below the evolution of 
tensile properties. 

Material 

Batch No. 

381 
409 
416 

Origin of 
powder 

AIAG 
II 

II 

_ . 1 _ , _ . , . . . _ . 

Evolution of tensile properties 

Al 20 3 

4$ 
10$ 
1 4$ 

- Δ s 
u 2 

(kg/mm ) 
+ 5.7% 
-6.0$ 
-5.0% 

Δ e , 
PO 2 (kg/mm ) 

-30% 

-57$ 
-56$ 

As a comparison basis, we have chosen the values of tensile 
properties obtained on bars 0 16 mm according to Fig. 27. We 
had previously shown (Fig. 24) that there was no large increase 
in the values of e , from a bar 0 16 and a bar 0 21 mm. 

We see that the decrease of elongation is in good agreement with 
Euratom conclusions. 

3.3· Mechanical properties of finished products 
3.3.1 Smooth Tubes 
3.3.1.1 Tensile Tests (ISML Results, Ref. 22) 
Figs. 105 to 107 contain some tensile properties (S„ n-S -e , ) 

0.2 u pb 
as a function of the percentage of Al 0__ for:-

- simple extruded smooth tubes (position 2) 
- extruded smooth tubes, afterwards cold-drawn (position 3) 

Other test conditions are not known. 

As was already known in the case of bar material, it will be 
seen that an increase in the A1„0^ content is accompanied by 
increasing stress and decreasing strain. If we compare positions 
2 and 3 in Figs. 105, 107 and 108, the influence of the cold de­
formation can clearly be seen: 
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at 20°C higher stress·. and lower strains 
- at 450°C lower stresses (especially for SAP 10$) and no 

signu icant ai tierene e s m stram. 

3.3.1.2 Burst Tests (Euratom Results) 
-.- o.., The tubes were tested in a furnace at 460 C under internal gas-

pressure (Nitrogen) up to rupture. The test specimens were 
300 mm long and a thermocouple was set inside the test specimen. 
They were .closed by two plugs consisting of an internal aluminium 
ring pressed on to the tube wall by two cones. The rate of pres-

per minut 
tion was comprised between 4 and 7 minutes. 
sure increa.se was about 10 kg/cm per minute, so the test dura-

The smooth tubes were extruded and then cold-drawn but not an-
-1 

nealed. They were left in furnace 1/2 hours for temperature 
equilibration. The resulting transverse stresses (hoop-stress) 
(in kg/mm^) are listed in the following table. 

Test 

specimen 

Test 
conditions 

Results 
(tangential 
rupture 
stress in 
kg/mm ) 

Scatter $ 

$ Alo0^ 2 -j 

Batch No. 

diameters 
(mm) 

Duration 
(min) 

Number of 
tests 

Maximum 

Average 

Minimum 

f ..... 

4 

Production 
early 1962 

13.1 14.7 

7 

5 

4.3 

4.0 

3.5 

20$ 

7 

2265 to 2273 

25.5 27.5 

4 

18 

5.9 

5.2 

4.1 

35$ 
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Referring to tensile tests on smooth tubes (Fig. 105), we find: 
SAP 4$ S__ = 5 kg/mm 2 SAP 7$ Su = 6.3 kg/mm 

so the ratio for transverse stress (S tr) and longitudinal stress 
(S lo) becomes 

for SAP 4$ Sl0 / Str = " f ^ = L25 

for SAP 7$ S. / S. = M = 1.2 lo ' tr 5.2 

However, the thermal treatment applied to burst test specimens 
and to tensile test specimens are not the same, so, the differ­
ence in transversal and longitudinal rupture stresses would be 
somewhat higher. 

3.3.1.5 Stress-rupture Tests Under Internal Gas Pressure 
(Euratom and ISML results) Refs. 8 and 52. 

Both laboratories used the same principle as described above in 
Section 3·3·1·2, but for these creep tests it was necessary to 
maintain a certain constant gas pressure and to record the time-
to-rupture. 

Stress rupture curves up to 100 hours are given for SAP '4$ and 
7% and 400 and 450°C in Figs. 108 and 110. The influence of the 
temperature and A190 percentage are quite normal. A more com­
plete curve up to about 1,500 hours based on two different bat­
ches of SAP 4$ is given in Pig. 109. 

A comparison between two different laboratories (and different 
batches) is made in Fig. 115. The Euratom results at 100 hours 
are about 25$ lower than those of ISML. 

The creep properties of three different production processes are 
compared in Fig. 111. The creep properties of the extruded tube 
are largely superior to the tubes which are afterwards cold-
drawn and the stresses drop again when the tubes are annealed 
afterwards (maximum difference about 50$). 
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3.3.2 Finned Tubes 

ISML fabricated different types of finned tubes necessary for 

the different solutions of neutron ­ and heat­'transfer ­ cal­

culations. The general features of the tube profiles are given 

in the table below. 

___̂ , . . .— . 

~~"~~"^~­~­JE_rofile number 

Description~~~­­­~­­­___________̂  

No. of thermal fins 

No. of spacers 

.. _p. straight S 
type 01 fins h e l i c ^ H 

internal diameter (mm) 

wall­thi claie s s (min) 
tolerances + 0.2 

­ 0 

external diameter of 
thermal fins 

external diameter of 
spacers 

> ■ ■ 

3 

36 

3 

H 

25.5 

1.0 

29.9 

33.5 

6 

36 

3 

H 

25.5 

1.0 

29.5 

30.5 

ι 

f 

7 

36 

6 

S 

25.5 

1.0 

29.5 

30.5 

8 

32 

2 

H 

21 .15 

1.0 

24.95 

27.55 

I 

9 

36 

3 

H 

25.4 

1.0 

29.8 

32.1 

10 

36 

3 

H 

24.9 

1.0 

28.9 

29.9 

ι 

11 

36 

3 

S 

24. 

1 . 

28 

29. 

9 

0 

.9 

9 

12 

28 

­

H 

14.6 

0.9 

18.4 

­

3.3.2.1 Tensile Tests 

Many tensile tests were performed for production control purposes. 

Two properties (S and e , ) are shown in histograms in Fig. 112 

in order to give an idea of the scatter. Two types of histograms 

are superimposed, one for the results for all the tubes, and the 

other for profile No. 9. As usual, the elongations are measured 

after rupture by putting the two parts of the tube together. 

The new distance between two marks is then determined. However, 

from this value must be subtracted the maximum clearance which 

remains when the two halves are put together. 

The arithmetical mean values of profile No. 9 are about 2$ higher 

than the values for all the tubes, so this single profile seems 

to be really representative of the whole bulk. 
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Comparison between extruded finned tubes ana smootn tubes shows 

good agreement. 

L
 ­~­properties at 450°C 

*■*­*— for 7|_SAP 

types of specimen —_______̂  

smo o th tub e s (anne ale d 

2 hr/500°C: Pig. 105 

Ref. 22­31) 

finned tubes (non­annealed) 

finned tubes profile No. 9 

. (non­annealed) Fig. 112, 

■ Ref. 35 

Su(Kg/mm
2
) 

8.6 

8.9 

9.2 

e . (%) 

PÛ 

2.5 to 3­7 

2.9 

3. 3 

3.3.2.2 Compression tests 

Experimental conditions 

As for cylindrical specimens, an Instron TTCML testing machine 

was used and the tests carried out at 450 C. The test speci­

mens consisted of pieces of tube carefully cut perpendicular 

to their axis. Their length was approximately equal to the 

greater external diameter of the tube. 

Results 

The rupture stresses are the ratio oi the rupture load and of 

the cross­area (S) of the tube. The "maximum engineering stress", 

the "engineering 0.2 offset yield stress" and the "plastic uni­

form strain" are defined as for cylindrical specimens (see Illus­

tration 5). Here, the values of e ­ have no sense, because the 

pu 

breaking point is not reached, as it is in tension tests. The 

main results are listed on the following table (mean value, max. 

and min. value). 

Characteristics of the Specimen 

Profile of 
the tube 

ISML 9 

ISML 12 

Height 
(mm) 

30 

18 

Cross area 
(mm ) 

146 

72 

Number 
of tests 

18 

12 

Results 

S'u 2 

(kg/mm ) 

7.26 
7.15 to 7.39 

6.90 

6o86to7.0 

S'0.22 
(kg/mm ) 

5.34 
4.93to 5.61 

5.44 
5.0 to 5.83 

e'pu 
L'i 

1° 

0.32 
0.20 to 0.39 

0.20 
0.16 to 0.26 
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A rough estimation of the scatter (as in Section 3.9.1) for ten­

sile and compression tests is given in the following table. 

__ , 

Profile 

of the 

tu oe 

ISML 9 

ISML 12 

All finned tubes 

Tension 

S
u 

17% 

" ^ \ 

43% 

I 

Type 

(ISML) 

V 
118% 

166$ 

of Test 

Compression (Euratom) 

S' 

u 

3$ 

2$ 

e' 
pu 

60% 

50$ 

~~~~—­

We notice that the scatter is always lower in compression. More­

over this last type of test is easier to perform for production 

control and allows the values of elongation to be obtained more 

precisely, which lowers the scatter. 

3.3.2.3 Burst tests 

Burst tests as production control (Euratom results) 

Sixty burst tests have been done on two main profiles in SAP 7$· 

The test conditions are similar to those for smooth tubes (see 

Section 3.3.1.2). For the calculation of tangential stress, the 

thin­wall formula 6 ,= ?*, was consistently used, "t" repre­

senting the minimum wall thickness (i.e. without fins) of the 

tube considering a medium tolerance. The results are assembled 

on the following table (mean value, max. and min. value). 

■ ­ ■ ■ ­ ­ ■■ 

Specimen 

Profile of 
the tube 

ISML 9 

ISML 12 

Number of 
specimens 

30 

30 

> ' ' 

Results 

Burst pressure 
kg/cm 

48 

(44 to 50.5) 

69 

(64 to 74) 

Tangential rupture 
stress <_>. t (kg/mm ) 

5.55 

(5.1 to 5.8) 

5.6 

(5.2 to 6.0) 

scatter 

$ 

12.5 

14 



­ 68 ­

Most ruptures occurred at tne bottom and along one of the nigher 

soacer fins. The comparison between smooth extruded and cold 

drawn tubes and finned extruded tubes of SAP 7% is reported in 

the table below. 

1 

Profile of 

the tube 

Smooth 
tube 

ISML 9 

ISML 12 

Number of 

specimens 

13 

30 

30 

Tangential rupture, 

s tre s s (5 . t ( kg/mm" ) 

5.2 

5.55 

5.6 

Scatter $ 

35$ 

12.5% 

14% 

The values of rupture stresses for finned tubes are about 7% 

higher and the scatter is only the half. 

The ratio between tangential and longitudinal stresses in finned 

tubes as compared with smooth tubes is given below. 

Type of tube 

Smooth 

Pinned 

■ ■ ■ ■ ■ ■■ . . . . 

Tension test 

6.3 

9 

Burst test 

5.2 

5.6 

Ratio 

1 .2 

1 .6 

This result shows that in finned tubes the difference in mecha­

nical strength in the two directions is higher than in smooth 

tubes. 

3.3.2.4 Influence of internal artificial defects on the transverse 

mechanical properties of finned tubes. 

Preliminary studies have been carried out at 450°C on finned 

tubes (ISML 9) v/ith internal artificial defects machined with a 

constant profile tool (Ref. 62 bis). All tubes were first ultra­

sonic tested to ensure that they were free from any natural de­

fect and their thickness bet.een every fin carefully measured. 

The form and dimension of the defects are shown on Illustration 7. 

Its location is represented on Position 3. A macrography shows 

on Illustration 8 the real, profile obtained. Ten specimens have 



INTERNAL DEFECTS 
MACHINED IN FINNED TUBES 

Shape and dimensions of the defect 

Position of the defect 

0.05 

K r.0.025! 

A 
Z J 

VO 

I l l u s t r a t i o n 7 

Illustration 8 Artificial defect 0.15 mm 
depth machined on finned 
tubes (magnification 50) 
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been testea for each type of defect. Tne results are summarizea 

in the table below. The tangential stress is calculated using 

the wall thickness measured on che ruptured generatrix: most 

ruptures occur along and at the bottom of a spacer fin; only 

30% of all the tubes ruptured on the defect. 

r ■ 

Depth of 
defect 
(mm) 

0 

0.05 

0.10 

0.15 

Mean value 
of tangen­
tial stress 
(kg/mm ) 

5.52 

5.45 

5.40 

5.34 
, . . 

, — - . ■ ■ ■ · . ■ ■ — ■ 

Scatter 

($) 

6.5% 

3.5.·­· 

10.5% 

12 % 

r ■ ' f 

Decrease of 
strength 

(%) 

0 

1 . 3 /­

2.4$ 

3.3% 

We notice that the scatter increases with increasing the depth 

of the defect, but remains lower than in production control 

tests. The mean values of the rupture stresses show a slight 

decrease of only 3.3$ which is of no real significance due to 

the large scatter. 

3.3.2.5 Fatigue tests under internal gas pressure 

Experimental conditions 

The test arrangement is similar to the one used for smooth 

tubes (see Section 5.1.2). Experiments have been carried out 

on test specimens 300 mm length of finned tubes profile ISML 9 

free from natural defects (U.S. controlled) but having artifi­

cial internal defects as described in the previous section. 

The pressure rose from 1 kg/cm up to the preselected value 

in approximately 1 minute and was decreased to the initial va­

lue nearly instantaneously. 

Results 

As previously, the tangential rupture stress is calculated with 

the classical 6 
t ~ 2.t 

long the line of rupture 

formula, "t" being the thickness a­

As a matter of fact, 66% of all the 
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tubes ruptured outside the .zone of the artificiai defects. 
Most ruptures occurred at the bottom and along one of the 
three spacer fins. The results are reported on the diagram 
Fig. 119. We see clearly that the rupture stresses of tubes 
with defects of 0.05 and 0.10 mm and the most part of those 
of 0.15 are contained in the dispersion band of the values 
for tubes without defects. Such short longitudinal defects 
affecting 10$ of the wall thickness do not seem to be very 
critical even in fatigue testing. 

3.3.2.6 Creep tests in compression (Euratom results) 
Test conditions 
We used the Adamel TAC stress to rupture machines (as in Sec­
tion 3.4.I.I) fitted with a cage system allowing work in com­
pression. The test temperature was 460 C. Specimens were 
pieces of ISML 7 finned tubes of 40 mm length (cross section 
138 mm 2). 

Results: The number of specimens tested at each stress 
is as follows 

2 3.8 kg/mm 3 tests 
4.0 kg/mm 3 tests 
5.0 kg/mm 6 tests 

In these conditions only three soecimens at 5.0 kg ruptured 
after 21, 817 and 2,039 hours respectively, all the others 
remaining unbroken after more than 4,000 hours. Similar ex­
periments made on cylinders have not ruptured even under a 2 stress of 5.0 kg/mm . 

3.3.2.7 Gradual Evolution of Batch Quality 
As for the bar production (see Figs. 89-91) we have plotted the 
tensile properties as a function of the batch number. 

Fig. 113 concerns all the tubes as a whole and Fig. II4 profile 
No. 9 only. 

A scatter range is clearly visible in all cases. However, over 
a long period there is a general tendency for the properties to 
increase. 
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3.3·3 Pressure Tubes 
The main results obtained are given in Ref. 55. 

3.4 Comparison Between Rods and Tubes 
3.4.1 Smooth Tubes 
Creep tests 
The creep properties of SAP 4g and 7% are compared in Figs. 115 
and 116 respectively. The critical stresses act in two diffe­
rent directions, relative to the fibrous Al 0, structure. 

Thus, for rod material it is a longitudinal stress and for tube 
material (creep test with internal gas pressure) transverse. 
The following table for smooth tubes and rods can be drawn up 
for the ratio between these two stresses after 100 hr creep-
rupture. 

"~~~~̂ ^̂  r a t i o 

$A1203 ^ ^ \ ^ ^ 

4 

7 

Slow t e s t i n g 
(creep) 

S l o / S t r = 1 · 3 ^ 

S l o / S t r = 1 · 3 5 

Fast t e s t i n g 
( t e n s i l e & burs t t e s t s ) 

(Section 5.1.2 and 5.2.3) 

S-, / S , = 1 . 2 5 lo t r 

S l r t /S . = 1 . 2 l o ' t r 

This ratio is compared to the fast testing ratio. It will be 
seen that the difference between the transverse and longitu­
dinal strengths is greater during slow testing. 

Tension tests 
In Figs. 105-107 the properties of smooth tubes and extruded 
rods (position 1). are compared. 

Generally speaking, it may be said that for smooth tubes the 
strains are lower for 20 and 450 C and the stresses also for 
the 450°C tests. 

3.4.2 Finned tubes 
Histograms of tensile tests of tubes and rods of SAP ISML 7 
at 450 C are given in Fig. 117· 
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Specimen 

rod 

tube 

ι 

­Ï . . . ­, 0 ­

Properties at 450 C 
2 

Su (kg/mm ) 

7.6 

9.0 

e
pb

 Ί" 

4.4 
5.2 

Note the higher strength (18$) and lower ductility (a decrease 
of 27$)of the tubes. 

5.5 Physical Properties 
Since the aim of this report is mainly to describe the mechani­
cal properties, a complete description of the physical proper­
ties will not be given. We shall limit ourselves to those which 
could be of immediate interest to the designer. 

3.5.I Young's Modulus 
3.5.I.I Experimental devices 
3.5.I.I.I Static methods 
Euratom tests: 
All these tests were carried out on a universal electrical In-
stron machine. 
Tests at 20°C (Ref. 27, Pig. 92). 
Test specimen diameter 4 mm, gauge length 25.4 mm, drawn 
from bars of 9.5 mm, extrusion ratio E = 76. 

Elongation measured with the aid of a Wideman-Baldwin inductive 
extensometer type PSH 8 MS (magnification 500 x). The results 
were taken from diagrams plotted by the xy recorder of the In-
stron machine (load as a function of specimen elongation). 

High temperature tests (Ref. 30, Fig. 93) 

Test specimens: 1st test specimen (Fig. 3) diameter 4 mm, length 
3O mm. 
2nd test specimen diameter 4 mm, length 5 mm. 
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'7e used a differential method involving the use of two test 
specimens of different lengths so as to eliminate the effects 
uue to the deflection of the frame of the machine. The furnace 
kept the temperature constant at - ι 0. 
- q ? ; T 4- oc»-:-'-' Γΰρ-Γ ' f. λ 
_L .Ji . in υ Ο ο υ ΰ W L w i ■ VJ > · 

Tnis laboratory used test specimens 10 mm in diameter and 100 mn 

long drawn from oars 16 mm in diameter (extrusion ratio E = 26.ΰ. 
Tno testing machine was an Amsier hydraulic machine. The elonga­
tions were measured with the aid of a Martens-type extensometer 
(magnification 500 x). The furnace was set to - 2 C. 

3.5.1.1.2 Dynamic methods 
Euratom tests (Ref. 29, Fig· 92) 
These were performed by internal damping on a Bordoni-type ma­
chine (Ref. 24) designed by Euratom. 
ISML tests (Ref. 3, Fig. 92) 

The apparatus used was of the Bordoni type (Ref. 24) with elec­
trostatic excitation.. The test specimens were cylinders 8 mm 
in diameter and 160 mm long obtained by double extrusion (ex­
trusion ratio E = 107). The measurements were made, under a 
vacuum of 1.5 mm Hg. The damping of the oscillations was ob­
served with the aid of an oscilloscope. 

5.5.1.2 Results 
3.5.I.2.I Young's modulus at 20 C as a function of the oxide 
content .(Fig. 92) 
Young's modulus increases with the oxide content. 
Static method: 
- Eura t oía tests 
Each point represents an average of five measurements. 
The average scatter is of the order of - 7%. 
- ISML tests 
Each point represents the average of two tests. The scatter is 
much small er. 
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- Comparison of the two results: 
The values obtained by Euratom are higher by about 4 ). than those 
of ISML over the whole range of A1.„0„ contents. 

2 D 
Dynarni c me tlio d : 
As foreseen, the dynamic Young's modulus is higher than the sta­
tic Young's modulus (about 12%). 

3.5.1 .2.2 Variations in Young's modulus wit;, the tern-.arature 
for four SAP ISML contents. 
Static method: 
Por the SAP 4%, the Euratom results showr a discontinuity between 
250 and 350 C. The lack of agreement with the ISML results is 
of the order of 3$. 
Dynamic method: 
The dynamic Young' s modulus was only determined on SAP 4%. etna 
is about 20$ higher than the static moduli . u 

3.5.2 Linear Thermal Expansion 
3.5.2.1 Test conditions 
- Apparatus ; A Chevenard-type dilatometer with photographic 

recording was used. It was a special Adamel 
Type 55 equipped to operate under vacuum: or in 
controlled atmosphere. 

- Test specimen : A 50 cm lontJ specimen was used for measuring 
the expansion in the -extruded direction and a 
25 cm specimen for the perpendicular direction, 

- Experiment : This was conducted in argon atmosphere with an 
increasing temperature of 60 C/hr. The magni­
fication K was 150 or 300 times. 

3.5.2.2 Experimental results 

The results obtained perpendicular or parallel to the extrusion 
direction were practically identical. The results for the lat­
ter direction are given in Fig. 94- The values for the linear 
thermal expansion are plotted as a function of the oxide content 
for several temperature ranges between 20 and 500°C. 
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It was possible to establish the equation below expressing the 

length of SAP samples of different grades as a function of the 

SAP ISML 4% 1+ = 1 (1 + 21.32 . 10~
6
t + 9.10

­9
 t

2
) 

υ O 

SAP ISML 7$ 1+ = 1 (1 + 20.38 . 10~
b
t + 9.10~

9
 f") 

b o 

SAP ISML 10$ 1 = 1 (1 + 19.73 . 10"
6
t + 9.10"

9
 t

¿
) 

o o 

SAP ISML 14$ 1+ = ln (1 +
 v^.93 . 10"

6
t + 9.10

­9
 t ) 

It can again be seen from these formulae that the thermal ex­

pansion drops as the oxide content increases. 

3.5.3 Electrical Resistivity 

5.5.3.1 Test conditions 

Euratom laboratory (Ref. 50) 

The tests describen were performed with a double Thompson 

bridge. The electrical resistance of the bridges was verified 

to an accuracy of better than 2 . 10 . The test specimen is 

a cylinder 6 mm in diameter and 80 mm long. The sample holder 

was designed specially in order to increase the relative pre­

cision of the gauge length up to 0.1$. Under the above condi­

tions, the relative error in the determination of the resisti­

vity (AR) is less than 0.5$. 

R 

Euratom laboratory (Ref. 54) 

The electrical resistivity was measured by the d.c. Potentio­

metrie method. The samples were mounted in series with a stan­

dard resistance, immersed in a thermostatic bath and the current 

flow then measured with a potentiometer. The limit accuracy in 

the determination of the current was that of the standard, i.e., 

2 . 10 ". The samples were immersed in a thermostatic bath 

kept at 25 ± 0.05 C and the potential drop between two knife 

edges measured with a five dial potentiometer. Care was taken 

to eliminate thermoelectric emf by reversing the current. 

The samples were cylinders 4 mm in diameter and 50 mm long. The 

error affecting the dimensions can be estimated at <1$. All the 

samples had been annealed for two hours at 550°C in a high­

vacuum furnace. 



- 77 -
The resistivity at high temperature up to 500 C was measured 
by determining the ratio between the resistances at the given 
temperature and at 25 C. The resistivity data at high tempera­
ture -were corrected for the effect of thermal expansion. 

As a coefficient of thermal expansion of SAP, a value of 24.10 
cm n/°C was taken which is independent of the orientation (Ref. 25) 

The samples were heated in a high-vacuum furnace stabilized to 
uc: 
-3 

- 0.5 C, standardized thermocouples being used. The reproduci­
bility of the electrical resisticity data, was to within 2.10 
and it can be assumed that the error affecting these values is 
4 1$. 
ISML Laboratory (Ref. 9). 
The classical d.c. Potentiometrie method was used, the testing 
specimen being connected in series with a calibrated resistance. 
The testing specimen is machined from an extruded plate ( 30 χ 
2.5 mm) and annealed for 24 hr at 500 C. The tests were conduc­
ted up 'to 550 in a furnace with a temperature determination of 
- 1 C. The accuracy of the rea.di.ngs of the potentiometer was 
10 . The relative scatter in the results observed in several 

_ _/i 

tests in the same conditions did not exceed 3.10 *" . The ratio 
R__ 
-r^~ was determined for every temperature and the absolute value 
K20 
of Rpn for every percentage of A1Q0-,. 

3.5.3-2 Results 
- Resistivity as a function of the oxide content at 20°C 

(Ref. 50, Euratom, Fig. 95) 
On this diagram we have also plotted the values determined by 
other laboratories. This diagram clearly shows that the absolute 
resistivity increases with the oxide content. Every test speci­
men was chemically analyzed, and there is a relatively high scat­
ter in the oxide content. 

The mean scatter of the resistivity is in the range of - 3.5$. 
The values obtained in other laboratories for other batches are 
in the normal scatter range. 
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- Resistivity as a function of the test temperature for 
different grades of SAP ISML (Refs. 9, 26 and 54, Pigs. 96 
and 97, Euratom and ISML results) 

The electrical resistivity increased with temperature and the 
results obtained in the two laboratories are in good agreement. 

- Resistivity parallel and perpendicular to the direction of 
extrusion as a function of the oxide content at 100 C and 
500°C 

Euratom result (Ref. 54, Fig. 98) 
The resistivity values increase with the oxide content, as seen 
above (Pig. 95). Moreover, the transverse resistivity is higher 
than the longitudinal one. 

3.5.4 Thermal conductivity 
3.5.4.I Experimental procedure 
Euratom laboratory (Ref. 53) 
The apparatus is Buratorn-built. The method is a stationary 
one, conducted with axial flow along a cylindrical sample. 
Armco iron was selected as the reference sample. 

Euratom laboratory (Ref. 54) 
For this present study, use was made of a new transient flov/ 
method developed to meet the specific requirements of our re­
search. This method enables both the thermal diffusivity and 
the conductivity in a given direction to be determined and of­
fers the advantage of using a known thermal capacity as a ref­
erence. Because the specific heat is a property known with 
much greater accuracy than the thermal conductivity, the method 
seems more reliable than those based on comparison with a stan­
dard thermal resistance. 

Comparative determination on high purity nickel and aluminium 
samples with conventional steady state techniques and the me­
thods described above resulted in close agreement, the diffe­
rence being in all cases less than 6$. 
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ISML laboratory (Ref. 3) 
The relative me "the d employed by the u S Bureau of Standards 
(Ref. 44) for use up to 600 C was adopted. The method con­
sists in measuring the thermal gradiënt along two cylindrical 
samples, one of them being the material to be tested and the 
other one a reference sample (in this case lead). The two 
samples are wrelded together at the end and placed in a metallic 
tube. A complete description of this apparatus is given in 
Ref. 66. 

3.5.4.2 Results 
- Thermal conductivity Plotted as a function of the temperature 

(Figs. 99, 100 and 101). 
The ISML laboratory expressed the thermal conductivity of SAP 
ISML as a proportion of that of aluminium (Raffinai 99.995%). 

The apparatus used by the Euratom laboratory (Ref. 53) was tes­
ted on 99.999% aluminium and the values obtained plotted in 
Pig. 99 are in good agreement with the literature. 

Prom Figs. 99, 101, it can be seen that the conductivity falls 
compared with that of aluminium as the oxide content increases. 

In conclusion, it may be said that the conductivity seems to 
drop as the temperature rises but the results obtained hy the 
three laboratories do not seem to be in good agreement. 

- Thermal conductivity, longitudinal and transverse at 100 C and 
500 C versus the oxide content (Ref. 54, Figs. 102 and 103) 
The transverse conductivity is always lower than the longitudinal 
one. The difference increases as the oxide content rises, but is 
fairly constant for the temperature related. 

- Thermal conductivity, longitudinal and transverse, of SAP ISML 
10% versus the temperature (Ref. 53, Fig. 99) 

The transverse conductivity is 25$ lower than the longitudinal 
one and this difference decreases slightly as the temperature 
rises. 
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3.5.5 Density 
The values for the density versus the percentage of Al90-j are 
plotted in Fig. IO4. 
These results concern batches of SAP ISML which are representa­
tive of the production from 1960 to 1966. The scatter of the 
results does not exceed - 0.2%. It can be seen that the den­
sity is proportional to the percentage of kl^Q . Pig. 104a 
shows results obtained at Riso Institute (Ref. 41). The density 
of the materia-ls was determined according to Ref. 39. The data 
are averages of 3-6 measurements. 
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