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DETERMINING THE REGION OF ASYMPTOTOIC STABILIT¥ 9F A
COUPLED REACTOR WITH LINEAR POWER FEEDBACK'™®

1. Introduction

As pointed out in [7], it seems convenient to study the
asymptotic stability of a coupled reactor not in the large
but in the small, since the dynamical equations are not va-
114 in the whole of state space, According to [6] the kine=-
tic equations of a two core system can be written, in com=
monly used symbols, as follows:

. (1-B4 Jkq =1 €1

ng = n, + I“ ng (t-tgy) + Ejllzclt (1.1)
= . (1)

. (1-Bg )kg=1 ei1g

ng = ] n, + I—‘ ny (t=ty0) + o MaCls (1.2)
2 t (1)

. ke

ClLy = = A sCls + Bl — Ny (1.3)

1,
. kﬂ
Clz = = A gCle + Bls;‘ Nge (1.4)

The indices 4 and g refer to the first and the second
core respectively, €g14 and €42 are the coupling coefficients
and Tig and Ta4 are time delay constants which represent the
mean time required by a perturbation to travel from one core
to the other. The influence of these time lags on the stabie
1lity behaviour is not considered here since it has been stu-
died intensively in [3],

The feedback reactivity is now written as a linear func-
tion of the power deviation:

bk{ = = yi(ny = ngo)e : (1.5)
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Under this assumption the problem reduces, in the absence
of delayed neutron precursors, to two dimensions. Therefore
it is easy to plot the region of stability in state space,
Even in the case of three dimensions the region of stability
can be described plastically., Thus, in the last chapter the
influence on the stability behaviour of one group of delayed
neutrons in one core is investigated,

As mentioned in (7] it is necessary to distinguish bet-
ween the parsmeter space (y:, ve) and the state space
(ny, ns, ¢). The region of asymptotic stability in the small
in the parameter space is given by the condition that the:
roots of the characteristic equation of the linearized sys-
tem must have negative real parts, This condition is f1lfil-
led if the parameters of the system satisfy the ROUTH-HURWITZ
criterion, '

As is well known, no estimation of the permiseible extent
of the deviation from the power equilibrium point of the sta-
te variables is possible in the linear theory. This can be
done only if the nonlinear terms in the dynamical equations
are also considered by means of LIAPUNOV's second method,

The domsin of asymptotic stesbility (i.e. the bounds of
the disturbances of the initial wvalues) can be estimated on
the basis of the fundamental theorem of LA SALLE [2] [41:

THEOREM:

"Let V(x) be a scalar function with continuous first par—-
tial derivatives, Let N1, designate the region where V(x) < 1,
Assume that 1, is bounded and that within f:

V(x) > 0 for x £ O
V(x) < 0 for x ¥ O,

Then the origin is asymptotically stable, and above all,
every solution in f2; tends to the origin as t —* .
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There exist two very similar ways to determine the region
of stebility in state space, proposed by SCHULTZ [5] and
GEISS [4]. The procedure proposed by SCHULT? is used here:

A positive definite Liapunov function V with a negative
definite time derivate 6 in the whole state space is
chosen fof the linearized system, This Liapunov func-
tion is then apyplied to the nonlinear system and a fi-
nite region about the origin in which G is negative is
found by selecting the largeat V = const, surface that
fits into this region.

Since the theorem gives only sufficient conditions, one
cannot expect to find in this way the éomplete region of sta-
bility, Thus it will be necessary to use several techniques
for constructing Liapunov functions. A superposition of all
possible surfaces can give a sufficiently good estimation of
the reglion of stability.

There is a certain arbitrariness in choosing Liapunov func-
tions for linear systems, Thus it seems convenient to use some
constructing techniques,
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2, Technigues for constructing Liapunov functions for linear
systems

After the linearization the system (1.1-4) has the form

-

= B %, %(0) = 0 | (2.1)

W Yo

where the components of the vector ;'are the deviations of
the state variables from the power equilibrium point and the
elements of the matrix B are constant, Three different tech-
niques for constructing Liapunov functions for a system of
type (2.,1) will now be discussed, which give necessary and
sufficient conditions (in parameter space) for asymptotic
stability. For a linear time invariant system this stability
holds for all points of state space (complete stability).

2a, REISS - GEISS method [L]:

Starting from a linear time invariant system (where the
variables xL (L = ¢, .ssp N) are phase variables) which cor=
responds to a n—-th order differential equation with constant
coefficients, REISS and GEISS have shown that Lispunov's di-
rect method gives necessary and sufficient conditions for the
stability which are identical with the ROUTH-HURWIT?Z ecriterion,

-
If X' = (XH, Xn-i, (XXX Xl) and
a1 ag an-1 an
~ ao "8 " Tao " &0

1 0 e O 0

B = ) ) (202)
0 1 ® [
: :

,—
o
(@]
-
@]



(2.1) is equivalent to

a"x, an~ix, ax,
8o + 8y = 4 00 + Bpeyg —— + BpXqy = O (2.3)
atsn atnh—s at

The chosen Liapunov function is the quadratic form:

v=1@P R (2.4)
with
o84 0 g8y 0...
0] a,8a-8p8g 0 ° oo
P = ) (205)
8g834 0 8pBgthghg-a.8g * ¢
0 ata‘-aoa‘ O e e
It follows
. ]
V = =(a3Xp + 83Xn-g + BgXn~g + +0s) (2.6)

Since V is a negative semidefinite function, (2.,1-2) is
asynmptotically stable if P is positive definite and if G is
not identically zero along a trajectory of (2.1-2). The last
condition has been proved by TEISS and GE1SS, while RALSTON
[4] showed that the requirement of positive definiteness of
P 18 equivalent to the HURNITZ criterion:



The principal minors of

a an 0 O eee O
8y 8q 8, 8o+ O
as 84 as 8gees O
6o o 0 0 ‘ap

miat be positive,

2v. The SCHULT? niethod [5]:

(2.7)

Another possibility is to compute the system eigenvalues
and then to check that they hsve negative real parts. Since
in general B has no diagonal form, system (2.,1) can be chan-
ged by a linear transformation in such a way that the new co-
efficient matrix hss a diagonal rofm. This aprroach has also

been suggested by GEISS [4].

A linear transformation of coordinates

i8 made so that in the transformed equation

zZ =P 1BP§’
-1
P BP is a dlasponal matrix D,

D = dlag (Ays eos An)s

(2.8)

(2.9)

(2.10)

where A, ..., M are the eigenvalues of the matrix B, i.e,

roots of

l

| B - AE! = 0.

(2.11)
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The Liapunov function is chosen as
V(D) = 5 2F . (2.12)

It follows that

(z) _ 1 z2' (D' + D)z

at - 2
and with D! =D

vu

l:!.

dt (2.13)

The system is asymptotically stable if the eigenvalues
are negative real, i.e, if the HURWIT? eriterion is fulfilled.

In order to obtain the stability region in state space ;
it is necessary to write V in that coordinate systemd

V() = %-2 (F')ypPtx, | (2.14)

2¢., The GEISS method [4]:

‘This method is straightforward, As B can now be a general
matrix no transformetion of coordinates is needed, This tech-
nique can be shortly described by a fundamental tbeorem pro-
ved by GUISS with the choice V = x Px and V = - x Qx.

THEOREM: ™A necessary and sufficient condition for the com-
plete stability of the trivial solution, x(t) = O,
of the linear time 1Invarlant system

=B;

is: there exists a positive definite matrix, P,
which is the solution of

B'P + PB = = Q (2.15)

where Q is any positive definite matrix.,"
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The matrix P is assumed to be symmetric, It is further
possible to choose 3 a8 & symmetric matrix, Hence the n®
equations of (2,15) for the elements Ptk of P can be reduced

to B(n#1)

5 equations,

Thus the stability is investigated by choosin: a positive
definite matrix Q (Q = I is opportune), computing the py
from Eigill linear algebraice equations and checking P for po-
sitive definiteness by using the SYLVESTER criterion,

This method is very suited to the problem as will be seen
in the following aprlications,
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3. The two-dimensional case (no delayed neutrons)

These three methcods will now be applied to the linearized

equatione of system (1,1-4) for the case when delayed neu-

trons are neglected. Thus the problem is reduced to two di-

mensions (x, and X,) with the matrix B given by:

1
-1 (Y1n1° + Ay)

€12
1,

€24
1,

1
~ 77 (Yanzo + A2)
2

r bys  bey

bl.B b22
(35.1)

if the power equilibrium state is denoted by (n,o,, nge) and
the subcriticalities (1 - ko) by A .

At first the region in parameter space is derived from
the characteristic equation

° rYa. Ay Ye
S P O VR P

Y1 Ag Y2 Ay
'i';nio 1, + i’;"nso 1,

With

€L =

Az YiYs
Ngg + i'; + 1.1, NypNge +

Yt
i‘i" Nio

the HURWIT” conditione are

Ay

+ + —
€4 €g 1

1

Ay

Ag

+ T; > 0

An

£4Es + €2 I + €4 I > O

(%.2)

(3.3)

(L)

(3.5)
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The region given by these two inequalities is plotted in
Ay _ Ae _

Fig, 1 for the special values - ==
1 2

The nonlinear system has the simple form

° Y1

X1 = biix,_ + bzixz - i'l" Xiz ‘ (3.6)
. Yg .

As mentioned in chapter 1 the Liapunov function for the
linearized system must be applied to system (3.6=-7). To be-
gin with, the method 2a 1is used,

3a, Application of the RTISS-GEISS method

In order to avoid confusion between state and phase varia-
bles the phase varlables are now cdenoted by yp while the sym-
bols xi are reserved for the state variables,

System (2.1) with (5.1) can easily be transformed into
phase variable form:

Yi1 = Yo
. (3.8)
Yo = = 842 — 8gY¥1

with

a; = = (byy + bzz)
and (7.,9)

8 = byybgy = byobay
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Accordin, to (2.,4=5) it follows that

1 .
Vi(yii Yn) ) (atagY12 + a1y28) (3.10)
and

V1 = - 812Y22 . (5-11)

Since V, is a semidefinite function in state space it is
modified to & deflnite function by adding a term:

Ve = = 8:%y2" - mys”. (3.%2)
This function is negative definite in phase and state space

if n > O, From (%.12) V, can be calculated by integration
by parts [4] v

Va

il

[ Gsdt = ’./ (8,%ye” + ny19)¢t

[

1 2 8
Ve = 35 (818,¥4° + 85¥5°) = n [ ¥y1 dt.

It follows that

[ . a, o 1 [ .
| ¥ dt = - Sog i T Yye¥24%

a 1
[ * 2 2 2
I ¥1Y28t = y4¥2 + 2a, Y. + o8, Yo

and finally

ay mn

1 2
Vg = 5 (aiaa + g; n+ g:) Ya

mn ) 2
8,85 Je

M 1
t s YaVa + 5 (8 4

(3.13)
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which 1s positive definite in state end phase space 1if
(3.10) is positive definite (i.e. if the HIRWITZ conditions
ore fulfilled) and n > O,

For a case with the numericazal values:

. €13 €11 ) Ay _ Az -1 Y1 Yo ]
Ngo = Ngg = ’i_i——le L A VU P 9K"i:—
(3.14)
(3.13) becomes in state variables
24 2 'q-u8 o
Y Vo(Xy, Xp) = X% + L 758/ *1%a * Xa - (7.15)

Now 7 is chosen to be L8,

In order tc obtain the stabllity region, 6 = 0 of the non-
linear system is plotted in Fiy, 2, The largest ellipse V = K
that contects the curve % =.0 gives a finite region about the
equilibrium point in which V is negative. The point of con-
tact is the intersection point of the curve G = 0 and the
curve - ‘

dax, » dx,
dxgy .
V=20 V=K

Thus all solutions starting from any pecint in the inte-
rior of the ellipse V = K tend asymptotically to the power
equilivrium state, As will be seen later on, this region of
stebility is very small in comparison to other cestimations
based on the techniques Zb and 2c.
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3b. ipulication of the SCHULTZ method

As has been shown in [7] the Lizrunov function (2,14) be=-
[—(7\1 - bga) (Ag = byy) 1—1 2

Tyaboy -

comes with D

2 A2=bq4\? Ao=Dbyy Ai=bog |.

Ay =bog\2 o |
Sy e

which reduces, in the case of equal couplin;. factors b,s=bg,

(812 Eo4 . 1
1, 1 to a circle.

The time derivative of (3%.16) with respect to the nonline-
ar system of (5,6-7) is

2 7\1."‘011 2 rlx‘bzz 2
. 21 12
Y1 I—1 (7\2"b11\2_-l r (M_—'b92) —]
1, v Doy / - 1 . byp J
Y [12‘b11 li‘bzzw o rlz'b 1 li‘bzz_l a
— + Xy Xo + T + X4Xo o
1, Doy byg .. 77 1, - boy byp — 177

. (3.17)
“or the e~ample (5.74), V = O is a strai~ht line throush
the shut down state (nyy,=0, ngy=o, x,=-1, Xa=-1),

The stability re;ion is given by « circle sround the ori-
~in with ¢ radiis eoual to the distance between the shut down
state and the power equilibrium state (Fig., 2).

It has been shown penerally in (7] that, in the case of
equel coupliny coefficients, the region of asymptotic stabi-
lity in state space 1s bounded by a circle around the orizin

Ny s

with the radius (n,,®° + ny0°) s i.2. the cistance of the



- 18 -

two singular points, 1f the feedback parameters are such that

Ya Ya
I, 1o = I Moo (3.18)

If this relation is not fulfilled, the radius decreaseé.
It has been verified that the parameters g have only a small
influence on the extent of the stability region.

Ag can be seen from (3.,16), in the case of unequal coup-
ling coefficients, the stability region 1s an ellipse, For
the special example '

€12 €214 Ay Aa ]
nio:1rnﬂo=2011 ""1'1’ =2,T:=L¥,T;=5.

Te 0.2 Ya 0.l

T:-‘ elg la - [}

(3.19)

the curves VS = 0 and Vs = K are plotted in Fig. 4 which is
also mentioned later on. More details are discussed in [7].

3c. Application of the GEISS method

With the cholce Q = I the elements pik of the matrix P

mist be calculated from the followlng system according to
(2,15)

2by1P11 + 2bygDie = = 1
bayDys + (byg+bpg)Pip + byghPeg = O (3.20)

ZbgyPyz + ZbaoPgs = = 1.
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By use of (3.,9) 1t follows that

1 (82+bss +bys ) - (b11b12+baabay)
" 2a.8, - (bygbya+baabay) (a2+b112+b912) ] (3.21)
P is positive definite if
1) (a2+b222+b122) > 0
(3.22)

2 2 2 2 2
11) (az+bap +byp )(ag+byy +bgy )=(byybie+basbes) > O,
After some recasting condition ii) has the simple form
2 )
8s [(byy+bag)” + (bge=bae) ] > O.
Thus P is positive definite if

a;, >0 and ap > O,

These conditions are identicael with the HUNYITZ criterion
(2.7). By this the theorem of GEISS has been verified for

@ =1 and n = 2,

The time derivative of V with respect to system (3.6-7) is

2 2 ' 2 2
Y1 82+bgg +bsp a Yz 82+b11+bay s

L)

1 2 )

-f V= X1 =Xz - 11 889 X1 - 12 8489 Xe +
Y1 Y

(byybyo+boobay) (i: X %y + i:‘x1X22>- (3.23)

For the example (0.14) with equcl coupliny coefficients,
VR= G and V, = K are plotted in Fig, 3. The superposition of

VS and VR gives the stability region., This region is bounded

by the straipght lines x4 = = 1, and x, = - 1, since the
power values can never become negative.
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In the case of unequcl couplins coefficients and with
the perameter values of example (5.71%) the stability rerion
is plotted in #i:, 4, For these two special problems, it is
seen from Fi:, 3 and Fir,, 4 that the C31SS nethod glves the
lar;est surfece, but that it is also necessary to use the
SCHILYZ method in order to pget a larrser region by surasrno-
sition, As mentioned before, this is not the complete re-
silon of stebiliity. Un to now the pro:lea of how to choose F
and < in order to obtain the best estmate is unresolved.

In contrast to the results of the last section, using
the SCUJLT method, the extent of the stability region 1s
now much influenced by thec parameters vyy/1, and vo/1la.

This can be 1llustrated by assumin.; the valves: yy/1y = 0,
ye/lg = 1 or v4/1y = 1, yo/1s = O in the numerical example
(7.14). These assumptions give the surfaces plotted in

Fig, 5., In comparison to Fi;:, : the stability region is now

much smaller,
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4o The three-dimensional cese (delsyed neutrons in one core)

In chapter 3 the effect of delayed neutrons hus been neg-
lected., As is known from the point dynamics model the de=-
layed neutrons can improve or worsten the stability of a
power reactor if the feedback transfer function 1s a lagging
or leading function of real frequencies [1]. The influence
of delayed neutrons willl now be investi:sated In the two
point model, According to eqs. (1.1=4) the problem is a
four-dimensional one., Hoviever, in order to get a concrete
picture of the stabllity region the problem 1s reduced to
the three dimensions. This is achieved by considering de-
layed neutrons in one of the two cores, In the work to fol-
low only the analysis of G@ISS (see 2¢ snd %c) is applied.
To obtain results which are comparable with those of chap-
ter 3, 2 = I 18 choden again. Two different problems are
stndied. To begin with, the simplest one 1s discussed,

ua) Y1 = O,vg £ 0, N = Rg = 0y Ny # Cy, Bs £ 0 :

System (1,1-4) reduces to

. (Ai kio) €o4 .
X4 = = 'i‘;" + -1—1-— Xy + T;— Xa + AXg ()4..1)‘
. €12 (Az Ya ) Yz 2 .

Xe = 77— Xa 1. ¥ 1, 2o/ X2 ~ 77 Xo (Le2)
. ko

Xs = B I, %1 - Mg . (L4e3)

The conditions for asymptotic stability in the parame-—
ter space (2,3) can easily be derived from (L,1-3):

Ay Ag Ko 5
1) 1, + 1 + B 1 + gg + A >
Ay
ii) Ggl I > O

1,
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(Ai Ap ) A ky9 (A1 k4o
111) rr AT te e/ ¢

7\(1 s—f’-+ea+xﬂ+ak‘°p2 e

Kio
3'<__ + B 11 ) + A —- + GQ)] > O,

Conditions i) and 1ii) are fulfilled if ii) is satis-

fied, A comparison with (3.,4-5) shows that the delayed neu; “

trons do not change the region of stability in parameter
space,

The region in state cpace is estimated for the special
problem:

Nijo = Ngg = C1p = 1, I: = 1, =1, 1 =3 =

(4a4)

Lecording to 2e¢) the Liapunov function has the form

V= x12+ %x22+ 6x82+x1x9 + 2x.X3 + Xgxg = K, : (4.5)

The time derivative V with respect to system (U4,1=3)
with Yg/lg = 1, is

It 2 2 ] 2 2 3
V==X =X =Xz = X4Xg = Xp Xg = Xa (446)

[ ]
The point of contact between V = O and V = K is now
found by the following procedure: ‘

Introduce F;, = V=0 and Fy, =V - K = 0, so that the
tangential plane in the point O (X,5, Xgo», Xso) 18 given by
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oF ' oF, oFy
T | (\1mXee) + 5 (x2=%20) + 357 | (Xa=%a0) = 0
0 0
for i = 1'2 (2407)
or

uL(K10s Xpo> X50 )Xy + VL(XiOD X500 xab)xz +

WL(X1no X209 xao)xa + ml(x109 Xz20s Xso,) = O. (M-S)

These two planes are identical 1if

1, = Usax (e9)
Ve = Vaa , (La1C)
Wy = WaG (La17)
my = My (Lo12

with a a real constent.

This is a system of L4 nonlinear zalgzebraic equs tions with
the unknowns Xio0s, Xogs Xs0s® « Since there exists no gene-
ral solution, it is solved for the special functions F; and
Fo (L.5+C) by eliminzting the unknown x4, end graphical re-
presentation of the remaining three functions for some ¢ -
values in the X,q, Xso Plane, System (4.5~72) has the spe-
cial form

- 2X40 = X20 (2%40 + Top * “Xgol)

(h,13)

]

- . 2
- 2Xpg = 2Xy30Xpp = “Xgo0Xze — IXz20

1l

(X140 + ¥20 *+ Xgo)O

("40 9 ')—r)
- 2
= «X39 = Xgo

i}

(12xao + 2Xg4, + Xgo )0t

(0e"5
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) 8 8 , 2 1 8
X10Xgo + ¥ge * Xpo Xso = - 2(Xy0 + XyoXge+t 2 X20 *+

-
6!30 + X.oxao)a'

(4e16)
The final system is obtained by eliminating xX4q!

2
Xge + aXgo

(12a + 2 + 10 + 2a)

(1) Xgo = =

(b + a.)xzo + 303:0' - 2120.

(I1) xg0 = (20 +10a”) + (4 + 20a)Xq,

s 2 2 a
(I1I) axge + (2 + 10a)Xao Xgo + @ Xgo +

(4 + 40a + 120a')x.°° = 0,

The required point of contact is the intersection point L
of £ll1 three curves, As known from the theory of nonlinear
algebraic equations, system (L.13-16) can hsve 2°2°2°3 = 24
solution pecints, Obviously only the intersection point near
the origin is of interest for a ¥ O, As shown in Fig, 6
this specisl problem hes its first intersection point in .
the vicinity of the origin, at (x40 = O, X309 = = 1, Xgo = O,
a = 1), The threefold intersection point is split up into
the two dotted curves for O ¢ o < 1, E

Thus the stebility region is enclosed by the ellipsoid
1 N
x,' + X4Xo + %-xg' + 2X4Xg + XpXg + 6x.' = e (Le17)

Xg 1s the deviation of the delayed neutron precursors
from the 2quilibrium state e¢s0. If no perturbations of the
initial value ¢y, are considered (x; = 0), (4.,17) reduces
to the ellipse (I) of Fig, 5., Thus it has been proved for
the special problem (L,4) that the delayed neutrons do not
change the reglon of stability in the state space (x4, X3)e
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LR) ¥4 = O,ye # 0, Ay = B4 =0, Ny #0, B #0

System (1.1=4) becomes now

. Ay €21 18)

Xy = = T: Xy + T;_ Xg (4.

. €4 (Az Ye kzo) Y2,

X2 =7, %1 "\, + T, M=o +8 1, / Y2 "1, %= ¥ AXg
(4.19)

. Koo

Xg = B T X2 = AXs (4.20)

As with (4.4), the numbers
K20 Y1 ,
Coo = Ty 1’;" = 0.1 and ‘i‘;= Ty (4e21)

are assumed, This change in the values of (L4.4) leads to
another Liapunog¢ function

1 2 2
V = Xy~ + XgXg + 5 X2+ X3X3 + XzXs + 5.5%s (4e22)

but to the same point of contact and hence to the seme sta -
billity region in the x,, X» plane,

Thus the extent of the stebility region in the x,,x5,Xs
state space depends on whether the delayed neutrons are
considered in the first or the second core,

As with La) 1t can be shown that the delayed neutrons
do not influence the extent of the stability region in pa-
rameter space,



- 30 -

hT)Tt#O’Tlfoth"ﬁn"ovMi‘ooﬁtilo

The differential equations of these problems are

Ay Ko Ea1 Yi 4
X‘-" T+BI—+G‘ +'i';"‘x'+u.-i"‘xi

(Le23)
N A €ip ¥
xc’-‘-(-i%'&'cz)xt*'i:—‘xa‘ﬁxa, (Lo2L)
. kio
Xg = = AXg + B T;— Xy o (h.25)

The HURWITZ conditions are now

Ay Ag | P

1) i:'+ i:'+ Tt tes A >0
Ay Ao

11) To et I 6t er6n > 0

Ay Ap
111) (r""—'*cg"'tg)l— Eg""";'C;"‘thg +

Kio [Bs Ay Ag K10
ﬂi:—i';'l'g’ +1i-:+1—;+31+en+f!——+)\

Ko ( kso\ /A2 Ag Ag )
ﬁr l+ﬁi—- "—+32 +T;e"+i:e‘+e"e°_,!>o'

As shown in Fig, 7, condition 1ii) covers the shaded ree
gion, Thus it follows that the stability region in parame-
ter space remains unchanged by the delayed neutrons as is
seen by comparison with Fig, 1, This can also be proved by
considering the different paranthesis terms of 1ii),
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The Liapunov function is calculated by the GEISS method
with the parameters (L.4):

3 V= xt. + X4Xg + x,' + 211x. + XoXg + 16x.. (u.26)

and its time derivative with respect to system (4,23-25)
with v¢/1y = ve/1lg = 1 18 given by

3 6 - - 3X1’ - 3x,9 - BX.R - ZX" - ZX.. - 11’13 - xtxgn -
2x1.xa - x..x.. (u027)

The points of contact dbetween the curves V = K and
V = 0 are found by the same procedure as used in La), Sys=

tem (4.9=12) becomes

~6X40=6X10"=2X50X0-Xg0" ~UX10Xs0 = (2X10+Xg0+2Xs0)a

(Le28)
=6X00=6Xg0 " =X40"=2X10Xg0=2Xg0Xg0 ® (X10+2Xgo+Xso)Q

(4.29)
-6xa°-2x1°9-x,°. = (2x1°+x9°+32x3°)a

(4+30)
2xi,'+2x,°°+xxonxno+xtoXao.+QXtozxso+Xao2Xso =
= (2Xgg +2X10Xgo+2Xg0" +LiXgoX30+2Xg0Xa0+32Xs0" ) (L4o31)

Now 1t is convenient to el;minate X80 ¢

-
8 2 2
(1) g3z %o +[3%§%5‘6]*w *j%%z'2°"6]xto'

r- -

x T L 2 2a"
2 - 355 x10%a0 = g3z Moxeo” + @ - g0 [xe0 4

- -
2
|t - 5] xao” o
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(II) [6+30]x’.°2 + [6a+30a’ ]x’.o =
2Xno°*hxto.xco - [12460a]x40Xg0 = [36+189a)xe0" =

[63a° +20La+36 1xg0

(III) =2u4xgo* + [2(6+320)%-72a~128a%)x,0® + [2a(6+32a)® =
48xR=128a® Ix.0® + [2a(6+32a)B=48a®=128a® Ix,oXgq +

[(6+320)2=36a=6La® ]x19Xne® + [(6432a)%=36a =

y

64c® )X10°%g0 = 2UX10%Xao® = . ‘
6xgo* + [=2(6+432a)%+18a+32a® 1X30° + [=2a(6+32x)® +

1 2&' +32a. ]XQO 2 .

These three curves are plotted in Fig, 8 for a = 1,5, 1
and 0,5, It will be noted that there are 3 threefold inter-
section points of the three curves (=1,5, 05 0), (=1, =1,
0) and (0, =1,5, O) near the origin, As can be seen from
Fig. &, no further threefold intersection of the three cur-
ves is possible for O < ¢ < 1,5, This casn also be verified
by calculating the roots along the axis x1¢ and xgso. Only
for a = 1 is the intersection point of curves I and II ale
s0 an intersection point of curve III for xio ¥ O and
X20 # O, Thus it is proved that from the 24 possible solu=-
tion points only these three are in the vicinity of the
origin, The smallest ellipsoid goes through the points
(-1.5, O, O) and (0, =1,5, O0), Hence the stability re-
gion 1s given by

x12 + X1xe + x2® + 2x1Xs + Xaxs + 16x3® = 2,25 , (L4e32)

If no perturbation of the delayed neutron precursors is
considered, (L4.32) reduces to the ellipse in Fig, 3, ’
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Thus it has been shown in this chapter for some special
problems that the delayed neutrons have no influence on the
stability region in parameter space (e,, €3) and also no
influence on the stability region in state space (n,-n,q,
Ng=Nzo)e

This is in sccordance with the statements of GYFTOPOULOS

[1] for point reactor dynamics, as the feedback transfer
functions are here constants (y; and yg).












