
EUR 4035 e 

• ■'*'- -** 4*4 

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM 

DISPERSION STRENGTHENED ALUMINIUM FOR 

NUCLEAR PURPOSES, WITH PARTICULAR EMPHASIS ON 

CORRELATION BETWEEN CREEP STRENGTH AND 

MICROSTRUCTURE PARAMETERS 

by 

D. GUALANDI*, D. GELLI*, P. JEHENSON**, L. MORI* ond M. PAGANELLI* 
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SUMMARY 

A general abstract of tbe mechanical properties, with reference to 
creep behaviour correlated witb the structure parameters is presented. 
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DISPERSION STRENGTHENED ALUMINIUM FOR NUCLEAR PURPOSES, 
WITH PARTICULAR EMPHASIS ON CORRELATION BETWEEN C R E E P 
STRENGTH AND MICROSTRUCTURE PARAMETERS ( + ) 

1) Dispers ion hardened aluminium (SAP is a typical example) has in te res t ing 
mechanical p roper t i e s at t e m p e r a t u r e s in the range of 350 7 450 C (ref. 1), 
while keeping the good nuclear p roper t i e s of a luminium. 
F o r this reason, Al -A^O- , composite m a t e r i a l s have been studied in the 
field of ORGEL, a nuclear r eac to r project e laborated by Eura tom, the nuc lear 
authori ty of the six European countr ies of the Common Market . The main 
cha rac t e r i s t i c s of ORGEL a r e (ref. 2): uranium monocarbide (from na tura l 
dr slightly enriched U), as fuel; aluminium hardened by d i spers ion with 
AlnOo (SAP), as cladding; heavy water as modera to r ; organic compound with 
low vapor p r e s s u r e (terphenyls) as heat t r ans fe r m a t e r i a l . 

2) The considerable meta l lu rg ica l p rob lems originated by the use of a m a t e 
r ia l like SAP, which has to withstand t e m p e r a t u r e s of about 400τ450 C, while 
the melting point of aluminium is 660 C, have been t rea ted in the EURATOM 
Resea rch Center (J. R. C. ) in I spra and through cont rac t s with the Italian 
company Montecat ini-Edison, by the Nuclear Service of this company and 

the Isti tuto Sperimentale Metalli Legger i (I. S. M. L. ). 

A group of different cont rac ts was negotiated, s tar t ing in I960, by these c o m 
panies and EURATOM, in o rde r to study the different aspects of the p rob lem 
(proper t ies , powders , technical improvement , indust r ia l production, basic 
r e sea r ch , control methods , e tc . ). 

In this paper , we p resen t a genera l abs t r ac t of the mechanical p r o p e r t i e s , 

with reference to c reep behaviour cor re la ted with the s t ruc ture p a r a m e t e r s . 

Manuscript received on June ?0 , 1 Q 6 7 . 



3) M a t e r i a l s used 
During the ini t ia l p a r t of the r e s e a r c h , it was neces sa ry to improve the 
qual i ty of the semif inished products from the point of view of heat s tabil i ty. 

That was obtained through a vacuum heat t rea tment , which s tabi l izes the 
oxide and lowers the r e s idua l content of hydrogen to values of about 1 ppm 
(ref. 3). 
The m a t e r i a l s , vacuum s in te red through this ISML patented p r o c e s s , were 
ca l led SAP-ISML. 

At the s ame t ime , the SAP powders were a lso improved, reducing the Fe 
and Si contents and checking the i r homogeneity and quality, through the use 
of new specif icat ions and cont ro ls given to the producer (ref. 4, 5). 

The m a t e r i a l was fur ther improved lowering to the absolute minimum the 
i ron content ( less than 0. 01 %) , using pure aluminium (RaffinaLAl = 99. 99%) 
in place of n o r m a l a luminium and manufacturing the powder with special 
equipment in o r d e r to keep such a high puri ty; this p u r e r oxidized m a t e r i a l 
was patented and rece ived the name PUROXAL. During the fabrication of 
Pu roxa l and a l so of SAP o r SAP-ISML, namely during the milling for oxida
t ion of the a tomized Al powder, an addition of s t ea r i c acid is necessa ry , as 
lubr icant ; a s a consequence , the finished product contains some aluminium 
carb ide (AI4C3). In o r d e r to avoid as much as possible the p re sence of this 
non-meta l l i c impur i ty , a specia l kind of Puroxal was manufactured, in which 
a s i l icone compound was used instead of s tear ic acid . 

Sil icone compound Stearic acid 

CH3 
SiO 
C H , 

CH 3 - (CH 2 ) l 6 -COOH 

The si l icone compound contains l e s s carbon than s t ea r i c acid. Silicon 
can be accepted from the nuc lea r point of view and is not harmful from a 
me ta l l u rg i ca l point of view. 



The special Puroxal , made with a silicone compound in place of s t ea r ic 

acid during the milling of the powder, is called Puroxal S in this pape r . 

Another m a t e r i a l in which the s tar t ing m a t e r i a l was an alloy of aluminium 

and magnesium with 25% of Mg has been tes ted . The purpose of this modi

fication was to change the work hardening c ha ra c t e r i s t i c s of the aluminium 

ma t r i x through the solution of Mg and to change the dispersed phase from 

A L O , to other mixed oxides. This m a t e r i a l will be called PUROXALM 

in this paper . 

Pa tents a r e pending concerning PuroxalS and PUROXALM produc t s . See 

also note at the end of the paper . 

In the following table, the main chemical features of some typical products 

a r e l i s ted: 

Type 

S A P 

S A P  I S M L 

P U R O X A L 

P U R O X A L  S 

P U R O X A L  •M 

F e 

w % 

0 , 2 

0 . 1 

0 .01 

0 . 0 1 

0. 01 

0. 

0. 

S i 

w % 

0. 15 

0 . 0 6 

0 .005 

1 0  0 . 

1 0  0 . 

15 

15 

C 

w ^ 

0. 25 

0. 25 

0 . 2 5 

0. 1 

0. 1 

H 2 

p p m 

1020 

12 

12 

12 

12 

A 1 2 0 3 

w % 

i 7 

t 7 

 10 

ï, io 

1 4 

MgO 

w % 

M 







Ξ 2 

4) St ructure 

The s t ruc tu ra l p a r a m e t e r s of AlALOo composi tes of the type given above 

a r e divided in 2 ca tegor ies : 

 those affecting the Al ma t r ix , 

 those affecting the d i spersed phase . 

4. 1) Matr ix s t ruc tu ra l p a r a m e t e r s 

F i g s . 12 (optical mic rographs ) and fig. 3 (electron micrograph, in trans

miss ion: X 50, 000) show the general structure of the 5 materials: 



SAP 
SAP-ISML 
PUROXAL 
PUROXAL-S 
PUROXAL-M 

Optical m i c r o g r a p h s can only indicate the overal l homogeneity of the oxide 
d is t r ibu t ion : the d imens ions of the A l - O , par t ic les and of the gra ins can be 
m e a s u r e d from the e lec t ron m i c r o g r a p h s . The dimensions of the sub-gra ins 
a r e not changed by a heat t r e a t m e n t for a long time even at t e m p e r a t u r e s 
c lose to the melt ing point, and this is the bas i s of the good mechanica l p r o 
p e r t i e s at high t e m p e r a t u r e of these composi te m a t e r i a l s . 

The boundar ies between the gra ins a r e r ich in dislocat ions, anchored to 
c l u s t e r s of the d i spe r sed oxide phase pa r t i c l e s or to individual pa r t i c l e s of 
p r o p e r s ize of this d i spe r sed phase . The quantity of this phase is propor t ional 
to the oxide content and consequently, general ly speaking, there is an in
v e r s e propor t ional i ty between the oxide content (i. e. chemical composition) 
and the ave rage d i a m e t e r of the gra in (see table I, for the average dimensions) . 

The ve ry fine oxide p a r t i c l e s somet imes do not show a good efficiency for 
blocking the dis locat ion wa l l s . 

Another feature of the m a t r i x is the p r e sence of m i c r o c r a c k s with different 

d imens ions but normal ly in the range between 2 and 10/u. They a r e divided 
according to s ize and the i r num 
of the surface of the spec imen. 

Τ 
2 according to s ize and the i r number is given p e r mm of the observed repl ica 

These m i c r o c r a c k s a r e located along the al ignments of oxide pa r t i c l e s ; in 
the c r e e p p r o c e s s the p r e s e n c e of these m i c r o c r a c k s , inherent in the m a t e r i a l , 
is v e r y impor tan t . 

Al l m a t e r i a l s tes ted show the p r e s e n c e of this s t ruc tura l feature: from t a 
ble II it is poss ib le to observe that Puroxa l has less m i c r o c r a c k s than SAP. 



Dislocations inside the gra ins 

The density of dis locat ions in the in te r ior of the gra ins in this type of m a t e 
r i a l s is normal ly not high, as can be seen from the typical s t ruc tu re taken 
at the e lec t ron mic roscope , shown previously in fig. 3. 

In Puroxa l -M, it has been found somet imes a dislocation network in the i n t e 
r i o r of the gra ins (fig. 4). 

4. 2) S t ruc tura l p a r a m e t e r s affecting the d i spe r sed phase 

The dimensions and the shape of the pa r t i c l e s of the d ispersed phase a r e the 
f i rs t of the s t ruc tu ra l p a r a m e t e r s of this second group. For SAP, SAP-ISML, 
PUROXAL and PUROXAL-S these phases a r e ~η ALO-j and ^ A 1

2 0 3 , shaped 
as plate le ts of 0. 01 mic ron thickness and 0. 1 mic ron average width. 

Some of these pla te le ts can be grouped in c l u s t e r s , of about 1-2 mic rons in 
average d iame te r . There is consequently a "factor" of homogeneity of the 
oxide p la te le t s . Puroxal products have finer p la te le ts and are m o r e homoge
neous as far as the oxide dis tr ibut ion is concerned. 

When instead of pure aluminium, an alloy Al-Mg (2-5 w% magnes ium is the 
range tes ted) , is a tomized, oxidized and s in tered , a different oxide is p resen t , 
with a s imi la r d ispers ion but with t r id imens ional pa r t i c l e s , not p la te le t s 
(fig. 5); X- r ay di f f ract rometry and chemical analys is show these p a r t i c l e s to 
be constituted by a spinel (Al_0_-MgO) and MgO, without A L O - , 

It is interest ing to note that the oxidation of Mg takes place not only during 
the milling of the powder, accomplished at room tempera tu re or a l i t t le above 
room t e m p e r a t u r e , but continues during s inter ing at 600 C, by reduction of 
A 1 2 0 3 . 

Magnesium a toms mig ra t e to A 1 2 0 , pa r t i c l e s s i tes and there the reac t ion 
A 1 2 0 3 + 3 Mg » 3 MgO + 2 Al takes p lace . 

A cer ta in amount of free magnes ium can reac t with the silicon der ived from 
the lubricating sil icone compound to form Mg 2Si. The d ispersed phases can 
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consequent ly be: (A1 2 0 , ) , MgO, MgO . A 1 2 0 3 , Mg2Si, 

Given the diffusion coefficients of Mg and oxygen, the mos t valid hypothesis 
is that MgO is formeduin situ, where fo rmer ly were the platele ts of AI2O3. 

Other phases p r e s e n t in a l l m a t e r i a l s a r e A1N and Al .Co , which respect ively 
take or igin from the reac t ion of the powder with the nitrogen of the a t m o s 
p h e r e ( react ion v e r y act ive above 500 C) and with the carbon p re sen t in the 
s t e a r i c acid (or, in l e s s quantity, in the silicone compound). 

In the p r e s e n c e of Mg a l so a little quantity of magnesium carbide or ni t r ide 
can probably form. 

5) Mechanical p r o p e r t i e s of Al-A1^0 0 finished products 
Before taking into spec ia l considera t ion the creep p roper t i e s of the different 
types of A l - A l - O - compos i t e s , it is useful to give an idea of the genera l m e 
chanica l p r o p e r t i e s of these m a t e r i a l s : the re a re a few genera l pa t t e rns which 
a r e quite c h a r a c t e r i s t i c of the mechan ica l behaviour of the composi tes and 
can be so s u m m a r i z e d : 
1. at a fixed t e m p e r a t u r e , the u l t imate tens i le strength and the yield strength 

r i s e with the oxide content. Ductil i ty, as measured by total elongation, 
is inve r se ly affected by the i n c r e a s e of the oxide content. 
F r o m the s t r u c t u r a l point of view, higher oxide content can block the boun
d a r i e s of the sub -g ra in s to a stable s m a l l e r size. 

2. What is said above is valid for extruded shapes obtained by hot t r a n s f o r m a 
tion; when, via cold work, the g ra in is subsequently more fragmented, the 
behaviour changes a s follows: at room t empera tu re , the s t rength is higher 
(and the elongation lower) in the cold worked specimens in compar ison with 
the hot extruded m a t e r i a l . At high t empera tu re however, the r e v e r s e is 
t r u e : mechan ica l s t rength is lower in the cold worked state with respec t to 
the extruded shapes of corresponding size with no apparent change in elonga
tion. 
The effect of cold -work ( improvement of mechanical p rope r t i e s at room 
t e m p e r a t u r e , and wor se p rope r t i e s at high tempera ture) is s t ruc tura l ly 



understood as due to the m i c r o c r a c k s , which a r e much l a rge r and in 

g rea t e r number in cold worked spec imens . 

3. When the values of UTS (or YS) a r e plotted against the corresponding 

values of elongation, in conventional aluminium, the points fall on the same 

curve r ega rd les s of the tes t t e m p e r a t u r e . 

In SAP or PUROXAL the points group on different cu rves , ( e .g . one curve 

for room tempera tu re and one for elevated t empera tu re ) suggesting a dif

ferent behaviour of the m a t e r i a l under tes t at the two different t e m p e r a t u r e s . 

F r o m the s t ruc tu ra l point of view, this a lso may be re fe r red to the different 

influence, at different t e m p e r a t u r e s , of the gra inboundar ies and of the 

m i c r o c r a c k s existing in the ma t r i x . 

4. Another pecul iar feature of A l  A L O , composi tes in comparison with con

ventional Alal loys is the fact that at every level of oxide content, the t ime 

to rupture ( i . e . the ra te of s t raining the specimen) has at room t e m p e r a t u r e 

a r a the r l imited effect on total elongation and, at high t empera tu re a very 

marked influence on this p roper ty (fig. 6). 

6) Creep proper t i es 

Concerning c reep , these m a t e r i a l s show the following general c h a r a c t e r i s t i c s : 

1. in SAP the curve of elongation vs t ime does not show evidence of t e r t i a r y 

c reep (fig. 7). After the initial deformation the c reep curve continues with 

a very smal l slope to the point of rupture of the specimen; 

2. the slope of this port ion of the c r e e p curve is p rac t ica l ly constant and very 

smal l , denouncing a l imited deformabi l i ty of the smal l gra ins ; 

3. the l ines which give the s t r e s s n e c e s s a r y to bring about a ce r ta in de fo rma

tion (say 0 .2%, 0 . 3 % , 0.4%) a r e a lmost pa ra l l e l , very close to each other 

and close a lso to the line which gives the s t r e s s to rupture vs t ime to 

rupture (fig. 8); 

4. the res i s t ance to c reep for m a t e r i a l s in the range 414% Al,Ο, in the as 

extruded s ta te , given as the s t r e s s which produces the rupture in 1000 h r s 

at 400 C (see fig. 9) is about 70% of the UTS at the same t e m p e r a t u r e ; 

5. the s t r e s s to rupture does not become négligeable (as would be the case in 

al l other aluminium alloys) even at a t empera tu re (646 C), ve ry close to 

the melting point of aluminium (see fig. 10). 

It is interest ing to note that even at such a high t empera tu re the total d e 

formation after the c reep tes t is ve ry smal l : namely, the ma te r i a l p r e s e r v e s 

its rigid s t ruc tu re . 
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7) C r e e p behaviour of Pu roxa l and Puroxa l -S 
A group of c r e e p cu rves obtained at 450 C on a 10% ALO? Puroxal is shown 
in fig. 11 . 

A s i m i l a r group of cu rves for a 10% A L O , Puroxal -S ( i . e . obtained with a 
s i l icone compound a s lubr icant during the milling of the powder) is shown in 
fig. 12. The compar i son of the r e su l t s indicates that the c r eep s t rength of 
Pu roxa l -S is somewhat reduced but shows an elongation that reaches 1% for 
a life of the spec imen up to 50 h r s . SAP, in these conditions, has only 0. 2% 
(see a l so fig. 13). 

8) Creep behaviour of Pu roxa l -M 
P u r o x a l - M is the name conventionally given to the m a t e r i a l when, instead of 
pure a luminium, the s ta r t ing m a t e r i a l is an ΑΙ-Mg alloy, with 2 7 5% magne
sium (see note in appendix). 

The different p r o c e s s e s leading to these m a t e r i a l s (Puroxal , Puroxa l -S , 
Puroxa l -M) have been desc r ibed in the corresponding applications for pa ten ts . 

A group of c r e e p cu rves for a s in te red ma te r i a l of this last type, with 2% Mg, 
is shown in fig. 14. The s t r e s s e s leading to rupture in a given t ime a r e not 
reduced in compar i son with Puroxa l or Puroxal -S when keeping in mind the 
oxide contents , but the elongations in the range of 1-500 h r s a r e much higher 
than in a l l p rev ious ly desc r ibed m a t e r i a l s : namely it is possible to have over 
10% elongation with 1 h r life of the specimen, and over 5% with 50 h r s of t ime 
to rup tu re . 

When the life of spec imen is over 500 h r s the elongation is reduced to smal l 
va lues , 0. 3^0. 5%, s t i l l somewhat higher than in SAP. 

9) S t ruc tu ra l a spec t s of c r e e p 
9. 1) Influence of g ra in s ize 

The gra in s ize , as observed in e lec t ron mic rographs , has been found di rec t ly 
c o r r e l a t e d with the tens i le s t rength and consequently the c r eep s t rength. In ex 
t ruded rods of SAP-ISML the co r re l a t ion between oxide content and average 
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dimensions of the gra in is given in fig. 15. 

Puroxal has finer pa r t i c l e s of A 1 2 0 , and the gra in i s , with the same oxide 
content, appreciably l a r g e r as shown in the same fig. 15. 
This can explain the reduced mechanica l and c r eep s t rength observed . 

9. 2) Influence of m i c r o c r a c k s 

Microcracks a r e never found on a r e a s free of A1~0~ par t ic les and a r e m o r e 
frequent in the regions where said pa r t i c l e s form c l u s t e r s . 
They have normal ly the i r l a r g e r axis in the direct ion of extrusion and it is 
assumed that the interface between the oxide pa r t i c l e s and the a luminium ma t r i x 
favours the p resence of m i c r o c r a c k s . 

The influence of m i c r o c r a c k s is pa r t i cu la r ly evident in ductility at elevated 
t empera tu re as shown in table III. 

During the c reep tes t the influence of m i c r o c r a c k s is at i ts maximum because 
during the tes t itself new m i c r o c r a c k s form and those previously p re sen t , 
resul t ing from fabrication, grow in d imensions ; as shown by observat ions at 
the e lec t ron mic roscope . 

The best per formance of Puroxa l -M with r ega rd to elongation is due to the 
markedly reduced number of m i c r o c r a c k s . 

10) Influence of the grain boundaries 
The typical s t ruc tu re of SAP and Puroxa l given previous ly ,c lear ly shows that 
the boundaries of the gra ins a r e dislocat ion walls which presumably can not 
have the same mechanica l p rope r t i e s of the in te r ior of the gra ins , in which 
hardening pa r t i c l e s of A L O , a r e p r e s e n t . The higher strength of the in te r ior 
of the gra ins with respec t to the boundary is a condition, a s it is well known, 
leading to in te rc r i s t a l l ine f rac ture and reduced elongation. 

It is a lso assumed that the boundary of the gra in can show a "quasi v i s cous" 
behaviour (ref. 6) in the sense that, at constant t empera tu re , the s t rength of 
the grain ( 6 ) can be a s sumed as constant with the ra te of s t ra in (fig. 16), 
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while the shea r ing s t reng th (f) of the boundary v a r i e s with the r a t e of 
s t r a i n a s shown in the s a m e f igure. 

The ove ra l l influence of the ra te of s t r a in on elongation will be, as a conse 
quence , of the type shown at the bottom of said fig. 16. 
As the r a t e of s t r a i n in c r e e p t e s t s is smal l , the influence of a quas i -v iscous 
behaviour of g ra in boundar ies is towards a reduction of the elongation. 

11) Conclusions 
The expe r imen ta l data p resen ted can not bring to a genera l conclusion on 
c r e e p behaviour of A1-A1 2 0 3 composi tes but the following points appear e s t a 
b l i shed: 
a) the high mechan ica l s t rength at elevated t empera ture of the composi tes 

examined is main ly co r r e l a t ed with the ve ry reduced grain s ize , stable at 
high t e m p e r a t u r e , due to the p r e sence of the d i spersed phase; 

b) when compar ing SAP m a t e r i a l and PUROXAL m a t e r i a l with different com
posi t ion in oxide content, but with the same grain s ize , the mechanical 
s t reng th is s i m i l a r in the two m a t e r i a l s ; 

c) the s t reng th of the g ra in boundaries is reduced in compar ison with the 
s t reng th of the g ra in s and the behaviour of the boundary with the ra te of 
s t r a in is such as to give sma l l e r elongation when the ra te of s t raining is 
reduced . Consequently, in c r e e p t e s t s reduced elongations a r e to be ex
pected; 

d) the p r e s e n c e of m i c r o c r a c k s in the s t ruc tu re of these composi tes , which can 
grow in number and d imens ions , at elevated t empera tu re under a s t r e s s 
producing a s t r a in , is another factor that leads to rupture with a very r e 
duced elongation; 

e) the improvemen t in the m a t e r i a l obtained with the t ransformat ion of the d i s 
p e r s e d phase from Al2Oo to a mixed oxide (MgO + MgO Α 1 2 0 , ) , has been 
a m a r k e d i n c r e a s e of c r eep ducti l i ty when the life of the specimen does not 
exceed 500 h r s ; in no rma l SAP m a t e r i a l s , a relat ive ductility can not be 
mainta ined over 1 h r , or even l e s s . F r o m a prac t ica l point of view then, 
th is l imi ted ach ievement can be of a notable in te res t when the m a t e r i a l has 
to withstand a l imi ted o v e r s t r e s s (thus an overs t ra in) , during a l imited t ime; 
this often a r r i v e s dur ing the use of a fuel Cladding. 
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APPENDIX 

The name Puroxal is protected by a t r ade mark ; in o rde r to dist inguish from 

it the products in which the s tar t ing powder is an a luminiummagnes ium alloy, 

to these finished products (containing as d i spe r sed phases a mix ture of MgO 

and MgO . Al O J the genera l name ALMOX will be given, followed, if n e c e s 

sa ry , by l e t t e r s and f igures . Fo r example ALMOX 64 would signify an oxi 

dized ΑΙMg alloy, with 6% A L O  and 4% MgO in the finished product . 
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TABLE I  AVERAGE GRAIN DIMENSIONS IN EXTRUDED RODS OF SAPISML VS CONTENT 
OF OXIDE (TRANSVERSE SECTION) 

A 1 2 ° 3 
content % 

3.8 

8.5 

10.4 

13.9 

T E M P E R 

As Extruded 

1.1 /urn 

0. 6 " 

0 .5 " 

0.45 " 

After 
3 h r s at 600°C 

1. 1/um 

0.6 " 

0.52 " 

0.45 " 

After 
3 h r s at 650°C 

1. 1 urn 

0. 6 " 

0.57 " 

not de termined 

TABLE II  NUMBER OF MICROCRACKS PER MM IN SAPISML AND PUROXALS IN UNSTRESSED 
AND STRESSED SPECIMEN 

Mater ia l 

Puroxal S 
(4% A1 2 0 3 ) 

Puroxal S 
(7% A1 2 0 3 ) 

SAPISML 
(4% A1 2 0 3 ) 

SAPISML 
(7% A1 2 0 3 ) 

Uns t ressed Specimen 
— 

5 τ 10 ,u 

0 

0 

36 

36 

2 r 3 / U 

327 

312 

255 

266 

¿z 1/U 

404 

364 

629 

218 

Creep S t re s sed 
Specimen 

5 f 1 0 / u 

218 

309 

273 

109 

2 τ 3^u 

182 

382 

255 

946 

^ 1/u 

655 

673 

805 

1165 

Creep Conditions 

k g / m m 

2.25 

2.75 

4 . 6 

5.9 

Life 
h r s 

501 

140 

1152 

1200 

_ o_ 
T e m p e r a t u r e C 

450 

450 

400 

400 



TABLE III - CORRELATION BETWEEN MECHANICAL PROPERTIES AND MICROCRACKS 
IN PUROXAL-S 

Mechanical P rope r t i e s 

20°C 

UTS 
k g / m m 

32.8 

31.4 

1 

YS 

k g / m m 

29.3 

26. 3 

E l 

% 

10.2 

12.7 

450°C 

UTS 
k g / m m 

6.75 

7 . 2 

YS 

k g / m m 

6 .3 

6 .5 

E l 

% 

2 . 0 

9 . 8 

5 r 10 
/U m 

122 

0 

Microcracks 
2 

per m m 

~ 2 
/U m 

410 

30 

4 ι 
/u m 

910 

127 

U l 
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se»» -

Fig . 1  Typical m i c r o s t r u c t u r e s (χ 100) of SAP (top, left), SAPISML 
(top, r ight) , PUROXAL (bottom, left) and PUROXALS (bottom, 
r ight) . (Las t re Ν. 33831, 35709, 37507, 38504) (Χ 100  Etching: 
HF 0. 5%). 

F ig . 2  Mic ros t ruc tu re of Puroxa l M (χ 100  Etching: HF 0.5%) 
L a s t r a Ν. 41 . 650) 
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Fig. 3 - Typical m i c r o s t r u c t u r e taken by t r ansmi s s ion at the 
e lec t ron mic roscope . (Plate N. 2794 el. ) (x 50, 000) 

Fig. 4 - Mic ros t ruc tu re of Puroxa l -M with a dislocation net within 
the grain , (x 50,000) (Plate N. 5650). 
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Fig . 5a - Typical m i c r o s t r u c t u r e of Puroxal -M taken by t r a n s 
mi s s ion at the e lec t ron mic roscope , (x 20, 000)(Plate N. 5644) 

F ig . 5b - M i c r o s t r u c t u r e of Puroxa l -M at higher magnification. 
(Plate N. 5614) 
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Fig. 6  Elongation v s . life of specimen. 
(Plate N. 31131/3 
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Fig. 7  Typical creep curves with different s tress of SAP 7% Al O . 
(Plate N. SUO/G)
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Fig . 8  Behaviour under c r e e p conditions at 400 C. 
(Plate N. 31 Í 14/3) . 
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Fig . 9  S t r e s s producing rupture in 1000 h r s at 
400°C v s . % A1 2 0 3 . (Plate N. 31121/2) 
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Fig. 10  Creep curves of SAPISML 10% Al O at 646°C. 
(Plate N. 31122/8). 3 
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Fig. 11  C reep curves of Puroxal (10% Al o ) at 450°C 
(Plate N. 31162/5). 2 3 
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Fig . 12 - Creep curves of Puroxa l S (10% Al O ) at 450°C 
(Plate N. 31162/6) 2 3 
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ig. 13  Creep curves of SAPISML (7% Al O at 450°C). 
(Plate N. 31156/10). 2 3 
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Fig . 16 - Influence of the ra te of s t ra in (V ) on elonga
tion a s a function of Ύ and 5" . 
(Plate N. 6 5 9 9 / G ) . C 
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