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I. Introduction 

Radiative Neutron Capture is one of the most important nuclear processes 
relevant to the neutron balance in fast reactors. Consequently, there has 
been a major effort in many laboratories in order to measure capture cross 
sections, particularly in the keV energy range. Nevertheless, the situation 
is still far from satisfactory. The main regions where data are incomplete, as 
discussed recently within international data committees, are the following: 

a) Although cross section ratios can be measured with sufficient accuracy 
in many cases, the deduction of absolute cross section values has not been 
carried out consistently in most cases due to the lack of a proper and inter­
nationally recognized standard cross section . This holds particularly in 
the energy range 10 - 100 keV where flux measurements (and thus standard 
cross section determinations) are difficult to carry out. 

b) For some of the most important reactor materials, especially the fertile 
and fissile nuclei, a very high accuracy - in some cases down to + 1 % -

is required. Even if standard cross sections were known to this accuracy, 
these requests could not always be fulfilled since the cross section ratio 
measurement methods are not that accurate. 

l) This is although true for fission cross sections. 



c) Cross section ratio measurements on very small or on highly radioactive 
materials are difficult to perform and require the development of special 
techniques. Similarly, accurate measurements on nuclei with small capture 
cross sections, e.g. lighter structural materials like Fe, cannot be carried 
out easily. 

d) There is finally a number of nuclei for which adequate measuring methods as 
well as samples are available but which hitherto have just escaped attention. 
To these belong many stable fission products and control materials. 

It is obvious that these problems, whose solution might require a total 
effort of several 100 man-years, can only be attacked in a close international 
cooperation between many laboratories. Some first steps in this direction 
have recently been taken by the European-American Nuclear Data Committee. 

In order to contribute to some of the above problems, a programme has been 
launched at the Karlsruhe 3 MeV pulsed Van de Graaff accelerator which will 
be briefly reviewed in this paper. So far, a large part of our effort has 
been spent on the standardization problem where we have remeasured the ab­
solute capture cross section of gold between 25 and 500 keV to an accuracy 
of about + 5 %· We propose to use this cross section curve as a standard for 
further renormalizations of capture and fission cross sections. The results 
of this experiment are described in section 2 of this paper. Our method to 
determine the gold cross section is rather tedious and time-consuming, never­
theless we believe that some cross sections like U capture and U fission 
are so fundamental to fast reactor calculations that they warrant a direct 
determination by essentially the same method in order to avoid additional errors 
due to a cross section ratio measurement. As a first step along this line, 
we have redetermined the U capture cross section in the energy range 
25 - 500 keV (section 3)· The standard time-of-flight technique using a 
large liquid scintillator tank for capture cross section measurements has also 
been further developed in our laboratory, some results on heavy structural 
materials are presented in section 4. 

In conclusion, section 5 contains some implications of these new data on 
reactor calculations and some general comments on future capture cross 
section work. 
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II. The Absolute Capture Cross Section of Gold 

This experiment was performed in two steps: First, the shape of the cross 
section curve between 25 and 500 keV was measured by a new technique. Then, 
this realtive cross section curve was normalized at 30 keV neutron energy, 
using results from several independent absolute measurements. 

The experimental setup for the shape measurement is shown in fig. 1. 
A thin gold foil was irradiated by a collimated beam of nearly monoener-
getic neutrons, obtained at an angle of 80° from the Li (p,n) Be reaction 
(target thickness: 12-18 keV for low energies, 12-40 keV in the middle 
energy region and 40-100 keV for high energies). The gold sample was 
located within a 1.1 m - diameter large liquid scintillator tank _/" 1,2_7 
which was used to determine the relative capture rate. The pulsed beam -
time-of-flight method was used for background discrimination. The neutrons 
transmitted through the gold foil were thermalized and totally absorbed 
in a "grey neutron detector" £"5j · This is a paraffin pile, size 60 χ 
6θ χ 60 cm, with a 10 χ 10 χ 30 cm beam entrance hole, located at the end 
of the neutron path. Capture of thermalized neutrons by hydrogen leads to 
the well-known 2.2 MeV γ-ray; since γ-ray absorption in paraffin atthis 
energy is small, the photopeak counting rate of a Nai (Tl) detector located 
near the pile is very nearly proportional to the capture rate and thus to 
the impigning neutron current. This detector has to a first approximation 
an efficiency curve which is independent of neutron energy; to a higher 
approximation, there exist small deviations from the flat efficiency curve 
which can however be calculated /~3_7· 

The relative capture cross section follows directly from the counting rate 
of the large liquid scintillator tank and from the corrected counting rate 
of the grey detector. However, some slight corrections have to be applied 
in addition: Relation between average cross section and cross section at 
an average energy; resonance selfshielding and multiple scattering within 
the gold foil; efficiency change of the large liquid scintillator whose 
bias was set at about 3*6 MeV photon energy with neutron energy; air 
scattering of neutrons between the gold foil and the grey detector; ap-

7 7 pearance of "the second neutron group from the Li (p,n) Be reaction above 
.-•»380 keV neutron energy. These corrections, together with a detailed 
discussion of the experimental approach, wi31 be published elsewhere £"^tj. 

The absolute normalization of the relative cross section curve was per­
formed at 30 keV neutron energy. Table 1 lists the results of several 
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more recent determinations at this energy from five independent methods. 

Thetable includes data taken with Sb­Be sources which were transformed 

to 30 keV assuming E = 22,8 keV £"5J for Sb­Be and a cross section ratio 

of 0,915 + 0,040 E~2j. The fitted best value from all these results is 

cf (
Au
) (E = 30 keV) = O.596 ·:­ 0.012 barn, 

η,γ
 N

 η ^ ' — 

The gold capture cross section as a function of energy, normalized with 

the above value, is shown in fig. 2. 

We have carried out a further independent determination of the gold 

capture cross section shape in the energy range 10 ­ 150 keV. A time­of­
7 

flight method with neutrons from a thick Li target was used. The capture 

rate in a gold foil was measured with the large liquid scintillator tank, 

while the relative neutron flux was simultaneously determined with a thin 

boron 10 slab viewed by Nai (Tl) scintillators or, in a different run, by 

a Li glass detector. Both detectors were placed at the exit of the large 

liquid scintillator tank. The Boron 10 n,0ty cross section as recommended 

6 
by Spaepen ¿~6_J and the Li η,α cross section from the Breit­Wigner fit of 

Bergström et al. £ΊJ were used for the calculation of the neutron detector 
efficiencies. In these calculations, corrections for multiple scattering of 
neutrons within the detector were applied. The measurement yielded however 
only the relative shape of the gold cross section since no effort was made 
to determine the absolute efficiency of the neutron detectors. The shape 
curves were again normalized to a value of 596 millibarn at 30 keV. The 
resulting curves are compared to the grey detector results in fig. 3· Note 
that the values found relative to boron and to lithium agree very well 
among themselves. Since they were taken with higher resolution than the grey 
detector data they show some structure. On the average, they agree very well 
with the grey detector data, at least below 80 keV. The deviations above 80 
keV are small and well within the limits of experimental error. 

A detailed comparison of our new standard cross section as shown in fig. 2 with 
the results of previous experiments will be given in ref. /"4J7. Briefly 
speaking, there is good agreement of the shape with most of the recent 
determinations by various methods. There is also good agreement in the 
absolute values over the whole energy range with a recent experiment by 
Harris et al. /~8_7 which was performed by an absolute method and is, like 
ours, independent of reference cross sections. On the other hand, there is 
a striking disagreement in the absolute cross section values above 100 keV 
with several other experiments which are based essentially on a measure-
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ment of the ratio o (Au) : 0 „ (U
2
­
55
). This holds in particular for 

π, γ η, ï 

the recent experiments of Barry /~9_7 and of Grench et al. Z~10_/ which 

are in themselves consistent but yield, when evaluated with White's All / 
235 
U fission cross section, a gold capture cross section which is always 

about 15 % higher than our results. 

Ill. The U_^ Capture Cross Section 

238 
The U η,γ cross section could be determined by measuring the value 

relative to gold and subsequent normalization, using the data of fig. 2. 

Since this would introduce several errors ­ i.e. the errors in the 

standard cross section and in the ratio measurement would combine ­ we 

have determined it by the same method as was described for gold in the 

previous section. The normalization of the shape curve which had been found 

by the grey detector ­ large scintillator tank method was again done at 

30 keV. Therefore, an absolute cross section measurement was performed at 

the Li (p>n) Be threshold /"12_7 , using an activation method and a 
7 

neutron flux determination by the associated Be activity method. The 
239 

induced Np activity (T ,_ = 2. 346 d) was determined by two independent 

3 
methods (γ­ray counting with a 30 cm Ge (Li) detector; IO6 keV γ­X­ray 

coincidence counting method), the detectors being calibrated utilizing an 

243 
absolutely calibrated Am source. The result at 30 keV (i.e. for a beam 

with an average energy of 30 keV and a distribution with a half­width of 

15 keV)is σ '
U 2
^ ' (E = 30 keV) = 0.479 t 0.014 barn. The IT

5
 capture 

' η,γ
 N

 η 

cross section as normalized with this value is shown in fig. 4. The error 

is about 5 % at the lower energy limit and increases to 9 % at the upper 

end. 

In fig. 5, we compare our results with evaluated data as taken from recent 

compilations of Parker /~13_7, Schmidt /~l4_7 and Stehn ¿~15J■ The 

agreement with Stehn's data below 100 keV is quite satisfactory; our data 

are distinctly lower than those of all three compilers in the energy region 

above 100 keV. The implication of this deviation on some reactor calculations 

will be discussed in section 5· 

IV. Some Renormalizations of Capture Cross Section Data 

Using a time­of­flight method and the large liquid scintillator tank, we 

have measured the capture cross section, relative to gold, for a number 

of medium weight and heavy nuclides in the energy range 10 keV ­ 150 keV. 
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Preliminary data for Ta, W, Mo, In, Re, Hf, Cd, Ag, Pd, Nb and Cs were 

presented at the 1966 IAEA nuolear data conference /~2_7· These data have 

2) 
now been reevaluated, using thè new gold capture cross section data . 

Reevaluated data for those nuclei which may be of some interest for reactor 

calculations are shown in fig. 6. The data are corrected for 

resonance selfshielding and multiple scattering. Their accuracy (in­

cluding the standard cross section error) is about 10 % over the whole 

energy range. 

Further measurements of relative cross sections, especially for stable 

fission products and for lighter structural materials like iron, are 

presently prepared at our laboratory. 

V. Some Implications of the New Data on Fast Reactor Calculations. 

In order to check the influence of the new U capture cross section on 

reactor parameters, the new data were converted into group constants and 

included on a trial basis into the KFK­SNEAK­26­group cross section set 

/~l6_7· This set is based on Schmidt's cross section curves /~l4_7· As 

can be seen from fig. 5s the Schmidt data are distinctly higher than ours 

above 100 keV, there is a corresponding decrease of the group cross sections 

in this energy range. 

The modified set was used for calculations of the SNEAK 3­A 1 critical 

assembly /~17_7> a 67O 1 ­ steam cooled XT /XT system.Whereas the un­

modified KFK­SNEAK­set slightly underestimates reactivity (K _ = 0.997 

for a system of critical size), the modified data increase the multipli­

cation factor by about 1 %. At the same time, they lead to a reduction 

of the conversion ratio by about 5 %· It is possible that the increase in 

reactivity would be partly compensated if the υ fission cross section 

was reduced by normalizing measured gold capture to U fission cross 

section ratios using our new gold cross section standard. Such investi­

gations are presently underway but it seems premature to draw any con­

clusions . 

In any case, we feel that it is highly desirable to discuss the problems 

of keV capture and fission cross section normalizations in close connection 

2) Strictly speaking, the measured cross section ratios were evaluated using 

a gold cross section curve intermediate between the two sets of curves in 

fig. 3» the difference between this and the grey detector result of fig.2 

is, however, unimportant. 
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with criticality calculations. In particular, interpretations of 
measurements on pulsed subcriticai systems where the ratio of absorption 
to leakage can be arbitrarily shifted, may be helpful. 
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Tab. 1 Gold Capture profts Section Values at 30 keV 

Method 
Flux Det. 

Associated 
Activity 

Integral 
(MnSO.-bath) 

Relative 
(U2'55-fission) 

Relative 
(Β10- η,α) 

Capture Rate Det. 

Activity 

Activity 

Activity 

Prompt Capture 
γ - rays 

Shell Transmission 

Reference 

8, 18 

18, 19, 20 

21 

22, 23, 24 

25, 26, 27, 
28 

Average Value 

598 + 30 mb 

596 + 20 mb 

608 + 40 mb 

587 + 21 mb 

6l4 + 37 mb 
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Pigure Captions 

Pig. 1 Experimental Arrangement for Cross Section Shape Determination 

Fig. 2 Gold Capture Cross Section as a Function of Neutron Energy 

Fig. 3 Comparison of Gold Cross Section Shape as Measured with 
Grey Detector ( ), Li Glass Scintillator ( o ) and 
B 1 0 slab ( & ) 

238 Fig. 4 U Capture Cross Section as a Function of Neutron Energy 

Fig. 5 Comparison of Experimental Values of XT Capture Cross 
Section with Compiled Values 

Fig. 6 Capture Cross Sections for Nb, Hf, Mo, Ta, Cs, W and Re 
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