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SUMMARY 

In the so-called annular-dispersed regime, the two-phase (gas I- liquid) 
flow can be characterized by two main regions. In the first region (called "core"), 
located in the central par t of the duct, the gas is the continuous phase while 
the liquid flows in the form of small droplets. In the second region, located 
close to the wall of the duct, the liquid is the continuous phase. 

This report presents and discusses the phase distribution and velocity profiles 
in this regime, as they have been measured at CISE. 

Phase and velocity distribution in the core was determined by means of 
a probe which could operate either as a Pitot probe or as an isokinetic sampling 
probe. In the region close to the wall, the flow rates distribution was determined 
by means of a suitably-shaped isokinetic sampling probe. Thickness data of the 
"film region" have been also taken through an electrical method. 

The experiments were carried out at high pressure (up to ~ 22 kg/cm2 abs.) 
and room temperature with argon-water and argon-ethyl alcohol mixtures in 
adiabatic vertical upward flow in circular tubes (1.5 and 2.5 cm I.D.). The 
measurements were performed in a position 3.5 m far from the mixing section. 
At this position, the flow was found to be fully (or almost fully, in the case of 
the highest flow rates) developed. 
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Foreword 

This i s the eleventh technical report issued by CISE and devoted to the 
experimental work performed under the CAN-2 Research Program on the hydrody
namics of two-phase adiabatic flow. I t presents and discusses the r e su l t s 
of the experiments on phase and veloci ty d i s t r ibu t ion in two-phase adiabat ic 
annular dispersed flow. 

The reports so far issued were devoted respect ively to the following 
subjects : 

- CISE R-59: design and construction of a high pressure gas c i rcu la to r for 
the new experimental f a c i l i t y . 

- CISE R-53: pressure drop and film thickness data obtained with different 
channel geometries. 

- CISE R-73: influence of some physical proper t ies on pressure drop and 
film th ickness . 

- CISE R-75: design, construction and assembly of a high pressure experimen 
t a l f a c i l i t y . 

- CISE R-89: development of a new instrument for the invest igat ion of the 
phase and veloci ty d i s t r ibu t ion in the region close to the wal l . 

- CISE R-82: development of a new instrument for the measurement of shear 
s t ress on the wall of a conduit and i t s appl icat ion in mean density 
determination in two-phase flow. 

- CISE R-92: development of a method for the measurement of the l iqu id 
volume fraction of two-phase two-component mixtures. 

- CISE R-93: effect of entrance conditions and length on some hydrodynamics 
parameters. 

- CISE R-IO5: l iqu id volume fract ion in two-phase adiabat ic flow. 
- CISE R-110: some spacer effects in annular and c lus t e r geometries in annular 

dispersed flow. 
Work on the hydrodynamics of two-phase flow was also carr ied out under 

the previous Research Program CAN-1: the r e su l t s were presented and discussed 
in four top ica l reports (CISE R-26, R-35, R-itl and R-U3) and in a special 
CISE Report ("A Research Program in Two-Phase Flow"). 
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1 . INTRODUCTION 

1.1. I t i s well known that many more flow pat terns exis t in two-phase flow 
than in single-phase flow. Without attempting here to dis t inguish and de
scribe these various pa t te rns (which however may be quite vaguely defined) 
we shall l imi t our a t tent ion t o only one of them, the so-cal led annular-
dispersed flow. 

For t h i s type of flow pat tern a def ini t ion s l igh t ly different from that 
commonly used up to now i s necessary. We shal l s t a t e tha t annular-dispersed 
flow is characterized by a continuous gas phase and a discontinuous l iqu id 
phase in the cent ra l region of the duct, which w i l l be cal led "core", while 
j u s t the opposite condition exis ts in the so called "film" region, close to 
the wall . In fac t , as explained below, recent experiments showed tha t the 
gas volume fract ion in the region where the l iqu id is the continuous phase 
may be quite large and therefore the assumption t ha t the film region is 
en t i r e ly occupied by the l iqu id phase i s no longer va l id . 

The most important quant i t i es character izing the hydrodynamics of an
nular dispersed flow, in ful ly developed condi t ions, a re : l inear gas and 
l iquid veloci ty (U and U ) d i s t r i bu t i on , l iqu id (or gas) volume fraction 
(l->> or t) d i s t r i b u t i o n . Other in te res t ing quant i t ies of an in tegra l nature 
are : pressure drop (ap/.iiZ), shear s t r ess on the wall (τ ) , overall density 
(Γ), overal l s l i p r a t i o (S) or overal l l i qu id volume fract ion ( l - α ) . In 
addi t ion, the knowledge of the amount of l i qu id which i s flowing in the 
"film" region may be quite useful for i t s implication in the understanding 
of heat t r ans fe r phenomena. All these quant i t i es depend on flowrates, on 
the physical proper t ies of both phases and on geometry. 

1.2. The experimental study presented here was carr ied out under the CAN-2 
Research Program on the hydrodynamics of two-phase (gas- l iquid) flow and 
was aimed at measuring the veloci ty and phase d i s t r ibu t ion prof i l es over a 
cross section in annular-dispersed flow. 

Work on the same subject was undertaken previously under the CAN-1 
Program and the main r e su l t s of t h i s inves t igat ion were presented in a spe-

Manuscript r ece ived on January 22, I968 
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cia i CISE Report . The experiments were performed in adiabatic conditions 
with a two-phase (argon + water) mixture flowing ve r t i ca l ly upwards in a 

o 
circular tube 2.5 cm I .D . ; the operating pressure (~22 kg/cm abs) was se le£ 
ted in such a way that the gas density was equal to that of saturated steam 

2 . . . 
at 70 kg/cm abs. The measured quant i t i es were phase and velocity d i s t r i b u 
tion in the core region of annular dispersed flow and the measurements were 
carried out by means of an i sokinet ic sampling probe moveable along a diame 
t e r which could be operated also as a P i to t probe; the probe was located ap_ 
proximately 1 m from the mixing section and the resu l t ing veloci ty and phase 
d is t r ibu t ion prof i les were found to be strongly assymetrical . Iri addi t ion, 
measurements have been taken of the thickness of the l iquid film climbing 
over the wall . 

The experimental study described in the present report i s the na tura l 
development of the work undertaken previously under the CAN-1 Program: i t s 
aim was to get a set of systematic experiments over a cross section where 
the flow configuration could be assumed as tha t corresponding to ful ly de-

• (2) velopmed flow. For th i s purpose an invest igat ion has been made on the 
behaviour along length on a longer t e s t section than tha t avai lable under 

( o ) 
the CAN-1 Program (3-5 m against 1.5 m) . 

The aim of the present invest igat ion was· also to get a be t t e r knowledge 
of the phase and velocity d i s t r ibu t ion in the "film region" and in p a r t i 
cular to determine the l iquid flow ra te in tha t region, a parameter of 
primary importance for the understanding of heat t ransfe r in annular -d i 
spersed flow. A special probe was therefore devised for th i s purpose. 

1.3· The experimental s tudies described here were i n i t i a t e d at the beganning 
of 19Ô2 and were continued at in te rva ls during a period of about l 8 months. 

At the beginning very few similar studies could be found. Extensive 
invest igat ions were available with air-water mixtures at atmospheric pressure 

; since then, however extensive invest igat ions have been 
published on phase and veloci ty d i s t r ibu t ion both in the film and in the 

( ° ) "core" region 

F) . 
An exhaustive review on the subject has recently been made by Collier • (9) and HewittK y ' . 

2 -



However, even at present, the available data with two-phase miwtures 
are very limited (at high pressure): this is due to the difficulties and 
the time needed for carrying out such measurements, which is very large. Perform 
ing experiments at high pressure is of the utmost importance: gas density 
in fact plays quite an important role on the hydrodynamics behaviour 

(12) of the two phase flow (see for example where the influence of gas 
density on the "thickness" of the film region has been brought out). 

Simultaneously with the present experiments and on the basis of the 
results of the present investigation, measurements have been made with 
steam-water mixtures both in adiabatic conditions and with heat addition 
The results of these experiments are in good agreement with those obtained 
with two component mixtures in the present investigation. 
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2. EXPERIMENTAL 

2 . 1 , The experiments were carried out with the experimental f a c i l i t y already 

in s t a l l ed at CISE for studying the hydrodynami<■·? of twophase (gas+liquid) 

mixtures in adiabatic flow. A schematic flow sheet of the c i r c u i t , which has 

(3) · · 

been described in de ta i l in ref. , JLS given in f ig . 1. 

The twophase miwture is formed in a teemixer with the gas entering 

the run s ide ; the l iquid i s injected through an annular s lo t with an adju

stable aperture . After passing through a calming section (50 cm long) 

the mixture enters the v e r t i c a l t e s t sect ion. At the top , the t e s t section 

leads in to a high efficiency separator , consist ing of three different devices 

in s e r i e s , from which each separated phase re turns to i t s own c i r b u i t . 

2 .2. As s ta ted , the measured quant i t ies are: 

 thickness (s) of the film adhering to the wall over a given length of the 

t e s t sect ion; 

 phase and velocity d i s t r ibu t ion prof i le along a cross section diameter. 

The value of the thickness (the socal led "e l ec t r i c film thickness") 

has benn derived from the measurement of the e l e c t r i c a l res i s tance of the 

l iquid layer over a given length of the t e s t section (made of an insu la t ing 

material) as well as of the r e s i s t i v i t y of the c i rcu la t ing l i q u i d . 

The phase and velocity d i s t r ibu t ion was measured by means of two different 

sampling probes. In the central region (up^to 2 mm from the wall) a small 

cyl indr ical sampling probe was used : i t was operated in turn as an i s o 
( ° ) kine t ic probe (thus giving the local specif ic mass flow ra te of both 

phases G, and G ) and as a Pi tot tube (thus giving the impact pressure _P ) . 
 L R "D 

The aperture was fixed at 2.77 mm for all the experiments. 

(°) . . . 
A sampling is said to be isokinetic when the conditions at the inlet of 

the probe are the same as the preexisting ones. 



Making c e r t a i n assumptions on t h e behaviour of a P i t o t tube i n two-phase 

flow, t h e fo l lowing equa t ion was de r ived for t h e l o c a l value of 1 - <*: 

1 - α = 
2 ΛΡ o. G 2 .% 

2 VG ; r 
<ζ 1 g 

where ΛΡ is the impact pressure. Local velocity of the two phases and local 
liquid (or gas) volume fraction, may thus be computed from the measured quan 
tities by utilizing the above relationship. 

The sampling probe used in the present experiments is similar to the 
probe N. 2 employed previously : a schematic drawing, showing the main 
dimensions, is reported in fig. 2. The device for the introduction and pos_i 
tioning of the probe was completely re-designed with respect to that used in 

: the new device (figs. 3 and it) gives a much higher accuracy in the 
radial position and considerably reduces the time needed for the measurements. 

In the region close to the wall (from 0.13 mm up to 2 mm from the wall) 
a suitably shaped (figs. 5>6,7) sampling probe was used, which has been 

. (It) . ' . . . 
exhaustively described in ; it was always operated as an isokinetic probe 
(see footnote page It ). This probe gives the integrated flow rate between 
the wall and a distance variable at will: in this region the local slip ra-• (°) tio was always supposed to be unity and therefore the local volume fraction 
may be strainght-forwardly computed from the local flow rates. 

The errors inherent in the measurement methods have been discussed in 
detail in and . As far as the phase distribution and velocity profiles 
are concerned the following remarks can be made: 
- The reliability of the two probes and of the measurement procedure was 
checked by performing special experiments with single phase (gas) flow. 

Vn . 
This appeared reasonable in view of the small size of the gas bubbles 
likely to be present in the film region (3.2) and also because in bubble 
flow the slip ratio is very close to unity. 

- 5 -



The total flow rates obtained through an integration process from the ve

locity profiles
 r
 are compared to the orifice readings Γ in table I. As 

g ë 

shown, the maximum deviation from the orifice reading for the experiments 

with isokinetic sampling probe is 6$ while must of the results lie within 

+ 2$, which is the orifice accuracy. As for the experiments with the Pitot 

probe, at least for one point for each profile a check was made that the 

reading was equal, within the experimental inaccuracy, with the isokinetic 

sampling datum; moreover for one profile a check was made that the inte

grated mass flow rate would agree with the orifice reading (Table I). 

An idea of the accuracy of the local values of liquid., and gas specific mass 

flow rates with twophase flow can be given, as in the single phase flow 

case, by a comparison between the integrated values of both flow rate di

stributions and the orifice readings. Such a comparison is made in table 

II. Although the agreement between the two sets of values (on the average 

_+ 10$ for both phases) is worse than in the case of single  phase flow, 

it can be considered still satisfactory. 

From this comparison the conclusion can be inferred that, at least the 

G and G distribution profiles are accurate within +_ 10$ on the average. 

The local values of liquid volume fraction (and any related quantity) are 

affected by the inherent unknown inaccuracy of the relationship linking 

1α to ΔΡ , Gn and G · Ref. (l) has demonstrated that the error inherent 
Ρ 1 g 

in the 1α values can be quite large (10 to 50$)). To get a rough idea of 

this error a comparison was also made between the values integrated from 

the Iα profiles, and the experimental values of Iα obtained directly 

• · (Ik) 

from the liquid level method . As shown in table III the agreement be

tween the two sets of values is on the average within 10$ (in general the 

l_a values derived from the integration of the profiles are slightly lower 

than the other ones; this might be due to the fact the local slip ratios 

derived from the said relationship are actually relatively larger or that 

the 1α values obtained with the liquid level method are higher; this 

could be possible since these data are overall data relevant to the whole 

test section and it has been observed that Iα undergoes a decrease along 

flow direction (ll). 

 6 



2 . 3 . The experiments were performed with argonwater and argonethyl alcohol 

mixtures at various gas dens i t ies in order to inves t igate the influence 
( ° ) of the two physical proper t ies (gas density and surface tension ) which 

(32) 
have been observed to have most influence on the twophase flow behaviour " . 

The physical proper t ies of these mixtures are indicated in t a b l e IV. 

Temperature of the t e s t section was between 18 and 20 °C. 

Two c i rcu la r conduits were experimented, 2.5 cm I .D. and 1.5 cm I.D. 

(with 1.5cm I.D. element only film thickness measurement have been made). 

The inves t i^ i t ed range of flowrates i s reported in table V. 

Assuming a symmetry around the axis of the duct, the problem s t i l l 

remains of determining whether the flow i s fully developed, that i s the 

measured quant i t i es are independent of the axial coordinate. This aspect was 

(2) 

throughtly invest igated under previous special t e s t s : the systematic meas

urements described here were always performed so far from the two phase mixer 

("'35m)that axial (or memory) effects were e i ther negl igible or minimized, 

as the t e s t s have shown. 

2.k. The experimental r e su l t s are given in tables VI, VII, VIII for the film 

thickness experiments and in the t ab le IX to XXV as far as phase d i s t r ibu t ion 

and veloci ty p ro f i l e s are concerned. 

In t ab les VI, VII and VII"thè following quant i t i es have been reported: 

G average gas specif ic mæs flowrate (= gas flowrate divided by the 
o 

tube cross section area) (g/cm s) 

G : average l iqu id specific mass flow ra te (= l iqu id flowrate divided by 

the tube cross section area) (g/cm s) 

s : e l e c t r i c a l film thickness (cm) 

In tab les IX to XXV the following quant i t ies have been reported: 

"ΠΤ 

(°) 

The experiments at various gas dens i t ies were carr ied out at the same 
volume flow ra te due to the blower c h a r a c t e r i s t i c s ^ ; which do not 
allow operation at constant mass flow r a t e . 

With argonethyl alcohol mixtures film thickness could not be measured 
due to the l iqu id conductivity being too low. 

- 7 -



y : distance from the conduit wall (cm). For the experimental points ob
tained with the film sampling probe (signed with in the y column) 
the distance y corresponds to the average between two adjacent values 
of the probe position. For the core sampling probe experiments y in
dicates the distance from the wall of the centre of the probe 

y' : distance from the conduit wall (cm) "(only for the film sampling probe 
position 

2 VP : impact pressure (as from Pitot probe readings) (dyn/cm ) 
G : local gas specific mass flowrate (= gas sampling flowrate divided by g 2 

the probe cross section area) (g/cm s) 
G, : local liquid specific mass flowrate (= liquid sampling flowrate divi_d 

2 ed by the probe cross section area) (g/cm s) 
1-ra : local liquid volume fraction 
S : slip ratio (only for the measurements with the core sampling probe) 
Γ : liquid flowrate in the annular area comprised between the conduit 

wall and the circumference having a radius = R - y' 
^ : gas flowrate in the annular area comprised between the conduit wall 

and the circumference having a radius = R - y'. 
The experimental results are also given in the form of diagrams: film 

thickness measurements are reported in figs. 8,9 and 10 while phase distri
bution and velocity profiles are given in figs. 11 to 27· 

- 8 -



3. GENERAL RESULTS 

A typical diagram of the local values of some measured quantities over 

a cross section as a function of the radial coordinate is shown in fig. 28, 

to which reference is made throughout this paragraph unless otherwise 

stated. 

3.1. The liquid volume fraction distribution has a minimum in the center 

of the duct: this was found over the whole range of flow rates and physical 

properties investigated, provided the flow pattern is annulardispersed. 

From this minimum the value of 1'' increases going toward the wall and 

reaches unity in a region comprised between y = 0 and y = 0.13 mm, which is 

our instrument limitation. No discontinuity is revealed along the radial 

coordinate even at the core film interface. Flattening of the Iα profile, 

with which à higher degree of dispersion is believed to be associated', 

depends on the magnitude of the flow rates and on the physical properties of 

both phases. 

3.2. As expected from the shape of the 1 » profile the local value of the 

liquid specific mass flow rate G also has a minimum on the conduit axis 

and increases toward the wall. The trend however is not always monotonous 

and a relative minimum may exist not far from the "film" region. The maximum 

value of G is always very close to the wall and well inside the "film" 

region. At the wall G is always supposed to be zero. 

Similar qualitative results were observed by authors, at least in the 

core region . The British team at Harwell , however, operating 

with airwater mixtures at nearly atmospheric pressure, found that the G, 

profile given flatter and flatter when increasing the distance from the 

entrance until an inversion appeared with a relative maximum on the con

duit axis. The consequence in this case is that the 1α profile is almost 

flat in the whole core region. 

As stated, all the present measurements were performed at 35 m from 

the entrance. At this distance the Harwell experiments already show a 

convexity in the G profile. As has already been examined by Hewitt and 

 9 



(2) . . 
discussed in a previous CISE Report , a number of reasons explaining such 
a discrepancy can be invoked, for example: 

1) difference in gas veloci ty: the average gas velocity (20-30 m/s) beyond 
which the Harwell team found a change in concavity i s in general higher 
than the average gas velocity of the present experiments. This, however, 
i s in contrast with the prof i le reported in f i g . l 6 , which has been taken 
at 3·5 m from the entrance and to which a gas veloci ty equal to 37 
m/s corresponds. 

2) difference in gas densi ty: the different gas density (and gas compressi
b i l i t y ) in the two sets of experiments could play an important role e i t he r 
because the ra te of progress towards equilibrium is different or because 
i t i s p rac t i ca l ly impossible, as s t a t ed , to dis t inguish the effect i n t r i n s i c 
to the mixture from the effect due to the gas density var ia t ion along flow 
direct ion. The effect of gas density has been inves t iga ted , at l e a s t to 
a cer tain extent , with argon-water mixture (par. 3>h) at a gas density 

-3 3 
equal to Ρ = 10.0x10 g/cm and with the following flow rate combination: 

— 2 — 2 G = 2 2 . 6 g/cm s G = 91 g/cm s g 1 
As shown in Fig. 21, the results are almost identical (at the same gas 

-3 3 velocity approximately) to that obtained at Ρ = 36.1x10 g/cm , i.e. the 
G profile has a concavity that is always directed upwards. 
This, however, is not enough to exclude the difference in gas density as 
the reason for the discrepancy, since (1) the gas density investigated is 
still much larger than that of air at atmospheric pressure, (ii) the gas 
velocity is lower than the aforesaid limit of 20-30 m/s, and (iii) the 
pressure drop is still negligible in comparison with the operating pressure. 

3) difference in length: the available length of the Harwell test element is 
about 30$ larger than the one available in the facility referred to in 
this report. This however should be only a minor effect since the change 
in concavity is much lower than the length investigated here. 
In addition to these remarks it must be observed that the liquid flow 
rates covered in our experiments are larger than those experience at 
Harwell ' . According to the observations of that Laboratory, the change 
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in shape of the G.. profile is the more pronounced the larger G . 
In our case therefore, there is more reason to observe such a change. 

In conclusion, since, as stated previously, the experiments reported here 
indicate that at the top of the test section, the flow configuration is quite 
close to the fully developed one, the discrepancy between the two results 
should be ascribed mainly to the different operating pressure and, therefore, 
to the gas density. In any case the question still remains open: in order to 
get a definite answer, it would be necessary to carry out experiments with 
longer test sections, varying the inlet conditions so drastically as to rea
lize at the entrpnce, for a given flow rate combination, quite different 
flow configurations. The experiments should be of course carried out at high 
pressure so as to minimize the gas density variations along flow direction 

3.3· Gas velocity profiles (U ) are similar to those found in single phase 
flow: usually, however, they are steeper, depending on the value of flow rates 
and physical properties of both phases. Both roughness due to the irregularities 
at the core-film interface and damping of turbulence by liquid droplets could 
contribute to this phenomenon. 

3·^· Local values of the slip ratio were measured only in the core region·: 
they range between 1 and 1.6 with a slight tendency to increase toward the 
wall. If the hypothesis is made that S is unity very close to the wall (see 
1.1), its value must go through a maximum at the liquid gas interface. 

The local values of slip ratio in the central region decreases with 
increasing gas density (at constant volume flow rate) as well as with de
creasing surface tension, i.e. the flow has a tendency to become locally more 
homogeneous. 

TT Another interesting difference between the results obtained at CISE and 
Harwell is that, while in our case the whole flow pattern is involved in 
the variation along flow direction (both liquid film thickness and en
trained liquid profiles change along the flow direction), in the Harwell 
experiments each of the two regions seems to behave on its own. Film 
thickness in fact does not vary, while, inside the core, the entrained 
liquid increases in the centre to the detriment of the region of the 
core close to the film region. 
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On the whole, it can be inferred from the low values of slip ratio 
which have been measured, that the assumption of a locally homogeneous flow 
is not unreasonable. 
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lt. PHASE AND VELOCITY DISTRIBUTION CLOSE TO THE WALL 

l t . l . Reference i s made t o f i g . 29 where the l o c a l va lues of t h e r a t i o 
—

 *E ♦ ""* /"■
 — 

U /U = G /G* = G /ale /a fo r a s i n g l e t y p i c a l case i s r e p o r t e d , 
g g g g g / g 

From t h i s diagram i t appears t h a t t he curve has somewhat a r e g u l a r t r e n d on 

both s ides of a reg ion l o c a t e d around the e l e c t r i c a l f i lm t h i c k n e s s bo th in 

t h e core and in t h e f i lm r e g i o n . In q u a n t i t a t i v e terms thi?3 appears t o be 

"" * —ál· 
t r u e for y < s / 2 and y >2 s ; whi le for s / 2 < y < 2 s , U /U p r e s e n t s an 

g g 
ambigous t r e n d . Ac tua l ly t h i s might correspond t o an ambigous t r e n d a i t h e r 

J¿ 

of U /U , or of the slip ratio which, in this region, ought to be assumed 

g 6 

to be equal to one (see 2.1.). This setup, which is evident in most cases, 

disappears for low mass flow rates and gas density; moreover, with liquids 

having low surface tension (ethyl alcohol), for some unknown reason, the 

inflection region appears further inside the electrical film. 

Another phenomenon, which was always observed, was a maximum in the 

G /G diagram (fig. 29), approximately at a distance from the wall corre

sponding to s/2. This maximum, the shape of which depends on the physical 

conditions (flow rates and physical properties), is believed to be related 

to a steep increase of the gas volume fraction at a distance larger then 

s/2. 

This fact, together with what was said above the U /U trend between 

g g 

s/2 and 2 s, seems to confirm the assumption that in this region a tran

sition takes place between the "film" and the "core" regions. Moreover, it 

is reasonable to presume that most of the waves which set up at the film

core interface (which have been extensively investigated by other resear

chers) are confined in this region: this is not in contrast with what has 

been observed elsewhere it.2. The value of 1 α in the region close to the wall (derived through the 

assumption that the local slip ratio is equal to one (par. 22), decreases, 

monotonously from unity at the wall (or, at least, in the uninvestigated 

region where y <_ 0.13 mm) to about 0.6 + 0.8 in correspondence with the 

maximum of G and 0.3 + 0.5 at the electrical film thickness. Then, the 

liquid volume fraction decreases toward the center (with water always and 
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with alcohol at low G values), or, for alcohol at high G values, reaches 

g g 

a relative maximum before decreasing again towards the center. 

As a consequence, the overall gas volume fraction in the "film" region 

can be rather high: up to y = s this value ranges between 0.2 and 0.55 

with a tendency to increase with increasing flow rates. The assumption that 

1 α= 1 up to y = s in order to evaluate the density of the mixture (1.2) 

from the values of s and the phase distribution in the core can therefore 

largely overstimate (about 10+20$) this quantity. 

The large values of α that are found well inside the film region, cannot 

be explained merely by the wavy nature of the filmcore interface, but it 

must be imagined that in this region the gas phase is present in the form 

of small bubbles. In the light of this consideration, also taking into ac

count the fact that a profile configuration and not just a number would be 

necessary to individuate the corefilm interface, the realtionship between 

the electrical film thickness and the actual extension of the region in 

which the liquid is the continuous phase cannot be established. The useful

ness of the determination of s, however, does not lose all its value, in our 

opinion, since it still gives an idea of the extension of the film region. 

it.3. A parameter of interest, also for its connection with the heat tran

sfer capability of two phase flow, is the amount of liquid which flows 

along the wall in the "film" region (which has been investigated with the 

film probe). 

In single phase flow the ratio Γ /π D μ, where Γ is the mass flow 

rate up to the distance y from the wall, in circular conduits, is given by: 

r 

■ Ï - = f (y
+
. *e

+
) (D π D μ 

where 

+ y 
y = * τ ρ 

u w 

-Κ 
e μ ρ 

 ilt 



In plane geometry, or in c i rcu la r geometry when *-<< 1, —£— becomes 
+ R D 

a function of y only, so t h a t : 

Γ = TD μ f(y+) (2) 
•J 

To check the va l id i ty of t h i s formula in two-phase flow, the r a t i o 
Γ 

—^— was p lo t t ed ( f ig . 30) against y (where y = ^ UT ρ,) for a l l the 
τ D μ-ι μ-j ™ W 1 

prof i l e inves t iga ted , i . e . for argon-water and argon-alcohol mixtures at two 
+ + 

gas d e n s i t i e s . Apparently, also m two-phase flow up to y - s the r a t i o 
riy · + 

i s a function of y only, although different from single-phase flow. η D •Ί 
Beyoijd t h i s value ;, n , has in general a tendency to be lower than the 
value expected following the corre la t ion va l id for y <_ s . 

Since, for the reasons s ta ted above, a t rue film region cannot be well 
Γ 

defined from our experimental r e s u l t s , the corre la t ion between ly 
■* D μ 

and y i s not enough to give the "film" flow r a t e . However, as a f i r s t 

approximation, j u s t to have an idea of the magnitude of th i s quantity and 

of i t s dependence on the physical proper t ies and flow r a t e s , one can assume 

as "film" flow ra te the l iqu id flow ra te (Γ ) measured up to y = s. In the 

l igh t of previous considerations (4.2), t h i s value should not be very dif

ferent from the actual "film" flow r a t e . The r e s u l t s , for a l l the i n v e s t i 
Γ 

gated condit ions, are presented in f i g . 31 where the r a t i o F 
" D u 

+ Ξ I 
•is reported against s = π— VI τ 0 on a loglog char t . This r a t i o seems 

• , · W l 

-f. _(. 

to be well correlated to s (for 30 < s < 300) through the equation: 

 = 5.3 (sV'
1
 (3) 

D
 1 

The constant 5·3 and the exponent 1.1 seem to be independent of the 

flowrates and the physical proper t ies invest igated (gas densi ty , surface 

tension and, to a cer ta in extent , l iqu id density and v i s cos i t y ) . 
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Equation (3) is quite a simple relationship which allows, within the 

approximation of the above assumption, the determination of Γ once s 

and
 τ
 are known. It must be kept in mind, however, that nothing can be 
w 

said about the influence of the diameter of the conduit on the film flow 

rate since this variable was not investigated. The presence of D in eq. 

(3) could not therefore represent the actual dependence on D. 

For the abovestated reasons, the corefilm interface should be com

prised between  s/2 and -2 s. If the same plot of fig. 31 is made for 

these two values, the experimental points become more scattered but the 

overall trend versus 1/2 s 'or 2 s , that is, the value of the exponent 

(l.l), is preserved. It may be inferred, therefore, that the dependence 

of '_ on flow rates and physical properties is well represented through 

the parameter s . Of course, this is true only if the ratio between the 

electrical film thickness and that distance from the wall where Γ ¿s 

iy 

equal to the actual "film" liquid flow rate does not depend largely on 

these parameters. |. 
F 

For purposes of comparison, the same figure shows the quantity ̂ —^ -
1 

t -, o \ 

as evaluated (i) according to the Dukler analysis modified by Hewitt 

and (ii) assuming as still valid in the film region the velocity profile 

proposed by von Karman in single phase flow. Since, according to these theories 
l
F . . + ' 

the ratio ——— is not a function of y only^ two curves are reported 

" 1 

which represent the extreme limits within the range investigated. As an average 

value, the value predicted by these theories are overstimated (ItO + 60$) 

in comparison with the experimental values (for 30.1 s £ 300). 

3.6. The dependence of the "film" flow rate (r„), as defined above, on 

the forced flow rates and on physical properties has been determined from 

the experimental values of s and τ by evaluating this quantity through 

w 
equation (3)· 

The r a t i o Γ/Ι' with argonwafer mixtures at Ρ = 36.1 χ 10 g/cm 
t l g 

i s presented in f ig . 32 as a function of the mass qual i ty (X) and with 

the t o t a l specif ic mass flow as a parameter. This r a t i o , which varies from 
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0.1 to O.U, decreases with increases in both G and X. 
Since, at constant mass flow r a t e , the shear s t r ess on the wall was 

found proport ional to "JT" a n d t h e e l e c t r i c a l film thickness to . 
r.' , the influence of gas density on s , hence on film flow r a t e , 
g 

i s neg l ig ib le . 
Surface tens ion , on the contrary, influences t h i s quantity because, as 

(19) (12) 
shown by our experimental r e s u l t s , both τ and s decrease with + V 
i t as do s and "_. This effect i s more pronounced at high values of mass 

Γ 

qual i ty and flowrate. 

- 17 -



5· PHASE AND VELOCITY DISTRIBUTION IN THE "CORE" REGION 

5.1. In the whole range investigated, the liquid volume fraction in the 

"core" region always has a minimum in the center of the duct. An analytical 

expression, however, cannot easily be found and monomial expressions, as 

that proposed by Bankoff , are not satisfactory. A general observation 

is that the (l- a) profile tends to flatten with: 

a) increasing flow rates; 

b) increasing gas density at constant volume flow rate; 

c) decreasing surface tension. 

As the (l- α ) profile becomes more flattened, the absolute value in 

the "core" region increases, which is indirect evidence of a more "disperjs 

ed" pattern. 

The upward concavity of the (l-α) profile as a function of y still 

shows that, provided fully-developed flow is established, droplet diffusion 

is not the predominating mechanism for liquid distribution in the "coré" 

region. Other mechanisms should therefore be called upon and their concepts 

analytically assessed. 

S. Levy, for example, described the phase and velocity distribution 

analytically, treating the two-phase system as a continuous medium and 

applying to it the mixing length model widely accepted in single-phase 

(21) 
turbulent flow . Although some assumptions made during the development 

of this theory do not correspond in our cases to the experimental evidence, 

the predicted values both of the density (or l-α) profiles and of the mean 

density are in rather good agreement with the experimental values, especial 

ly at the high gas flow rates. As an example, fig. 33 shows the experimen 

tal profile of Ρ compared with that computed from the Levy mixing length 

model, assuming as inlet parameters the values of liquid and gas flow rates 

and of shear stress on the wall. 

Another process which might explain the trend of l-α is that of droplet 

coalescence, that is of capture of the droplets among themselves, which 

was proposed previously . The analytical treatment presents, however, 

serious difficulties. 
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5.2. As s ta ted e a r l i e r , the gas veloci ty p rof i l es are always less f la t tened 
than in single-phase flow, the gas Reynolds number being equal . The higher 
the gas flow ra t e s the grea ter the f la t tening while there i s a cer ta in 
degree of independence on the l iqu id flow r a t e . Physical p rope r t i e s , too , 
have an influence on the shape of the U /U p r o f i l e : as shown in f i g . 39 

g g 
f la t ten ing increases with increasing gas density (at constant volume flow 
ra te ) and with decreasing surface tens ion. 

The experimental r e su l t s show tha t there i s a close re la t ionsh ip be
tween the shape of the gas veloci ty p ro f i l e and the value of the film thick 
ness , whatever the gas flow r a t e , gas density and surface tension: film 
thickness i s l a rger for the steeper p r o f i l e s . On the other hand, la rger 

(17) film thicknesses would be associated with l a rge r surface waves at the 
core-film in ter face corresponding to a grea ter apparent roughness of the 
duct in which the gas i s flowing. This apparent roughness can therefore 
be taken to be par t ly responsible for t h i s effect in single phase flow where 
a higher degree of roughening i s associated, at the same Reynolds number, 
with steeper veloci ty p r o f i l e s . 

The assumption tha t the la rger steepness of the gas veloci ty prof i les 
in two-phase flow i s due to the presence of l iqu id in the "core" region, in 
the form of small droplets damping the turbulence of the gas flow, seems 
to be in contras t with the experimental evidence: in fact i t was always ob 
served (with varying G , ρ , γ) t h a t the steeper the p r o f i l e , the smaller 

g g 
the value of l -α in the cent ra l region. However, since an increase of film 
thickness i s always associated with a decrease of l - a t i n the core, the assuimo 
t ion cannot be excluded a p r i o r i . 

5 .3 . In single phase flow, a law representing the veloci ty p ro f i l e in the 
central region of the duct f a i r ly well i s the so-cal led "velocity deficiency 
law" : 

Uo - U (°) 
-~=r = f (y/R)1 ' (H) 

T 5 ! — : 
U is the velocity at the center of the conduit. 
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A suitable expression of f(y/R), valid both for smooth and rough ducts 
is the following: 

f (y/R) = 1/k In | 

where k, the von Karman constant, i s -equal to O.k. 
Almost a l l the gas veloci ty p rof i l es determined in two-phase flow 

obey the same law, as shown in f ig . 35 for five p a r t i c u l a r cases . The nu
merical values of k i s , however, lower ^ 0 . 2 7 for argon-water mixtures and 

*v 0.31 for argon-alcohol mixtures) in agreement with the experimental r e s u l t s 
obtained elsewhere with air-water mixtures at atmospheric pressure . 
As a consequence, the mixing length which, as defined in s ingle phase flow, 
i s proportional to k, i s also lower: t h i s could be in te rpre ted as a lower 
degree of turbulence in the "core" region of two-phase dispersed flow. 

TT The value of ρ in eq. k was put equal to ρ . 

- 20 -



Nomenclature 

Latin symbols 

A cross sectional area of the tes t section 

D diameter of the tes t section 

G* local mass velocity (G* = jJLS ; G* = ^ ^ ) i
 =

 T T ^ 

G local specific mass flowrate (G = —*— ; Gn = / 
g σ 1 σ 

Γ Γ, 
_ jfc f - & S — iL, ι 

G^ average mass velocity IG = d » G, = ) 
g
 αΑ (lã)A 

Γ Γ 

G average specific mass flowrate (G = —* ; G = —r ) 

Q 

υ 

g 

Γ '■' 

volume flowrate (Q = S. ; o = — ) 

R radius of the test section 

s electrical film thickness 

S local slip ratio (S = U /Un) 
g_ 1_ 

S overall slip ratio (S = 0 /0 ) 

(Γ ) (Γ ) 

U local linear velocity (Ug = ^ _ ; ϋχ = ^ 5 ^ ) 
(Γ ) (Γ ) 

U*' local superficial velocity (U* = σ f S ; U* = ~,S 
g g 1 Pi 

U average linear velocity (U = —û ; U = _— 
g «Α Χ (la)A 

S. -
 Q

l 
average superficial velocity (U = —r ; 0. = r ) 

X mass flow rate quality (or mass quality) (X = r ' ξ r 

g 1 
0. 

X volume flow rate quality (X = 7:—f■ Λ ) 
ν ν fcj.. + ti 

1 g 

y distance from the wall of the conduit 
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Greek symbols 

α local gas volume fraction 
α overall gas volume fraction 
Y surface tension 
Γ mass flow rate 
U viscosity 
Ρ local density 

cross sectional area of extraction probe inlet σ 
τ shear stress of the wall of the conduit w 

Subscript 

F film 
g gas 
1 liquid 
s probe 
tot total (gas+liquid) 
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TABLE 

Single phase flow experiments : argon 

Ρ 
g 

g/cm 

lO.OxlO"3 

l6 . i t " 

22 .9 " 

27 .7 " 

3 6 . I " 

Il tl 

It It 

I 
g 

g / s 

231+ 

226 

221 

217 

158 

k6k 

lt67 

l · 1 

g 
g / s 

22 lt 

225 

22U 

22U 

I58 

lt69 

-

g 

g / s 

-

-

-

-

-

-

k6k 

g g 

0.958 

0.996 

1.062 

1.032 

1.00 

1.011 

g' g 

-

-

-

-

-

-

0.993 

L = Values obtained from orifice readings 

l' = Values obtained from integration of velocity profiles g 
1' = Values obtained from integration of "Pitot" profile 
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TABLE I I 

Two phase flow exper imen t s ; round tube 2.5 cm I . D . 

ΟΛ 

MIXTURES 

A r g o n  w a t e r 

It tl 

tt It 

II II 

tt tl 

II II 

II It 

It II 

It II 

A r g o n  A l c o h o l 

It II 

It tl 

II tl 

tt II 

tt II 

D e n s i t y 

g /cm 

1 0 . 0 x 1 0 ~ 3 

tt 

II 

II 

3 6  l x l O  3 

It 

tl 

II 

II 

3 6  l x l O " 3 

II 

II 

It 

251+xlO"3 

tl 

G 
g 

/ 2 
g/cm s 

6 . 7 

II 

2 0 . 1 

II 

2U.0 

It 

73 

tl 

82 

2lt.O 

II 

73 

It 

2lt.O 

73 

~Gi 

ι 2 
g /cm s 

2 5  5 

135 

2 5  5 

135 

2 5  5 

135 

25 5 

135 

20 6 

2 5  5 

135 

25 5 

135 

135 

135 

Γ 
g 

g / s 

3 3  3 

3 3 . 3 

99 

99 

119 

119 

357 

360 

399 

119 

120 

359 

361 

119 

357 

r 
"1 

g / s 

126 

667 

126 

667 

126 

667 

126 

667 

1018 

126 

667 

126 

667 

667 

667 

r
1 

g 

g / s 

2U.9 

37 

92 

96 

120 

120 

359 

359 

ItOl 

112 

119 

361 

359 

116 

357 

A 
g / s 

129 

702 

133 

711 

13U 

685 

\3k 

722 

107U 

139 

695 

1I+7 

723 

695 

758 

r
x
/r 

g g 

0 . 7 5 

1 . 1 1 

0 . 9 3 

0 . 9 7 

1 . 0 1 

1 . 0 Í 

1 .006 

0 . 9 9 8 

1 .005 

0.91+1 

0 . 9 9 2 

1 .006 

0 . 9 9 7 

0 . 9 7 5 

1 .00 

Γ 1
Λ 

1.025 

1 .036 

1 .056 

1 .066 

1 .063 

1 .027 

1 .063 

1 .066 

1 .055 

1 . 1 0 1 

1.01+2 

1.165 

1 .085 

1.01+2 

1.11+ 

Γ Ί = Values ob ta ined from o r i f i c e r ead ings 
g j l 

r'i · · 
1
 β -,_ = V a l u e s o b t a i n e d from i n t e g r a t i o n o f v e l o c i t y p r o f i l e s . 



TABLE I I I 

- g 

MIXTURES 

Argonwater 

tl 

tl 

tt 

tl 

Argone thyl a lcoho l 

II 

tl 

II 

GEOMETRY: 

ROUND TUBE 

2 . 5 cm I . D . 

GAS DENSITY 

0 

g/cm J 

36.1xlO~3 

G 
g 

ζ 2 
g/cm s 

2I+.O 

tl 

73 

tl 

82 

2Ì+.0 

tl 

73 

tt 

Gn 

1 

/ 2 
g/cm s 

25.5 

135 

255 

135 

206 

25.5 

135 

255 

135 

( l  a ) 1 

0.115 

0.277 

0 .0301 

0.102 

0.127 

0.108 

0.280 

0.0303 

0.098 

( l  α ) 

0.115 

0.280 

0.0375 

0.117 

0.121+ 

0.115 

0 .289 

0.0183 

0.098 

( l  α ) V (lα·) 

1.00 

0 .99 

0 .80 

0 .87 

1.02 

0 .9^ 

O.97 

1.66 

1.00 

(1  α) 1 
Values obtained from integration of phase distribution profiles 

(1  a) Values obtained from direct measurement of the liquid holdup. 



TABLE IV 

PHYSICAL PROPERTIES 

FLUID 

Water 

tl 

(°) 
Ethyl Alcoholv ; 

Argon 

tt 

It 

Steam 

Ρ 

°C 

18 

285.5 

20 

18 

18 

18 

285.5 

P 

kg/cm (a) 

up t o 22 

70 

up t o 22 

21.8 

11.5 

6.15 

70 

Ρ 

o 

g /cn r 

1.00 

0.lk2{k) 

0 . 7 8 9 ( 6 ) 

3 6 . 1 x l O  3 ( l ) 

I 8 . 8 x l 0 " 3 ( l ) 

 3 ( 1 ) 
10.0x10 3K ' 

3(1+) 
359x10 ■5V ; 

μ 

poise 

1 . 0 6 x l 0 " 2 ( 2 ) 

9.5 « 1 < Γ ^ > 

1 . 2 0 x l 0  2 ( 6 ) 

i+(3) 
2.27x10 V J ' 

-k(3) 
2.25x10 V J ; 

It 
2.21+xlO 

1+ 
2.05x10 

Y 

dyn/cm 

T3.0<2><+> 

1 8 . 2 ( 5 ) 

2 2 . 5 < 6 > 

(+) 

(°) 

(1) 

(2) 

(3) 

(k) 

(5) 

(6) 

At atmospheric pressure 

Alcohol Aethyl icus anhydricus 99·9$ by v o l .  Carlo Erba  Milano 

Tables of thermodynamic and Traspor t P r o p e r t i e s by S. H i l s e n r a t h e t a l . 

Pergamon Press  i960 . 

Handbook of Chemistry and Physics  C D . Hodgman ed. l+0th, 195859. 

Nuclear Enginnering Handbook  H. E ther ing ton Ed. 1 s t , 1958. 

VDI  Wasserdamptafeln by E. Schmidt VDI 6th Ed i t ion (Kcal ; a t ; ) 

Spr inger Ver lag , R. Odernburg, I 963 . 

S .S. Kuta te ladze  Heat Tras fe r in condensat ion and b o i l i n g  AECTR 

3770  Appendix I . 

I n t e r n a t i o n a l C r i t i c a l Tables  Mc Graw H i l l Book Company  New York 1933. 
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TABLE V 

ro 
VO 

MIXTURES 

Argon-water 

tl tl 

Argon-a lcohol 

tl tl 

Argon-water 

Geometry : 

Round Tube 

2.5 cm I . D . 

It 

It 

tl 

1.5 cm I . D . 

Gas d e n s i t y 

0 
g/cm 

lO.OxlO - 3 

36.1xlO~3 

3 6 - l x l O " 3 

25.1+xio"3 

36 .1x10" 3 

PHASE DISTRIBUTION 

G 
g 

g/cm s 

6 + 20 

2I+ + 82 

2lt + 73 

2lt + 73 

-

h 
, 2 

g/cm s 

25 + 135 

25 -» 206 

25 * 135 

135 

-

FILM THICKNESS 

G 
g 

, 2 g/cm s 

1+ * 26 

l6 + 200 

-

-

16 -f 82 

\ 

g/cm s 

22 + 119 

18 + 206 

-

-

22 * 206 



TABLE VI 

Argonwater mixture; round tube 2,5 cm I.D. 

3 3 
= 36.1 x 10 g/cm 

G 
g 

, 2 
g/cm s 

I 6 . O 

II 

II 

II 

II 

II 

II 

II 

11 

II 

2 1 . 3 

II 

II 

II 

II 

tt 

II 

II 

II 

II 

2 7 . 7 

tt 

II 

II 

tl 

It 

δ
ι 

, 2 
g/cm s 

1 0 . 1 

2 2 . 1 

2 8 . 5 

3 8 . 2 

51 

66 

91 

119 

157 

206 

1 8 . 1 

2 2 . 1 

2 8 . 5 

3 8 . 2 

51 

66 

91 

119 

157 

2θ6 

I 8 . I 

2 2 . 1 

2 8 . 5 

3 8 . 2 

51 

66 

s 

cm 

5 . 6 x l O  2 

6 . 2 " 

7.1+ " 

9 . 2 " 

1 1 . 0 " 

1 2 . 7 " 

1 5 . 5 " 

1 6 . 5 " 

17.1* " 

1 8 . 8 " 

1+.30 " 

1+.93 " 

5 .7 " 

7 . 3 " 

9 .2 " 

1 1 . 3 " 

1 2 . 2 " 

1 3 . 3 " 

I 5 . O " 

I 6 . I " 

3.Ì+3 " 

3.9I+ " 

I+.76 " 

6 . 1 " 

7.I+ " 

8 . 9 " 

G 
g 

, 2 
g/cm s 

27 7 

II 

II 

II 

3 5 . 0 

II 

II 

II 

II 

II 

II 

II 

II 

II 

1+7 

II 

II 

II 

II 

II 

II 

tl 

II 

II 

62 

tl 

\ . 

, 2 
g/cm s 

91 

119 

157 

206 

1 8 . 1 

2 2 . 1 

2 8 . 5 

3 8 . 2 

51 

66 

91 

119 

157 

206 

1 8 . 1 

2 2 . 1 

2 8 . 5 

3 8 . 2 

51 

66 

91 

119 

157 

206 

2 2 . 1 

3 8 . 2 

s 

cm 

1 0 . 0 x 1 0 ~ 2 

IO .7 

I I . 7 

1 3 . 0 

2 . 7 6 

3 . 2 1 

377 

i t . 67 

58 

7  3 5 

8 .0 

8 .5 

93 

1 0 . 7 

2 . l i t 

2.1t5 

2 . 9 6 

372 

lt.lt7 

52 

59 

6 . 2 

6 . 9 5 

77 

1 .88 

2 . 5 5 

II 

II 

II 

II 

II 

II 

II 

11 

II 

u 

II 

M 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

G 
g 

, 2 
g/cm s 

62 

II 

II 

II 

II 

II 

82 

II 

II 

II 

II 

II 

II 

II 

II 

95 

II 

II 

II 

It 

II 

II 

II 

II 

h 
, 2 

g/cm s 

51 

66 

91 

119 

157 

206 

2 2 . 1 

2 8 . 5 

3 8 . 2 

51 

66 

91 

119 

157 

206 

2 2 . 1 

2 8 . 5 

3 8 . 2 

51 

66 

91 

119 

157 

206 

s 

cm 

2.90X10""2 

3 . 3 8 

3 .96 

U.35 

1+.86 

51+5 

1 .26 

1.1+9 

1 .71 

1 . 9 1 

2 . 2 0 

2 . 5 3 

2 . 9 3 

3 . 3 9 

3.9U 

0 . 9 2 

1 .05 

1.25 

1 . 5 1 

1 .68 

1.91+ 

2.21+ 

2 . 6 7 

3 . 2 7 

II 

II 

II 

II 

II 

II 

II 

II 

II 

IT 

It 

II 

11 

II 

II 

II 

II 

îl 

II 

II 

II 

II 

II 

 30 



TABLE VI ( c o n t . ) 

G 
, g 2 g/cm s 

127 
tl 

tl 

II 

II 

II 

II 

II 

172 
II 

II 

II 

II 

II 

II 

II 

200 
II 

II 

II 

II 

% 
g/cm s 

2 2 . 1 

28 .5 
38.2 

51 
66 

91 

119 

157 
2 2 . 1 

28 .5 
38.2 

51 
66 

91 

119 
157 

2 2 . 1 

28.5 
38.2 

51 
66 

s 

cm 

0.56x1ο""2 

o. 6ι " 
0.69 " 
0.78 " 

0 .83 " 
1.00 " 

1.12 " 

1.35 " 
0.36ο " 

0.377 " 

0.395 " 

0.1+17 " 
0.1+50 " 

0.1t60 " 

0.57 " 
0.66 " 

0.286 " 

Ο.309 " 

0.31Ι+ " 

Ο.325 " 

0.31+3 " 
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TABLE VII 

Argonwater m i x t u r e ; round tube 2 .5 cm I . D . 

Ρ = lO.OxlO"3 g/cm3 

G 
g 

, 2 
g/cm s 

1+.52 

II 

II 

II 

II 

7.6 

tl 

II 

II 

II 

12.9 

II 

It 

tl 

II 

22.6 

It 

tl 

II 

II 

26.3 

II 

II 

II 

II 

δ
ι 

2 
g/cm s 

22 .1 

38.2 

66 

91 

119 

2 2 . 1 

38.2 

66 

91 

119 

22 .1 

38.2 

66 

91 

119 

22 .1 

38.2 

66 

91 

119 

22 .1 

38.2 

66 

91 

119 

s 

cm 

8 . 9 x l 0 " 2 

11.6 

1I+.7 

17.5 

18 .6 

5.8 

8.2 

10.8 

12. i+. 

13.0 

3.70 

53 

6.8 

8.1 

8.1t 

2.28 

3.37 

1+.Ì+8 

1+.66 

5.0 

I . 8 9 

2.7Ì+ 

3.78 

1+.12 

1+.51* 

It 

tt 

II 

tl 

II 

II 

II 

It 

It 

tl 

It 

II 

II 

II 

It 

II 

tt 

tl 

tl 

II 

tl 

II 

tt 

It 
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TABLE VIII 

Argon-water mixture; round tube 1.5 cm I.D. 

ρ = 36.1 χ 10~3 g/cm3 

g 

G G s 
g 1 

' M Ι Ι ι . n | « . , || n , |i . , 

2 2 
g/cm s g/cm s cm 

16.0 22.1 
38.2 

II 

tl 

91 
206 

27.8 22.1 
38.2 
91 

206 
1+7 22.1 

tt 

II 

tt 

38.2 
91 

206 
82 22.1 

38.2 

91 
206 

3.78xlO~2 

5 

9-
2 
2 

3. 
6 
8 
1 
2 
k. 
5 

.6 
2 

.1+ 

57 
79 
6 
1 

.63 
1+7 
22 
0 

0.87 
1. 
1 

2. 

23 
.88 
63 

tl 

I I 

It 

I I 

I I 

tl 

I I 

I I 

I I 

I I 

t l 

It 

tt 

tt 

I I 
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TABLE IX 

Argonwater mix ture ; round tube 2 .5 cm I . D . 
? 2 

G s 2I+.O g/cm s ; G = 25·5 g/cm s 
g -*■ 

Ρ = 36.1xlO~3 g/cm3 

g 

y 

cm 

I.25O 

O.87I 

O.629 

O.376 

O.21I+ 

0 .120 + 

0.0695+ 

0.0395 + 

0.0250+ 

0 . 0 l 6 5 + 

0.0065+ 

ΔΡ 

Ρ 
2 

dyn /cm 

It 
2.05x10 

1.81+ »' 

1.57 " 

1.25 " 

1.21 " 













G 
g 
, 2 

g/cm s 

3I+.7 

33.2 

298 

23.0 

I 6 . 5 

11.3 

6.2 

2.71+ 

Ο.96 

0.1+2 

Ο.Ο68 

G i 

/ 2 
g/cm s 

3.2 

3.1+2 

1+. 28 

9 .3 

23 . Il· 

57 

91+ 

128 

130 

117 

61 

l α 

Ο.ΟΟ285 

Ο.ΟΟ382 

Ο.ΟΟ53 

0.0161+ 

Ο.Ο63 

0.157 

0.355 

Ο.62 

Ο.83 

O.9I 

0 .97 

S 

0.81l· 

1.03 

1.03 

1.15 

I . 3 2 













Note; the points signed with + in the "y" column were obtained with "the 

film sampling probe"(1+). The corresponding lα values were derived 

with the assumption S = 1. 

Integral values obtained with "the film sampling probe": 

y ' 

cm 

0.013 

0.020 

0.030 

0.01+9 

0.090 

O.I5O 

r i 

g / s 

6 . 1 

12.5 

22 .5 

1+0.8 

70 

93 

Γ 
g 

g / s 

Ό.ΟΟ68 

0.029 

0.103 
0.50 

2.1+0 

7.3 
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TABLE Χ 
Argon-water m i x t u r e s ; round tube 2 .5 cm I . D . 

G = 2 ^ . 0 g/cm2s ; G = 135 g/cm2s 
g 1 

ρ = 36 .1x lO" 3 g/cm3 

y 

cm 

1.250 

0 .871 

0.629 
Ο.376 
0.2lll· 

0 .1375* 
0 .1025 + 

0.0650+ 

0.0375 + 

0.0190+ 

0.0065+ 

AP 
Ρ 

2 
dyn/cm 

Ι . Ι ^ χ Ι Ο 5 

1.12 " 

1.03 " 

0 .93 " 

0.77 " 
-

-

-

-

-

— 

G 
g 

, 2 g/cm s 

1+1+.6 

I to .6 

3 5 - 6 

25 .2 

I 5 . 8 

8 . 1 

6.7 
5.2 

3.30 

1.68 

0 .73 

G l 
2 

g/cm s 

79 

89 

95 

137 
182 

189 
211 

191 

19U 

197 

125 

l-0( 

O.O69 
O.078 

0 .101 

0 .201 

O.367 

O.459 
0 .53 

O.57 
0.68 

0.80 

0.98 

s 

1.15 
1.07 
1.16 

1.27 
1.U0 

-

-

-

-

-

" 

Note: the points signed with + in the "y" column were obtained with "the 
film sampling probe"(^'. The corresponding l-α values were derived 
with the assumption S = 1. 
Integral values obtained with "the film sampling probe" 

y ' 

cm 

0.013 

0.025 
O.05O 

0:080 

0.125 
O.15O 

Γ 
1 

g / s 

12 .6 

30 .8 

68 

111 

178 
211 

Γ 
ff 

g / s 

0.0071+ 

O.I63 

Ο.79 

1.97 

1+.15 
5 .6 
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TABLE XI 

Argon-water m ix tu re ; round tube 2.5 cm I .D . 

2 ~ 2 
G = 73 g/cm s; G = 25-5 g/cm s 

ρ = 36.1xlO"3 g/cm3 

y 

cm 

1.250 

0.871 

0.629 
0.376 
0.211+ 

0 .125 + 

0.0750+ 

0.0375* 
0.0210+ 

0.01504 ' 

0 .0065 + 

ΔΡ 
Ρ 

2 
dyn/cm 

1.57x105 

1.50 " 

1.31+ " 
1.12 " 

0 .93 " 
-

-

-

-

-

-

G 
g 

2 
g/cm s 

99 

91+ 
86 

76 
61+ 

62 

51+ 

35-5 
20.8 

l l+ . l 

2.25 

G i 
, 2 g/cm s 

13.7 

11+.5 
15.3 
17.6 

18.2 

25-3 

36.5 
78 

1I+7 
230 

196 

l - α 

O.OO78 

O.OO75 
O.OO7O 

O.OO92 

O.OO9I+ 

O.OII+5 

0.0237 

0.073 

0.203 

O.37O 
O.76 

s 

1.57 

1.35 
1.10 

1.10 

0.93 
-

-

-

-

-

— 

Note: the points signed with + in the "y" column were obtained with "the 
film sampling probe"'*'. The corresponding l-α values were derived 
with the assumption S = 1. 
Integral values obtained with "film sampling probe" 

y ' 

cm 

0.013 

0.017 

0.025 
0.050 

0.100 

O.I5O 

' l 

g /s 

I 9 . 8 

26.9 

35-9 
50 

63 

71 

Γ 
ff 

g / s 

0 .231 

Ο.67 

1.95 

8.7 

28.9 

51 
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TABLE XII 

Argon-water mixture; round tube 2.5 cm I.D. 

G = 73 g/cm2s ; G^ = 135 g/cm2s 

.o = 36.1x1ο"3 g/cm3 
O 

y 

cm 

1.250 

0.871 

0.629 
0.376 

0.211+ 

0 .125 + 

0 .075 + 

0.044 + 

0 .029 + 

O.Ol65+ 

0.0065 + 

Λ Ρ 
Ρ 

dyn/cm 

11·.31x105 

4 .31 " 
4 .11 " 

4 .07 " 
2 .80 " 

-

-

-

-

-

— 

G 
g 
ζ 2 g/cm s 

107 
101 

91 
80 

62 

50 

42 .9 

19 .7 
1 3 . 1 

4 .33 
0 .48 

G l 
, 2 

g/cm s 

100 

110 

125 
144 

129 
146 

190 

255 

305 

325 

275 

l - α 

O.O36O 
0.0411 

O.O52 

O.O63 

O.O7I 
O.O94 

O.I38 

O.316 

0 .463 

0 .73 

0.95 

S 

1.12 

I . 0 9 
1.10 
1.04 

1.02 

-

-

-

-

-

— 

column were obtained with "the 
film sampling probe"^H). The corresponding l-α values were derived 
with the assumption S = 1. 

Note: the points signed with + in the "y1 
."00. 

In tegra l values obtained with "film sampling probe" 

y ' 

cm 

0.013 
0.020 

Ο.Ο38 

O.O5O 

0.100 

O.I5O 

r i 

g / s 

27-7 

45.5 

87 
111 

180 

229 

Γ 
g 

g / s 

0 .049 
0.283 

2 .09 

3.89 

17.9 

35.5 
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TABLE XIII 

Argon-water mixtures ; round tube 2.5 cm I.D. 

g = 82 g/cm
2s ; G = 206 g/cm s 

ρ = 36-lxlO-3 g/cm3 
g 

y 

cm 

1.250 

O.87I 

Ο.629 
Ο.376 
0.214 

O.I5O 

0.115 + 

o.o6o+ 

0.035 + 

0 .025 + 

O.Ol65+ 

0.0065 + 

ΔΡ 
Ρ 

dyn/cm 

6.9IXIO5 

7.O 
7.4 

7.0 

5 .1 
3.78 
-
-

-

-

-

-

tl 

It 

It 

II 

II 

G 
g , 2 g/cm s 

126 

117 
106 

91 
72 
61 

60 

36 

19.5 
15.2 

8.6 

1.53 

G l 
/ 2 g/cm 

150 

171 
210 

240 

215 
196 

213 
242 
316 

332 

376 

312 

l - α 

0,0474 

O.056 

0.073 
O.094 

O.099 
0.111 

0.114 

0.197 

0.369 
0.441 

0 .61 

- 0 . 8 8 

s 

1.16 

1.11 

1.11 

1.080 

1.019 

1.083 
-

-

-
-

-

— 

Note: the points signed with + in the "y" column were obtained with "the 
film sampling probe"'^>. The corresponding l-α values were derived 
with the assumption S = 1. 

Integral values obtained with "film sampling probe" 

y ' 

cm. 

0.013 
0.020 

0.030 

0.040 

O.O8O 

O.I5O 

Γ 
1 

g / s 

31.4 

52 

77 
101 

173 

277 

Γ 
g 

g/s 

O.I54 

Ο.63 

1.79 
3.28 

l 4 . 0 

46.7 
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TABLE XIV 

Argon-water mixture; round tube 2.5 cm I.D. 

G = 145·5 g/cm2s ; G = 4.5 g/cm2s 

Ρ = 36.1x1ο"3 g/cm3 

y 

cm 

1.250 
O.87I 
O.629 
O.376 
0.214 
0.073+ 

0.038+ 

0.0205+ 

0.0065+ 

G g 
, 2 

g/cm s 

184 
175 
166 
152 
144 
-
111 

94 
43.3 

Gl 
, 2 g/cm s 

4:03 
3.4l 
3.50 
3-54 
3.40 
6.3 
6.0 
6.7 
75 

Note: the points signed with + in the "y" column were been obtained 
with the "film sampling probe" . 

Integral values obtained with "the film sampling probe" 

y' 
cm 

0.013 
O.O28 
0.048 
O.O98 

Γ 
1 

g /s 

O.8I 
0.88 
O.98 
1.23 

Γ 
ff 

g/s 

0.455 
1.55 
3.20 
-
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TABLE XV 

Argon-water mixture; round tube 2.5 cm I .D. 
? 2 G = 6 . 7 g/cm s; 3Ί = 25·5 g/cm s 

ce ι g 
Ρ = 10.0x10 -g/cm 

y 

cm 

1.250 

0.871 
O.629 
O.376 
0.214 

0 .125 + 

0 .085 + 

0.050 + 

0.0215+ 

0.0065+ 

AP 
Ρ 2 dyn/cm 

5 · 5 Χ 1 0 3 

4.65 " 
4.07 " 
4 . 4 l " 

6.3 " 
-

-

-

-

-

G 
fi 2 

g/cm s 

10.4 

9.4 
8.0 

5.8 
3.24 

2.04 

I . 62 
0.44 

0.0212 

O.OO77 

) 2 g/cm s 

2 .11 
2 .56 

3.99 

12.9 
31.4 

58 

75 
92 

104 

37.5 

l - α 

0.059 
O.O29O 
O.OI8O 

O.O6O 

O.I56 

0.221 

0.423 
0 .68 

O.96 

0.99 

s 

9.8 

8.5 
6 .1 

2.85 
1.91 
-

-

-

-

— 

Note : the points signed with + in the "y" column were obtained with 
"the film sampling probe"(4). The corresponding l - a values 
were derived with the assumption S = 1. 
Integral values obtained with "the film sampling probe" 

y ' 

cm 

0.013 
0.030 

O.070 

0.100 

O.I5O 

4 i 

g / s 

3.78 
17-4 

45.1 
61 

81 

Γ 
g 

g / s 

Ο.ΟΟΟ78 
0.0049 

0.137 
0.364 

1.10 
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TABLE XVI 

Argon-water m i x t u r e ; round tube 2 .5 cm I . D . 

g 
G = 6 . 7 g /cm 2 s ; G. = 135 g/cm2s g I o 

Ρ = 10.0x10 g/cm3 

O 

y 
cm 

1.250 

0 .871 

O.629 

O.376 
0.214 

0 . l 6 7 5 + 

0 .123 + 

0 . 0 7 5 + 

0 .0375 + 

0.0190+ 

0.0065 + 

ΔΡ 
Ρ 2 

dyn/cm 

0 . 7 3 x l 0 5 

0.88 " 

O.97 " 

I . 0 9 " 
0 .86 " 

-

-

-

-

— 

-

G 

g/cm s 

14 .9 
1 4 . 1 

11 .6 

9 .5 
4.07 

2 .99 
2.14 

1.60 

0.58 

0 .33 
0.062 

g/cm s 

51 
68 

96 

156 
196 

210 

207 

199 
192 

185 

117 

l - α 

0.0419 

0.057 

0 .097 
O.206 

O.367 

O.387 
O.492 

O.55 

O.7I 
O.85 

0 .95 

s 

I . 2 6 

1.27 
I . 3 0 

I . 3 8 

1.21 

-

-

-

-

-

-

Note : the points signed with + in the "y" column were obtained with 
"the film sampling probe"v^/. The corresponding l-α values 
were derived with the assumption S = 1. 

Integral values obtained with "the film sampling probe" 

y ' 

cm 

0 .013 

0.025 
0.050 

0.100 

0.146 

Ο.189 

' 1 

g / s 

11 .8 

28 .8 

65.4 

138 

206 

268 

Γ 
g 

g / s 

0.0063' 
0 .0364 

0.148 

0.74 

1.45 

2.35 
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TABLE XVII 

Argon-water m ix tu re ; round tube 2.5 cm I .D . 

G = 20 .1 g /cm 2 s ; (L = 25-5 g/cm s 
g 

Ρ = 10.0x10 
g 

-3 g/cm" 

y 

cm 

1.250 

0.871 

O.629 
O.376 
0.214 

0 .125 + 

0.075 + 

0.037+ 

0 .021 + 

0.0155+ 

O.OO65 

Δρ 
Ρ 

dyn/cm 

6.51x10 
6.0 " 

5 .1 " 
3.78 " 
2.86 " 
-

-

-

-

-

G 
g 
, 2 g/sm s 

29.8 
27.8 

24.9 
20.2 
15.6 

13.0 

7-7 
3.12 

1.41 

1.00 

0.208 

G i 
2 

g/cm s 

8.3 

8.7 

8.3 
9.3 

12.8 

32.0 

72 

152 

I87 

194 

127 

l - α 

0.00333 

0.00355 
0.00342 

O.OO498 

O.OO99 
0.0240 

O.O853 

O.327 
O.54 

O.65 

O.82 

S 

1.19 
i . i 4 

1.03 
1.08 

1.22 

-

-
-

-

-

-

Note: the points signed with + in the "y" column were obtained with 
"the film sampling probe"(4). The corresponding 1- α values 
were derived with the assumption S = 1. 
Integral values obtained with the "film sampling probe" 

y ' 

cm 

0.013 
O.OI8 

0.024 

O.O5O 

0.100 
O.I5O 

r i 

g / s 

12.8 

20.4 

29.Ο 

59 

85 

91+ 

g 
g / s 

0.0209 
O.O6O 

0.125 
Ο.74 

3 .6I 

8.3 
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TABLE XVIII 

Argon-water m i x t u r e ; round tube 2 .5 cm I . D . 

G = 2 0 . 1 g / cm 2 s ; 5 = 135 g/cm2s 
g ι 

Ρ = lO.OxlO - 3 g/cm3 

O 

y 

cm 

1.250 

0 .871 
0.629 
0.376 
0.214 

0 .080 + 

0.045 + 

0.0215 + 

0.0065 + 

ΔΡ 
Ρ 

dy/cm 

1 .87x l0 5 

2 .10 " 

2.50 " 

3 .01 " 

2 .42 " 

-

-

-

— 

G 
g 

2 
g/cm s 

33.4 

3O.9 

26 .7 
22 .4 

I 7 . I 

6 .3 

3.67 
1.12 

O.26I 

G i 
, 2 g/cm s 

46.8 

60 

93 

137 
161 

253 
298 

291 
236 

l - α 

O.OI65 
O.O272 

0.0400 

O.O682 

0.109 
O.288 

0.448 

0 .72 

0 .91 

S 

1.20 

1.43 

1.19 
1.14 

1.29 
-

-

-

-

Note: the points signed with + in the column "y" were obtained with 
"the film sampling probe"^). The corresponding l-α values 
were derived with the assumption S = 1. 

Integral values obtained with "the film sampling probe" 

y ' 

cm 

0.013 
0.030 

O.O6O 

0.100 

Γ 
1 

g / s 

23.8 

62 

129 

203 

Γ 
g 

g / s 

0.0264 

0.173 
1.01 

2 .87 
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TABLE XIX 

Argon-water mix tu re ; round tube 2 .5 cm I .D . 

G = 2 2 . 6 g /cm 2 s ; G = 91 g/cm s 
g --'· 

Ρ = lO.OxlO"3 g/cm3 

g 

y 

cm 

1.250 

0 .371 

0.629 
0.376 
0.214 

Λ Ρ 
Ρ 

dyn/cm 

1.77x105 

1.75 " 
1.69 " 

1.91 " 
1.69 " 

G 
g 

ζ 2 g/cm s 

34.9 

33.5 
29.2 

23-9 
17.8 

G l 
, 2 g/cm s 

32.4 

38.0 

43 .1 

76 
104 

l-α 

0.0090 

0.0121 

0.0182 

0.0352 

0.066 

S 

0.98 

I.O8 

1.12 

1.14 

1.22 
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TABLE XX 

Argon-alcohol mixture; round tube 2.5 cm I.D. 
- 2 — 2 
G = 24.0 g/cm s; G., = 135 g/cm s 

Ρ = 25.4xl0"3 g/cm3 

S 

y 
cm 

1.250 
0.871 
0.629 
0.376 
0.214 
O.I5O 
0.135+ 
0.100+ 

0.0650+ 
o.o4oo+ 

0.0240+ 

0.0155+ 
0.0065+ 

Λ Ρ Ρ 
dyn/cm 

16.8x1ο1* 
18.3 " 
19.3 " 
18.0 " 
12.7 " 
9-7 " 

-
-
-
-
-
-
— 

G g 
/ 2 g/cm 

37.9 
35-2 
31.3 
25.8 
20.6 
I6.7 
14.7 
11.4 
7.2 
4.3 
1.7 
Ο.89 
0.137 

Gl 
, 2 g/cm s 

97 
113 
136 
156 
143 
149 
149 
156 
157 
171 
169 
186 
103 

l-α 

Ο.Ο82 
Ο.Ο96 
O.I28 
O.I68 
O.I96 
Ο.266 
0.247 
0.307 
0.411 
Ο.56 
0.77 
Ο.87 
Ο.96 

S 

I.O8 
1.03 
1.05 
1.04 
I.09 
I.26 
-
-
-
-
-
-
-

Note: "y" column were been obtained with the points signed with + in the 
the "film sampling p r o b e " ^ ' . The corresponding l - a values were 
derived with the assumption S = 1. 

In t eg ra l values obtained with "the film sampling probe" 

y' 
cm 

0.013 
O.OI8 
0.030 
0.050 
O.080 
0.120 
O.I5O 

r 
1 g/s 

I.08 
I.82 
3.45 
6.2 
9.9 
I5.O 
18.6 

Γ 
g g/s 

_ 
-
1.99x1ο"2 
9.0 
26.4 " 
63 " 
98 

- 45 -



TABLE XXI 

Argon-alcohol mixture; round tube 2.5 cm I.D. 
- 2 2 
G =73 g/cm s; G. = 135 g/cm s g χ 

ρ = 25.4x10"3 g/cm3 

y 

cm 

1.250 

0.871 

Ο.629 
Ο.376 
0.214 

O.I5O 

0 .095 + 

0.065 + 

o.o4oo+ 

0.0240+ 

0.0155 + 

0.0065+ 

ΔΡ 
Ρ 

dyn/cm 

56x10 

55 " 
60 " 

59 " 
60 " 

54 " 

-

-
-

-

-

-

G 
g 

/ 2 g/cm s 

87 
85 
81 

77 
68 

65 

65 
61 

60 

52 

43.2 

34.7 

G i 
, 2 g/cm s 

127 

125 
156 

159 
194 

178 

171 
129 

87 
46 

28 .3 
18.2 

l - α 

0.049 
0.048 

0.064 

O.066 

O.089 
0.084 

0.079 
O.063 
0.044 

0.0280 

O.0206 

O.OI66 

S 

I . 0 9 

1.07 
1.11 

1.06 

1.07 

1.03 
-

-

-

-

-

-

Note: the points signed with + in the "y" column were been obtained 
with the "film sampling probe"(4). The corresponding l-α values 
were been derived with the assumption S = 1. 

Integral values obtained with the "film sampling probe" 

y ' 

cm 

0.013 
O.OI8 

0.030 

O.O5O 

O.O8O 

0.110 

rx 
g/s 

O.I9O 

Ο.3Ο3 
Ο.74 

2.13 
5.2 

9.3 

Γ 
g 

g / s 

Ο.361 

0.53 

1.03 

I . 9 9 
3.47 
5.0 
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TABLE XXII 

Argon-a lcohol m i x t u r e ; round tube 2.5 cm I . D . 

G = 2 4 . 0 g / cm 2 s ; G = 25.5 g/cm2s 

P„ = 3 6 - l x l O - 3 g/cm3 

y 

cm 

1.250 

0 .871 

0.629 
0.376 
0.214 

0.150 

0 . 1 3 5 + 

0.100 + 

0 .065 + 

o.o4o+ 

0.0240 + 

0 .0155 + 

0.0065 + 

Δ Ρ 
Ρ 

dyn/cm 

k 3.27x10 

3 ·18 " 

2.96 " 

2 .6ο " 

I . 9 8 " 

I . 6 3 " 
-

-

-

-

-

-

-

G 
g 

2 
g/cm s 

35.8 

32.5 
30 .1 

24 .7 

20 .7 
17 .4 

16 .3 
13 .6 

8 . 1 

4.55 
0.4o 

0.108 

0.0138 

G l 
2 

g/cm s 

I 6 . 7 
I 9 . 8 

2Ο.5 
25 .6 

2 5 . I 
28 .4 

32 .1 

40 .6 

50 
68 

75 

75 

29.9 

l - α 

0.0232 

Ο.Ο286 

O.0306 

0.0462 

O.056 

O.081 

O.083 
0.120 

0.220 

0.404 

Ο.89 

Ο.97 

Ο.99 

S 

1.11 

1.06 

1.01 

1.02 

I.O6 

1.17 
-

-

-

-

-

-

" 
Note: t h e p o i n t s s igned wi th + in t h e "y" column were ob t a ined w i th " the 

f i lm sampling p r o b e " ( Ό . The corresponding l -α va lues were de r ived 
w i th t h e assumption S = 1 . 

I n t e g r a l va lues o b t a i n e d wi th " the f i lm sampling p robe" 

y ' 

cm 

0.013 
O.OI8 

0 .030 

0.050 

O.O8O 

0.120 

O.I5O 

L 

1 
g / s 

3.02 

5.9 
12.8 

23 .2 

34 .2 

45.7 

57 

Γ 
g 

g / s 

0.00144 

0.0056 

0.0425 

0.74 
2 .56 

6.5 

10 .0 

- 1+7 -



TABLE XXIII 

Argonalcohol mix tu re ; round tube 2 .5 cm I .D . 

G = 24.0 g /cm s s ; 
g 

Ĝ^ = 135 g/cm¿s 

ρ = 36.1xlO~3 g/cm3 

g 

y 

cm 

1.250 

0.871 

0.629 

0.376 

0.214 

0.135
+ 

0.100
+ 

0.065
+ 

o.o4o
+ 

0.024
+ 

0.0155
+ 

0.0065
+ 

ΔΡ 
Ρ 

dyn/cm 

1.39X10
5 

1.47 " 

1.45 " 

1.23 " 

0.85 " 















G 
g 

, 2 
g/cm s 

40.1 

36.4 

33.2 

26.4 

21.0 

14.7 

11.9 

75 

4.24 

1.47 

0.92 

Ο.163 

G
i 

2 
g/cm s 

112 

129 

146 

154 

133 

143 

145 

139 

152 

160 

148 

85 

lα 

0.128 

O.I52 

O.I88 

Ο.234 

Ο.25Ο 

Ο.3Ο8 

' 0.357 

Ο.476 

O.6O 

Ο.82 

0.88 

Ο.96 

S 

1.15 

1.10 

1.15 

1.15 

1.15 















Note: the p o i n t s s igned wi th + in the "y" column were ob ta ined with " the 
f i lm sampling p r o b e " ( 4 ) . The corresponding l  α va lues were d e r i v e d 
with t h e assumption S = 1. 

I n t e g r a l values ob ta ined wi th " the f i lm sampling probe" 

y' 

cm 

0.013 

O.OI8 

0.030 

O.O5O 

O.O8O 

0.120 

1 0.150 

r
i 

g/s 

8.5 

14.3 

29.Ο 

52 

83 

125 

155 

Γ 
g 

g/s 

O.OI65 

Ο.Ο52 

O.I88 

Ο.83 

2.52 

6.0 

9.1 
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TABLE XXIV 

Argon-alcohol mixture; round tube 2.5 I .D. 
G = 73 g/cm s G-L = 25·5 g/cm s 

Ρ = 36.1x1ο"3 g/cm3 

g 

y 

cm 

1.250 
O.87I 
O.629 
O.376 
0.214 
0.135+ 
0.100+ 

0.065+ 
o.o4o+ 
0.024+ 

0.0155+ 

0.0065+ 

ΔΡ Ρ 
2 dyn/cm 

1.47x105 

1.42 " 
I.36 " 
1.30 " 
1.19 " 
-
-
-
-
-
-
-

Gi 
, 2 g/cm s 

25.5 
26.9 
27.3 
33-5 
32.5 
28.7 
34.5 
36.2 
24.6 
16.0 
11.4 
9.0 

G g 
2 g/cm s 

86 
84 
81 
74 
70 
65 
74 
59 
60 
54 
44.2 
34.0 

l-α 

O.OI85 
0.0203 
O.O209 
O.O254 
O.0258 
O.OI97 
O.O209 
O.O272 
O.OI83 
0.0133 
0.0117 
0.0120 

S 

1.39 
1.42 
1.1(0 
1.25 
1.24 
-
-
-
-
-
-
-

Note: the points signed with.+ in the 
film sampling probe ttC+) 

"y" column were obtained with "the 
The corresponding l-α values were derived 

with the assumption S = 1. 

In tegra l values obtained with "the film sampling probe" 

y' 

cm 

0.013 
O.OI8 
0.030 
O.O5O 
0.080 
0.120 
O.I5I 

ri 
g/s 

0.91 
1.35 
2.82 
6.6 
14.7 
24.7 
30..9 

Γ 
g 

g/s 
3.42 
5.1 
10.1 
I9.3 
32.5 
54 
68 
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TABLE XXV 

Argon-alcohol mixture; round tube 2.5 cm I.D. 

G 
? / 2 

= 73 g/cm s; G1 = 135 g/cm s 
-3 3 

Ρ = 36.1x10 g/cm 
g 

y 

cm 

1.250 

0.871 

0.629 
0.376 
0.214 

0.150 

0 .135 + 

0.100 + 

0.065 + 

o.o4o+ 

0.024 + 

0.0155* 
0.0065+ 

Δ Ρ Ρ 

A ι 2 dyn/cm 

4 .44xl0 5 

4.44 " 

4.40 " 
4.36 " 
4.12 " 

3.47 " 
-
-

-

-

«-

-

-

°8 
, 2 g/cm s 

94 

93 
84 

79 
67 
63 
61 

64 

50 

49 
31.2 

24.4 

5.4 

G l 

, 2 g/cm s 

129 
134 

148 

167 
183 
161 

162 

143 

99 
73 

59 
90 

96 

l - α 

0.064 

Ο.Ο68 

Ο.Ο78 
Ο.Ο96 

0.115 
0.112 

O.IO9 
Ο.Ο92 

Ο.Ο83 
0.064 

O.O8O 

0.144 

Ο.45 

S 

1.09 

I . 0 9 

1.05 

1.09 
1.04 

I.O8 

-

-

-

-

-

-

-

Note: the points signed with + in . the 
»"(4) 

"y" column were obtained with 
"the film sampling p r o b e " ^ i . The corresponding l - a values 
were derived with the assumption S = 1. 

Integral values obtained with "the film sampling probe" 

y» 

cm 

0.013 
O.OI8 

0.030 

0.050 

0.080 

0.120 
O.I5O 

r i 

g / s 

9.7 
13 .1 
18.6 

2 9 . I 

51 
93 

127 

Γ 
g 

g / s 

0.55 

1.49 
4.38 

11.8 

23.Ο 

41.6 

54 

- 50 -



I—=Q 
M 
X I 

B 
CS 
EV 
FP 
G 

HE 
L 
m 
M 

MS 
0 
Ρ 

ST 
τ 
VE 
W 

g 
ts 
ι 

stop valve 
control valve 

blower 
calming section 
electromagnetic valve 
liquid feeding pump 
gas line valve 
heat exchanger 
liquid line valve 
differential manometer 
manometer 

moisture separator 
orifice 
pump 
switch thermometet 
thermometer 
vent 
transparent window 

Subscripts 

gas 
test section 

liquid 

LIQUID 
TANK 

Pig. 1 - Schematic flow sheet of the circuit. 
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Fig. 4 - The sampling probe apparatus. 
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(cm χ IO"2 J Argon-water mixtur· ; round tube 2.5 cm I.D. 
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Fig. 9 - Film thickness τβ. average specific mass flowrate. 
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Fig.10 - Film thickness vs. average specific mass flowrate. 
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Argon-water mixture ; round tube 2.5 cm I.D. 
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