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TEMPERATURE AND THERMAL STRESS DISTRIBUTION IN SMOOTH 
AND FINNED CANNINGS DUE TO AXIAL FLUX VARIATIONSM 

1. INTRODUCTION 

Axial flux variations near the end plugs of fuel rods 
cause rather accentuated temperature variations, resulting 
in important thermal stresses. This paper deals with the 
determination of such temperature and thermal stress distri
butions. Special attention has "been paid to numerical meth
ods in order to handle empirical thermal neutron flux dis
tributions. For that purpose the theory has been programmed 
on a digital computer (ATEAS++). 

For the determination of the stresses, the classical 
theory of symmetrically loaded thin cylinders has been em
ployed. In appendix 2 a correction for finned cannings is 
presented. 

In chapter 6, the thermal stress distribution for 
an ORGEL type of canning (G Ί9), as calculated by ATEAS, 
is presented. 

2. TEMPERATURE DISTRIBUTION FOR GIVEN FLUX DISTRIBUTION 
The differential equation governing the axial heat 

transport in the canning can be written as (see appendix 1) 

— Ρ - m Τ = - -τ- α (1) 

dx
¿ η 

The homogeneous solution of (ï) is given by: 

Τ = A e** + Β e"*
1
* (2) 

As can be seen from (2), the homogeneous solution 

only plays a part near boundaries. The perturbation of the 

temperature due to the end plug levels out very fast, and 

it has been verified that only the particular integral of 

(ï) contributes to thermal stresses. 
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The particular integral of (ï) is given by the fol

lowing convolution integral (see appendix 1) 

+ <» 

(3) :(χ) = §5 ƒ q(y) e-m'x-yUy 
It is obvious that the contribution to the temperature 

at a place χ of a flux at a place y levels out with increasing 
| x-y| and the integral can be truncated at an appropriate 
value of j x-y| . 

For later convenience the following abbreviations are 
introduced: 

r x 
QM = ƒ q(y) e-m(x-y} dy (4) 

QP = ƒ Mq(y) e-m(y~x) dy (5) 
χ 

Equation (3) can now be written as: 

Τ = -^ ( QM + QP) (6) 

The integrals QM and QP can in some cases be cal
culated analytically. The purpose of this paper, however, 
is rather to develop a numerical method to handle empirical 
neutron flux distributions. In chapter 5 is explained, how 
by defining the flux level at discrete points χ. the temper
ature at any point χ can be computed from equation (6). 



3# THERMAL STRESSES FOR A GIVEN TEMPERATURE DISTRIBUTION 

In the classical theory for symmetrical loaded thin 

cylinders, the analogy of the elastic embedded beam is 

employed. This theory, which is given in handbooks on the 

subject (ref. 1 and 2), is repeated in appendix 2, in

cluding the correction for the temperature field and an 

approximate theory for finned cannings. It turns out that 

for finned cannings the differential equation governing 

the radial displacement of the canning wall is the same 

as for smooth cannings. 

¿ÍS + 4 /?
4
u = 4 /3

4
«aT (1) 

dx
4 

The homogeneous solution of this equation is dealt 

with in detail in handbooks on the subject (r§f. 1 and 2), 

It can be written as: 

u(x) = e~^
x
(A sin/3x + B cos/3x)+ e^

x
(C sin/3x + D cosßx) (2) 

As can be seen from (2), it is only related with 

boundary effects. The thermal stress problem due to axial 

temperature variations consists therefore rather in finding 

a particular integral of (ï), taking care of the righthand

side member. Eventually an homogeneous solution at the ends 

has to be added to satisfy the boundary conditions. 

The particular integral of equation (ï) is given by 

the convolution integral (see appendix 3 )
: 

u(x) = «aT(x) + || f ¿T(Z) φ [ β ! χ _ y, J 

dy' 
dy 

(3) 

Φ {β χ) = e~ßx
 (cosßx  sin/3x) 

From the displacement field, the moment M, the shear 

force Q and the hoop force Η are found by differentiating 

(see appendix 2). 



For convenience t h e fo l lowing a b b r e v i a t i o n s a r e i n t r o 

duced: 

TCM = fXi¿T(vl e-ß (xy) c o s / 3 (x_y) d y 

J  « dy ¿ 

r C p = ¡"¿Ibd e~ß (yx) c o s 0 (yx) dy 
Jx d y

¿ 

(4) 

(5) 

TSM = Γ^ΐίΐΐ e-ß (xy) sm,? (xy) dy (6) 
äy£ 

'χ dy 

T S P = f jLlizì. Q-ß (yx) s i n ^ ( y_ x ) d y ( 7 ) 

<L dv ¿ 

Fur thermore , i n o rde r to f a c i l i t a t e t h e a l g e b r a , complex 

f u n c t i o n s a r e i n t r o d u c e d : 

Φ (β x) = e~ßx (cos/9x  s inöx) 

t >
 ( 8 ) 

= (Re  Im) e  ^ x ( 1  ^ 

φ (/Sx) = e~^x (cos/3x + sin/3x) 

/ χ
 ( 9 ) 

= (Re + Im) e  / 3 x ( 1  ; j ) 

TM = TCM + j TSM (jo) 

TP = TCP + jTSP (11) 

The displacement field (3) can then be written as: 

u = α aT + || (TCM + TCP  TSM  TSP) (12) 

The d e r i v a t i v e s become: 

du ri Φ 1 

d l = a a fe  Íaa ( T C M  T C p ) (13) 



2 
■Mj = | a a | 3 (TCM + TCP + TSM + TSP) ( H ) 
dx 

^ = aa/3
2
 (TSM  TSP) (15) 

dx
J 

,4 , 

^~ = aa/?J (TCM + TCP  TSM  TSP) (16) 

dx
4 

In chapter 5 is explained how by defining the temper

ature at discrete points χ. , the integrals TCM, TCP,...etc. 

can be computed for any value of χ. 

4. THERMAL STRESSES FOR GIVEN FLUX DISTRIBUTION 

The relations derived in chapter 2 and 3 are combined. 

The displacement field is now given by the following con

volution integral (see appendix 3): 

. + °» 

/ Ν aam / / \  m l x  y l , 
u ( x ) = 2 ^  I q ( y ) e ' J* dy 

— 0 · 

mm OO 

 2 ( | ) 2 f q(yV(,9 |xy | ) dy ( ï ) 
* _ 00 

+ °° 

2(f) ƒ q(y) e-mI x-y I dy ] 

'm' 

+ 

For convenience the following abbreviations are 
introduced: 

MQM = J q(y) e~m(x*"y') dy (2) 
•Loo 

MQP = j \ ( y ) e~m(y-x) dy (3) 
χ 

QCM = fXq(y) e"/3(x"y) cosi? (χ-y) dy (4) 
J—00 

= f\(y) e-^(y-x) cos/3(y-x) dy (5) QCP 
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fi = í X q ( y ) e " ^ ( x " y ) sin/3 (xy) dy 

= [ q(y) e " ^ ( y " x ) sin/3 (yx) dy 
••x 

QSP 

?he displacement f i e ld can then be written as: 

u = | ~ (MQM + MQP) 

1 «am 

^ ' "l+4(|)
4
 L 

4 ( ^ ) 4 (QCM + QCP  QSM  QSP) 

 2 ( & ) 2 (QCM .+ QCP + QSM + QSP) 

+ 2 ( ^ ) (MQM + MQP) 

he d e r i v a t i v e s become: 

du 
dx 

2 
 •a^~ (MQM  MQP) 

+ 
gam 

2h~ 

1 

1+4(ê)
4
 L 

'm 

4 ( f ) 4 (QCM  QCP) 

 2 (£ ) 2 (QSM  QSP) 
'm 

+ (MQM  MQP) ] 

äx
2 

gam

2h 
(MQM + MQP) 

aam β 
2 ΐ Γ 1 + 4( l ) 4 

m' 

4 ( f ) 4 (QCM + QSM + QCP + QSP) 

ñ 2 

+ 2(g) (QCM + QCP - QSM - QSP) 

+ (f) (MQM + MQP) 

(6) 

(7) 

(8) 

(9) 

( 1 0 ) 
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d
3
u 

dx
3 

aam 
2h 

(MQM  MQP) 

+ ^
 JU

T-I Γ * Φ
4
 (

QSM
 -

2h
 1+4(|)

4 L m 

QSP) 

+ 2(|)
2
 (QCM  QCP) 

 \(j)2
 (MQM  MQP) 

(11) 

díu 

dx
4 

aam' 
2h 

(MQM + MQP) 

aam
2
 2 /3

3 

2E 1+4(|)4 
4(^)

4
 (QCM + QCP  QSM  QSP) 

 2(£)
2
 (QCM + QSM + QCP + QSP) 

(12) 

 Ì(f)3
 (MQM + MQP) ά

 ß 

In chapter 5 is explained how by defining the flux 

it discrete points χ. the 

be computed for any value of x. 

level at discrete points χ. the integrals QCM, QCP etc. can 

5. NUMERICAL METHODS 

As shown in the previous chapters the determination o: 

the temperature and thermal stress distribution can be re

duced to the evaluation of the convolution integrals of the 

type: 

(y) = ! q(x) e~0'
x
~
y
l cos/3 |xy| àx 

* — 00 

(1) 
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This kind of integrals can be evaluated analytically 
for a lot of functions, but the actual determination of the 
maximum stress and the place where it occurs remains a labor
ious algebraic computation. 

It proved to be worthwhile to automize this kind of 
computations by means of a digital computer, enabling also to 
work directly -with empirical flux distributions. 

Consider for that a flux distribution defined in N 
discrete points: 

(x±, q±) i = 1 -> N (2) 
xi K xi+1 

Assuming a linear distribution of the flux between two 
adjacent points, the function q is then represented by: 

q(x) = A± + B±x 

1 Xi+1 - xi u 

Ai = q. - Β. x. 

The flux level for χ < χ, and x> x^ is taken equal to 
q1 respectively qN: Their contribution to the thermal stress 
at points between x^ and x̂ T decreases very rapidly with the 
distance to x.. respectively x^. 

For x M<y<x M + 1 the integral QCM, for example, can 
then be written as: 

= f \^ e"/3(y-x) cos/3(y-x) dx 
J — o» 

QCM 
J — 00 

M-1 ,xi+x 
+ Σ [ (Ai+B.x) e-^~x) cos/3(y-x) dx (4) 

+ ƒ (AM + Β,̂ χ) e~/9(y"x) cos/5(y-x) dx 



F (χ) = 
πα: 
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These integrals can be evaluated analytically, by 

partial integration or by introducing complex functions as 

in chaptsr 3. Introducing the abbreviations: 

FC (χ) = β~Ρχ
 cos/9 χ 

FS (x) = e~ßx
 sin/3 χ (5) 

e" 

the following expressions are obtained: 

QCM = 2 V Ao ( FC(yXl)  PS(yXl) ) 

+ TJ iÍ (Α±·«·ΒΛ+1)ίΡ0(^χ.+1)-Ρ3(7-Χί+1)) 

- 2V i=i ( W i ) ( FC(y " x i^- p s (y - x i } ) 
M-1 

+ ^ 2 A B i C FS(y-xi+l) -^(y-x ±) ) (6) 

+ 2V (AM + % y} 

- 2 V (AM + % XM} C FC(y-xM) - FS(y-xM) ) 

- φ % FS (y - *M> 
QSM = jL- A0 ( PC(y - x., ) + FS(y - x., ) ) 

. M-1 

M-1 
" 2 V i=1 (Ai + Β Λ } C ̂ (y-x..) + PS(y-x.) - ) 

M-1 
- ^ 2 ώ B i C ^ ( y - x i + 1 ) -FC(y-x.)) (7) 

+ 2V (AM + % y} 

- 2 T (AM + BMXM ) C FC(y-XM} + p s ( y - x M } > 
1 5 B^ ( 1 - PC (y- xM) ) 
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QCP = -jL. ( A M + % X M + I ) ( F C ( X M + 1  y)  PS(xM + 1  y) ) 

+ J p  (AM + BJJ y) 

+ 7^2 % FS(XM+I  y} 

N1 

 TT i i + i ( A i+ B i W ( p c ( x i + r ^  F S ( x i + i  y) ) (8) 

+ 2 7 i J + 1 ( W i > C FC(x. y)  FS(x.  y) ) 

+ ^ 2 i i i B Í ( F S ( X Í + 1 » y )  ^ ( x .  y ) ) 

+ P V AN ( F C ( X  y)  FS(Xw  y ) ) 

QSP =  j L (A M + ^ J ( FC(x  y) + p S ( x . y) ) 
"M+1 

r r ( A M + ^ τ y) 2 /S VAM T "Til 

 O A S (A^+B 

 y)  1 ) 

^ T i=I+1
 ( A i+ B iX i + l) ^ C ( x . + r y ) + F S ( x i + r y ) ) 

1 N1 
+ ¿Τ i=M+1

 ( A i + B i X i } CPC(X i y) + F S ( x .  y ) ) 

N1 

2/9 
2 i=L i B i C P C ( x i+i " y )  F C ( x i  y ) ) 

+ 2 J A N ( F C ( x N  y) + PS(XN  y) ) 

(9) 
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MQM = ¿ Ao F (y  x., ) 

M1 
+ i Ji (Ai + B i X i + 1 } F ( y  X i + 1 } 

M1 

_ 1 Σ (A. + Β χ . ) F ( y  x±) 
m 1 = 1 i i i L 

M  1 

 Κ Σ Β ( F (y  x i + 1 )  ? (y  x ± ) ) d ° ) 
m i  1 

+
 E ( A M

 + % y> 

 5 (AM + BM XM^ F ( y " X?P 

1 ^ BJJ ( 1  F (y  xM) ) 
m 

MQP =  Í (AM +
 ¥ M + 1 ) F ( X M + 1  y}' 

+ i (AM
 + \ y} 

 i* \ c? (χϊ,ι+1 - y } - 1 ) 
m 

- I Σ (A, + 3 , x . . ) F ( χ . ... - y ) ( 1 1 ) 
m i=M+l ι ι 1 + 1 1 + i 

- N-1 
+ ¿ Σ (A, + 3 χ ) F ( x  y ) 

m iM+1 i i i ι 

N1 
 Jp Σ Β ( F ( χ  y )  F ( x .  y ) ) 

mi=M+1 x 1 + ' X 

+ — A Ρ Í -y  ν ^ 
+ m Ν v XN J ' 

The v a l u e o f M i s d e f i n e d by χ™ < y < ΧΜ..« 

I n c a s e s w h e r e t h e t e m p e r a t u r e d i s t r i b u t i o n i s known 

f rom m e a s u r e m e n t s , t h e e q u a t i o n s d e r i v e d i n c h a p t e r 3 a r e t o 

be u s e d . 
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Consider for this a temperature distribution defined 
in N discrete points : 

(x., T.) i = 1 -» N x±< xi+1 (12) 

Assuming a linear temperature distribution between 
two adjacent points x± and x±+1, the change in gradient at 
a point x. is defined by 

Φ — Τ Τ '— Τ 
ϋ2Φ. = _i±1 i _Λ lili (13) 

xi+1 - xi xi - xi_1 

The integrals TCM, TCP etc. as defined in chapter 3 
become : 

M 
TCM = Σ D2T. FC (y - χ. ) (u) 

i=1 x 2-
Ν 

TCP = Σ 32T. FC (χ - y) (15) 
i=M+1 x χ 

M 
TSM = Σ 32T FS (y - χ.) (16) 

i=1 -1- -1-
Ν 

TSP = Σ D2T, FS (χ·- y) (i?) 
i=M+1 1 1 

M is defined 'by χ,, < y < χ,τ . 

Equations (β), (7) (il) and (14), (15), (16) and 
(17) are the basic equations of the code ATEAS. 

6. NUMERICAL APPLICATION TO A G 19 FINNED CANNING 
In fig. 10 is given an enlarged photograph of the 

cross-section of a G 19 finned canning. Comparison with 
Fig. 6 yields the following values of the dimensions of the 
fin: 

e1 = O.O94 cm b = 0.042 cm 
e2 = °·194 cm b2 = 0.025 cm 
a = 0.78 cm b.. = 0.038 cm 
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From these values ATEAS determined the parameters m and β 

_1 

β = 3.34 cm 

m = 2.611 cm"
1
 (h = 1 Watt/cm

2
 °C, λ = 1.8 Watt/cm °C) 

m = 3.692 cm"
1
 (h = 2 Watt/cm

2
 °C, λ = 1.8 Watt/cn °C) 

The flux distributions are chosen as given in Fig. 11: 

Nominal value: q = 135 Watt/cm on finned surface 

Flux peak varying from Ofó up to 5Oft over a length of 6 cm. 

The corresponding temperature distributions, as calcu

lated by ATEAS, are given in Fig. 11, respectively for h = 1 

and h = 2 Watt/cm C, and for the various flux peaks as men

tioned before. 

In Fig. 12 the temperature distribution for 

h = 1 Watt/cm C is repeated on a larger scale. The bending 

stresses respectively at the top of the fin and at the inner

canning wall, calculated for a Young's modulus E = 400,000 

kg/cm , are also represented in Fig. 12. 

In Fig. 13» the curves of Fig. 12 are repeated for the 

case of h = 2 V/att/cm
2
 °C. 

It is noted that the stresses are proportional to the 

nominal value of the flux and"also to Young's modulus, and 

can therefore easily be determined for othervalues of nominal 

flux and Young's modulus. 

The equivalent stress at the corner of the fin, calcu

lated according to the Huber deformation energy criterion, is 

small as compared to the bending stress (see Fig. 14). It can 

therefore be ignored in the design philosophy. This confirms 

that the deformation due to shear stresses is small as com

pared to the deformation due to bending stresses, which is one 

of the assumptions of the theory. 

As can be seen from figures 12 and 13, the thermal 

bending stress phenomenon due to axial temperature variations 

is a local one, and it does not influence eventual bending 

stresses at the weld of canning to end plug, if the distance 

between fuel pellets and weld is bigger than about 1 cm (for 

G 19). 



It might be of interest to compare the refined theory 

for finned cannings with the one for smooth cannings, and to 

try to determine an equivalent canning wall thickness for the 

homogenized finned canning. It will be shown that different 

equivalent thicknesses are to be applied for the temperature 
* 

and for the stress calculation. 

For h = 1 Watt/cm
2
 °C the parameter m for G 19 was equal 

to _1 

m ■= 2.611 cm 

According to equation (ï) of appendix 1 the equivalent 

thickness for an homogenized G 19 canning becomes 

= 0.0815' cm. 
λ m

2 

It turns out that the equivalent thickness is about 12$ 

lower than ths cylinder wall thickness of the finned canning 

(e1  0.094 cm). Physically it means that the additional sur

face (wetted periphery) introduced by the fin has a greater 

influence on the axial conduction process than the additional 

crosssection, a phenomenon which verifies itself also for 

radial conduction. 

As concerns the stress calculation, an equivalent thick

ness can be computed from equation (8) of appendix 2, in such 

a way that the elastic wave length is the same: 

e = -±l ~ = 0.1892 cm 

1 
( β =3.34 cm"1 ) 

This equivalent thickness is about 2$ lower than the 

height of the fins (e2 = 0.194). This is accidental and can

not be taken as a general law. The wave length β is determined 

by the ratio of the circumferential rigidity (tension) to the 

axial rigidity (bending), both per unit length (equation 8, 

appendix 2). To obtain for the same wave length equal stresses, 

an equivalent thickness should be introduced such that the 

distances from neutral grain to grain of maximum bending stress 
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a r e equals 

e = 2 ( e 2 - h n ) 

For a G 19 canning h n = 0.0785 cm 

e = 0/231 cm. 

This equivalent thickness is about 20$ higher than the 
height of the fins. 

Summarizing, it seems not to be possible to homo
genize a finned canning by introducing a kind of average 
thickness, but m, β and h are to be determined from the 
formulae of appendices 1 and 2. 

7. CONCLUSION AND FINAL REMARKS 
A theory has been developed to determine the tem

perature and thermal stress distribution due to axial flux 
variations for smooth and for finned cannings, assuming a 
linear stress-strain relation (Hook's law). The digital 
code ATEAS handles either·empirical flux distributions or 
empirical temperature distributions. The latter is of 
interest for cases where the temperature distribution is 
calculated by taking into account the contribution of the 
fuel in the axial conduction (see ref. 3)> which is neg
lected in this paper. 

From the numerical example of chapter 6 follows 
that the phenomenon is local, and stresses vanish at 
about 1 cm distance of the flux perturbation (G 19). 

For a G 19 finned canning with 
rimmina! flux q = 135 Watt/cm 
peak 20 $ 
heat transfer h = 2 Watt/cm2 °C 
Young's Modulus E = 4OOO kg/mm 
(450°C) 

the maximum bending stress at the top of the fin is eaual 
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ρ 
9 = 1.1 kg/mm 

Shear stresses can be neglected in the design philosophy. 
If, like in other than G 19 ORGEL type of cannings, 

spacer fins are present, it is recommended to cut them in 
regions of accentuated temperature variations, in order to 
prevent excessive bending stresses at their outer grains. 
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N O M E N C L A T U R E 

a radius of canning 
A. constants in flux functions 
A integration constant 
b width 
1 ' dimensions defining the finned 

b ( 
2 canning wall cross-section 

B. constant in flux functions 
e wall thickness of smooth canning 
e., wall thickness of finned canning 
e? height of fin 
h heat transfer coefficient 
h coordinate of neutral grain 
i index indicating axial position 
0 
m thermal wave length 
ρ pressure 
q flux 
Q Fourier transform of flux 
s Fourier coordinate 
S cross-section of finned canning wall 
t imaginary coordinate in ζ plane 
Τ temperature 
u radial displacement 
U Fourier transform of radial displacement 
χ axial coordinate 
y auxiliary axial coordinate 
ζ complex coordinate 

α linear thermal dilatation coefficient 
β elastic wave length 
£ auxiliary axial coordinate 
θ Fourier transform of temperature 
λ conductivity of canning 
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APPENDIX 1 

DIFFERENTIAL EQUATION GOVERNING THE AXIAL TEMPERATURE 

DISTRIBUTION AND ITS SOLUTION 

A. Canning without fins 

A heat balance in axial direction yields (see Fig. 1): 

2 

 λΘ £S = q  h T (1) 
dx

¿ 

"J -j— one obtains 

^ § - m
2
ï - - g ^ (2) 

dx
¿ n 

B· Canning with fing 

Consider the cross section as given in Fig. 2. 

 XS £| = 2q(b1+b2+b3)  2h('b1+b3+v/b2 +(e2e1)
2
' J (3) 

with 

and 

h Vb^jVbJ + (epe. ,)2 ' 

b 1 e . + b 3 e 2 + -k b 2 ( e 2 + e . . ; 

b 1 +b i + > /bp + ( e Q  e . ) 2 

FC = — ■ — * ~ — ( R ) 
b 1 + b 2 + b 3 

one o b t a i n s : 

£| - Λ =. g! φ ( 6 ) 
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Equation (β) is similar to equation (2), if for finned 

cannings the flux is divided by the finning coefficient FC. 

C. Solution of the heat transport equation 

The Fourier transforms of Τ and q are defined byî 

Β (β) = i (
+
°"τ(χ) e

3 s x
 dx (7) 

Q(s) = t; f"q(x) e** dx 

The inverse transforms are defined by: 

(8) 

, + ο· 

TU) = T=; f e(e) e^3x
 ds (9) 

y/2¿ J« 

q(x) = -ß=, f ~Q(s) e'J8* dS 
Λ/2ΙΓ J — 

(10) 

If f.. (s) and f2(s) represent respectively the Fourier 

transform of the functions F..(x) anc Fp(x), then the con

volution integral of P. and Fg is defined by: 

\' ?,(*) P2(x£) άξ = f Ρ^χ-ί) F (ξ) άξ = 
J — ο» J — o· 

= ƒ f^s) f2(s) e"Jsx ds (11) 

Inserting the transforms into the differential equa
tion (2) yields: 

9= Tis-h? (12) 

s + m 
Applying the inverse transform gives: 
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Comparing (13) with (11) and calling Q(s) = f^s) and 

Ρ ρ = fp(s), equation(l3) becomes: 
s +m 

τ(χ) = Ü - [ -q(e) Pp (χ-ί) άξ ( Η ) 
V ^ * 1 i-o. 2 

The function F ? (x) i s defined from the inverse of fp(s) 

F2(x) = - t ; f 
2 727 JL 

e"3 s x / Ν 

^2—2 ds (15) 
■ oo s +m 

The latter integral is calculated by contour integra

tion. Suppose χ positive and consider the contour as pre

sented in Pig. 3· Eor R ·* <» the integrand becomes zero at 

the circle: 

e  3
z x 7* e~

á s x
 / Ν 

dz =  ^ Õ ds (16) 2 2 2 2 

ζ + m ¿o. s + m 

The poles of the integrand are at ζ = + ¿m and it is 

observed that only the pole ζ =  jm is inside the contour. 

The residue at the pole ζ = jm becomes 

mx 
res idue = gg . (17) 

Í 
e"

á s x
 / v 

~ Ρ ds = 2irj Σ r e s i d u e ' s ( l8 ) 

s + m 

- I K 

■
 2

* < ^ > 

Fina l l y , s t i l l for p o s i t i v e χ, one ge t s 

mx 
F2 (χ) =72ΐΡ ^ - (19) 

Por physical reasons it is obvious that Pp should 
be an even function and therefore: 
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mx 

P2 (χ) = 727" £ _ _ (20) 

The temperature is then given by the following convolution 

integral: 

T(x)
 = Û Γ"*«) e"

m
l
x
^l di (21) 

J — 0» 
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APPENDIX 2 

THE DIFFERENTIAL EQUATION GOVERNING THE DISPLACEMENT 

OF A THIN CYLINDER WITH SYMMETRICAL LOADING 

In order to derive a correction for finned cannings, 

the classical theory as presented in handbooks on the sub

ject (ref. 1 and 2) is repeated. 

A. Canning without fins 

Consider an elementary part of the cylinder as de

picted in Fig. 4· Due to symmetry its displacement is only 

in radial direction and denoted by u, positive when the 

radius tends to become bigger. The elementary part is re

garded as a cantilever, loaded by forces and moments as 

given in Fig. 4· Deformations due to the shear force are 

neglected, which is by the way usual for cantilevers which 

are not high as compared to their length. 

Application of the elementary bending theory yields: 

E e
3
 d

2
u  M  Y M 

12 dx2 χφ φχ 

E_ei 
12 'a a+u

y ~"χχφ ">x 
(·! τ) = TM , + M, 

(1) 

The change in curvature in tangential direction is small of 

the second order: 

a 

Equations (ï) become: 

M = YM 
φχ χφ 

s ^ ^ = ( 1 . r 2 ) „ x y 

(3) 
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The hoop force H is related to the displacement by 

H = E e (ä  αΤ) M 

Si 

Equations (3) and (4) are the stressdisplacement relations 

of the problem. 

The equilibrium equations follow from Fig. 4· 

IS _ _Ό + S (5) 
dx ~ p a 

¿M = _Q (6) 
dx 

Combination of (3), (4), (5) and (6) yields: 

^ + 4/94u = 4 / (aaT + | 4 ) (7) 
dx 

4 / = I2ü=¿i (8) 
a e 

Β. Canning with fins 

Consider the elementary part as given in Fig. 5· As 

compared to Fig. 4, the equilibrium equations are not changed. 

Only the relations between the displacement u and the forces 

and moments have to be changed. 

As regards bending in axial direction, the inertia 

moment of the complicated crosssection (Fig 6) should be 

introduced. As in elementary bending theory a linear stress 

distribution can be assumed. 

As regards bending in tangential direction (Figo 7) 

the contribution of the fin is more difficult to calculate. 

In the canning without fin, the antiolastical bending in 

tangential direction causes an increase of rigidity in 

axial direction of about 10$ (
 1

 9  1 « 0.1 ). It is there

1TT 

fore less important to know the exact elasticity in tan

gential direction. An easy way to estimate it, is to assume 

a linear stress distribution in every crosssection in Ψ 

direction. 
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The hoop force H causes a displacement u, which can 

be calculated by assuming an uniform stress distribution in 

every crosssection in φ direction (Fig. 8). 

Adopting the above mentioned hypothesises yields: 

A 2 M 
d U ■_ Χφ 

, 2 " Ε Ι 
dx χφ 

Μ 
ν 22L 
γ
 Ε Ι 'φχ 

(9) 

1 !_ 
a ' a+u 

YM M 
χφ . φχ » 
— + ï?— 

Ε I 
χφ 

Ε I 
0 

φχ 

(10) 

Ivi 
>χ Ι χ φ "χ9) 

(11) 

.2 (1Υ
2
) Μ 

d U _Χ£ 
dx 
2 Ε I 

'χφ 

(12) 

χφ 
(zh )

2
 dA (see Fig. β) 

h 
η 

ƒƒ ζ dA 
ƒƒ dA 

(see Fig. β) 
(13) 

1 
"χ^ ' 3Tb~1+b2+bTT 

b 1 ( ( e r h n ) 3 + h 3 ) + b ( ( 9 2 - h n ) 3 + h 3 ) 

+ b 2 c ( ( e 2 - h n ) 2
+ ( e r h n ) 2 ) ( î l 

( 1 4 ) 
e„ + e 0 - 2h -, 

—i- a) + h3) 
n' 

h. 
n 

1 Ì L Ì I + "°3e2 + " 3 b 2 ^ + e1 e2 + e2^ 
b e + -pbgle^ + e 2 ) + b , e 2 

( 1 5 ) 

b 1 + b 2 + b . 
9>x 

12 db 
( s e e F i g . 7) (1 
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τ ^ tÌLLh . (17) 
φχ ' " Λ , Vei + Θ 2 ; , b a } 

12 (-*■ + 2 2 + 2
1 

e
3
 2eie2 e2 

Η = S ( J aT)L 

b.+bo+b. 

σ — ^ 
b
1
?» o 

+ e + inner wall 

Hoop stress 

(18) 

h = !
 2

—¿ (see Fig. 8) (19) 
r
 db 
e 

b. + bQ + b, 

h =
 1

 2_ 3 (20) 
1 b. b9 e? b, 

_1 + ¿_ ln_£ + -2 

The differential equation for the displacement becomes: 

âlïï + 4 / u = 4f*(«aT t¿ 
dx

4
 1 

(1T
2
) h.

 ( 2 1 ) 

X9> 

C. Stresses as function of the moments and forces 

1 . Canning v/i t h ou t fins 

Axial bending stress 

6 M  outer wall 

ψ (22) 

+ e + inner wall 

Tangential bending stress 

6YM  outer wall 

(23) 

Η*  ë (24) 
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Shear stress in midplane 

2_ Q (parabolic distribution (25) 
τχφ 2 e according to elementary 

bending theory) 

2. Canning with fins 

Axial bending stress in outer grain of fin: 

σ, =  y— (e0  h ; \¿bi 
b
'°»

X τ
χφ

 2 

Axial bending stress at interior canning wall: 

M , ( on\ 

a. . = -ψ— h I ¿7 J 

b
'

1
»

x τχφ n 

Tangential bending stress in cylinder wall: 

σ 

 6 M  YI , 
ÎJÏ - ΈΆ M -£-

*φ - + e2 " + Ζ χ , χς° e2 

- outer wall 
+ inner wall 

Tang. e n t i a l 

°Ε,φ 

hoop 

= 

s t r 

Η 
e 1 

■ess 

(28) 

29) 

It is noted that in the outer grain of the fin a 

maximum bending stress in axial direction occurs. In this 

grain no tangential bending stress exists. As other 

critical points should be mentioned the corner of the 

fin and the cylinder wall. The axial bending stress at 

that point is probably small: 

a =  E 1| (Θ1  h ) (30) 

dx
¿
 '

 n 

The tangential bending stress (28) and the hoop 

stress (29) might be rather big. Besides an important 

shear stress occurs due to the varying bending moment in 

axial direction. As in elementary bending theory this 
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shear stress is calculated from the equilibrium equation in 
axial direction (see Fig. 9). 

e. 
(b2+b3)r = - (b1+b2+b3) Γ |f a* (31) 

b^+b0+b-, -,3 i o 
'χ, =-Λ^Ε^ΐ^η^-^2) (32) 

According to the Huber rupture hypothesis the equivalent 
stress at the corner of the fin becomes: 

1 ι Ρ Ρ Ρ 
σ„ = fa -On) + (σ0-σ-.) + ( σ0- σ. ) 

Π 

'e r^ 4 2' 2 3' ' 3 1 

( σ 1 + σ2 + σ 3 } - 3 ( σ 1 σ 2 + σ 2 σ 3 + σ 3 σ 1 } ( 3 3 ) 

( σ + σ + σ ) _ 3 ( σ σ - τ + σ σ - τ + σ σ - r ) x y ζ JX χ γ 'xy y ζ T y z ζ χ χ ζ ; 

' 2 (σ +σ ,+σ π ) - 3σ (σ +σ ) + 3 τ 2 ( 34 ) e - J ^ a ' w t T W H ' J u a ^ t ™ H 

σ a axial bending stress (30' 
at = tangential bending stress (28) 
σ
Η = tangential hoop stress (29) 
τ = shear stress (32) 



APPENDIX 3 

SOLUTION OF THE DIFFERENTIAL EQUATION GOVERNING 

THE CYLINDER'WALL DISPLACEMENT 

1. Relation between displacement and temperature 

The Fourier transform of the displacement field is 

defined by: 

+ «* 

U(s) = — 1  f U(x) e^
sx
 dx (1) 

-ι 
mm < * 727 

From t h e d i f f e r e n t i a l equa t i on one o b t a i n s : 

U(s) = 4 / 3 4 « a -¿-J- j (2) 
s 4 + 4 β + 

(N.B. The pressure term is omitted for convenience, because 

it is usually constant in χ direction. It is noted, that a 

varying pressure term can "be treated in the same way as the 

temperature term). 

Application of the inverse transform yields: 

u ( x ) = 4 / « a  ^ Γ V ~
J 3 X

 4 ¿s (3) 

yiTiT J— s
4
 + 4 /3

4 

As in appendix 2 the integrand is regarded as the product 

of two functions f^s) and f „(s), which are the transforms 

of two other functions F..(x) and F (.χ). 

u(x) = 4 /9
4
aa 3— f T(e) F9(x£) di (4) 

ï (x) = _L_ Γ e-J
sx 

2
 / 7 7 J— s

4
 + 4i>

4 
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The latter integral is evaluated by contour integration of 

the integral: 

 2zx , , 
e
—  = 2 irj Σ residue's (6) 

z
4
 + 4/3

4 

For p o s i t i v e χ the contour i s taken as i n F i g . 3» The i n t e g r a n d 

becomes zero on the c i r c l e , when E » » : 

- , izx r~°* -nsx 
e J f e

 ds (7) 
z

4
+4/3

4
 J- s W 

R -» o. 

The po le s a r e ζ = /3 ( 1 — J ) and ζ = - β (^+j) 

The func t ion Ρρ becomes: 

DØ(1 + D')X Q  d / 3 ( l  j ) x 
, (x ; =V2i r l· ^ 

d 1-d / 8^3 

~ y/ΐπ e~^x( cos/3 χ + sin/3 x) (9) 
8/?3 

= —Κ V2T φ (β χ) 
8/33 

For physical reasons it is obvious that the function F?(x) 
is even 

F (χ ) = - L yTJF φ i\ßx\) ( 1 0 ) 
¿ Qß~ 

The displacement field is thus given by the convolution 

integral : 

u(x) =1αβ&! τ(ξ) φ iß lx£l)a<f ( 1 1 ) 

By p a r t i a l in tegra t ion (11) can be separated in to a pure 

thermal d i l a t a t i o n displacement and in to an e l a s t i c d i s 

placement. 

u(x) = a a T + ^ f Γ ^ ψ ϊ . Φ {β\χ-ξ\ ) « 
4 P i— d i 2 

α (12) 
<fr(/9x) = e~px (cos/3 χ - sin/3 x) 
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2. delation between displacement and fluxes 
Combining the differential equations governing the axial 
heat transport and the radial displacement, and applying 
the Fourier transform yields: 

U(s) =. in « am2 Q(s) 
h (s4+4iS4)(s2+m2) 

(13) 

The function F9(x) (see appendix 1) is now defined by 

P (x) - _L_ f glüf _ ds 
2 ^ppp j_M (s4+4^4)(s2+m2) 

This integral is calculated by contour integration 

Ώ - 0 Ζ Χ 

(z4+4/94)(z2+m2) 
dz = 2 π J Σ residue's 

(14) 

(15) 

For positive χ the contour is taken as in Fig. 3 and 
for R ■» o· the integrand becomes zero on the circle: 

>3
zx 

(z
4
+4/5

4
)(z

2
+m

2
) 

dz = 
,isx 

+ 0· (s
4
+4^)(s

2
+m

2
) 

d s 

The p o l e s a r e a t ζ =  jm, ζ = β ( l  j ) and. ζ = /S(l + j ) . 

The f u n c t i o n Fp(x) becomes ( s t i l l f o r ' p o s i t i v e x ) : 

P 2 ( x ) 
- , Γ e

_ m x 

l_2m(m4+4j 

, ^ ( 1 + D ) X 

+ 
4/?4) 8/33( l + j ) ( m 2 + 2 ^ 2 ) 

 i / 3 ( l  ; j ) x 

+ 

+ 
8 / 9 3 ( l  j ) ( m 2  2 j / 3 ) _ 

16) 

(17 ) 

m4+4/94 

mx 
m 

L 2m 8/3
*(/9χ)  — ]- Φ(βχ) 

4/3 

Finally one obtains the following convolution integral 

for the displacement field u(x): 



36 

υ ( χ ) 
aam 
4/3 h 

1 

1 + 4 ( £ )
4 

^ m 
*Φ q t ø ) «ρ C/9 | x - * | ) άξ 

- 4 ( & ) 4 í + C O q U ) '^ |X_Í| } 
• em 

άξ 

+ "φ5Γ~°Αξ ) e - m | x ^ ' άξ Ι 

(18) 

In formula 1 of chapter 4 the thermal d i la ta t ion displacement 
has been separated: 

υ th 
-n gam Γ °° / c s -ml x-£ I -, ¿ 

= aa l 1 = —p^ / q ( i ) e ' s ■ άξ (19 ) 
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£ 
hTdx 

^=w 
t t t î 

a
 Cfdx 

 ΓΤΤττΤΓΤΤΐΙ 1 
Fia. f 

Γ 
. t \__ 

zh T β f * \/¿>;+{*t-et)*'+63J 

Y M 

S = ^Λ/tfz / 2/>3θ* *¿g(e,-e,J 

F/a. 2 

F/9.3 



3d 

Μ*γ> — Q + á ± . c / x 
e/x 

-tfxu> + Jrt*r.cJx 
c/x 

α/φ 

r/9.4 

e/x 

<3+ ¿G .c/x 
c/x 

r/<7.3 



6/ fa tut 
- t a i 1 I — I · 

< 

s: 

7 
•Λ ·Λι 

rtxf 

r/j.e 

3 
• η eu ir* i gr^/n 

Mf- Aipx 

r/a. 7 

" — H 

iïc.û 

\ 

d^c/2 

< = / * 
\ 

- » — * * > 

6 -
* — · 

c/x 

I 

τ 

&+ s¡SL.c/x 
4x 

*(b**b*) 

ΓΧ 
2.(é>t*bz*i>3j 

r/9.9 
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Fig. 10 
enlarged photograph of a G 19 

finned canning wall 
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