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INTRODUCTION 

The importance of the study of torsional, flexional and 
precessional vibrations in rotating systems is recognized by 
constructors and users who for some time have had to suffer 
the consequences of these vibrations, which culminate in shaft 
fractures at critical velocities. 

When designing a rotating system, fundamental importance 
must be given to the calculation of the critical torsional, 
flexional and precessional velocities, in order to provide the 
system with working velocities involving no dangerous oscillat­
ions of such a kind as would be liable sooner or later to cause 
failure of the shafts· 

The rotating system under consideration is of the 
"suspended" type, that is to say vertical, attached at the top 
and free at the bottom. As fig. 1 shows, it consists, very 
simply, of a vertical shaft made up of various lengths of 
different diameter, with the electric motor at its upper and 
the chopper—rotor at its lower end. 

Our system differs from the rotating systems usually 
employed in mechanical engineering, both in type and in the 
length of small-diameter shafting, 3 mm in diameter. This 
configuration has a highly important purpose, namely to allow 
the chopper-rotor to find its own position of dynamic equili­
brium, thus avoiding the concentration of heavy loads on the 
ball-bearings which would very soon fail under such conditions. 

For obvious reasons of clarity, the present calculation 
has been broken down into 1+ consecutive parts as follows: 

- Calculation of the critical torsional velocities 
- Calculation of the critical flexional velocities 
- Calculation of the critical precession velocities 
- Conclusions. 
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A fifth section has been added, which contains the 
experimental results. Also, as we are dealing with a particular 
system, in section II the chief effects (gyroscopic and traction) 
which effect the flexional vibrations have been introduced one 
by one into the calculation so that their influence on the 
critical flexional velocities may be observed. In Appendix I 
and II methods are indicated which allow to introduce also the 
effects of rotatory inertia and of transverse shear into the 
calculation of the critical velocities of bending. 

Although the calculation method relates here to the 
system depicted in Pig. 1 , it is general and can be applied 
to any rotating device. 

1 . CALCULATION OF THE CRITICAL TORSIONAL VELOCITIES 

It has now become the general practice to calculate the 
critical torsional velocities on suitable "reduced" systems 
which are thought of as having attached to them, at suitable 
intervals, imaginary flywheels having an appropriate moment 
of inertia but assumed to be without thickness, that is to say, 
concentrated along their plane of attachment to the line of 
the shaft. (Ref. 1 ). 

In every case, the reduced system will have to be 
representative of the actual vibrating system and equivalent 
to it as regards torsional behaviour; it is therefore necessary, 
at the outset, to define the dynamic characteristics by means 
of a "mass- and length-reducing" operation, this being carried 
out as follows : 

1 .1 Reduction of masses 

The cases commonly encountered in practice concern masses 
in reciprocating motion, in rotary motion, and in combined 
rotary and reciprocating motion. As far as the torsional 
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vibrations are concerned, these masses may be considered 
simply in two groups: 

- masses in reciprocating motion, and 
- masses in rotary motion. 

In both cases, the real masses are replaced by an ideal 
flywheel having an equivalent moment of inertia, which is 
obtained by equating the kinetic energies in play. 

In the case of masses in reciprocating motion, given that 

m = mass in reciprocating motion 
3. 

V = instantaneous velocity of the mass in reciprocating 
motion 

Ω = angular velocity of rotation of the shaft 
Y = equivalent moment of inertia 

we have 

1 /2 Υ Ω2 = ή/2 mQ V2 
ci 

which gives 

Y = m (V/Ω)2 d ) 
ci 

In the case of masses in rotary motion, given that 

Y = moment of inertia of the mass in rotary motion 
Ω. = angular velocity of rotation of the shaft carrying 1 

the mass whose moment of inertia is Y. 
1 η = number of revolutions of the shaft carrying the 

mass of moment Y, 
1 

Ω = angular velocity of rotation of the driving shaft 
Y = equivalent moment of inertia 
η = number of revolutions of the driving shaft 
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we have 

1 /2 Υ Ω2 =1/2 1 Ω2 

1 1 
from which 

Y = Υ ^ / Ω ) 2 = Y ^ / n ) 2 (2) 

if Ω = Ω. , i.e. if the mass is carried on the driving shaft 1 
we get 

Y = Y, (2') 
1 

i.e. it is sufficient to replace each real mass by an ideal 
flywheel without thickness, having a moment of inertia equal 
to that of the given mass. 

1 .2 Reduction of lengths 

For the reduction of lengths it is customary to take a 
constant diameter as basic diameter for all calculations 
(Ref. 1 ) 2)). 

All the component sections of the shafting of the system 
in question will therefore be reduced to sections of this 
diameter with lengths varied so as to correspond elastically 
to the real lengths. 

For this it is sufficient to equate the torsional 
rigidities. 

Let us recall that the torsional rigidity (or elastic 
constant) for a cylindrical shaft of diameter D and length 1 
is defined as having the value 

G J G 32 D 
Λ - 1 1 

where G is the tangential elastic modulus. 
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Thus,if 

1 = true length of the generic section making 

up the shaft 

D = true diameter of the generic section making 

up the shaft 

1 = reduced length of the said section 

D = constant basic diameter 
r 

for every section we shall have 

whence 

G
 ^2

 D
r 

X r 

G ^ ­ D ^ 
^2 ν 

1 
V 

1 = 1 (D/D )
4
 (3) 

r v r v 

For a hollow cylindrical shaft whose external and internal 

diameters are respectively D and d , we have 

whence 

B" 

V V 

The reduction of conical sections, ¿oints, etc. is 

effected by means of special tables or formulae to be found 

in textbooks on the subject. 

1 .3 Calculation of the ideal system 

On the basic of the foregoing, the system under study 

may be reduced to a certain number of flywheels interconnected 

by cylindrical shaft sections of constant diameter; where 

calculation of the critical velocities is concerned, reference 

is always made to the ideal system thus obtained, disregarding 
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the actual system which it represents. 

1 .3.1 Calculation of the proper frequencies 

To calculate the proper frequencies of the ideal elastic 
system obtained as shown above, we follow the standard method 
consisting in equating the moment of the elastic reactions, 
which is determined in each shaft section in relation to the 
maximum amplitude of the oscillation, with the aggregate inertia 
couple which is applied at the end of the section. 

Thus calling: 

Y the moments of inertia of the Ζ flywheels; 
θ the respective amplitudes of vibration (m goes 

from 1 to Z); 
K^ the elastic constants of the interposed shaft 

sections (m goes from 1 to (Z - 1 )); 
Ω a natural oscillation of the system. 

the moment of the elastic reactions in the i section is 

I. = Κ. (θ.^Ί - θ.) ι ι x l+l ι' 

and the aggregate inertia couple is 

m=l \d t 
Bearing in mind that the elastic vibrations are simple 
sinusoidals 

whence 

θ = θ sin Ω t m 

2 
-—Sr = - Ω2 θ sin Ω t 
d t 2 m 
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The maximum amplitude of oscillation is given by sin Ω t = 1 , 

that is, by 

¿­^ = ­ Ω
2
 θ 

d t
2
/max "

m 

It follows therefore that 

1
 2 

C
­Î = ­ Σ

 Ym
 Ω θ

™ 

ι „ m m 

m=l 

and from the foregoing 

i ρ 
Σ Y nr- θ„ = Κ, ( θ . ­ θ .^ . ) {k) 

. m m î ^ i 1+1 ^ ' 
m=l 

J- -V-

This formula a p p l i e d below the Z flywheel becomes 

ι 9 

Σ Ym ΩΤ θ = 0 ( V ) 
™^i m m v­i· / 

m=l 

The value Θ. of each mass is related to the preceding 

value Q. by the following equation: 

1
 2 
Σ Υ ίΤ θ m m 

Θι+1 ■
 e
i - ̂ ^ C <5> 

where 

G J 
K, = 
1 X

i 

is the torsional rigidity of the i section of length 1. 

of the ideal system with J constant, given that in such a 

system all the sections are of the same diameter. 

All the values of Ω which satisfy equation {k') are 

torsional proper frequencies of the system. 

In general it is easier to carry out this calculation 

indirectly. The amplitude of vibration of the first mass of 
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the system is therefore taken to be equal to 1 radian and 

a frequency value at which to carry out the trial is chosen. 

Having established this, by applying equations (i+') and (3) 

it will be possible to calculate successively the amplitude 

of vibration of each mass and at the same time the torque due 

to inertia, applied to the sections linking up the said masses. 

The frequency adopted in the trial will coincide with one 

of the actual frequencies of the system whenever equation (k) 

can be satisfied; that is to say, when below the last mass the 

torque due to vibration is equal to zero. 

The procedure by trial described here, which is usually 

preferred to the direct determination of the values of Ω by 

means of algebraic solution of ( V ) , is made possible by 

knowing the form of the "remainder function": 

I r> 

f (n) = Σ Ym sr em 

m=l 

As we know, this always follows the pattern shown in 

Fig. 2 and cancels itself out at the proper frequency values 

of Ω, i.e. at as many points as there are possible modes of 

vibration of the system. From the sign assumed by the remainder 

for the various trial values of Ω it is possible to obtain a 

useful indication as to whether the value of Ω should be 

increased or reduced for the next trial. 

The remarkably convenient method of calculation explained 

above is universally known as the HÖLZER (or LEWIS) TABULATING 

METHOD. 

The calculation described above can be programmed for a 

computer, all natural frequencies of the system under 

consideration are then obtained. 

As we have shown, the calculation of the natural frequencies 

of the system, indicated in Fig. 1 and simplified for purposes 

of calculation as shown in Fig. 3a, proves particularly simple 

because it represents the case of a line of shafting connecting 

two flywheels. 
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In such cases equation (i+) gives, for the shaft section 
connecting the two flywheels: 

*i Ω2 ©1 = *, (θ1 - θ2) 
where 

G J ν- £ 
K1 - 1Ρ 

is the torsional rigidity of the reduced system (see Fig. 3b) 

From this we obtain 

I 2 -1 - ̂ Ω2 (6) 
e1 κ, 

On the other hand, equation (i+), when applied below the 
second flywheel, becomes 

Y1 Ω2 θ + Y2 Ω2 θ2 = 0 

Dividing by θ. , we get 1 

Y1 Ω2 + Y2 Ω2 ^ = 0 

stituting for θ?/θ , the value given by equation (6), we Sub 
obtain: 

- ^ iL· - Ω2 (Υή + Y2) = 0 

whence 

Λΐ ^ 2 - Λ/ Y, Ya lr
 ( 7 ) 

This tells us that our system has only one natural frequency 
which we proceed to calculate (the double sign indicates that 
the flywheels can revolve in both directions). 
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With reference to the system shown in Fig. 3a, if we 

reduce the lengths to an ideal diameter of 1 0 mm as described 

in section 1.2 and allow for the correcting factors (ï ) in 

respect of conical sections, joints and cross­sectional 

variations in cylindrical sections, we get: 

total reduced length: L
 a

1 ,280 cm 

Our system is thus transformed, for the purpose of 

calculating the torsional vibrations, into the equivalent 

ideal system represented in Fig. 3b, in which 

­ moment of inertia of mass (ï ) Y = 2.81 kgcm sec 

­ moment of inertia of mass (2) Y? = 0.O106 kgcm sec 

­ polar moment of inertia of 

reduced shaft J = 0.098 cmr 

Ρ , ρ 

­ tangential elasticity modulus G = 850,000 kg/cm 

Substituting these values in equation (7), we find 

Ω = 78.5 rad/sec. 

whence the only natural frequency of the system: 

Ω χ 60 

f = — 2 " ^ — = 750 /min 

It may be objected that in calculating the system in 

question, the actual mass of the shaft connecting the two 

flywheels has not been taken into account. 

It can be demonstrated that in order to,take account of 

the mass of the shaft it is sufficient to add to the mass 

moment of inertia of the nearest flywheel 1 /3 of the moment 

of inertia of the shaft which goes from the said flywheel 

to the nearest node. As may be verified, the latter moment 

of inertia is very small compared with Y and Yp and is 

therefore negligible. 
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1 ·3·2 Determination of the critical torsional velocities 

All velocities of the system under consideration which 
satisfy the relation 

Fe = f = 750/min 

are critical torsional velocities. 
Fe is the frequency of excitation of the system due to the 
electrical driving motor. This is a special high frequency 
synchronous motor with one pair of poles. It is started 
asynchronously and synchronized by manual frequency regulation 
at about 5OOO r.p.m. 

It is known (2) that for a three-phase asynchronous 
motor, fed with a frequency F(Hz), the frequency of mechanical 
excitation is 

Fe = 2(N - N)p 
S 

where 

Ν [rpm] = ve loc i ty of the revolving magnetic flux 
S 

= 60 F/p 
Ν [rpm] = number of revolutions of the motor shaft 
ρ [-] = number of pole-pairs. 
Substituting Ν by its value and considering the first 

relation and the fact that there is only one pole-pair, the 
equation for the critical torsional velocities of the system 
becomes : 

Ν = 60 F - 375 (8) 

During the asynchronous start-up procedure, it is therefore 
necessary to keep away from those frequencies by which the 
above equation can by satisfied, in order to avoid torsional 
vibrations which might cause a failure of the thin shaft. 
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Once arrived at synchronous operation, (~ 5000 r.p.m.), 

mechanical excitation frequency Fe is zero as can easily be 

seen from the expression for Fe, and therefore there are no 

more critical velocities of torsion. 

2. CALCULATION OF CRITICAL FLEXIONAL VELOCITIES 

To simplify the calculation while still adhering very 

closely to the real conditions, the system in Fig. 1 has 

been reduced to that shown in Fig. ¿j.. 

For the reason given in the introduction, we shall con­

sider the three following cases: 

(A) System as in Fig. 1+, loaded at its free end with the 

rotor of weight Ρ = 30 Kg. The gyroscopic effet due 

to the rotor and the traction effect due to the weight 

of the rotor F = Ρ = 30 Kg are both ignored. 

(B) System as above, taking into consideration the gyro­

scopic effect due to the rotor but ignoring the traction 

effect. 

(c) System as at (A) taking into consideration both the 

gyroscopic and the traction effects. 

The IBM 7090 computer was used for the solution of each 

of these three cases, with which we shall now deal. 

2.1 Calculation of the critical velocities of­the system 

ignoring both gyroscopic and traction effects 

We know that, in the case under consideration, the 

basic equation for the critical velocities in respect of 

a shaft, of constant cross­section, fixed only at its ends 

and subjected to a uniformly­distributed load of weight ρ 
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per unit of length, in the conditions assumed usually by 

the analysis of stress and strain is (3) ­ (k) ~ (5) ­ (ï 1 ) ~ 

(12): 

^ y u 

= m'V (9) 

with 

cbA 

»
U

= f e do) 

where : 

ρ = SY = weight of shaft per unit length 

S = cross­section of shaft 

γ = specific gravity of shaft material 

E = modulus of elasticity of shaft material 

J = moment of inertia of cross­section of shaft 

g = acceleration due to gravity 

Ω = angular velocity of shaft. 

The integral equation (9) has the value 

y = A cosh m x+B sinh m x+C cos m x+D sin m χ (11 ) 

where A, B, C, D are constants which depend on the boundary 

conditions. 

Taking these into consideration we can always write a 

sufficient number of equations containing the constants and 

the mj we then cancel out the constant values and obtain an 

equation in m whose solutions, substituted in equation (10), 

enable us to find the critical velocities of the shaft. 

In respect of a shaft made up of a number of lengths 

of various diameter and fixed at several points, equation (11 ) 

is valid for each length and for each contiguous length con­

fined by a point of attachment; hence we must write as many 
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s e p a r a t e equa t ions as t h e r e a re l eng ths of d i f f e r e n t diameter 
and l e n g t h s conf ined by a p o i n t of a t tachment . In the case in 
q u e s t i o n ( F i g . 1+) denot ing wi th the ind ices 1 , 2, . . . , 7, the 
v a l u e s r e l a t i n g to the 1 s t , 2nd . . . 7th l eng th , we have the 
seven fo l lowing e q u a t i o n s : 

y = A. cosh m. χ + BJ s inh mJ χ + C cos m. χ + D. s in m. χ 1 1 1 1 1 1 1 1 

y = A2 cosh πΐρΧ + B? s inh m„x + C2 cos m?x + D2 s i n ni-x 

(12) 

m 

y = Ay cosh m7x + B7 sinh m-,x+ C-, cos m-x + D-, sin m-x 

Bearing in mind that the angular velocity Ω is common 
all the lengths and that it is related to the various m. 

1 
7 ; S. , . . . . , S 7 ; J. , . . . . , J-, by equat ion (ï θ ) , we can w r i t e : 

m^E ^ g m^ E J 2 g m1^ E J^ g m^ E J^ 

^ γ s 2 γ
 =

 s 3 γ
 =

 s^ γ 

n¿ E JV g mg E Jg g m̂  E J 7 g 

s 5 γ
 =

 s 6 γ
 =

 s ? γ 

from which we o b t a i n : 

k; S J 
m

2 =
m

i J s f ^
 = C p m

i 

k S. J 
m

5
 = m

i J Í J : =
 ξ ω

ι (13) l
3 =

 ω
1 j S ^

 = 1 

ü ; S _ k A 
m, = m. Ι 0

Η τ' = τ m 
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Jr 
m
5 =

 m
i 4 sfj^ ■ ψ ml 

m
6

 = m
i 4 ^ 1

 =
 ^

 ( i3 ) 

m
7

= m
i J s ^ = " l 

The numerical values of S ,...,S7; «Τ , ...,J7; g; γ; and E 

are shown in Fig.¿4.· 

The conditions at the limits of each length can be written, 

bearing in mind the following: 

­ at a single support, deflection and bending moment are nil; 

that is, given y as the generic deflection and M the bending 

moment, 

y = 0 

M = E J y" = 0 t 
­ at the point of junction between two sections of different 

diameter, deflection y, gradient ̂ g , bending moment M and 

shearing stress T are equal for the two sections, so that 

y
i
 y

i+1 

Yi ­ Yi+i 

M, . E J^J = Β Ji+1 y»+1 = Mit1 

T4 = E Jt y'}' = E Ji+1 y»^ = 1^ 

In our case, if we denote the characteristic values of 

the beam at the end of each length with the superscript index 

zero, and the same values at the beginning of each length 

without the index zero (Fig. k)» we have: 



­ 24 ­

(1 ) f o r χ = 0 

[ 
y, = ο 

y " = 0 

(2) f o r χ = l t 

o 
y
i
 : y

2 

s J
i Y°' 

O 

E J 2 y2' 

LE ^ y f = E J2 y2" 

(3 ) f o r χ = 1, 

o 
y
2

 y
3 

o*_ , 
y
2 "

 y
3 

E J 2 y 2 E ¿y» 
,111 

^ E J 2 y ­ = E J 3 y J 

(5) f o r χ = 1 
h 

»k
 = y

5 

yk = y 5 

E Jk y ° " = E J 5 y» 

v
E
 ·\ <" =

 s J
5

 y
5

M 

(i+) f o r χ = 1 
3 

*3 = ° 

y u = 0 

o' , 
y
3

 = y
4 

E J , y ° " = E J. y," 
V 3 "3 

(6) f o r χ = 1 

o 
: y 6 

i,. % 

5 

o" , 
y 5 = y¿ 

E J y = E J 6 yg 

, n i 

VÎ
 J

5
 y

5
 = S J

6
 y

6 
I I I 

(7) f o r χ = 1, 

o 
y
6 

o' 
y
6 

= y7 

= y7 

E J 6 y6 = E J 7 y7 
,111 

V 

15 J ó y6 = E J 7 y7H 

(8) f o r χ = 1 
7 

O " o 

y 7 = o 

o1" ._ k k o 
y 7 = R cT m^ y ? 

The l a s t c o n d i t i o n a t t h e l i m i t s , f o r χ = 1 , can be 

found , s i n c e we know ( r e f . 5) t h a t : 
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E J7 y f = ­ P/g Ω
2
 y° 

in which we substitute the value given by equation (9) for 

Ω
2
, i.e. 

­ S 7T 

and, from the last of equations (l3), we obtain 

0,„ ρ m^ E J7 g 0 Ρ (¿nfr 0 

2 J
7
 y
7 = ­ i s7 r

 y
7 = ­ ~Epr y

7 

whence the said and last condition with 

R
 = ­ φ = ­ 3.8 x°0.008 * ­

 9 8 6 c m 

Equations (1 2) and (13)> together with the conditions 

at the limits of each length as written above, enable us to 

write a homogeneous set of 28 equations in the 28 unknowns 

A. · · · · A.­,, il, .... xj­7» L> .... 0­,, D. .... JJ­7 · 
1 ( \ I 1 ( \ I 

Having constructed the determinant of the coefficients, 

we note that it is a function of the single parameter m ; for 

all the values of this which cancel the determinant, (1 θ) 

enables us to calculate the critical flexional angular 

velocities Ω and hence the critical rpm values of our system. 

The foregoing is the standard method of calculating the 

critical flexional velocities. In practice it is difficult to 

programme for the IBM 7090, so that we found it preferable, 

from that standpoint, to use the method set out below as it 

is far more convenient. It consists, very simply, in expressing 

the final conditions of the beam in question as a function of 

the initial conditions, taking into account the conditions at 

the limits as written above. (For detailed explanation of the 

method right up to the feeding into the IBM 7090, the reader 

is referred to the report by Messrs. M0NTER0SS0 and DI COLA, 

not yet published). 
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E q u a t i o n ( 9 ) , a p p l i e d to t h e 1 s t beam s e c t i o n , g i v e s 

y = A, cosh m χ + Β, s i n h m, χ + C, cos m. χ + D. s i n m χ (l¿+) 
1 1 1 1 1 1 1 1 

I t s s u c c e s s i v e d e r i v a t i v e s up to t h e t h i r d , have t h e v a l u e s 

y ' = m. A, s i n h m., χ + mJ Β„ cosh m, χ ­
1 1 1 1 1 1 

­ m. C, s i n m χ + πι, D cos m, χ 
1 1 1 1 1 1 

2 
y" = m. A, cos h ι , χ + m, B̂  s i n h πι χ ­

1 1 1 1 1 1 

2 2 (15) 
­ πι, C cos πι χ ­ πι, D, s i n πι χ 

1 1 1 1 1 1 

y'" = nr Α„ s i n h πι χ + mj Β, cosh m, χ + 
1 1 1 1 1 1 

5 '5 
+ nr C. s i n πι χ ­ nr D. cos m. χ 

1 1 1 1 1 1 

The s e t formed from (14) and (1 3) f o r χ = 0 g i v e s : 

y
i 

'Í 

y ; 

v
1
" 

=
 A

1 

= m
i 

- < 

..> 

+ 

B
1 

A
1 

B
1 

°1 

+ 

­

­

m
i 

< 

«Ì 

D
, 

C
1 

D
1 

(16) 

where y , y ' , y " , y"1 a r e t h e i n i t i a l c o n d i t i o n s of the beam. 

D e r i v i n g A. , Β , CÁ , D, from t h i s s e t and s u b s t i t u t i n g 
1 1 1 1 e 

them i n t h e s e t formed from (14) and (15) we o b t a i n , f o r 

x = V 

y° = y, 2 ^
c o s h m

i
 χ

ι )
 + y

i Fm" ^
s i n h m

i \
 + s i n m

*
 1

1 )
 + 

+ y" —L­r (cosh m 1 ­ cos m 1 ) + y'" —J­τ­ > 
1
 2 mf

 η η 1 1 1
 2 nr

5 

1 1 

(sinh m χ ­ sin m χ) 
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= y«, 2 ( s i n h m1 1 ­ s i n m 1 ) + y ' .£ ( c o s h m 1 + 

+ cos m. 1 ) + y" ­r̂ — ( s i n h m. 1 + s i n πι 1 ) + 
1 1 1 ¿m 1 1 1 1 

+ yJ" — ci> ( c o s h m χ ­ cos m χ ) 
1 2 m; 1 1 

y
l
 = y

i 2 ^
C O S h m

i
 Χ

1 "
 COS m

i "S )
 + y

1 2 ^
S i n h m

l
 Χ

1 " 

­ s i n m, 1, ) + y," o ( c o s h m., 1 + cos m. 1„ ) + 
1 1 1 ¿ 1 1 1 1 

+ y
ì" 2~m~ (

S i n h m
i "S

 + s i n m
i
 X

1 ^ 

m 
3 

m. 
y1 = y l 2 ^ S i n h mi 11 + S i n m i lj\ ' + y l 2 ^ C 0 S h mi X1 * 

m 
­ cos m. 1. ) + y." -£■ (sinh m. 1, ­ sin m. 1. ) + 

1 1 i ¿ 1 1 1 1 

+ y'" τ: (cosh m. 1. + cos m. 1. ) 
. 2 1 1 1 1 
1 

Bearing in mind the above­mentioned conditions at the 

limits for the point χ = 0, we get: 
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which represent the value and respective derivatives of y at 

the end of the first beam­length as a function of the initial 

conditions. 

For the second beam­length, we get: 

y s A? cosh m„ χ + B2 sinh m χ + G eos m χ. + D2 sin m2 x 

y' = m? A sinh m2 χ + m2 Β cosh m χ ­ m C sin nu χ + 

+ m2 D cos m χ 

2 2 
y" = m„ A0 cosh m0 χ + m„ Β sinh m0 χ ­2 2 2 2 2 ¿ (18) 

2 2 

­ m? C2 cos m2 χ ­ m„ D2 sin m χ 

y'" = m2 A2 sinh m2 χ + m£ B2 cosh m2 χ + 

λ 5 

+ m2 C2 sin m2 χ ­ m2 Dg cos m2 χ 

When χ =1., we obtain 
1 

y = A cosh m 1 + B2 sinh m£ 1 + C2 cos m2 1 + D2 sin m2 1̂  

y' = m A2 sinh m 1 + m2 Bg cosh mg 1̂  ­ m2 C2 sin m2 lg + 

+ m2 D2 cos m2 1̂  

y» = m2 A2 cosh mg 1 + m2 B2 sinh m2 XJ| ­

­ m2 C2 cos m2 1 ­ m2 D2 sin m2 1^ 

y2" = m3 A 2 sinh mg 1 + m­
3
 Bg cosh m,¿ 1̂  + 

+ m^ C2 sin m2 1 ­ m| D2 cos m£ 1̂  

Deriving A?, B?, C2, D from this set and substituting 

in equation 

transformations : 

them in equations (l8), we obtain for χ = 1 , after certain 
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Proceeding in the same way for the remaining beam­lengths, 

we obtain the value and respective derivatives at the end of 

the last length in terms of the initial conditions; i.e. we 

obtain: 

'7 

1 

It 

III 

A • Β • c Ν 

0 

0 

III 

(21) 

where A, B, C, Ν are matrices calculated as above. With 

the conditions at the limits for χ = 1­, and the relations (ï 3) 

which correlate the various m2, m,, ... , m? with m , equation 

(21 ) when solved by the IBM 7090 for the speed range 0 ­ 40,000 rpm, 

gave two values of m , to which the two following critical velo­

cities correspond: 

1st critical velocity: ncr « 1 8 rpm 

2nd critical velocity: ncr„ ­ 2,200 rpm. 

2.2 Calculation of the critical velocities of the system, 

taking into account the gyroscopic effect but disregarding 

the traction effect 

In the treatment of this second case the gyroscopic 

effect of the flywheel located at the free end of the beam, 

which was disregarded in the first case, is taken into consid­

eration. 

This effect does not alter the differential equation (9), 

which therefore remains the same in this case, but only the 

limit conditions at the extreme point χ = ly at which the 

flywheel is applied; we shall now determine these conditions. 
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In cases where concentrated loads such as pulleys or fly­

wheels are applied to a shaft, when writing the equations at 

the limits for two contiguous lengths limited by a load, we 

must bear in mind not only that the ordinates and the gradients 

of the elastic curve and the shearing stresses, as calculated 

from the two equations relating to the two lengths, must work 

out equal, but also that there exists between the moments 

calculated below and above the loaded section the relation 

Mv­ Mm = Ω
2
 P/g p

2
 y' ̂  (22) 

2 
where P, g,Sl have the same meaning as before and ρ is the 

radius of gyration of the flywheel or pulley. 

In our case, since the flywheel is at the free end of 

the beam, (22) is reduced to 

­ Mm = Ω
2
 P/g p

2
 y°' 

and, replacing M by its value, 

n" 9 ο ,Λ« 4 E J 7 g Ρ 0 , 
E J?y°7 = ­ n 2 p / g p 2 y o = ­ ­ J _ L _ p 2 y ? 

7 

i.e. 

ĉ  m^ Ρ ρ
2 

o ' ττ U U o ' ζ x 
y
7
 = ^~1 y7 = H m y

7 (
2
3) 

where : 

g Y 981 χ 2.81 
p
 = IP * 2 χ 30 " ^ cm 

Η « ­ £­¿ * 3°
 χ
 ¿+

6
 « ¿,5 500 cm

3 

η
 S­, Υ 4.16 χ 0.008 ^,^υυ

 cm 

The limit conditions for 

x . l 7 

are therefore in this second case 
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y°" = H cl· 

y°'" = R c^ 

4 0* 
m
1

 y
7 

k o 
m

l
 y

7 

(24) 

When the calculation was made on the IBM 7090 as described 

in section 2.1, equations (24) being now substituted for the limit 

conditions at the point χ = 1­,, the following were found for 

the velocity range 0 ­ 40,000 rpm: 

first critical velocity: ncr = 20 rpm 

second critical velocity: ncr? = 29»500 rpm 

This result shows that the gyroscopic effect has very 

little influence on the first critical flexional velocity but 

causes a large increase in the second critical velocity, 

raising it from the 2,200 rpm of section 2.1 to 29»500 rpm. 

2.3 Calculation of the critical velocities of the system, 

taking both the gyroscopic and the traction effects 

into account 

In this case account is talven of the gyroscopic effect 

due to the flywheel of weight Ρ = 30 kg located at the end 

of the shaft and the effect due to the pull of the force 

Ρ = 30 kg (weight of rotor). The differential equation for 

each beam­length now has the form: 

äk
 ν d

2
 ν S Y 2 ^ * ( 5 )

 / Ν 

d x
4
 d x g 

whose integral is 

mIx . m I ] : x m I ] : I x . mlV 
y = a e + b e + c e + d e χ 

where m m are the roots of the equation: 

4 2 S γ Ω
2 

E J m
H
 ­ P m ­ = 0 
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i.e. 

m 
Γ~ 

Ρ 
2 Ε J " . 

Ι Ρ 2
 + S Υ Ω2 

J 4 Ε2 J2 g Ε J 
(Ι, II, III, IV) β ± F ± Εΐ_ + S Υ Ω (2Ó) 

Prom this relation it can be seen that there are two 

equal real roots of opposite sign, which we call respectively 

m and -m, and two equal and opposite imaginary roots, which 

we call ir and -ir. 

The integral of equation (25) then becomes 

mx , -mx ir , -ir 
y = a e + b e + c e +de 

from which, making the appropriate changes, we obtain the 

equation: 

y = A cosh mx + Β sinh mx + C cos r χ + D sin rx 

which is valid for each of the seven sections that make up 

the system under study. 

The conditions at the limits of each section are the 

same as in section 2.1, wi th the exception of those relating 

to the point χ = ly, which has now become: 

Β J7 y°" = - Ω
2
 P/g p

2
 y°' 

o '" 2 o o ' 

E J7 y° = - P/g sr y° + Ρ y° 

o' 

(27) 

The term F y? represents the component of the pull in 

the direction of the y axis at the point χ = 1 . It is opposite 

Ρ 2 o ' 

to the centrifugal force — Ω y due to the flywheel of weight P. 

Applying the method of calculation shown in section 2.1 we 

find, as far as the second beam-section: 
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Proceeding in the same way with the remaining lengths we 
arrive at an expression similar to (21 ) which gives us the 
value and respective derivatives of y at the end of the last 
length as a function of the initial conditions. 

Associating with it the limit conditions (27) and the 
expressions for m m? and r r? given by (2b), 
the IBM 7090 supplied the two velocities below, for the 
velocity range 0-40,000 rpm: 
first critical velocity: n cr * 64 rpm 
second critical velocity: n cr? - 29,500 rpm 

This result shows that the traction Ρ changes only the 
first critical velocity and does not affect the second 
critical velocity of the system, or rather, its influence on 
the second critical velocity is very small as compared with 
that of the gyroscopic effect. Actually, when a calculation 
was made of the system taking traction effect but not the 
gyroscopic effect into account, we obtained: 
first critical velocity: η cr - 62 rpm 
second critical velocity: η cr2 - 2,800 rpm 

3. CALCULATION OP THE CRITICAL PRECESSION VELOCITIES 

The portion of shaft above the small-diameter (3mm) 
section (see Pig. 1 ) is extremely rigid with respect to 
the latter; this is confirmed by calculation and by tests 
conducted on the rotating system up to failure of the 
narrow-section. 

Hence, for the purpose of calculating the critical 
precession velocities, no appreciable error will be made 
by adopting the simplified system shown in Pig. 5· 
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For the sake of clarity we have thought it advisable 
here to set out this calculation in three parts, as follows 

(A) calculation of the moment of the forces transmitted 
from the rotor to the shaft; 

(Β) equation and calculation of the precession velocities; 

(C) determination of the critical precession velocities. 

These are dealt with below. 

3·1 Calculation of the moment of the forces transmitted from 
the rotor to the shaft 

For the calculation of the critical velocities of 
bending it was assumed that the rotational speed of the 
system around the distorted axis is the same as the speed 
around the straight-lined original axis. 

Let us assume now the shaft-rotor system in Fig. 5 has 
the following velocities: 

- precession velocity ω, at which the axis of the shaft, 
distorted as shown in Fig. 6a, rotates anti-clockwise 
round the axis OB which corresponds to its non-distorted 
position; 

- rotational velocity Ω around the distorted axis OC, in 
the same direction as the precession. 

Owing to these velocities, the rotor is subjected to 
two different moments of momentum, which will be calculated 
separately. 

Let us suppose that ω = 0 and Ω ^ 0. 
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The rotor will then turn without precession around the 

deformed axis OC so that, given Y as its polar moment of 

inertia with respect to axis OC its angular momentum is the 

vector Υ Ω perpendicular to the plane of the rotor and 

having the direction shown in Fig. 6a. 

If Ω = 0 and ω ¿ 0 the rotor is subjected to two 

rotations: one together with the shaft, with angular velocity 

ω, around the axis OB, its centre of gravity C describing a 

circle with centre Β and radius y, and the other, with angular 

velocity μ, around one of its diameters which is perpendicular 

at C to AC which is perpendicular to the mean plane of the 

rotor, the shaft always remaining perpendicular at C to the 

rotor during precession. 

The first rotation sets up the centrifugal force m ω
2
 y 

(Pig. 7), m being the rotor mass; while the second causes the 

angular momentum due to precession. 

The latter moment is the product of μ Y,, where Y, is 

the moment of inertia of the rotor respect to its diameter. 

Let ; 

disc 

Let us calculate the values of μ and Y,. In the case of a thin 

Y
d = V

2 

a relation which is sufficiently applicable to the rotor under 

consideration. The angular velocity μ of the rotor is not so 

easy to calculate. 

Bearing in mind, however, that during precession the shaft 

always remains perpendicular at C to the rotor, we see that the 

straight line AC (perpendicular to the rotor), forming the 

angle β with the axis OB, rotates at the same angular velocity 

μ as the rotor. Thus if we determine the angular velocity of AC 

we shall have found that of the rotor. As it moves, the straight 
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line AC describes a cone, with vertex A, and its end C has a 
velocity of ω y. 

At time t = 0, shown in Pig. 6a, the straight line AC 
is in the plane of the diagram and the velocity of its point C 
is perpendicular to the latter. After a time dt, point C is 
lower than the plane of the diagram by the quantity ω y d t. 
The angle between the two positions of the straight line AC is 
then ω y d t/AC and since y/AC = β, if β is small, the angle 
through which AC rotates in the time dt is ω β d t, and the 
angular velocity of the straight line AC (and so of the rotor) 
is 

μ = ω β 

The angular momentum due to precession is then the vector 
Υ, ω β, having the direction and sense indicated in Pig. 6a. 

Let us break down each of the angular momentum vectors 
Υ Ω and Υ, ω β into the two components (Pig. 6b) parallel and 
perpendicular to the axis OB. The total angular momentum to 
which the rotor is subjected is given by the two vectors 

Υ Ω cos β + Υ, ω β sin β parallel to axis OB 

Υ Ω sin β - Y, ω β cos β perpendicular to axis OB 

Where β is assumed to be small, these become respectively: 

Υ Ω + Υ, ω β2 parallel to ax-is OB 

Υ Ω β - Yd ω β = Yd β(2 Ω-ω) perpendicular to axis OB 
±J KJ. \A. 

The first (parallel to axis OB) rotates parallel to 
itself around the axis OB, describing a circle of radius Y, 
and its length remains invariable throughout its movement, 
so that its derivative with respect to time is zero. 
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The second (perpendicular to the axis OB), on the other 
hand, describes a circle with centre Β as it rotates. At time 
t = 0, this vector is in the plane of the diagram; after a time 
dt it forms a downward angle of ω dt with this plane. 

It thus undergoes a variation given by the product of this 
vector and ω dt, which is 

Yd β(2Ω-ω)ω dt 

The derivative of this vector with respect to time is 

Yd β(2Ω-ω)ω 

So this expression represents the derivative with respect 
to time of the total angular momentum to which the rotor is 
subjected. 

According to the familiar theorem of angular momentum 
of rational mechanics (Ref. 6), the above expression is equal 
to the moment of the forces transmitted from the shaft to the 
rotor and so, by the law of action and reaction, equal and 
opposite to the moment of the forces transmitted from the rotor 
to the shaft, i.e. the couple the direction of which is shown 
in Pig. 7· 

3.2 Equation and calculation of the precession velocities 

On the assumption always made, likening the rotor to a 
thin disc, the following forces are applied to the end of the 
shaft to which it is attached: 
- the moment - Υ, βω(2Ω-ω) 

2 
- the centrifugal force m ω y 
- the traction force Ρ = Ρ = 30 kg due to the weight Ρ of the 
rotor when the system is in the vertical position. 
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The last­named force gives the component Ρ β (Fig. 8) 

which is perpendicular to the axis OB, and is constantly 

opposite to the centrifugal force m ω y. 

Denoting by: 

α. the deflection of the shaft at the free end where the 
11 

disc is attached, due to the application of a unit load 

at that point; 

QL 2 the deflection of the shaft at the free end, due to the 

application of a unit moment at that point; or the angle 

formed by the shaft with the axis OB at the free end, 

due to the application of a unit moment at that point; 

ou2 the angle formed by the shaft with the axis OB at the 

free end, due to the application of a unit moment at 

that point; 

and ignoring the mass of the shaft (with respect to that of 

the rotor), we have the following shaft distortion equations 

(Fig. 8): 

y = o^ m ω
2
 y ­ α, Ρ β ­ α Yd ω β(2Ω­ω) 

β = α, 2 m ω
2
 y ­ α, 2 Ρ β ­ α ^ Y ¿ ω β(2Ω­ω) 

we now find y/ß from the first and second equation and equate 

the results, so that we have: 

o^P + ai2 Yd ω(2Ω­ω) 1 + OL g Ρ + ag2 Y¿ ω(2Ω­ω) 

2 ~ 2 

OL . m ω ­ 1 CL 2 m Gu­

By eliminating the denominators and arranging the terms in 

descending order of powers of ω, we obtain the expression: 

u>\­m o5j1 a22 Yd + m α2
2 Yd) + u>3(m a^ QL^ Yd 2Ω ­

­ ma2
2 Yd 2Ω) + ω 2 (α 2 2 Yd + moj|J| ) + ω( ­α 2 2 Yd 2Ω.) ­ (ï + ^ g P) ·= 0 

which is the equation for the precession velocity. 
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This, it will be observed, is an algebraic equation of 

the fourth degree in ω, so that for a given shaft supporting 

at its end a given rotor and rotating at a certain velocity Ω, 

there are four characteristic precession velocities. 

The system in question therefore has, for any Ω, four 

precession velocities which will now be calculated. 

V/ith reference to Fig. 5, the values to be introduced 

into the equation for the calculation of the precession 

velocities are: 

p 

m = P/g * O.O306 Kg sec /cm 

Yd = Y /2 * 1 .405 Kg cm sec
2 

6 ? 
E ="2x10 Kg/cm (modulus of elasticity of shaft material) 

J. * 1 .1 5 cnT" (moment of inertia of 22 mm diameter shaft­section) 
1 

J
 a

 O.OOO4 cnr" (moment of inertia of 3 mm diameter shaft­section) 

.J l3 - 13> 
a
i1 = 3 

,1.3 1¿ ­ l3. 

(1 ­ 1 )
2
 (1 ­ 1)1 l

2 

a = — ύ 3 + — - ] L + J « O.352 
1 ¿
 2 E J2 E J2 2 E J 

a
22 = u f

 +
 f j ; ^ ° ·

0 1 5 

On the basis of these values, the precession­velocity equation 

for our chopper­rotor is: 

ω^ ­ 2Ω cx)3 ­ 2,150 ω
2
 + 322 Ωω + 94,6θΟ = 0 

The numerical solution of this equation is time­consuming and 

it is therefore better to transform it into the following: 

n . ^ ­ ΖΔ 50 ω2
 + 94.600 

2 ütf
5
 ­ 322 ω 

solving for Ω. 
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With this last equation it is easy to draw up the following 
table, by assigning various positive numerical values to ω and 
determining the corresponding values for Ω : 

ω 
1 / sec 

1 

2 

3 

k 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

20 

25 

30 

35 

ko 

k5 

ω2 

1 

k 

9 

16 

25 

36 

49 

64 

8i 

100 

121 

144 

169 

196 

225 

400 

625 

900 

1.225x1 o·5 

1 .6 x l 0 3 

2 .02 X 1 0 3 

oP 

1 

8 

27 

64 

125 

216 

343 

512 

729 

1 0 3 

1 . 3 3 x 1 ο 3 

1 .73x1 O3 

2 . 2 X10 3 

2.74x1 o 3 

3 . 3 8 X I O 3 

8 X10 3 

1 · 5 X10^ 

2 . 7 X10^ 

4 · 29x1 cl· 

6 . 4 X10^ 

9.1 2x1 0^ 

ul· 
1 

16 

81 

256 

625 

1 . 3 X10 3 

2 . 4 X10 3 

4.1 x l o 3 

6.56x1 o 3 

1C* 

1 .47x1 0k 

2 . 0 7 x 1 0 ^ 

2 . 8 5 x 1 0 ^ 

3 . 8 4 x 1 0 ^ 

5.06x1ο1 4 

1 .6 x l O5 

3 . 9 X10 5 

8.1 x l O3 

1 .5 X10 6 

2.56X10 

4.1 2x1 0 ° 

4 2 ( iT-2 ,1 50 ω + 
+ 9 .46 χ 1 0^ 

9 .245x10^ 

8 .601X10^ 

7 .533x10^ 

6.045x1 cl· 

4.1 52x1 cl· 

1 .850x1 cl· 

-8x1 O3 

- 3 . 9 3 wel· 
- 7 . 2 8 4 x 1 0 ^ 

- 1 . 1 04x10 3 

- 1 . 5 0 7 x 1 o 5 

-1 .947x1 O5 

- 2 . 4 O X10 3 

- 2 . 8 9 0 x 1 O3 

- 3 . 3 8 8 x 1 o 3 

- 6 . 0 5 4 X 1 0 3 

- 8 .554x1 o 3 

- 1 . 0 3 5 x 1 o 6 

- 1 . 0 4 5 x 1 0 

- 7 . 8 5 4 x 1 o 3 

- 1 . 2 5 4 x 1 o 3 

2 ω 3 -322 ω 

- 3 2 0 

-628 

-912 

-1 .1 6 x l O3 

- 1 . 3 6 X1 O3 

- 1 . 5 X10 3 

- 1 . 5 6 8 x 1 0 3 

- 1 . 5 5 2 x 1 o 3 

- 1 . 4 4 X1 o 3 

-1 .22 X1 O3 

- 8 8 0 

-400 

220 

980 

1 . 9 3 X10 3 

9.56 X10 3 

2.1 96x1 CT" 

4 .434x1 el· 

7 .4 X 1 0 4 

1.151 χ ι o 3 

1 .679x1o 3 

Ω 

1 / s e c 

- 2 8 9 

- 1 3 7 

- 8 2 . 6 

- 5 2 

- 3 O . 5 

- 1 2 . 3 

5.1 

2 5 . k 

5 0 . 6 ! 

90 

171 

487 

- 1 . 0 9 x 1 o 3 

- 2 9 5 

-175 

- 6 3 . 2 

- 39 

- 2 3 . 4 

- 1 4 . 2 

- 608 

- 0 .745 
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300 
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500 
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700 

800 

900 

1000 

] 

ω2 
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3 . 6 χι Ο3 
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101* 

2.25x1 Ο1* 

4 χ ί ο ^ 

6.25x1 Ο14-

9 Χ1 cl· 
1 .225x105 

1 .6 Χ10 3 

2.02X1 Ο3 

2 . 5 Χ1 Ο3 

3 .6 χ1 Ο3 

4 . 9 χι ο 3 

6 . 4 Χ1 Ο3 

8.1 Χ1 Ο3 

1 0
f a 

?or v a l u e s c 

rhe v a l u e s i 
rounded o f f . 

co2 

1 .25x1 0 3 

2.1 6x1 0 3 

3.43x1 o 3 

5.1 0x1 O3 

7 . 3 X10 3 

10fc 

3-37x1 O6 

8 X106 

1 .57x1 O7 

2 . 7 X1 O7 

4.28x1 O7 

6 . 4 X1 O7 

9.1 2x1 O7 

Q 

1 .25x1 0 
Q 

2.1 6x1 0 

3.43x1 O8 

5.1 2x1 O8 

7 . 3 X108 

109 

)f ω > 1 ,00( 

.n t h i s t a b 
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u/* 

6.25x1 0 

1 . 3 X107 

2 . 4 X107 

4·1 χι o 7 

6.56x1 O7 

, 0 8 

5.06x1 0 

1 .6 xl O9 

3.91x1 o 9 

8.1 xl O9 

1 . 5 X 1 0 1 0 

1 0 2.56x1 O1 

4.1 2x1 O 1 0 

6.25x1 o 1 0 

1 . 3 X1011 

2 . 4 X1011 

4.1 X1011 

6.56x1 O11 

1 0 1 2 

D, Ω * ω/2 

Le were cal< 

4 2 ω - 2 , 1 50 ω + 
+ 9.46 χ 1 0^ 

9.746x1 O3 

5.354x1 O6 

1.354x1ο7 

2.731X1 O7 

4 .827X10 7 

7.859X10 7 

4.577X10 8 

1 .51 4x1 o 9 

3.776x1o9 

7.906x1o9 

1.473x1 o1 ° 

2.525x1 o1 ° 

4 .076x1o 1 0 

6.1 96x1o1 ° 

1 .292x10 1 1 

2.389X10 1 1 

4.086x1 O11 

6.542x1 O11 

9.978x1o11 

: u l a t e d by s i i 

2 ω - 3 2 2 ω 

2.339x1 O 5 

4 .127X10 3 

6.635x1o3 

9.982x1 O3 

1.431X1 o 6 

1 .967x10 o 

r 
6.691x1 o° 
1 .593X1.07 

3.1 32x1 O7 

5 .39 X107 

8.548x1 O7 

1 . 2 7 8 x 1 o 8 

1 .822x1 O8 

2 . 4 9 8 x 1 o 8 

4 . 3 1 8 x 1 o 8 

6.857X10 8 

1 .023x1o 9 

1 .46 x1 O9 

1 . 9 9 9 x 1 o 9 

d e - r u l e and 

Ω 
1 / s e c 

4ol 6 

13 

20.4 

27.4 

33c8 

40 

68.5 

95 

1 20 

147 

173 

1 9 8 

224 

248 

300 

348 

399 

449 

500 
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Moreover, a simple study of the equation Ω =f(u>) tells 

us that it has ; 

- three points of indétermination: 

ω = 0 ω s 12.7 ω = - 12.7 rad/sec 

which are obtained when its denominator 2ω
3
 - 322 ω is equated 

with zero; 

- four points of intersection with the axis ω : 

ω. 0 = i 46 ω, ι = ± 6.63 rad/sec 
1 ·2 3·4 

- for ω -* ± οο tends towards ±- οο . 

By plotting the values for ω in ordinates and the 

corresponding Ω values, calculated above, in abscissae, we 

obtained the variation law for the precession speeds of the 

chopper as a function of its rotational speed, as shown in 

Pig. 9. 

The values of Ω for negative ω were not calculated, 

because it can be seen by checking that they are exactly 

symmetrical with the values calculated above, about the 

vertical ω axis. 

3o3 Determination of the critical precession velocities 

Por the chopper we are considering, there are four 

possible precession velocities ω, which vary with the rotational 

velocity Ω according to the law represented in Pig. 9· 

This law is symmetrical about the vertical ω axis, which 

means that the four precession velocities are independent of 

the direction of the chopper's rotation. 
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According to Stodola (Ref. 7), critical conditions can 

occur in a rotating system where the ω/Ω ratio has the 

following values: 

■̂  = 1 ; -1 ; +2 and +3 

We then plot on the graph in Fig.9 the dotted straight 

lines corresponding to these values of ω/Ω. They meet the 

precession-speed variation law at the points 

A the straight line ω/Ω = + 1 

Β and C the straight line ω/Ω = - 1 

D the straight line ω/Ω = + 2 

E and F the straight line ω/Ω = + 3 

At these points the rotational velocities Ω of the chopper 

are as follows: 

point Α Ω = 7 rad/sec 

points Β and C Ω β = 29 rad/sec and Ω = 7 rad/sec 

point D iìU = 3·5 rad/sec 

points E and F Ω-, = 2 rad/sec and Ω̂ , = 27 rad/sec 

which may thus be critical velocities for our system. 

The corresponding rotational speeds are: 

η * 07 rpm ; η β - 280 rpm ; n~ * 67 rpm 

n D - 33 rpm ; τ^ - 1 9 rpm ; η ρ * 26θ rpm 
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4. CONCLUSIONS 

The chopper under study has the following critical velocities 
in the range 0 - 40,000 rpm: 

- torsional ones in the range from 0 to about 5000 rpm, 
as given by equation (6) of section 1.3*2 

- two flexional, at 64 rpm and29»500 rpm 
- five precessional, at 1 9 rpm; 33 rpm; 67 rpm; 260 rpm; 

280 rpm. 

The operating speed 

n <* 22,000 rpm 

arrived at in the report "Calculation of Chopper Rotor 
Centrifugal Stresses" , can be regarded as sufficiently 
distant from these for a well-balanced system and in theory, 
therefore, should ensure satisfactory operation of the chopper. 

The chopper shaft dimensions shown in Fig. 4, which give 
rise to the foregoing critical velocities for the attached 
rotor, were not chosen haphazardly; they are the outcome of a 
study of the three above-named types of critical velocity. 

Calculations on various systems, obtained by varying the 
shaft dimensions but keeping to the overall length dictated 
by practical reasons, showed that the dimensions of the small-
diameter (3 mm) shaft-section have a preponderant influence on 
the critical velocities of the system, and principally on the 
flexional critical velocities. 

Specifically, if we keep the diameter of the narrow 
shaft-section unchanged, for the reason given in the introduc­
tion, but vary its length so that the section (22 mm diameter) 
immediately above the rotor (Fig. 4) varies and the other 
lengths remain constant, the critical torsional velocities, 
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the first critical flexional velocity and the critical 
velocities due to precession differ by little from the values 
calculated above (at any rate within a certain range of narrow 
shaft-length) while the second critical flexional velocity 
varies widely. 

The law governing the variation of the last-named with 
the varying length of the narrow shaft as described above 
is shown in Fig. 10. Bearing in mind the purpose of the narrow 
shaft-section, and noting that it is better fulfilled as this 
section is lengthened, we can see from the graph in Fig.1 0 
that the optimum length, offering the highest degree of safety 
in respect of the second critical flexional velocity, is 
1 45 - O U nun. 

Practical considerations prevented our adopting this 
length, so we chose the nearest possible length, namely 1 20 mm, 
on whicn the calculations in the present report are based. 

5. EXPERIMENTAL RESULTS 

The system under consideration was constructed. Fig. 11 
shows the finished device. It has been equipped with two 
different lengths, 100 mm and 120 mm, of narrow shaft 3 mm 
in diameter: tests were carried out on both and are described 
below. 

5.1 Test with small diameter shaft of length 1 00 mm 

This was the first of the test performed. The system 
showed an instability in the range of asynchronous operation 
(0 - about 500C rpm) characterized by transversal and torsional 
vibrations. These were observed through a plexi-glass blank 
flange which can be seen on Fig.H , by means of a telescope and 
by simultaneously displaying the pulses of a magnetic pick-up 
and a photoelectric cell on the screen of an oscilloscope. 
The pick-up is mounted above, the cell below the narrow shaft. 



^ 

FIG. n 
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We think the vibrations of the first type are due to 
the presence of the critical velocities at low rotational 
speeds, which, also for a thin shaft of 100 mm length, are 
nearly the same as those given in section 4"Conclusions" This 
results from evaluations done with the reduced length of thin 
shafting. Torsional vibrations were observed whenever the 
operator changed the supply frequency of the motor in such a 
way that equation (8) of section 1 was fulfilled which, in the 
present case of reduced thin shaft length, becomes: 

N = 60 F - 41 5 

since the proper frequency of the system is somewhat higher, 
namely f <* 830 rpm. 

The presence and the efficiency of a damping system mounted below 
the chopper disk has a remarkable influence on the instabilities. 
It turned out that, with an appropriate damper, all flexional 
vibrations can be avoided, whereas without it it is impossible to 
pass the range of low rotational speeds, since the amplitudes 
of these vibrations reach then very high values with sub­
sequent failure of the thin shaft. 

With the damper, beyond about 5000 rpm the system was 
completely steady up to about 23>000 rpm. Around this speed 
the narrow shaft began to oscillate transversally and at 
23,500 rpm it failed; failure was caused by the presence 'Of 
the second critical flexional velocity, which is calculated 
to be about 23*800 rpm (Fig. 10). Clearly the damper has no 
effect on this second critical flexional velocity, and this 
is understandable when it is considered that the dynamic 
distortion of the shaft associated with this critical velocity 
is of such a configuration that during vibration the rotor of 
the chopper is transversally montionless, just as the stub-
shaft attached to its bottom and holding the damper. 
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5 .2 Test with narrow shaft of length 1 20 mm 

With the experience acquired from the tests described 
in section 4«1 » we were able to devise a damper and a suitable 
starting acceleration, so that the new system under study was 
demonstrated to be free from even the slightest vibration 
between 0 and 25,000 rpm. 

Practical and safety considerations deterred us from 
higher speeds; also, since the chopper's operating speed is 
22,000 rpm, the fact that it worked satisfactorily for several 
hours at 25,000 rpm convinced us that the dynamic stability of 
the system is efficient and suitable for the purpose for which 
it was designed. 

6. ACKNOWLEDGEMENT 

The calculation of critical flexional velocities has been 
performed on the "CETIS" IBM 7090 computer. I thank Messrs. 
BENUZZI, DI COLA and M0NTER0SS0, who contributed to the mathe­
matical analysis and carried out the program on computer. 

I also wish to thank Mr. HEINZ GEIST to whom I am indebted 
for his valuable advice and suggestions. 



­ 58 ­

APPENDIX I 

In sectìm 2, which dealt with the "Calculation of critic­

al flexional velocities", the classical theory (4)»(5)f(11 J>0 2) 

of the flexional vibrations of the beams was used, so that the 

effects of rotatory inertia and the effect of transverse shear 

on the critical flexional velocities were disregarded. It is known 

ν.12Λ13; (aee a ] _ s 0 the table at the end of this Appendix) that 

the percentage errors introduced by failure to take these effects 

into account are insignificant when the dimensions of the cross­

section are small in relation to the length of the shaft, and 

when only the first two critical speeds are considered; this is 

in fact the case in the present instance. 

When the above conditions are no longer satisfied (cross­

section not small in relation to length, and critical velocities 

higher than the second considered), the effects mentioned must 

be taken into account in order to avoid errors of more than 

40/0 in the determination of the critical speed
 v
 . 

In this case one obtains the following Timoshenko equation 

( 11 (12) 

'
 v
 , which is valid for any uniformly loaded length of 

shaft of constant cross­section and held only at its extremities, 

this equation being subject to the limiting conditions for the 

length in question: 

EJ St?. + ïâ ¿χ _ (Μ + ψ-) ­ita­ + _¿L ¿ζ = ο 
ôx^ g ô t 2 V e &**; òx2ôt- g2K'G ôt^ 

where G = modulus of transverse elasticity 

K' = coefficient of shear deformability, which can 

vary with the shape of the cross­section ^ . 

If we consider only the stationary vibrations ^ , the 

solution is of the type: 

y(x,t) = f(x).f(t) 
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In particular, since the motion is harmonic ^', the factor 
f(t) is of the type sin Sit, so that: 

y(x,t) = f(x).sin Ωΐ 

By substituting- of the derivatives d^y/dx^, d2y/dt2, 
d y/cix dt , and d y/dt^ in the Timoshenko equation, we obtain: 

EJf*(x)sin Ωΐ - ψ Ω2ί-(χ)3ίη Ωΐ + tø + gïg\î
2
f"(x)sin Ωΐ 

+ j J Ω"ί(x)sin Ωΐ = 0 
g Κ'G 

i.e. 

f'v(x) 
2 ? 

γΩ vir 
Eg gk'G XEg^K'G EJg/ 

If Îhe revolving shafÎ is subjected ίο an axial Îensile 
or compressive force P, the Îerm -F/EJ f"(x) (where P is 
posiÎive for a Îensile force) 
and Îhe equaÎion becomes: 

(4) < 

2 

is added ίο Îhe lefÎ­hand side, 

2n4 

™
+
 (τ.

+
 #e ­ i ; '"(»

+
 (A ­ ^;

f ( x )
 ■ °

 (28) _ rQSi2\ 

G EJg/ 

This equaÎion is of Îhe same Îype as (25) so ÎhaÏ by means 

of Îhe method of calculation described in section 2 of the present 

report, it is possible to determine the critical flexional velocities 

taking into account all the effects mentioned above. 

The following table shows the critical velocities of the 

system of Pig. 4, as found from formulae (25) and (28). 

Order of critical 

velocities 

1 
2 

3 
4 

Values of the critical veloci ties 

(r.p.m.) 

Formula (25) 

~ 64 
~ 29,500 

~ 58,000 

~ 70,000 

Formula (28) 

~ 64 
~ 29,500 
~ 58,000 
~ 69,000 
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APPENDIX II 

The critical flexional velocities can also be calculated 
by the approximate method described by Myklestad ^'^' and later 
improved by T.C. Huang and N.C. Wu ^13;# 

(1 3) The results obtained by this method are very close 
to the values obtained for the critical velocities from the 
Timoshenko equation, even for high orders of critical velocities, 
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