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INTRODUCTION

The importance of the study of torsional, flexional and
precessional vibrations in rotating systems is recognized by
constructors and users who for some time have had to suffer
the consequences of these vibrations, which culminate in shaft
fractures at critical velocities.

When designing a rotating system, fundamental importance
must be given to the calculation of the critical torsional,
flexional and precessional velocities, in order to provide the
system with working velocities involving no dangerous oscillat-
ions of such a kind as would be liable sooner or later to cause
failure of the shafts.

The rotating system under consideration is of the
"guspended" type, that is to say vertical, attached at the top
and free at the bottom. As fig. 1 shows, it consists, very
simply, of a vertical shaft made up of various lengths of
different diameter, with the electric motor at its upper and
the chopper—-rotor at its lower ende.

Our system differs from the rotating systems usually
employed in mechanical engineering, both in type and in the
length of small-diameter shafting, 3 mm in diameter. This
configuration has a highly important purpose, namely to allow
the chopper—-rotor to find its own position of dynamic equili-
brium, thus avoiding the concentration of heavy loads on the

ball-bearings which would very soon fail under such conditions.

For obvious reasons of clarity, the present calculation
has been broken down into L consecutive parts as follows:

— Calculation of the critical torsional velocities
— Calculation of the critical flexional velocities
- Calculation of the critical precession velocities
- Conclusions. '









A fifth section has been added, which contains the
experimental results. Also, as we are dealing with a particular
system, in section II the chief effects (gyroscopic and traction)
which effect the flexional vibrations have been introduced one
by one into the calculation so that their influence on the
critical flexional velocities may be observed. In Appendix I
and II methods are indicated which allow to introduce also the
effects of rotatory inertia and of transverse shear into the
calculation of the critical velocities of bending.

Although the calculation method relates here to the
system depicted in Fig. 1, it is general and can be applied
to any rotating device.

1. CALCULATION OF THE CRITICAL TORSIONAL VELOCITIES

It has now become the general practice to calculate the
critical torsional velocities on suitable "reduced" systems
which are thought of as having attached to them, at suitable
intervals, imaginary flywheels having an appropriate moment
of inertia but assumed to be without thickness, that is to say,
concentrated along their plane of attachment to the line of
the shaft. (Ref. 1).

In every case, the reduced system will have to be
representative of the actual vibrating system and equivalent
to it as regards torsional behaviour; it is therefore necessary,
at the outset, to define the dynamic characteristics by means
of a "mass- and length-reducing! operation, this being carried
out as follows:

1 +4 Reduction of masses

The cases commonly encountered in practice concern masses
in reciprocating motion, in rotary motion, and in combined
rotary and reciprocating motion. As far as the torsional



vibrations are concerned, these masses may be considered
simply in two groups:

- masses in reciprocating motion, and

- masses in rotary motion.

In both cases, the real masses are replaced by an ideal
flywheel having an equivalent moment of inertia, which is
obtained by equating the kinetic energies in play.

In the case of masses in reciprocating motion, given that
m, = Mmass in reciprocating motion
V = instantaneous velocity of the mass in reciprocating
motion
1 = angular velocity of rotation of the shaft
Y = equivalent moment of inertia
we have
1/2 Y 2% =1/2 n_ vV
which gives
5 . _
Y = m (V/0Q) - | (1)
In the case of masses in rotary motion, given that
Y& = moment of inertia of the mass in rotary motion
Q1 = angular velocity of rotation of the shaft carrying
the mass whose moment of inertia is Y

n1 = number of revolutions of the shaft carrying the

mass of moment Y&
fl = angular velocity of rotation of the driving shaft
Y = equivalent moment of inertia
n =

number of revolutions of the driving shaft



we have

2 2

=1/2 Y, 0

1/2 Y 0 X

from which

Y =¥, (n1 /)8 = Y, (n1 /n)? (2)

if 2 = Q1, i.e. if the mass is carried on the driving shaft
we get

Y=Y, . (2')

i.e. it is sufficient to replace each real mass by an ideal
flywheel without thickness, having a moment of inertia equal
to that of the given mass.

1.2 Reduction of lengths

For the reduction of lengths it is customary to take a
constant diameter as basic diameter for all calculations
(Ref. 1) 2) '

All the component sections of the shafting of the system
in question will therefore be reduced to sections of this
diameter with lengths varied so as to correspond elastically
to the real lengths.

For this it is sufficient to equate the torsional
rigidities.

Let us recall that the torsional rigidity (or elastic
constant) for a cylindrical shaft of diameter D and length 1

is defined as having the value
X ph
G J G 32

1

where G is the tangential elastic modulus.
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Thus, if
lv = true length of the generic section making
up the shaft
Dv = true diameter of the generic section making

up the shaft
lr = reduced length of the said section
Dr = constant basic diameter

for every section we shall have

ook T ph
G0 G350y
lr lv
whence
_ L
lr - lv(Dr/Dv) (3)

For a hollow cylindrical shaft whose external and internal
diameters are respectively DV and dv’ we have

50 “r _
lI‘ lV

gk o3 ok d

whence

e
1. =1y (55_:_55) : (3')

The reduction of conical sections, joints, etc. is
effected by means of special tables or formulae to be found
in textbooks on the subject.

1.3 Calculation of the ideal system

On the basic of the foregoing, the system under study
may be reduced to a certain number of flywheels interconnected
by cylindrical shaft sections of constant diameter; where
calculation of the critical velocities is concerned, reference
is always made to the ideal system thus obtained, disregarding
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the actual system which it represents.

1+3s4 Calculation of the proper freguencies

To calculate the proper frequencies of the ideal elastic
system obtained as shown above, we follow the standard method
consisting in equating the moment of the elastic reactions,
which is determined in each shaft section in relation to the
maximum amplitude of the oscillation, with the aggregate inertia
couple which is applied at the end of the section.

Thus calling:

Y the moments of inertia of the Z flywheels;

e the respective amplitudes of vibration (m goés
from 4 to Z);

Km the elastic constants of the interposed shaft
sections (m goes from 4 to (Z - 1));

19} a natural oscillation of the system.

the moment of the elastic reactions in the ith section is

My = K; (8,7 - 8;)

and the aggregate inertia couple is
i 2
- 3 1 ()
m=4 dt

Bearing in mind that the elastic vibrations are simple

sinusoidals

whence
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The maximum amplitude of oscillation is given by sin 0 t =14,
that is, by

2
g_§> - - e
max

a t2 m

It follows therefore that

i

Ci=-mf1 Y of e
and from the foregoing
%; Y 0°e_ =K. (6, -6,.) (4)
mey W n ivvi i+
th

This formula applied below the Z flywheel becomes

1 2
3 Y %6 =0 (4*)
m=1
The value ei+1 of each mass is related to the preceding

value 8, by the following equation:

L 2
Z2Y 0 e
ney T m
ivg = %1 K, (5)
i
where
G Jd
1571

is the torsional rigidity of the-ith section of length li
of the ideal system with Jp constant, given that in such a
system all the sections are of the same diameter.

All the values of Q which satisfy equation (4') are
torsional proper frequencies of the system.

In general it is easier to carry out this calculation
indirectly. The amplitude of vibration of the first mass of



- 13 -

the system is therefore taken to be equal to 4 radian and

a frequency value at which to carry out the trial is chosen.
Having established this, by applying equations (4') and (5)

it will be possible to calculate successively the amplitude

of vibration of each mass and at the same time the torque due
to inertia, applied to the sections linking up the said masses.

The fregquency adopted in the trial will coincide with one
of the actual frequencies of the system whenever equation (1)
can be satisfied; that is to say, when below the last mass the
torque due to vibration is equal to zero.

The procedure by trial described here, which is usually
preferred to the direct determination of the values of {1 by
means of algebraic solution of (4'), is made possible by
knowing the form of the "remainder function': |

i 5
£(2) = 3 ¥R
m =

As we Know, this always follows the pattern shown in

e
m

Fig. 2 and cancels itself out at the proper frequency values
of 1, i.e. at as many points as there are possible modes of
vibration of the system. From the sign assumed by the remainder
for the various trial values of {1 it is possible to obtain a
useful indication as to whether the value of (1 should be
increased or reduced for the next trial.

The remarkably convenient method of calculation explained
above is universally known as the HOLZER (or LEWIS) TABULATING
METHOD.

The calculation described above can be programmed for a
computer, all natural frequencies of the system under
consideration are then obtained.

As we have shown, the calculation of the natural frequencies
of the system, indicated in Fig. 1 and simplified for purposes
of calculation as shown in Fig. 3a, proves particularly simple
because it represents the case of a line of shafting connecting
two flywheels.
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In such cases equation (4) gives, for the shaft section
connecting the two flywheels:

2
Y, e, .1«:1 (e,| 92)
where
G Jd
K1 =-———er

is the torsional rigidity of the reduced system (see Fig. 3b).

From this we obtain

e Y
2 _ 4 - A ge
5 = | X §1 (6)

1 1
On the other hand, equation (4), when applied below the

second flywheel, becomes

2 2 .
Y, e +Y,0 8, =0

Dividing by 91, we get

Y1ﬂ+Yﬂ—2=O

Substituting for 92/91, the value given by equation (6), we
obtain:

Y, Y
Ji—zsf‘-nz(y +Y.) =0
4 1 2

whence

! K Y + Y ;
Q= i‘J 1 L 2! | i‘J ALY (7)

This tells us that our system has only one natural frequency
which we proceed to calculate (the double sign indicates that
the flywheels can revolve in both directions).
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With reference to the system shown in Fig. 3a, if we
reduce the lengths to an ideal diameter of 10 mm as described
in section 1.2 and allow for the correcting factors (1) in
respect of conical sections, Joints and cross-sectional
variations in cylindrical sections, we get:

total reduced length: Ly ~ 41,280 cm

Qur system is thus transformed, for the purpose of
calculating the torsional vibrations, into the equivalent
ideal system represented in Fig. 3b, in which

2

- moment of inertia of mass (1) Y 2.81 kgcm sec

0.0106 kgcm sec?

- moment of inertia of mass (2) Y,
- polar moment of inertia of
reduced shaft Jp

- tangential elasticity modulus G

0.098 cmu
850,000 kg/cm®

Substituting these values in equation (7), we find

1l = 78.5 rad/sec.

whence the only natural frequency of the system:

1 x 60
f = ——— = 750 /min

2%
It may be objected that in calculating the system in
question, the actual mass of the shaft connecting the two
flywheels has not been taken into account.

It can be demonstrated that in order to,take account of
the mass of the shaft it is sufficient to add to the mass
moment of inertia of the nearest flywheel 1/3 of the moment
of inertia of the shaft which goes from the said flywheel
to the nearest node. As may be verified, the latter moment
of inertia is very small compared with ¥, and Y, and is

1 2
therefore negligible.
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4 ¢3+2 Determination of the critical torsional velocities

All velocities of the system under consideration which
satisfy the relation

Fe = £ = 750/min

are critical torsional velocities.

Fe is the frequency of excitation of the system due to the
electrical driving motor. This is a special high frequency
synchronous motor with one pair of poles. It is started
asynchronously and synchronized by manual frequency regulation
at about 5000 r.p.m.

It is known (2) that for a three-phase asynchronous
motor, fed with a frequency F(Hz), the frequency of mechanical
excitation is

Fe = 2(N, - N)p

where:
Ns[rpm] = velocity of the revolving magnetic flux
= 60 F/p
N [rpm] = number of revolutions of the motor shaft

p -]

number of pole-pairs.

1l

Substituting Ns by its value and considering the first
relation and the fact that there is only one pole-pair, the
equation for the critical torsional velocities of the system
becomes:

N =60TF - 375 (8)

During the asynchronous start-up procedure, it is therefore
necessary to keep away from those frequencies by which the
above equation can by satisfied, in order to avoid torsional

vibrations which might cause a failure of the thin shaft.
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Once arrived at synchronous operation, (~ 5000 r.p.m.),
mechanical excitation fregquency Fe is zero as can easily be
seen from the expression for Fe, and therefore there are no

more critical velocities of torsion.

2. CALCULATION OF CRITICAL FLEXIONAL VELOCITIES

To simplify the calculation while still adhering very
closely to the real conditions, the system in Fig. 1 has
been reduced to that shown in Fig. L.

For the reason given in the introduction, we shall con-
sider the three following cases:

(A) System as in Fig. 4, loaded at its free end with the
rotor of weight P = 30 Kg. The gyroscopic effet due
to the rotor and the traction effect due to the weight
of the rotor F = P = 30 Kg are both ignored.

(B) System as above, taking into consideration the gyro-
scopic effect due to the rotor but ignoring the traction
effect.

(C) System as at (A) taking into consideration both the
gyroscopic and the traction effects.

The IBM 7090 computer was used for the solution of each
of these three cases, with which we shall now deal.

2.1 Calculation of the critical velocities of-the system

ignoring both gyroscopic and traction effects

We know that, in the case under consideration, the
basic equation for the critical velocities in respect of
a shaft, of constant cross-section, fixed only at its ends
and subjected to a uniformly-distributed load of weight p
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separate equations as there are lengths of different diameter
and lengths confined by a point of attachment. In the case in
question (Fig. 4) denoting with the indices 1, 2, «.., 7, the
values relating to the 1st, 2nd ... 7th length, we have the
seven following equations:

D]
n

A1 cosh m1x + B1 sinh m1x + C1 cos m1x + D1 sin m1x

y A2 cosh m2x + B2 sinh m2x + 02 cos m.X + D, sin m

2 2 o*
9 & @ 0 0 & 0 0 9 O O g 5 D O P SO O O O OO OO S O OO O OO O GO T O S OO GO PO NCeETEE NP (12)

y = A7 cosh m7x + B7 sinh m7x+ C7 cos m7x + D7 sin m7x

Bearing in mind that the angular velocity {1 is common
to all the lengths and that it is related to the various m, jeee.,

1
m-; S1,....,S7; J1,....,J7 by equation (10), we can write:

mf EJ g mtEJ. g mtEJ. g otEJ

1 & Tpo®po 8 TgEYz 8 TRyl
S1 Y 82 Y 83 Y Su Y
Y L L o
_ m5 E J5 g ) m6 B J6 g ) QZ,E J7 g

from which we obtain:

4 S, d
— 2 1 _
m2 = m1 J S1 J2 = @I%
4 8, d
— A N T .
B3 =T 5, T, " & m, (13)
4. S Jd
_ T,
mLa.—m1\}S1 JL;.—Tm1
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L S_ J
- 5 1 _
m5_m1»\]81 JS..Wm1
L S, J
_ 6 1 _
L.s., J
— £ 1 _
m7 = m1 \/81 J7 = ala

The numerical values of 81,...,87; J1,...,J7; g v; and E
are shown in Fig.l.

The conditions at the limits of each length can be written;
bearing in mind the following:

- at a single support, deflection and bending moment are nil;
that is, given y as the generic deflection and M the bending
moment,

-y =0

L

- at the point of junction between two sections of different

EJy*"=0

diameter, deflection y, gradient 4y , bending moment M and
shearing stress T are equal for the two sections, so that

y. = V¥

i i+
Vi = Vi
M; =E J;yy =E Ji4 y1+1 = M
Ty =EJy ¥y =EJi Vik = Tig

In our case, if we denote the characteristic values of
the beam at the end of each length with the superscript index
zero, and the same values at the beginning of each length
without the index zero (Flg. u), we have:



(1) for x =0
(o,
"o
¥y 0
(3) for x = 1,
o'
y2 y}
—o" _
Ed, v, =
O"'
Edy, ¥, =
(5) for x = lu
° y
N =95
O'= yg
N 5
O"
BJdy v =
°|” _
E Ju yh =
(7) for x = 1,
O -
y6 - y7
o' _ _,
y6 - y7
O"
E Jg ¥g =
. Ol”_
BJ, v =

=

I4¥5

"
J3¥3

J‘ "

i
J7 97

Jo 97
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(4)

(6)

<
U

i

<

(8)

The last condition at the limits, for x

found, since we know (ref. 5) that:

il

[
t=
<y

y 1t
EJ, ¥y

—_ 1!
=B,

=B Jg Vg

- R ne

I
€5
ey

o
«
o

17, can be
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Olll

Bdyyy =

- P/g 0° y5

in which we substitute the value given by equation (9) for
2

1=, i.e.
mu EJd_ g
P2 _—1_-7°%
S7 Y

and, from the last of equations (13), we obtain

l p S L
- yo"'z_zwyoz__ﬂy
797 g 5,1 U7 5,1 U7

whence the said and last condition with

P 30
3.8 x 0,008

~ - 986 cm

Equations (12) and (13), together with the conditions
at the limits of each length as written above, enable us to
write a homogeneous set of 28 equations in the 28 unknowns

...lA B ..I.B C * 8 00 s 0 @@ L]
A 77 1 77 G7’ D, D7

Having constructed the determinant of the coefficients,
we note that it is a function of the single parameter m, 5 for
all the values of this which cancel the determinant, (10)
enables us to calculate the critical flexional angular

velocities 1 and hence the critical rpm values of our system.

The foregoing is the standard method of calculating the
critical flexional velocities. In practice it is difficult to
programme for the IBM 7090, so that we found it preferable,
from that standpoint, to use the method set out below as it
is far more convenient. It consists, very simply, in expressing
the final conditions of the beam in question as a function of
the initial conditions, taking into account the conditions at
the limits as written above. (For detailed explanation of the
method right up to the feeding into the IBk 7090, the reader
is referred to the report by Messrs. MONTEROSSO and DI COLA,
not yet published).
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Equation (9), applied to the 1st beam section, gives

y = A coeshm1 x + B einhm x + C, cosm, x + D, sinm X (14)

Its successive derivatives up to the third, have the values

y' =m1 1-\.‘| sinhm1 x+m1 B1 coshm1 X -

--m1 C1 sin m1‘x+m1 D1 cos m1 X

y":m12A1 coshxh1 x+m12 B1 sinhm_' X -
5 5 (15)
- m1 C1 cos m_. X - m1 D1 sin m‘| X
y"'=mjA sinh m x+m3B cosh m, x +
11 1 11 1
+m1j C1 sinm‘| x--m15D1 cosm1 X "
The set formed from (14) and (1%5) for x = O gives:
= +
Yy =G
] -
y1 = m1 B‘I + m1 D1 (6)
2 2 16
1 —_ —-—
VioE A TR G
Mmoo o2 - D
e e

where Yy y!', y", y" are the initial conditions of the beam.

Deriving A1 ’ B1 ’ C1 » D, from this set and substituting

them in the set formed from (14) and (15) we obtain, for
X = 11 .

° _ 1 v 1 - .
= +
vy, =¥ 5 (coshm 1)+ y' 5 z, (sinh m 1, + sinm 1) +

+y" L= (coshm 1, -cosm 1 ) + ym—1_,

1
(8inh m, x - sin m, x)

1 1
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m

o! _ 1 . O s v L
v, =9 % (sinh m, l1 sin m, 11) R (cosh m, 11 +

n 1 : ;
+ cos m, 11) * Y, 2m1 (sinh m, 11 + sin m, 11) +

+ y1"' —-j—2 (coshm, x - cos m, x)

1 1
2 m1
2
o' _ Ei_ _ ' mJ_ .
Y, =Y T3 (cosh m, l1 cos m, 11) ¥y 3 (sinh m, 11
- 3 1t 1—
sin m, 11) + v 5 (cosh m, 11 + cos m, 11) +
we 4 : .
+ v 3 ) (sinh m, 11 + sin m, l‘l)
3 2
oM m] ) ' ' Ilj_
vy =Y T3 (sinh m, l1 + sin m, 11) * YD (cosh m, 1‘|

E_
- 1] : - .
cos m, 11) + ¥ 3 (sinh m, l1 sin m, 11) +

" 1—
+ y1 5 (cosh m 1, + cosm, 11)

Bearing in mind the above-mentioned conditions at the
limits for the point x = O, we get:
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which represent the value and respective derivatives of y at
the end of the first beam-length as a function of the initial
conditions.

For the second beam-length, we get:

y = A, cosh m, X + B2 sinh m, X + C2 cos m, X + D2 sin m, X

y' =m, A2 sinh m, X + m, B2 cosh M, X - m, 02 sin m, x +
+ o, D2 cos m, X
y" = m2 A cosh. m, X + m2 B, sinh m, x -
2 "2 2 2 2 2
(18)
2 2 .
- o, 02 cos m, X m, D2 sin m, X
y" = m3 A, sinh m_, X + m> B, cosh m, X +
-T2 e 2 2 2 2
3 . _ 3
+ m35 C2 sin m, X m5 D2 cos m, X

When x =]1’ we obtain

y2 = A2 cosh m2 l1 + B2 sinh m2 l1 + 02 cos m2 11 + D2 sin m2 l1

' - » - .
y, = m A. sinh m,, l1 + m, B2 cosh m, l1 m, C2 sin m, 12 +

+ m, D, cos m,, 1

2 72 2 M
yi o= ne A, coshm, 1, + m B, sinh m, 1, -
2 2 2 2 M 2 72 2 1
2 _ 2 .
m2 02 cos m2 l1 m2 5 sin m2 l1
M = m> A sinh m,_ 1 + m> B_ cosh m,_ 1. +
2 2 2 2 2 T2 2 1
+ m3 C. sinm_. 1 - m3 D, cosm_ 1
2 2 2 1 2 72 2 1
Deriving A2, B2, 02, D2 from this set and substituting

them in equations (18), we obtain for x = 1., after certain

2,
transformations:
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Proceeding in the same way for the remaining beam-lengths,
we obtain the value and respective derivatives at the end of
the last length in terms of the initial conditions; i.e. we
obtain:

— A ) B ] C LI I I N O
O" (21)

ol!‘ mn

y7 y7

where A, B, C, «e« , N are matrices calculated as above. With
the conditions at the limits for x = l7 and the relations (43)

which correlate the various M) mj, cee m7 with m1, equation
(21) when solved by the IBM 7090 for the speed range 0 - 40,000 rpm,

gave two values of m, » to which the two following critical velo-

cities correspond:

1st critical velocity: ncr, = 418 rpm

1

2nd critical velocity: ncr, = 2,200 rpm.

2

2.2 Calculation of the critical velocities of the system,

taking into account the gyroscopic effect but disregarding

the traction effect

In the treatment of this second case the gyroscopic
effect of the flywheel located at the free end of the beanm,
which was disregarded in the first case, is taken into consid-

eration.

This effect does not alter the differential equation (9),
which therefore remains the same in this case, but only the
limit conditions at the extreme point x = 17 at which the
flywheel is applied; we shall now determine these conditions.
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In cases where concentrated loads such as pulleys or fly-
wheels are applied to a shaft, when writing the equations at
the limits for two contiguous lengths limitea by a load, we
must bear in mind not only that the ordinates and the gradients
of the elastic curve and the shearing stresses, as calculated
from the two equations relating to the two lengths, must work
out equul, but also that there exists between the moments
calculated below and above the loaded section the relation
M- M = 22 pjg 2 g (5) (22) -
where P, g,ﬂz have the same meaning as before and p is the
radius of gyration of the flywheel or pulley.

In our case, since the flywheel is at the free end of
the beam, (22) is reduced to

2 2 _o!
"Mm—n P/gp Y7

and, replacing Mm by its value,

L
1" ' nt B g gP, '
R R A e L
l.€e
1" (Xu'mi"']?p2 ' . :
7o T Ry (23)
! 8, Y 7 e
where:
g Y 981 x 2.8
2 _ 1 . N 5
p-2P 2 x 30 L6 cm
2 L -
Q’—Pp'x .joxLL6 o 5
f S, Y Le16 x 0.008 45,500 cm

P

The 1limit conditions for

X =1

v

are therefore in this second case
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oM HLI-LI-O'

vy =R & By ¥y
_ o)
vz =R A& myy

When the calculation was made on the IBM 7090 as described
in section 241, equations (2i4) being now substituted for the limit
conditions at the point x = 17, the following were found for
the velocity range O - 40,000 rpm:

first critical velocity: ncr1 = 20 rpm
second critical velocity: ncr, = 29,500 rpm

This result shows that the gyroscopic effect has very
little influence on the first critical flexional velocity but
causes a large increase in the second critical velocity,
raising it from the 2,200 rpm of section 2.1 to 29,500 rpm,.

2.% Calculation of the critical velocities of the system,

taking both the gyroscopic and the traction effects

into account

In this case account is taken of the gyroscopic effect
due to the flywheel of weight P = 30 kg located at the end
of the shaft and the effect due to the pull of the force
F = %0 kg (weight of rotor). The differential equation for
each beam-length now has the form:

a* 2y Sy 0 (w) - (5)

L= ¢y (25)

E J - R
d x)+ d x g

whose integral is

y = a em X+rp el X4 c em X 4+a mIVx
I v C A e
Where m~ seeeeee I are the roots of the equation:
2
N 5 S v 1l
EJdm-Fn - —— =0

g
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i.e.

2 2
gk d

m(I, 11, I1I, IV) - F :J P
2 E J uEQJ

From this relation it can be seen that there are two
equal real roots of opposite sign, which we call respectively
m and -m, and two equal and opposite imaginary roots, which

we call ir and -ir.

The integral of equation (25) then becomes

mx ~-mx ir -ir
y = a e + b e + c e + de

from which, making the appropriate changes, we obtain the

equation:
Yy = A cosh mx + B sinh mx + C cos rr x + D sin rx

which is valid for each of the seven sections that make up

the system under study.

The conditions at the limits of each section are the
same as in section 2.1,with the excertion of those relating
to the point x = 17, which has now become:

1

_ o" _ _ .2 2 . C
o)) J7 y7 = {1 P/B p .Y7

ol" . 2 o O' } (27)
st?y? =~ P/g il y7+By7

1
The term F y% represents the component of the pull in

the direction of the y axis at the point x = 17. It is opposite

to the centrifugal force % 0® y? due to the flywheel of weight P.

Applying the method of calculation shown in section 2.1, we

find, as far as the second beam-section:
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Proceeding in the same way with the remaining lengths we
arrive at an expression similar to (24 ) which gives us the
value and respective derivatives of y at the end of the last
length as a function of the initial conditions.

Associating with it the limit conditions (27) and the
expressions for m, .+.... m, and I, «..... T given by (26),
the IBM 7090 supplied the two velocities below, for the
velocity range 0-40,000 rpm:

first critical velocity: n cr, = 64 rpm

second critical velocity: n cr, = 29,500 rpm

This result shows that the traction F changes only the
first critical velocity and does not affect the second
critical velocity of the system, or rather, its influence on
the second critical velocity is very small as compared with
that of the gyroscopic effect. Actually, when a calculation
was made of the system tarning traction effect but not the
gyroscopic effect into account, we obtained:

R

62 rpm
~ 2,800 rpm

first critical velocity: n cr1

second critical velocity: n cr,

5+ CALCULATION OF THE CRITICAL PRECESSION VELOCITIES

The portion of shaft above the small-diameter (3mm)
section (see Fig. 1) is extremely rigid with respect to
the latter; this is confirmed by calculation and by tests
conducted on the rotating system up to failure of the

narrow-section.

2
Hence, for the purpose of calculating the critical
precession velocities, no appreciable error will be made

by adopting the simplified system shown in Fig. 5.






For the sake of clarity we have thought it advisable
here to set out this calculation in three parts, as follows:

(A) calculation of fhe moment of the forces transmitted
from the rotor to the shaft;

(B) equation and calculation of the precession velocities;

(C) determination of the critical precession velocities.

These are dealt with below,

341 Calculation of the moment of the forces transmitted from
the rotor to the shaft

For the calculation of the critical velocities of
bending it was assumed that the rotational speed of the
system around the distorted axis is the same as the speed
around the straight-lined original axis.

Let us assume now the shaft-rotor system in Fig. 5 has
the following velocities:

- precession velocity w, at which the axis of the shaft,
distorted as shown in Fig. 6a, rotates anti-clockwise
round the axis 0B which corresponds to its non-distorted
position;

- rotational velocity i around the distorted axis OC, in
the same direction as the precession.

Owing to these velocities, the rotor is subjected to
two different moments of momentum, which will be calculated
separately.

Let us suppose that w = O and Q2 # O.
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The rotor will then turn without precession around the
deformed axis OC so that, given Yp as its polar moment of
inertia with respect to axis OC its angular momentum is the
vector Yp Q1 perpendicular to the plane of the rotor and

having the direction shown in Fig. ba.

If Q = 0 and w # O the rotor is subjected to two
rotations: one together with the shaft, with angular velocity
w, around the axis OB, its centre of gravity C describing a
circle with centre B and radius y, and the other, with angular
velocity u, around one of its diameters which is perpendicular
at C to AC which is perpendicular to the mean plane of the
rotor, the shaft always remaining perpendicular at C to the

rotor during precessione.

The first rotation sets up the centrifugal force m w2 y
(Fig. 7), m being the rotor mass; while the second causes the
angular momentum due to precession.

The latter moment is the product of u Yd’ where Yd is
the moment of inertia of the rotor respect to its diameter.

Let us calculate the values of pu and Yd. In the case of a thin
disc

Y, = Yp/2

a relation which is sufficiently applicable to the rotor under
consideration. The angular velocity u of the rotor is not so
easy to calculate.

Bearing in mind, however, that during precession the shaft
always remains perpendicular at C to the rotor, we see that the
straight line AC (perpendicular to the rotor), forming the
angle B with the axis OB, rotates at the same angular veloCity
p a8 the rotor. Thus if we determine the angular velocity of AC
we shall have found that of the rotor. As it moves, the straight
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line AC describes a cone, with vertex A, and its end C has a
velocity of w y.

At time t = O, shown in Fig. 6a, the straight line AC
is in the plane of the diagram and the velocity of its point C
is perpendicular to the latter. After a time dt, point C is
lower than the plane of the diagram by the quantity w y 4 t.
The angle between the two positions of the straight line AC is
then w y 4 t/AC and since y/AC = B, if B is small, the angle
through which AC rotates in the time dt is w B 4 t, and the
angular velocity of the straight line AC (and so of the rotor)
is

L =wf

The angular momentum due to precession is then the vector

Y. w B, having the direction and sense indicated in Fig. ba.

d
Let us break down each of the angular momentum vectors

Yp 1 and Y; w B into the two components (Fig. 6b) parallel and

perpendicular to the axis 0B. The total angular momentum to

which the rotor is subjected is given by the two vectors

Yp 1 cos B + Yd w B sin P parallel to axis OB

Y Qsin B~ Y

D w P cos B perpendicular to axis OB

d

Where B is assumed to be small, these become respectively:

Yp 1+ Yd w 62 parallel to axis OB

Yp B - Yd w B = Yd B(2 -w) perpendicular to axis OB

The first (parallel to axis OB) rotates parallel to
itself around the axis OB, describing a circle of radius Y,
and its length remains invariable throughout its movement,
so that its derivative with respect to time is zero.
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The second (perpendicular to the axis OB), on the other
hand, describes a circle with centre B as it rotates. At time
t = 0, this vector is in the plane of the diagram; after a time
dt it forms a downward angle of w dt with this plane.

It thus undergoes a variation given by the product of this
vector and w dt, which is

Y, B(2i~w)w dt
The derivative of this vector with respect to time is
Y,y B(20-w)w

So this expression represents the derivative with respect
to time of the total angular momentum to which the rotor is
subjected.

According to the familiar theorem of angular momentum
of rational mechanics (Ref. 6), the above expression is equal
to the moment of the forces transmitted from the shaft to the
rotor and so, by the law of action and reaction, equal and
opposite to the moment of the forces transmitted from the rotor
to the shaft, i.e. the couple the direction of which is shown
in FPig. 7.

3.2 Eguation and calculation of the precession velocities

On the assumption always made, likening the rotor to a
thin disc, the following forces are applied to the end of the
shaft to which it is attached:

- the moment - Y, Bw(20-w)

~ the centrifugal force m w2 y

~ the traction force F = P = 30 kg due to the weight P of the
rotor when the system is in the vertical position.
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The last-named force gives the component P B (Fig. 8)
which is perpendicular to the axis OB, and is constantly
opposite to the centrifugal force m u? Ve

Denoting by:

%1 the deflection of the shaft at the free end where the
disc is attached, due to the application of a unit load
at that point;

cﬁ2 the deflection of the shaft at the free end, due to the
application of a unit moment at that point; or the angle
formed by the shaft with the axis OB at the free end,
due to the application of a unit moment at that point;

a22 the angle formed by the shaft with the axis OB at the
free end, due to the application of a unit moment at
that point;

and ignoring the mass of the shaft (with respect to that of
the rotor), we have the following shaft distortion equations
(Fig. 8):

y=&, I w? vy -

» 11PB—oz Y. w B(20-w)

12 "d

2 _ - _
B=g,muy %, P B qZZdeB(znw)
we now find y/p from the first and second equation and equate
the results, so that we have:

%P+ o, ¥, w(20-w) 14 P % vy w(20-w)

2 » 2
%1 m w 1 (ﬁ2 m w

By eliminating the denominators and arranging the terms in
descending order of powers of w, we obtain the expression:

wu(—m %, G, Y, +m afz Yd) + wZ’(

mo G, G, Y4 2l =

Yy 21) + w + mo, , ) + w(-« %y Y4 21) - (1 + «

2 2
may’s, (ay, Y4 2

which is the equation for the precession velocity.

P)=0
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This, it will be observed, is an algebraic equation of
the fourth degree in w, s0o that for a given shaft supporting
at its end a given rotor and rotating at a certain velocity ,
there are four characteristic precession velocities,

The system in question therefore has, for any {l, four
precession velocities which will now be calculated.

With reference to Fig. 5, the values to be introduced
into the equation for the calculation of the precession
velocities are:

m

P/g = 0.0306 Kg secz/cm

<
0

5 o ~ 2
q YP/Z 1.405 Kg cm sec
6

E =~2x10 Kg/cm2 (modulus of elasticity of shaft material)
J1 ¥ 1415 cmu (moment of inertia of 22 mm diameter shaft-section)
J2 = 0,0004L cmu (moment of inertia of 3 mm diameter shaft—section)
13-y
=1 /2 1) »
@, = 3 <E = +* 53 8.46 cm
1 2
2 2
(1, -1,) (1, - 1,)1 1
q12 = e 1 + 2 1 i*+ ' > (0.352
2 B J2 E J2 2k J1
1. -1 1
_ .2 -1 1 o
% ="E89J, "EJ, 0.015

On the basis of these values, the precession-velocity equation
for our chopper-rotor is:

2

Wt = 20 WP - 2,150 w2 + 322 Qw + 94,600 = O

The numerical solution of this equation is time-consuming and
it is therefore better to transform it into the following:

W - 2,450 o + 94,600

N =
5 o - 322 W

solving for L



With this last equation it is easy to draw up the following

table, by assigning various positive numerical values to w and
determining the corresponding values for Q :

w 2,150 o+ Q
H /sec w? o w)'" + 9.46 x 10)"' w3—322 wl| 1 /sec
) 1 1 9e2L5%1 O -320 ~289
5 L 8 16 8.601 x1 O ~628 -1 37
3 27 &1 7+533%1 O -~ 2 ~82.6
4 16 6L 256 6.0u5x10% | 4.6 :02| -52
5 25 125 625 hets52x OF | ~1.36 10| -30.5
6 36 216 1.3 400 | 1.850x10% | =.5 x02| -12.3
7 L9 343 2.4 x1 0> -8x1 0 -1 +568x1 o 51
8 6L 512 bt 207 | =3.93 ot | —1.552x0°|  25.4
9 & 729 6.56x10° | -7.284x10% | =1.44k 02|  50.6
10 100 10° 10% | —1aoumo0® | —a.22 0| 90
11 121 12330107 | 1.47x0% | -1.507%1 07 -880 174
12 o 1.73640° | 2.07x10% | - 2947x1 07 -L00 187
13 169 2.2 x10° | 2.85x4.0% | -2.40 x10° 220 -1 +09x4 0°
14 196 2.7ux10° | 3.84x10% | —2.890x1 07 980 -295
15 225 3.38x10° | 5,061 0 | -3.388x1 07 1.93 x10°1 -1 75
20 400 8 =x0° 1.6 X9 0° -6.054x4 07 9456 x4 0°] - 6342
25 625 1.5 x4 OL" 3.9 X1 0° ~8.554x1 0 21 96x1 OL" - 39
50 900 2.7 x ot 801 %102 | -1 .035x1 0° Loly3uxg O - 23l
35 1.225x1 O3 L e29x4 OL‘L 1.5 x4 06 -1 «045x1 06 7o x4 o)‘* - 142
4O 1.6 x10° |6uh x1O* | 2.56x4 00 | =7.854x10° | 1459x10°] - 6.8
L5 2.02 x10° | 9494211 0" L o1 2x1 o® 1 +254x1 07 1.679%10°| - 0.745
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w W*-2,150 w+ a
H /sec w? w? ot + 946 x 104 | 2 w-322 W] 4/sec
50 | 2.5 x10° | 1.25x10° | 6.25:40° | 9.7u6x10° | 2.339x10° | Lot6
60 | 3.6 x10° | 2463102 | 1.3 x40’ | 5.35ux10° | Lhe127x40° | 13
70 | 49 x10° | 3.43x10° | 2.4 10’ | 1.350x07 | 6.635x10° | 2044
80 6ol x4 0 5«1 0x1 0° Let x4 of 2. 73 x4 o7 9.982x4 0° 27 o4
90 8.4 x4 o3 7e¢3 X4 O5 6« 56x1 o7 L.827x1 o7 143 x4 o6 33,8
100 1o 10° 108 7.859x1 0" 1.967x1 o® | uo
150 | 2.25x10% | 5.57x40° | 5.06x10% | 45771408 | 6.691:0° | 68.5
200 L x o 8 x1 06 1.6 x1 0” 154 4x1 07 1.593x1 of 95
250 | 6.25x10% [1.570107 | 3.99:0° | 3.776x0° | 3.432x407 |120
300 | 9 xo* | 2.7 x0" | 8.4 =0’ | 7.906x10° | 5.39 x0’ |147
350 | 142255107 | Le28x107 | 1.5 x10'°| 1.473:10'0 | 8.5u8x107 |173
L.00 1.6 x4 O5 bely x4 o7 2eH0x9 o' 0 2.525x1 o' 0 1.278x1 o8 198
450 | 2.02x10° | 9u12x107 | 4u12x10'9| 4.076x10'° | 1.822x1 08 | 224
500 2.5 x1 o5 125x1 o8 6.25x1 ol © 61 961 ) 0 2.498x1 o8 2,8
600 | 346 1102 | 2.46x10° | 1.3 m0! | 1.202x 0" | L.318x108 | 300
700 | 4.9 x10° | 3.43x10°% | 2.4 x0' | 2.380m0't | 6.857x1 08 | 3u8
800 | 6.4 x40° | 5.42x40% | 4ot xo' | n.osexaol! | 4.023x109 | 399
900 8.4 x10° | 7.3 x10° | 6.56x1 0" | 6.5u2x10'" | .46 x40 |Lu9
1000 10° 10° 10'2 | 9.978x0" | 1.999x 07 | 500

For values of w > 4,000, 0 =~ /2

The values in this table were calculated by slide-rule and
rounded off.
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Moreover, a simple study of the equation 0 :f(w) tells
us that it has:;

- three points of indetermination:

w=20 w=12.7 w= - 12.7 rad/sec

which are obtained when its denominator 2w3 - 522 w is egqguated
with zero;

- four points of intersection with the axis w @

w =+ 46 w * 6.63 rad/sec

It

3el

- for w ?* * o tends towards * o .

By plotting the values for w in ordinates and the
corresponding 1 values, calculated above, in abscissae, we
obtained the variation law for the precession speeds of the
chopper as a function of its rotational speed, as shown in
Fig. 9.

The values of {1 for negative w were not calculated,
because it can be seen by checking that they are exactly
symmetrical with the values calculated above, about the

vertical w axis.

303 Determination of the critical precession velocities

For the chopper we are considering, there are fcur
possible precession velocities w, which vary with the rotational
velocity Q1 according to the law represented in Fige. 9.

This law is symmetrical about the vertical w axis, which
means that the four precession velocities are independent of

the direction of the chopper's rotation.
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According to Stodola (Ref. 7), critical conditions can
occur in a rotating system where the w/1 ratioc has the
following values:

W .
S_‘l =1; -1 +2 and +3
We then plot on the graph in Fig.S the dotted straight

lines corresponding to these values of w/l. They meet the
precession—-speed variation law at the points

A the straight line w/fl1 = + 1
B and C the straight line w/Q = - 1
D the straight line w/f1 = + 2
B and F the straight line w/0 = + 2

At these points the rotational velocities 1 of the chopper
are as follows:

point A Q, = 7 rad/sec

points B and C g = 29 rad/sec and HC = 7 rad/sec
point D i, = 3.5 rad/sec _.
points BE and F ﬂE = 2 rad/sec and {1, = 27 rad/sec

which may thus be critical velocities for our system.

The corresponding rotational speeds are:

R

67 rpm

B
R

ng = 280 rpm n 67 rpm

e
e

C

R

o}
R

D 5% rpm Dp = 19 rpm n 260 rpm

e
e

F



4. CONCLUSIONS

The chopper under study has the following critical velocities
in the range 0 - 40,000 rpm:

- torsional ones in the range from O to about 5000 rpm,
as given by equation (&) of section 1.3.2

- two flexional, at 64 rpm and 29,500 rpm

- five precessional, at 19 rpm; 33 rpm; 67 rpm; 260 rpm;
280 rpme.

The operating speed
n =~ 22,000 rpm

arrived at in the report "Calculation of Chopper Rotor
Centrifugal Stresses" 8 , can be regarded as sufficiently

distant from these for a well-balanced system and in theory,

therefore, should ensure satisfactory operation of the chopper.

The chopper shaft dimensions shown in Fig. 4, which give
rise to the foregoing critical velocities for the attached

rotor, were not chosen haphazardly; they are the outcome of &
study of the three above-named types of critical velocity.

Calculations on various systems, obtained by varying the
shaft aimensions but keeping to the overall length dictated
by practical reasons, showed that the dimensions of the small-
diameter (% mm) shaft-section have a proponderant infiuence on
the critical velocities of the system, and principally on the

flexional critical velocities.

Specifically, if we keep the diameter of the narrow
shaft-section unchanged, for the reason given in the introduc-
tion, but vary its length so that the section (22 mm diameter)
immediately above the rotor (Fig. u) varies and the other
lengths remain constant, the critical torsional velocities,







the first critical flexional velocity and the critical
velocities due to precession differ by little from the values
calculated above (at any rate within a certain range of narrow
shaft-length) while the second critical flexional velocity
varies widely.

The law governing the variation of the last-named with
the varying length of the narrow shaft as described above
is shown in Fig. 10. Bearing in mind the purpose of the narrow
shaft-section, and noting that it is better fulfilled as this
section is lengthened, we can sce from the graph in Fig.t0
that the optimum length, offerin, the highest degree of safety
in respect of tne second critical flexional velocity, is

145 = 150 nun.

Practical considerations prevented our adopting this
length, so we chose the nearest vossible length, namely 4120 mu,

on which the calculations in the present report are based.

5. EXPERIMENTAL RKSULTS

The system under consideration was constructed. Fig. 11
shows the finished device. It has been equipped with two
different lengths, 100 mm and 120 mm, of narrow shaft 3 mm
in diameter: tests were carried out on both and are described

below.

5.1 Test with small diameter shaft of length 100 mm

This was the first of the test performed. The system
showed an instability in the range of asynchronous operation
(0 = about 5000 rpm) characterized by transversal and torsional
vibrations. These were observed through a plexi-glass blank
flange which can be seen on Fig.11, by means of a telescope and
by simultaneously displaying the pulses of a magnetic pick-up
and a photoelectric cell on the screen of an oscilloscope.
The pick-up is mounted above, the cell below the narrow shafte. A
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We think the vibrations of the first type are due to
the presence of the critical velocities at low rotational
speeds, which, also for a thin shaft of 100 mum length, are
nearly the same a8 those given in section 4'"Conclusions" This
results from evaluations done with the reduced length of thin
shafting. Torsional vibrations were observed whenever the
operator changed the supply frequency of the motor in such a
wéy that equation (8)ofsection{1 was fulfilled which, in the
present case of reduced thin shaft length, becomes:

N=6OF"L|.15

since the proper frequency of the system is somewhat higher,
namely £ = §3%0 rpm.

The presence and the efficiency of a damping system mounted below
the chopper disk has a remarkable influence on the instabilities.
It turned out that, with an appropriate damper, all flexional
vibrations can be avoided, whereas without it it is impossible to
pass the range of low rotational speeds, since the amplitudesT
of these vibrations reach then very high values with sub-
sequent failure of the thin shaft.

With the damper, beyond about 5000 rpm the system was
completely steady up to about 25,000 rpm. Around this speed
the narrow shaft began to oscillate transversally and at
éﬁ,SOO rpm it failed; failure was caused by the presence “of
the second critical flexional velocity, which is calculated
to be about 23,800 rpm (Fig. 10). Clearly the damper has no
effect on this second critical flexional velocity, and this
is understandable when it is considered that the dynamic
distortion of the shaft associated with this critical velocity
is of such a configuration that during vibration the rotor of
the chopper is transversally montionless, just as the stub-
shaft attached to its bottom and holding the damper.
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5.2 Test with narrow shaft of length 4120 mm

With the experience acquired from the tests described
in section 4.4, we were able to devise a damper and a suitable
starting acceleration, so that the new system under study was
demonstrated to be free from even the slightest vibration
between O and 25,000 rpm,

Practical and safety considerations deterred us from
higher speeds; also, since the chopper's operating speed is
22,000 rpm, the fact that it worked satisfactorily for several
hours at 25,000 rpm convinced us that the dynamic stability of
the system is efficient and suitable for the purpose for which

it was designed.
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APPENDIX I

In sectim 2, which dealt with the "Calculation of critic-
al flexional velocities", the classical theory (L), (5),(11),012)
of the flexional vibrations of the beams was used, so that the
effects of rotatory inertia and the effect of transverse shear
on the critical flexional velocities were disregarded . It is known
(12,(13) (see also the table at the end of this Appendix) that
the percentage errors introduced by failure to take these effects
into account are insignificant when the dimensions oif the cross-
section are small in relation to the length of the shaft, and
when only the first two critical speeds are considered; this is

in fact the case in the present instance.

When the above conditions are nc longer satisfied (cross-
section not small in relation to length, and critical velocities
higher than the second considered), the effects mentioned must
be taken into account in order to avoid errors of mcre than
40% in the determination of the critical speed (15 .

In this case one obtains the following Timoshenko equation
(1, (12), which is valid for any uniformly loaded length of
shaft of constant cross-section and held only at its extremities,
this equation being subject to the limiting conditions for the

length in question:

2 c ¢
EJQEX+QQ_‘¥_(_YQ+EJ¥> 5L¥V+ _YzJ 5&13[:0
éx}"L g 62 g gk G 6x26t2 gzk'G ot
where G = modulus of transverse elasticity
K' = coefficient of shear deformability, which can

vary with the shape of the cross-section 2

If we consider only the stationary vibrations (M), the
solution is of the type:

y(x,t) = £(x).£(t)
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In particular, since the motion is harmonic (&)

£(t) is of the tyve sin Qt, so that:

s the factor

v(x,t) = £(x).sin Qt

By SuDStltuulné of the derivatives duy/dxu, d y/dt
2
y/ax2 , and d ;y/at/'L in the Timoshenko equation, we obtain:

EJf™(x)sin 0t - é? Pt f(x)sin Qt + <§§ + %%¥§>ﬂ2f"(x)sin Qt +

2
+ X gue(x)sin a0t = O

gQK'G
i.e.
2 2 2. 2
| 1 1 .
Y(x) + <Xﬁg + g%‘G > t(x) + 4129 - x¥5i > £(x)
gK'ag EJg

If the revolving shaft is subjected to an axial tensile
or compressive force F, the term -F/EJ f'"(x) (where F is
positive for a tensile force) b is added to the left-hand side,
and the equation becones:

2L 2
£l Yol
Y(x) + 1;_ _x__ -z £ (x) + ( i - ) £f(x) = 0 (28)

This equation is of the same type as (25) so that by means
of the method of calculation described in section 2 of the present
report, it is possible to determine the critical flexional velocities

taking into account all the effects mentioned above.

The following table shows the critical velocities of the
system of Fig. 4, as found from formulae (25) and (28).

Order of critical | Values of the criticalvelocﬁﬁeJ
velocities (r.p.m.)

Formula (25) | Formula (28)

1 ~ 6l ~ 6L

2 ~ 29,500 ~ 29,500
3 ~ 58,000 ~ 58,000
L ~ 70,000 ~ 69,000
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APPENDIX II

The critical flexional velocities can also be calculated
by the approximate method described by Myklestad (14) and later
improved by T.C. Huang and N.C. Wu (13).

The results obtained by this metnod are very close (13)
to the values obtained for the critical velocities from the
Timoshenko equation, even for high orders of critical velocities.,
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