EUR 3488.0

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

CALCULATION OF THE FRACTIONAL RELEASE OF GASES FROM A SPHERE AFTER RECOIL BOMBARDMENTS

by

G. DI COLA (EURATOM)
and Hj MATZKE (Nuclear and Radiochemistry Laboratory, Braunschweig Technical University)

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM).

Neither the EURATOM Commission, its contractors nor any person acting on their behalf :

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights ; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4

```
at the price of FF 4 = FB 40 DM 3.20 
```

When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by L. Vanmelle N.V. Brussels, June 1967

EUR 3488.e
CALCULATION OF THE FRACTIONAL RELEASE OF GASES FROM A SPHERE AFTER RECOIL BOMBARDMENTS by G. DI COLA (EURATOM) and Hj MATZKE (Nuclear and Radiochemistry Laboratory, Braunschweig Technical University)

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center - Ispra Establishment (Italy)
Scientific Data Processing Center - CETIS and
Chemistry Department - Radiochemistry Service
Brussels, June 1967 - 16 pages - 6 figures - FB 40
The gas release from a recoil-bombarded sphere of inert material on annealing at a given temperature is calculated.

Two sources of recoil gas atoms are considered : one of infinite width, the other infinitesimally thin compared to the recoil range in

EUR 3488.e

CALCULATION OF THE FRACTIONAL RELEASE OF GASES FROM A SPHERE AFTER RECOIL BOMBARDMENTS by G. DI COLA (EURATOM) and Hj MATZKE (Nuclear and Radiochemistry Laboratory, Braunschweig Technical University)

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center - Ispra Establishment (Italy)
Scientific Data Processing Center - CETIS and
Chemistry Department - Radiochemistry Service
Brussels, June 1967 - 16 pages - 6 figures - FB 40
The gas release from a recoil-bombarded sphere of inert material on annealing at a given temperature is calculated.

Two sources of recoil gas atoms are considered : one of infinite width, the other infinitesimally thin compared to the recoil range in

EUR 3488.e

CALCULATION OF THE FRACTIONAL RELEASE OF GASES FROM A SPHERE AFTER RECOIL BOMBARDMENTS by G. DI COLA (EURATOM) and Hj MATZKE (Nuclear and Radiochemistry Laboratory, Braunschweig Technical University)
European Atomic Energy Community - EURATOM
Joint Nuclear Research Center - Ispra Establishment (Italy)
Scientific Data Processing Center - CETIS and
Chemistry Department - Radiochemistry Service
Brussels, June 1967 - 16 pages - 6 figures - FB 40
The gas release from a recoil-bombarded sphere of inert material on annealing at a given temperature is calculated.

Two sources of recoil gas atoms are considered : one of infinite width, the other infinitesimally thin compared to the recoil range in
the source. Some additional results are presented for the release from a recoil-bombarded cylinder.

Derived equations are given and values of the fractional release, F , are tabulated and reproduced in figures using results obtained from a standard 7090 IBM electronic computer.
the source. Some additional results are presented for the release from a recoil-bombarded cylinder.

Derived equations are given and values of the fractional release, F , are tabulated and reproduced in figures using results obtained from a standard 7090 IBM electronic computer.
the source. Some additional results are presented for the release from a recoil-bombarded cylinder.

Derived equations are given and values of the fractional release, F , are tabulated and reproduced in figures using results obtained from a standard 7090 IBM electronic computer.

CALCULATION OF THE FRACTIONAL RELEASE OF GASES FROM A SPHERE AFTER RECOIL BOMBARDMENTS

by

G. DI COLA (EURATOM)
and Hj MATZKE (Nuclear and Radiochemistry Laboratory, Braunschweig Technical University)

Joint Nuclear Research Center Ispra Establishment - Italy Scientific Data Processing Center - CETIS and
Chemistry Department - Radiochemistry Service

SUMMARY

The gas release from a recoil-bombarded sphere of inert material on annealing at a given temperature is calculated.

Two sources of recoil gas atoms are considered : one of infinite width, the other infinitesimally thin compared to the recoil range in the source. Some additional results are presented for the release from a recoil-bombarded cylinder.

Derived equations are given and values of the fractional release, F, are tabulated and reproduced in figures using results obtained from a standard 7090 IBM electronic computer.

Introduction

This report concludes the calculations started in a previous report (1) which gives the time dependence of the release of recoil gas atoms from a slab (infinite plane sheet) during post-bombardment annealing. In the present report, we will consider the release from a sphere in detail and will give some additional data for release from an infinite cylinder. Two different initial distributions are considered: the gas atoms are assumed to have recoiled into the sample either from an infinitely thick source (with respect to the recoil range in the source) or an infinitesimally thin source. The first distribution is experimentally verified by embedding the solid into a uranium bearing matrix. During reactor irradiation, the solid is labelled with the fission rare gases Kr and Xe. The second distribution is verified by adsorbing a thin layer of Ra-226 on the solid. During the α-decay, the daugther product $\mathrm{Rn}-222$ is recoiled into the solid.

We will assume the following: inert material, no diffusion before annealing, reaching the prescribed temperature "instantaneously", constant diffusion coefficient, zero surface concentration at all times, stable recoil gas atoms.

The derived equations are presented. Using values obtained from a standard 7090 IBM electronic computer, the fractional release, F, is tabulated and shown graphically related to a dimensionless function of the diffusion coefficient. Comparison with literature and experiments is made.

The calculations can easily be extended to a radioactive nuclide by a simple correction factor.

Manuscript received on May 16, 1967.

I. The Mathematical Problem

1. The diffusion of gases following irradiation or bombardment in a solid sphere or an infinite cylinder is described by the following differential equation

$$
\begin{equation*}
\frac{\partial c}{\partial t}=D\left(\frac{\partial^{2} c}{\partial r^{2}}-\frac{v}{r} \frac{\partial c}{\partial r}\right) \tag{1}
\end{equation*}
$$

with $v=2$ for the cylindrical and $v=1$ for the spherical geometry.
We assume the surface concentration to be zero, hence

$$
c(a, t)=0
$$

where a is the radius of the solid. Furthermore, we use the boundary condition

$$
c(r, 0)=f(r)=\begin{aligned}
& \text { distribution of recoil atoms in the } \\
& \text { solid }
\end{aligned}
$$

The solution of these problems can be obtained by standard methods (2).
2. Solution for the sphere
$c(r, t)=\frac{2}{a r} \sum_{n=1}^{\infty} \sin \frac{n \pi r}{a} \exp \left(-\frac{n^{2} \pi^{2} D T}{a^{2}}\right) \int_{0}^{a} r^{\prime} f\left(r^{\prime}\right) \sin \frac{n \pi r^{\prime}}{a} d r^{\prime}$
or
$c(r, t)=\frac{1}{2 r \sqrt{\pi D t}} \sum_{n=-\infty}^{+\infty} \int_{0}^{a} r^{\prime} f^{\prime}\left(r^{\prime}\right) x$
$\times\left\{\exp \left(-\frac{2 n a+r^{\prime}-r}{4 D t}\right)^{2}-\exp \left(-\frac{2 n a+r^{+} r^{\prime}}{4 D t}\right)^{2}\right\} d r^{\prime}$
Eq. (2') is useful for small values of $D t / a^{2}$.
3. Solution for the cylinder:

$$
\begin{equation*}
c(r, t)=\frac{2}{a^{2}} \sum_{n=1}^{\infty} \frac{J_{0}\left(h_{n} \frac{r}{a}\right)}{J_{i}^{2}\left(h_{n}\right)} \exp \left(-h_{n}^{2} \frac{D t}{a^{2}}\right) \int_{0}^{a} r^{\prime} f\left(r^{\prime}\right) J_{0}\left(h_{n} \frac{r}{a}\right) d r^{\prime} \tag{3}
\end{equation*}
$$

where h_{n} are the roots of the equation, $J_{0}\left(h_{n}\right)=0$.

II. Distribution of Recoil Atoms

The distribution of recoil atoms in a sphere of radius a may be derived in a way similar to that described in ref. (1) for the case of a slab. The fraction of recoil atoms which pass through the unit area of the sphere from those recoiled from the volume V of the source is given by

$$
\begin{equation*}
B=Q \int_{V} \frac{\cos Q}{4 \pi^{12}} d V \tag{4}
\end{equation*}
$$

where is the number of atoms in each unit of volume of the source. The region V from which the recoil atoms can strike the surface of the sphere is bounded by

$$
\begin{equation*}
0 \leqslant \varphi \leqslant \bar{\varphi} \quad \text { and } \quad r_{1} \leqslant r^{\prime} \leqslant r_{1}+r_{2} \tag{5}
\end{equation*}
$$

where $\cos \bar{\varphi}=\frac{a^{2}-R^{2}-r^{2}}{2 R r}$

$$
\begin{aligned}
& r_{1}=\sqrt{a^{2}-r^{2} \sin ^{2} \varphi}-r \cos \varphi \\
& r_{2}= \begin{cases}R^{\prime}\left(1-\frac{r_{1}}{R}\right) & \begin{array}{ll}
\text { infinite source with the } \\
\text { assumption of linear energy loss }
\end{array} \\
\frac{a \Delta a}{\sqrt{a^{2}-r^{2} \sin ^{2} \varphi}} & \text { infinitesimal source of depth } \Delta a .\end{cases}
\end{aligned}
$$

R and $R^{2}\left(R^{2}<a\right)$ are, respectively, the recoil ranges in the sphere and in the source.

The distribution of recoil atoms is given by the concentration of recoil atoms coming to rest at a given location:

$$
\begin{equation*}
f(r)=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} B\right) \tag{6}
\end{equation*}
$$

After some lenghty calculations the following expressions for $f(r)$ result

$$
\frac{Q R^{1}}{4 R^{2}}\left[\frac{\left(R^{2}-a^{2}\right)}{r}+2 R+r\right] \text { (infinite source) }
$$

$f(r)=$
$\frac{Q a \Delta a}{2 R} \cdot \frac{1}{r}$

$$
f(r)=0
$$

(infinitesimal source)
for $a-R<r<a$
for $0 \leqslant r \leqslant a-R$

As an approximation for $R \ll a$, a uniform concentration might be assumed in the bombarded region, i.e.

$$
\begin{array}{llr}
f(r)=\text { const. } & \text { for } & a-R<r<a \\
f(r)=0 & \text { for } & 0 \leqslant r \leqslant a-R
\end{array}
$$

For the infinite cylinder, only this case will be treated as the above type of derivations become more complicated. Furthermore, less experimental work is done using the cylindrical geometry. Hence, the above case can be considered a useful approximation for this case.

III. The fractional Gas Release

The fractional gas release, $F(t)$, is defined by

$$
\begin{equation*}
F(t)=1-\frac{\bar{c}(t)}{\bar{c}(0)} \tag{8}
\end{equation*}
$$

where $\bar{c}(t)=\int_{V} c(r, t) d V$ with $V=$ volume of the solid.
After straight forward but lengthy calculations and with the use of dimensionless parameters $\beta=R / a$ and $\tau^{2}=D t / a^{2}$, we have;
for a sphere and the infinite source
$F(t)=1-\frac{24}{\beta^{2}\left(\beta^{2}-12\right) \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left\{\frac{2}{n \pi}\left(\sin n \pi \beta+\frac{1-\cos n \pi \beta}{n \pi}\right)-\beta^{2}-2 \beta\right\} \times$

$$
\begin{equation*}
\times \exp \left(-n^{2} \pi^{2} \tau^{2}\right) \tag{9}
\end{equation*}
$$

for a sphere and the infinitesimal source
$F(t)=1-\frac{4}{\beta(2-\beta) \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}(1-\cos n \pi \beta) \exp \left(-n^{2} \pi^{2} \tau^{2}\right)$
for a sphere and a rectangular profile

$$
\begin{align*}
F(t) & =1-\frac{6}{\pi^{3}\left(\beta^{3}-3 \beta^{2}+3 \beta\right)} \sum_{n=1}^{\infty} \frac{1}{n^{3}}\{n \pi-(1-\beta) n \pi \cos n \pi \beta-\sin n \pi \beta\} \times \\
& \times \exp \left(-n^{2} \pi^{2} \tau^{2}\right)
\end{align*}
$$

For $\beta=1$, i.e. a uniform distribution eq. ($9^{\prime \prime}$) is easily seen to yield the usual solution (2) for a homogeneously labelled sphere

$$
F(t)=1-\frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp \left(-n^{2} \pi^{2} \tau^{2}\right)
$$

For the infinite cylinder having a rectangular profile

$$
\begin{equation*}
F(t)=1-\frac{4}{2 \beta-\beta^{2}} \sum_{n=1}^{\infty} \frac{1}{h_{n}^{2}}\left\{1-\frac{J_{1}\left(h_{n}(1-\beta)\right)}{J_{1}\left(h_{n}\right)}(1-\beta)\right\} \exp \left(-h_{n}^{2} \tau^{2}\right) \tag{10}
\end{equation*}
$$

Again, for $\beta=1$, eq. (10) yields the known (2) solution for a homogeneously labelled cylinder

$$
F(t)=1-4 \sum_{n=1}^{\infty} \frac{1}{h_{n}^{2}} \exp \left(-h_{n}^{2} \tau^{2}\right)
$$

IV. Comparison with literature

This report concludes the calculations started previously. These earlier calculations are summarized in ref. (1) which gives greater details. A large amount of experimental work has been done on the release of gases from spheres when the distribution was uniform, as occurs, for example, by irradiation in a reactor. Therefore the kinetics for the release for this case have been tabulated before (3, 4). In contrast, very little calculations have been done with types of concentration profiles used here though a variety of experiments has been published (5-8). The gas release from a sphere surrounded by an infinitely thick source has been calculated elsewhere (7,9) and has yielded results similar to these obtained here.

V. Comparison with experiments

The concentration profiles considered here have been obtained either by adsorbing a thin layer of Ra-226 on the surface of the solid ($8,10,11$) or by irradiating the solid in a matrix of U or UO_{2} (e.g. 5-7, 10, 11). In the first case,
the daughter product $\mathrm{Rn}-222$ penetrates the solid by means of the α-recoil energy of about 85 keV ; in the second case, the fission product gases Kr or Xe enter the solid by recoil with the fission energy of about 80 MeV .

The distribution of the injected atoms could not be determined experimentally because of the difficulty of applying any sectioning or stripping technique to a solid having spherical (or cylindrical) geometry. However, the experimentally observed gas release curves for both $\mathrm{Rn}-222$ and fission-Xe-133 show good agreement with the theoretical curves, as long as the gas concentration is low enough to exclude trapping phenomena (see refs. (12, 13). As examples, fig. 5 gives experimental results for the infinite, fig. 6 for the infinitesimal source. In both cases, the experimental release is seen to follow satisfactorily the theoretically expected time dependence. The shift of release towards higher values of t for $\beta<1$ represents the diffusion into the unlabelled interior of the solid.

Bibliography

1) G. Di Cola and Hj Matzke, Euratom Report EUR 2157.e (1964)
2) J. Crank, "The Mathematics of Diffusion" Oxford, At the Clarendon Press (1956) or
H.S. Carslaw and J.C. Jaeger, "Conduction of Heat in Solids" Oxford, At the Clarendon Press (1959)
3) K.E. Zimen - Tabellen für die Auswertung von Messungen der Diffusion radioaktiver Edelgase aus festen Stoffen nach Bestrahlung - HMI-B16 (1961)
4) T. Lagerwall und KoE. Zimen - The Kinetics of Rare-Gas-Diffusion in Solids. Tables and Graphs for the Evaluation of Post-Activation Diffusion Experiments - HMI-B25 (1963)
5) S. Yajima, S. Ichiba, Y. Kamemoto and K. Shiba, Bull. Chem. Soc. Japan 34 (1960) 493
6) S. Yajima, S. Ichiba, Y. Kamemoto, K. Shiba and M. Kori, Bull. Chem. Soc. Japan 34 (1961) 697
7) D.L. Morrison, T.S. Elleman and D.N. Sunderman, J. Appl. Phys. 32 (1964) 1616
8) R. Lindner and Hj. Matzke, Z. Naturforschg. 15a (1960) 1082
9) R.H. Barnes and T.S. Elleman - BMI Columbus - Ohio, Private Communication (1962)
10) Hj. Matzke - Unpublished results
11) Hj. Matzke, PhD-thesis, Technical University Braunschweig (1964)
12) J.R. Mackwan and W.H. Stevens, J. Nucl. Mat. 11 (1964) 77
13) Hj. Matzke, Nuclear Applications 2 (1966) 131

${ }_{7}{ }_{6}$.
Fig. 1 : Fractionsl release, \bar{F}, as function of τ / β for a sphere with a cancentration of the type $f(r)=\frac{1}{r}\left(a+o r+c r^{2}\right)$. This case corresponds to on inrinite source of reccil atoms.
($\beta=1.00,0.75,0.50,0.25,0.10,0.01 \approx 0.001$)

Fig. a
Fig. 2 : P as function of τ / β for a sphere with an initial concentration profile of the type $f(r)=1 / r$. This case correaponds to an infinitesimally thin source of recosi atoms.
$(\beta=1.00,0.75,0.50,0.25,0.10,0.01)$

$5: 6$
Pig. 3 : P as function of τ / β for a aphere with a concentration profsle of the tye $f^{\prime}(r)=$ const. for $a-\pi<r<a$. This case Foy te used as an approximation 10 F \& <4. ($\beta=1.00,0.10,0.10,0.01$)

Fig. 4 : F as riunclion of τ / β for on infinite cylinder with a concentrition prorize of the type $f(r)=$ conet. for a $-\mathrm{R}<\mathrm{r}<$ a. This caso may be used aa an approximation for $R \ll \mu$.
$(\beta=1.00,0.50,0.10,0.01)$

Z゚2g. 5 : Coserved fractional rekaac, p, or die - 135 Erom
(apherical) CaF_{2} purticlea irradiated in a HC_{2} matrix. The Nali ayrbols wepreaent the condition $\beta=2$, the open ejwiols are for $\beta=0.25$. The drawn 2inen are the thooretical curves.

Pig. 6 : Ubserved fractional relesse, 7 , of $\mathrm{Rn}-222$ from
(spherical) $U_{3} \mathrm{O}_{8}$ particles labelled by a-recoil from
an aGsorbeci twin layer or Ra-226. The 2012 eynbois
represent the condition $\beta=0.75$, the opor symbels
wre for $\beta=0,25$. The arawn inea are theroretical curves

Table $1: F$ as function of τ / β for a sphere and a concentration of the type $f(r)=\frac{1}{r}\left(a+b r+c r^{2}\right)$.

Table 2 : F as function of τ / β for a sphere and a concentration of the type $f(r)=1 / r$.

β $\log \frac{\tau}{\beta}$	1.00	0.75	0.50	0.25	0.10	0.01
-2.00	0.0226	0.0181	0.0150	0.0129	0.0119	
-1.95	0.0253	0.0203	0.0169	0.0145	0.0133	
-1.90	0.0284	0.0227	0.0185	0.0162	0.0150	
-1.85	0.0318	0.0255	0.0213	0.0182	0.0168	
-1.80	0.0358	0.0286	0.0238	0.0204	0.0188	
-1.75	0.0401	0.0321	0.0267	0.0229	0.0211	
-1.70	0.0450	0.0360	0.0300	0.0257	0.0237	
-1.65	0.0505	0.0404	0.0336	0.0289	0.0266	
-1.60	0.0567	0.0454	0.0378	0.0324	0.0298	
-i. 55	0.0636	0.0509	0.0424	0.0363	0.0535	
-1.50	0.0714	0.0571	0.0476	0.0408	0.0376	
-1.45	0.0801	0.0641	0.0533	0.0458	0.0421	
-1.40	0.0898	0.0719	0.0599	0.0513	0.0473	
-1.35	0.1008	0.0806	0.0672	0.0576	0.0531	
-1. 30	0.1131	0.0905	0.0754	0.0646	0.0595	
-1.25	0.1269	0.1015	0.0846	0.0725	0.0668	
-1.20	0.1424	0.1139	0.0949	0.0814	0.0749	
-1.15	0.1598	0.1278	0.1065	0.0913	0.0840	
-1.10	0.1793	0.1434	0.1195	0.1024	0.0943	
-1.05	0.2011	0.1609	0.1341	0.1149	0.1059	
-1.00	0.2257	0.1805	0.1505	0.1290	0.1188	0.1134
-0.95	0.2532	0.2026	0.1688	0.1447	0.1333	0.1272
-0.90	0.2841	0.2273	0.1894	0.1623	0.1495	0.1428
-0.85	0.3188	0.2550	0.2125	0.1822	0.1678	0.1602
-0.80	0.5577	0.2861	0.2384	0.2044	0.1882	0.1797
-0.75	0.4013	0.3210	0.2675	0.2293	0.2112	0.2017
-0.70	0.4502	0.3602	0.3002	0.2573	0.2370	0.2262
-0.65	0.5047	0.4040	0.3366	0.2885	0.2658	0.2537
-0.60	0.5648	0.4527	0.3772	0.3233	0.2978	0.2843
-0.55	0.6298	0.5063	0.4220	0.3617	0.3331	0.3181
-0.50	0.6979	0.5646	0.4705	0.4033	0.3715	0.3547
-0.45	0.7660	0.6265	0.5222	0.4476	0.4123	0. 5936
-0.40	0.8304	0.6907	0.5762	0.4939	0.4549	0.4343
-0.35	0.8869	0.7549	0.6513	0.5411	0.4984	0.4758
-0.30	0.9321	0.8166	0.6864	0.5883	0.5419	0.5174
-0.25	0.964 .2	0.8724	0.7404	0.6346	0.5845	0.5581
-0.20	0.9841	0.9190	0.7923	0.6793	0.6257	0.5974
-0.15	0.9542	0.9543	0.8412	0.7219	0.6649	0.6348
-0.10	0.9984	0.9798	0.8856	0.7618	0.7017	0.6699
-0.05	0.5986	0.9910	0.9238	0.7990	0.7359	0.7026
0.00	0.9999	0.9971	0.9542	0.8353	0.7675	0.7328
0.05		0.9993	0.9758	0.8647	0.7964	0.7604
0.10		0.9999	0.9892	0.8933	0.8228	0.7856
0.15			0.9961	0.9191	0.8467	0.8084
0.20			0.9989	0.9419	0.8683	0.8281
0.25			0.9998	0.9613	0.8878	0.8477
C. 30			0.9999	0.9767	0.9053	0.864
0.55				0.9877	0.9211	0.8754
0.40				0.9945	0.9352	0.8529
0.45				0.9980	0.9478	0.9050
0.50				0.9994	0.9591	0.9157
0.70				0.9999		0.9485
0.90						0.9694
1.10						0.9825

NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year: US\$ 15, £ 5.7) or free specimen copies please write to:

Handelsblatt GmbH
 "Euratom Information"
 Postfach 1102
 D-4 Düsseldorf (Germany)

or
Office central de vente des publications des Communautés européennes 2, Place de Metz Luxembourg

To disseminate knowledge is to disseminate prosperity - I mean general prosperity and not individual riches - and with prosperity disappears the greater part of the evil which is our heritage from darker times.

SALES OFFICES

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES
2, place de Metz, Luxembourg (Compte chèque postal No 191-90)

BELGIQUE - BELGIE
MONITEUR BELGE
40-42, rue de Louvain-Bruxelles
BELGISCH STAATSBLAD
Leuvenseweg 40-42 - Brussel

DEUTSCHLAND
BUNDESANZEIGER
Postfach - Köln 1

FRANCE

SERVICE DE VENTE EN FRANCE
DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
26, rue Desaix - Paris $15{ }^{\text {e }}$

ITALIA
LIBRERIA DELLO STATO
Piazza G, Verdi, 10 -Roma

LUXEMBOURG

OFFICE CENTRAL DE VENTE
DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
9, rue Goethe - Luxembourg

NEDERLAND

STAATSDRUKKERIJ
Christoffel Plantijnstraat - Den Haag

