
I E U " 

fwry *v 

mm* 
fflm 
mñ 

rSSfli 
WâPííB 
»liirf 'KIWÍIÍRW 

Γ .îflttfkfcr lik f »lir.' 

DETERMINING THE REGION OF ASYMPTOTIC 

TS*·* STABILITY OF 

î««at 

REACTOR WITH LINEAR POWER FEEDBAC] 



m m 
MM 

'ilîi mr. 

m: 

I JüHiU 

WM 

uttâS; 

» 

Τ'"»H 

181 

!i i 
mkî 

^i»!|ihl:«it 

',s 
M*

1 Κ 

iiî 

m 

m* 

LEGAL NOTICE 
Iti' IR .Vit.mimi'iVtf

 k 

egit 

i l 

îîîl'i· 

iil 

This document was prepared under the sponsorship of the Commission 

of the European Atomic Energy Community (EURATOM). 

Neither the EURATOM Commission, its contractors nor any persoi 

Make any warranty or representation, express or implied, with respect 

to the accuracy, completeness, or usefulness of the information con­

tained in this document, or that the use of any information, apparatus, 

Assume any liability with respect to the use of, or for damages resulting 

from the use of any information, apparatus, method or process 
J 'sclosed in this document. 

Π m 

m 

¡faÇfÈMli 

m 

mmm 

m 

Mi 
k 
IH.ι 

¡"«Ρ« 

m 
This report is on sale at the addresses listed on cover page 4 

at the price of F F 5,— FB 50,— DM 4,— Lit. 620 Fl. 3,60 

t'«! 

fcfitrøe 
When ordering, please quote the EUR number and the title, 

which are indicated on the cover of each report. 

*P' "*ffî 

'"ffiïï 

aMßmm 
mkèm FI(!» 

¡!\ 

Vil 

ma 
.«J 

M*'"*̂ .. 

3nnted by Guyot, s.a. 

Brussels, April 1967 
Í 

m 

iPffira m* m 



EUR 3465.e 
D E T E R M I N I N G T H E R E G I O N O F ASYMPTOTIC STABILITY O F A 
C O U P L E D REACTOR W I T H L I N E A R P O W E R F E E D B A C K 
by D. SCHWALM 

European Atomic Energy Community - EURATOM 
Join t Nuclear Research Center - Ispra Establ ishment (Italy) 
Reactor Physics Depar tment - Research Reactors 
Paper presented a t the Conference on Coupled Reactor Kinetics 
College Station, Texas, USA, January 23-24, 1907 
Brussels, April 1907 - 36 Pages - 8 Figures - FB 50 

The region of stability in state space is studied for a two core system by 
means of I. iapunov's direct method. In the case where there is power feedback 
the dynamical equations are nonlinear. Lor the linearized system, Liapunov 
functions are constructed by three different techniques and applied to the 
nonlinear system. Thus the region of stability in s ta te space can easily be 
est imated in the two dimensional case. The effect of delayed neutrons on the 
stabili ty behaviour is also studied. This leads to a problem of at least three 

EUR 3465.e 
D E T E R M I N I N G T H E R E G I O N O F ASYMPTOTIC STABILITY OF A 
C O U P L E D REACTOR W I T H L I N E A R P O W E R F E E D B A C K 
by D. SCHWALM 

European Atomic Energy Community - EURATOM 
Joint Nuclear Research Center - Ispra Establ ishment (Italy) 
Reactor Physics Depar tment - Research Reactors 
Paper presented a t the Conference on Coupled Reactor Kinetics 
College Station, Texas, USA, J a n u a r y 23-24, 1967 
Brussels, April 1907 - 30 Pages - 8 Figures - F B 50 

The region of stabili ty in s ta te space is studied for a two core system by 
means of Liapunov's direct method. In the case where there is power feedback 
the dynamical equations are nonlinear. For the linearized system, Liapunov 
functions are constructed by three different techniques and applied to the 
nonlinear system. Thus the region of stabili ty in s ta te space can easily be 
estimated in the two dimensional case. The effect of delayed neutrons on the 
stability behaviour is also studied. This leads to a problem of a t least three 

EUR 3465.e 
D E T E R M I N I N G T H E REGION OF ASYMPTOTIC STABILITY O F A 
COUPLED REACTOR W I T H L I N E A R P O W E R F E E D B A C K 
by D. SCHWALM 

European Atomic Energy Community - EURATOM 
Joint Nuclear Research Center - Ispra Establ ishment (Italy) 
Reactor Physics Depar tment - Research Reactors 
Paper presented a t the Conference on Coupled Reactor Kinetics 
College Station, Texas, USA, J a n u a r y 23-24, 1907 
Brussels, April 1907 - 30 Pages - 8 Figures - FB 50 

The region of stability in s ta te space is studied for a two core system by 
means of Liapunov's direct method. In the case where there is power feedback 
the dynamical equations are nonlinear. For the linearized system, LIAPUNOV 
functions are constructed by three different techniques and applied to the 
nonlinear system. Thus the region of stability in s ta te space can easily be 
estimated in the two dimensional case. The effect of delayed neutrons on the 
stability behaviour is also studied. This leads to a problem of a t least three 



dimensions. For the case of constant power feedback transfer functions it is 
shown in special numerical examples that the regions of stability in parameter 
and state space remain unchanged for vanishing disturbances of the initial 
conditions of the precursors. 

dimensions. For the case of constant power feedback transfer functions it is 
shown in special numerical examples that the regions of stability in parameter 
and state space remain unchanged for vanishing disturbances of the initial 
conditions of the precursors. 

dimensions. For the case of constant power feedback transfer functions it is 
shown in special numerical examples that the regions of stability in parameter 
and state space remain unchanged for vanishing disturbances of the initial 
conditions of the precursors. 



E U R 3 4 6 5 . e 

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM 

DETERMINING THE REGION OF ASYMPTOTIC 
STABILITY OF A COUPLED 

REACTOR WITH LINEAR POWER FEEDBACK 

by 

D. SCHWALM 

1967 

Joint Nuclear Research Center 
Ispra Establishment - Italy 

Reactor Physics Department 
Research Reactors 

Paper presented at the Conference on Coupled Reactor Kinetics 
College Station, Texas, USA, January 23-24, 1967 





DETERMINING THE REGION OF ASYMPTOTOIC STABILITY OF A 
COUPLED REACTOR WITH LINEAR POWER FEEDBACK^*

7 

1· Introduction 

As pointed out in [7]» it seems convenient to study the 

asymptotic stability of a coupled reactor not in the large 

but in the small, eince the dynamical equations are not va­

lid in the whole of state space. According to [6] the kine­

tic equations of a two core system can "be written, in com­

monly used symbols, as follows: 

0­ßi)ki­1 e 8 1 V^ 

j^ . nt + naCt­tn) ♦ / Xucii (1.1) 
li li 

(O 

(l­ße)ks­1 e i e # x V / χ 

na = n2 + ni(t­Tie) + Xi»ci» (1.2) 
la It (O 

c u ■ ­ XtiCi! + ß u — n t (1.3) 

It 

• kg 

ct2 = ­ Xiacia + ß t a — n,. (1.¿+) 
la 

The indices ι and 8 refer to the first and the second 

core respectively, εΒι and ε λ 8 are the coupling coefficients 

and tia and τ2ι are time delay constants which represent the 

mean time required by a perturbation to travel from one core 

to the other. The influence of these time lags on the stabi­

lity behaviour is not considered here since it has been stu­

died intensively in [3J. 

The feedback reactivity is now written as a linear func­

tion of the power deviation: 

ôkL = ­ YL (m ­ nu)· (1*5) 

(*> 
Manuscript received on February 17, 1967. 
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Under this assumption the problem reduces, in the absence 

of delayed neutron precursors, to two dimensions. Therefore 

it is easy to plot the region of stability in state space. 

Even in the case of three dimensions the region of stability 

can be described plastically. Thus, in the last chapter the 

influence on the stability behaviour of one group of delayed 

neutrons in one core is investigated. 

As mentioned in [7] it is necessary to distinguish bet­

ween the parameter space (γι, γ8) and the state space 

(ni, na, c). The region of asymptotic stability in the small 

in the parameter space is given by the condition that the* 

rootB of the characteristic equation of the linearized sys­

tem must have negative real parts. This condition is fulfil­

led if the parameters of the system satisfy the ROUTH­HURWITZ 

criterion. 

As is well known, no estimation of the permissible extent 

of the deviation from the power equilibrium point of the sta­

te variables is possible in the linear theory. This can be 

done only if the nonlinear terms in the dynamical equations 

are also considered by means of LIAPUNOV'Β second method. 

The domain of asymptotic stability (i.e. the bounds of 

the disturbances of the initial values) can be estimated on 

the basis of the fundamental theorem of LA SALLE [2] [k)t 

THEOREM: 

"Let V(x) be a scalar function with continuous first par­

tial derivatives. Let At designate the region where V(x) < 1. 

Assume that ilt is bounded and that within ilt: 

V(x) > 0 for χ 4 0 

V(x) < 0 for χ 4 0. 

Then the origin is asymptotically stable, and above all, 

every solution in Ω ι tends to the origin as t "♦ °° ·" 
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There exist two very similar waye to determine the region 
of stability in state space, proposed by SCHULTZ [5] and 
GEISS [k]· The procedure proposed by SCHULTZ is used here: 

A positive definite Liapunov function V with a negative 
definite time derivate V in the whole state space is 
chosen for the linearized system. This Liapunov func­
tion is then applied to the nonlinear system and a fl-
nite region about the origin in which V is negative is 
found by selecting the largest V = const, surface that 
fits into this region. 

Since the theorem gives only sufficient conditions, one 
cannot expect to find in this way the complete region of sta­
bility. Thus it will be neceesary to use several techniques 
for constructing Liapunov functions, A superposition of all 
possible surfaces can give a sufficiently good estimation of 
the region of stability. 

There is a certain arbitrariness in choosing Liapunov func­
tions for linear systems. Thus it seems convenient to use some 
constructing techniques. 



2. Techniques for constructing Liapunov functions for linear 
systems 

After the linearization the system (1.1-1+) has the form 

χ = Β χ, x(0) = 0 (2.1) 

where the components of the vector χ are the deviations of 
the state variables from the power equilibrium point and the 
elements of the matrix Β are constant. Three different tech­
niques for constructing Liapunov functions for a system of 
type (2.1) will now be discussed, which give necessary and 
sufficient conditions (in parameter space) for asymptotic 
stability. Por a linear time invariant system this stability 
holds for all points of state space (complete stability). 

2a. REISS - QEISS method Iki: 

Starting from a linear time invariant system (where the 
variables χι (l = if ..., n) are phase variables) which cor­
responde to a n-th order differential equation with constant 
coefficients, REISS and GEI SS have shown that Liapunov's di­
rect method gives necessary and sufficient conditions for the 
stability which are identical with the ROUTH-HURWITZ criterion. 

If x' = (xn, xn-i, ..., xi) and 

I . at ao 
as 
ao ... — 

an-i 
ao 

an 
ao 

Β 
0 

0 0 
(2.2) 



(2.1) is equivalent to 

d
n
xt d"­^ 

a0 ♦ at 

dt
n
 dt

n­1 

dxt 
♦ ... + an­i + anxi = 0 

dt 

(2.3) 

The chosen Liapunov function is the quadratic form: 

V = £ x'P χ (2.U) 

with 

a0at 

a0aa 

0 

aiae­a0aa 

a^a^—a0a8 

a0a. 0 ... 

. . · · 

a0ae+a9a8­a1a4 · ·· 

0 

(2.5) 

It follows 

V = ­(atxn + a8xn­a + aexn­4 + . . . ) ' (2.6) 

Since V is a negative eemidefinite function, (2.1­2) is 

asymptotically stable if Ρ is positive definite and if V is 

not identically zero along a trajectory of (2.1­2). The last 

condition has been proved by T?EISS and GE1SS, while RALSTON 

[U] showed that the requirement of positive definiteness of 

Ρ is equivalent to the HURWITZ criterion; 



The principal minors of 

­ 8 

β ! 

a e 

a e 
• 
• 

0 

a0 

a s 

&4 

0 

0 

Û 1 

a» 

0 

0 · · · 0 

a 0 · · · 0 

a 8 · · · 0 
. . . 
. · , 

0 'a n 

(2.7) 

must be positive. 

2b, The SCHULTZ method Γ51: 

Another possibility is to compute the system eigenvalues 

and then to check that they have negative real parts. Since 

in general Β has no diagonal form, eystem (2.1) can be chan­

ged by a linear transformation in such a way that the new co­

efficient matrix has a diagonal form. This approach has also 

been suggested by GEISS [k]· 

A linear transformation of coordinates 

χ = Pz 

is made so that in the transformed equation 

(2.8) 

z* =* Ρ BP? 

­i 

Ρ BP is a diagonal matrix D, 

D a diag (λι» ··· hn) t 

(2.9) 

(2.10) 

where λι, ..., λη are the eigenvalues of the matrix Bt i.e. 

roots of 

ι Β ­ XE = o. (2.11) 
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The Liapunov function is chosen as 

V(?) . ! ? ' ? . (2.12) 

It follows that 

and with D' = D 

n 

ä # ­ >Η.ι·. (2.13) 
1 = 1 

The system is asymptotically stable if the eigenvalues 

are negative real, i.e. if the HURWITZ criterion is fulfilled, 

­♦ 
In order to obtain the etability region in state space χ 

it is necessary to write V in that coordinate system! 

V(l) = ̂ '(P"
1
)'?"

1
^. (2.110 

2c. The GEISS method Ρ*1 : 

This method is straightforward. As Β can now be a general 

matrix no transformation of coordinates is needed. This tech­

nique can be shortly described by a fundamental theorem pro­

ved by G
T
:iSS with the choice V = χ'Ρχ and V = ­ x'Qx. 

THEOREM: "A necessary and sufficient condition for the com­

piete stability of the trivial solution, x(t) = 0, 

of the linear time invariant system 

x* = Bx* 

is: there existe a positive definite matrix, P, 

which is the solution of 

B'P + PB = ­ Q (2,15) 

where Q i s a n y pos i t ive def in i te matr ix ." 
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The matrix Ρ is assumed to be symmetric. It is further 
possible to choose Q as a symmetric matrix. Hence the n8 

equations of (2.15) for the elements ρςχ of Ρ can be reduced 
. n(n+1) . . 
to v

2 ' equations. 
Thus the stability is investigated by choosinr a positive 

definite matrix Q (Q = I is opportune), computing the pm 
from ̂ *r" ■*■ linear algebraic equations and checking Ρ for po­
sitive definiteness by using the SYLVESTER criterion. 

This method is very suited to the problem as will be seen 

in the following applications. 



11 

3. The two-dimensional case (no delayed neutrons) 

These three methods will now be applied to the lineaî ized 
equations of system (1,1-1+) for the case when delayed neu­
trons are neglected. Thus the problem is reduced to two di­
mensions (xt and x8) with the matrix Β given by: 

Β 

γ- (Υιηιο + At) 

57" 

Esi 

- τ~ (ΥΒΠΒΟ + Δ8) 

b l t b 

b 

1 
21 

12 D2S 

(3.1) 

if the power equilibrium state is denoted by (n10, n20) an<i 
the subcriticalities (1 - ki0) by At-

At first the region in parameter space is derived from 
the characteristic equation 

s 
(~Yi At γ8 Δ8 + s hf— n10 + r— + r— n20 + r— 
LJ-i J-l J-8 J-2—I 

YiYi 
η η 4 110"30 n., „n« 

Yi 
n, 

Δ 8 Ya At 
+ ττ~ η 

a — J-i li i110 1β
 τ 1, " 8 0 1 r- « o . (3.2) 

With 

ει 
Yt (3.3) 

the HORWITZ conditions are 
Ai A8 

8i + e 8 + T — + T~ > 0 
J-i J-B (3Λ) 

BiBe + ε2 γ- + Si τ— > 0 J-i xa 
(3.5) 
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Fig. 1: Region of asymptotic stability in the parameter space 
(ei, ε2) with τ— = r— = 1. 

J-1 J-S 
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The region given by these two inequalities is plotted in 

Fig. ι for the special values ÙL = às. = ï. 
li IB 

The nonlinear system has the simple form 

Yl , e\ 

x± = b1;LXi + b21x2 ­ γ- Xi2 (3.6) 

• γ2 

Xg = b12xt + b2Sx2 ­ ;p­ x2
8
 . (3.7) 

As mentioned in chapter 1 the Liapunov function for the 

linearized system must be applied to system (3.6­7). To be­

gin with, the method 2a is used. 

3a. Application of the REI3B­GKISS method 

In order to avoid confusion between state and phase varia­

bles the phase variables are now denoted by yt while the sym­

bols XL are reserved for the state variables. 

System (2.1) with f3.1) can easily be transformed into 

phase variable form: 

yi = ya , 

(3.8) 

YB =■ ­ aiYa ­ a8yt 

with 

at = ­ (blt + b22) 
and (3.9) 
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According to (2Λ­5) it follows that 

Vt(yi, yB) = \ (aia2yi
2
 + aiy2

8
) (3.10) 

and 

Vi = ­ « Λ 2
8
 . (3.11) 

Since V1 is a semidefinite function in state space it is 

modified to a definite function by adding a term: 

Va = ­ ai
s
y2

2
 ­ nyi

2
. (7.12) 

This function is negative definite in phase and state space 

if η > 0. From (3.12) V8 can be calculated by integration 

by parts [k] 

V„ = / V2dt = ­ J (a^y/ + ηyiß)dt 

V2 = g (
a
i
a
syi

S
 + a2y8

2
) ­ η \ y^dt. 

It follows that 

Γ ai
 s

 1 Γ ' 
J yi2dt = ­ 2a~ yt ­ ~ / yiy2dt 

a¡> 1 

2 . S yiyBdt = yty2 + 2^~ y± + TJ­

and finally 

i
 a

i Ή n 1 Ή V2 = - (a±a8 + — η + — ) yx
s + — yty2 + - (at + r-r-) y2 

(3.13) 

2 
at wx aP ui"-s 2 l ata2 
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which is positive definite in state and phase space if 

(3.10) is positive definite (i.e. if the HURWITZ conditions 

are fulfilled) and η > 0. 

For a case with the numerical values: 

eia etl At A2 Yi γ2 
= 1 

(3.11+) 

n10 ­ n20 = 1, u - la ­ 1, Xi ­ la = 1, 1 A ­ la ­ 1 

(3.13) becomes in state variables 

2k 

I+B> 

Ap¿4.8N 

η Ve(xt, x2) = 7Χι
β
 + k \ ^ ξ ) *iXa

 +
 V (

7
.15) 

Now η is chosen to be 1+8. 

In order to obtain the stability region, V = 0 of the non­

linear system is plotted in Fig. 2. The largest ellipse V = Κ 

that contacts the curve V = 0 gives a finite region about the 

equilibrium point in which V is negative. The point of con­

tact is the intersection point of the curve V = 0 and the 

curve 

dxt dxt 

dx2 · dx9 ' 

V = 0 V = Κ 

Thus all solutions starting from any point in the inte­

rior of the ellipse V = Κ tend asymptotically to the power 

equilibrium state. As will be seen later on, this region of 

stability is very small in comparison to other estimations 

based on the techniques 2b and 2c. 
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Fig. 2: Region of asymptotic stability in the state space (xt> x8) calculated with the REISS-GEISS (Ru) and the SCHULTZ (S) 
method in case of equal coupling coefficients. 

Κ=η20=1,.^4^1;τ} = τ!-:1) 
VRG: 7 x t

2 + x 2
2 0.81+25 ,· V 0 : x t

2 + x 2
2 
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3 b . ¿ T r e l i c a t i o n of t h e SCHULTZ method 

As h a s b e e n shown i n [7 ] t h e L iapunov f u n c t i o n (2 , i i+ ) b e ­

2 Γ ( λ ι ­ b 2 2 ) (λβ ­ b l t ) Ί 8 

comes w i t h D = | — - 1 | 
° t S D 2 1 

t 

* . N 8 Γ ( X 8 - b i i Y 1 P ^ l l λ ΐ -^2 8 Ί . 2D V ( X i , X 8 ) = Xt2! 1 + \ —r- ) ! - 2x t x 2 ! — + — I + D 2 1 / _. D 2 1 D 1 2 _ 

which r e d u c e s , i n t h e c a s e of e q u a l c o u p l i n g f a c t o r s b t 2 = b 2 1 
/ ε ι 2 ε 2 ιΛ 
' Ï — = χ—.' , t o a c i r c l e , 

­i­i x8 

The t ime d e r i v a t i v e of ( 3 . 1 6 ) w i t h r e s p e c t t o t h e n o n l i n e ­

a r sys t em of ( j>.6­7) i s 

2. Γλι­bii Ί 2 r \ i - b 2 2 1 » 
D V = λι I —-^ x t - x 2 + \s ! —r- X2-Xi 

D 2 1 -J D 1 2 - 1 

* Π ^ ) Ί *■ - ? Π. ( ^ ) Ί ν . 
J-i D 2 1 / _' 1 2 V D 1 8 / J 
Yi p . s - b t l Xt -bga - ] γ 2 r \ 2 - b i : l \ i - b 2 2 ~ ] 
T~" !

 — Ï : + — £ X . Xo + τ — — r + — r X±Xp . 

l i h s l b 1 2 J * p- 1 2 b s l b 1 8 J * * 
( 3 . 1 7 ) 

For the example (3.Ü+), V = o is a straight line through 

the shut down state (n10=o, n20=o, xt=­1, χ^=­1). 

The stability region is given by r. circle around the ori­

gin with a radi is equal to the distance between the shut down 

state and the pov/er equilibrium state (Fig. 2). 

It has been shown generally in [7] that, in the case of 

equal coupling coefficients, the region of asymptotic stabi­

lity in state space is bounded by a circle around the origin 

with the radius (η,0
β
 + nso

p)>r , i.e. the distance of the 



two singular points, if the feedback parameters are such that 

τ- n10 = r— n20. (5.18) 

If this relation is not fulfilled, the radius decreases. 
It has been verified that the parameters ei have only a s-iall 
influence on the extent of the stability region. 

As can be seen from (3.l6)f in the case of unequal coup­
ling coefficients, the stability region is an ellipse. For 
the special example 

Ei2 ε2ι .Δι A8 1 n10 = 1, n80 = 2, jj- = 1, ̂ - = 2, j - =* /+, ̂  = £ , 

Yl Ye 
Ψ- = 0.2, — = O.k 

(3.19) 

the curves V = 0 and V « Κ are plotted in Fig, i+ which is s s 
also mentioned later on. More details are discussed in [7]. 

3c. Application of the GEISS method 

With the choice Q = I the elements pt« of the matrix Ρ 
must be calculated from the following system according to 
(2.15) 

2biiPii + 2b18p18 = - 1 

fcsiPii + (*>ιι+ΐ>22)Ρι8 + b12p28 = 0 (3.20) 
2b2iPi2 + 2b82p88 = - 1. 
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By use of (3.9) it follows that 

I 

Ρ = 
2aia2 

(a2+bo2'+b12 ) ­ (biib 1 2+b 2 2b 2 1) 

­ (h tib 1 2+b s 2b 2 1) (aa+bii +b 2 1 ) 

(3.21) 

Ρ is positive definite if 

i) (a2+b22
8
+b12

2
) > 0 

(3.22) 

i i ) ( a 2 +b 2 2
î , +b 1 2

2 ) ( a 2 +b 1 1
2 +b 2 i 2 ) ­ (h 1 i b i 2 +b 2 2 b 2 1 ) 2 > 0 . 

After some recas t ing condition i i ) hae the simple form 

β2[(ΊΗι+ΐ>28)2 + ( b 1 2 - b 2 1 ) 2 ] > 0. 

Thus Ρ i s pos i t ive def in i te i f 

a± > 0 and a2 > 0, 

These conditions are identical with the HORWITZ criterion 
(2.7). By this the theorem of GEISS has been verified for 
Q = I and η = 2. 

The time derivative of V with respect to system (3.6-7) is 

j · s 2 Yl a2 + D22 +"bl2 g Y2 a2+"bii+b2i Q 

- ν = - χ Γ-χ 2 -J- — Xl - _ ¡ ζ ^ — x. + 

^ Λ"
1
 2

 Ts 

(biib12+bS2bai) ι j ~ Χι x 2 + ñ~ «ι 
J­l J­2 

2 (3.23) 

For the example (j>.1l+) with equal coupling;· coefficients, 

V = 0 and V = Κ are plotted in Fig. 3. The superposition of 

V and V gives the stability region. This region is bounded 

by the straight lines xt = ­ 1, and x2 = ­ 1, since the 

power values can never become negative. 
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In the case of unequal coupling coefficients and with 

the parameter values of example (3.1S) the stability region 

is plotted in Fig. k. For these two special problems, it is 

seen from Fig. 3 and Fig. 4 that the GEISS method gives the 

largest surface, but that it is also necessary to use the 

SCHULTZ method in order to get a larger region by superpo­

sition. As mentioned before, this is not the complete re­

gion of stability, öp to now the prob le· a of hov? to choose Ρ 

and ~<¿ in order to obtain the best est'mate is unresolved. 

In contrast to the results of the last section, using 

the SCHULT''' method, the extent of the stability region is 

now much influenced by the parameters Yi/li and γ8/ΐ2. 
This can be illustrated by assuming the valnes: γι/li = 0, 
Ysä/ls = ' o r Yi/li = 11 Y2/IB :- 0 in the numerical example 
(3.1Í+). These assumptions give the surfaces plotted in 
Fig. 5. In comparison to Fig. I the stability region is now 
much smaller. 
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U) ;YL = 0 i£-1 
M l2 
Yl Y2 
ι1 ι2 

(„„.„,« ι s*tts*ii«i) 
Pig. 51 Stability region in (xlt x8) in case of equal coupling factors calculated with the GEISS method. 

V_: xt
e + XiX8 + 0.5xs8 -a = 0.5 

VTT: 0.5xt8 + xtx8 + x„2 = 0.5 II' 
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I+. The three­dimensional case (delayed neutrons in one core) 

In chapter 3 the effect of delayed neutrons has been neg­

lected. As is known from the point dynamics model the de­

layed neutrons can improve or worsten the stability of a 

power reactor if the feedback transfer function is a lagging 

or leading function of real frequencies [1J. The influence 

of delayed neutrons will now be investigated in the two 

point model. According to eqs. (1.1­2+) the problem is a 

four­dimenoional one. However, in order to get a concrete 

picture of the stability region the problem is reduced to 

the three dimensions. This is achieved by considering de­

layed neutrons in one of the two cores. In the work to fol­

low only the analysis of GEISS (see 2c and 3c) is applied. 

To obtain results which are comparable with those of chap­

ter 3, Q = I is choôen again.. Two different problems are 

studied. To begin with, the simplest one is discussed. 

ka) Yi " 0,Ya ^ 0, \g = p8 = 0, Xj / 0, ßj ̂  0 : 

System (1,1­1+) reduces to 

/Ai kicA ε21 

Χι » ­ Ι Γ" + Ρ ï—/
 χ
ι
 +
 ï —

 x
s + λχ8 (U.1) 

■»•ι J­i ­»­ß 

• ε12 /Δ8 Ya Ν Υ2 2 
Χ
8
 =

 Τ
 Χ

1 ~ ' Τ
 +

 Τ
 η

2 0 /
 Χ
2 "* Τ ~

 Χ
3 (­¡­.2) 

­«•1 J­2 J­2 J­B 

χ« = β j — Χι ­ \xa. (U.3) 

The conditions for asymptotic stability in the parame­

ter space (2.3) can easily be derived from (¿+.1­3): 

Δι Δ8
 k

io "1 "2 
i) r— + r— + ρ ­ + ε2 + λ > 0 

■*·! J­S 

ii) ε2λ γ- > 0 
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N /Δι Δ8 \ ΓΔ2 k1 0 /Δι ICioN 

i i i ) \T­ + τ~ + c»7 ' TT ß TT" + e» VÎT + Ρ ΤΓ7 J-i J-a / i 8 j - i Xi i i / 

/Δι Δ2 k1 0 \ Ί k1 0 Γ Δ 2 k t 
λ ΙϊΓ + 57 + Ρ ΪΓ + ε8 + VJ + ß ΪΓ ' ϊί Ρ ΤΙ 

/Δι k 1 0 \ /Δ2 \ Ί 
vir+ ρ — / + λ Vii+ e*/J > °· 

10 
+ 

ε8 

Conditions i) and iii) are fulfilled if ii) is satis­
fied. A comparison with (3.1+-5) shows that the delayed neu­
trons do not change the region of stability in parameter 
space. 

The region in state Epace is estimated for the special 
problem: 

at Δ8 eia ε8ι 
nio = η 2 0 = cio - s 1 » 7 - " = : T - = 1 » τ — = τ — ~ " » es = 1 » 

J-i ¿a
 x

i ­"­a 

^10 

λ = Ρ τ = 0.1 . 

J­i 

(k.k) 

According to 2c) the Liapunov function has the form 

V = X!
S
+ £X2 + 6χ3 +X1X8 + 2xtX8 + X8X8 « K. (U.5) 

The time derivative V with respect to system (¿+.1­3) 

with Ys/la = 1, is 

• S 2 B a s s 

V = ­ Xi ­ x2 ­ xs ­ XiXa ­ x2 x8 ­ x8 . (i+.o) 

The point of contact between V = 0 and V = K is now 

found by the following procedure: 

. 

Introduce Ft = V = 0 and Fs = V ­ κ = 0, so that the 

tangential plane in the point 0 (xt0, x8o»
 x
ao)

 is
 given by 
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3Ft I 9FL I 3Ft 

ax" ! (
χ
*­

χ
*°)

 +
 ix7 I i**'*™) + ̂  ! (

χ
3"

χ
3θ) = o 

0 0 0 

for i = 1,2 (Í+.7) 

or 

U
LV

X
10»

 X
20»

 x
30 '

X
l
 + v

t'
x
10»

 X
20»

 X
30/

X
S
 + 

wi(xini
 x

so»
 x

ao)
x
a + C I L ( X 1 0 »

 x
so »

 x
ao ) = °· (U.8) 

These two planes are identical if 

Ui = Ujjcc (U.9) 

Vi = ν2α (4.10) 

Wi ­ w2a (U.11) 

mi = m2a (¿4.12) 

with a a real constant. 

This is a system of h nonlinear algebraic equ?tions with 

the unknowns Xi0» Xsot
 x
so»oc · Since there exists no gene­

ral solution, it is solved for the special functions Fi and 

F2 (Ì+.5+6) by eliminating the unknown x10 and graphical re­

presentation of the remaining three functions for some a -

value s in the x20t
 x
so plane. System (1+.9­12) has the spe­

cial form 

8 

­ 2x 1 0 ­ x 2 0 = (2x 1 0 + x 2 0 + "x a o ) a 

(U.13) 

2 

— 2 x 2 0 — 2 x i o x 2 0 — ¿ x 2 o x 3 o ™ 3 x 2 o = ( X 10 + X20 + χ 3 ο ) α 

2
 r ' \ 

(U.ii+) 

χ 2 0 ) α 

(U.1­5) 
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• » » β i 2 

X l O
x
2 0

 +
 ^-80 "*■ ^80

 Χ
8 0 " ~* 2 ( Χ ΐ ο * χ 1 0 * 8 0 * ? Χ 2 0 * 

8 
6 χ 8 0 + Χ 8 θ Χ 8 θ ) α * 

(4.16) 

The final system is obtained by eliminating x10: 
8 

( ι ) χβο - - — : — — ; 

( Π ) *80 -

(12a + 2 ♦ 10a" + 2a) 

(4a + α
β
)χ 8 0 ♦ 3αχβο* - 2χ8 β* 

(2a + 10a
B
) + (4 ♦ 20α)χβ · 

t χ ■ / y * 8 8 

(III) αχβο ♦ '(2 ♦ 10a)x30 Xeo
 +
 «

 χ
βο ♦ 

(k ♦ i+Oa ♦ 120αβ)χ80
β
 ■ Ο. 

The required point of contact is the intersection point 

of all three curves. AB known from the theory of nonlinear 

algebraic equations, system (4.13­16) can have 2*2*2*3 = 24 

solution points. Obviously only the intersection point near 

the origin is of Interest for α 4 0. As shown in Fig. 6 

thiβ special problem has its first intersection point in 

the vicinity of the origin, at (xle * 0, x80 » ­ 1, x80 « 0, 

α « 1)· The threefold intersection point is split up into 

the two dotted curves for 0 < α < 1. 

Thus the stability region is enclosed by the ellipsoid 

Xi
8
 + XiXa + £ x8

8
 + 2x1*8 + xax, + 6xa* a ψ (4.17) 

x8 Í3 the deviation of the delayed neutron precursors 

from the equilibrium state c10· If no perturbations of the 

initial value ci0 are considered (xa = 0), (4.17) reduces 

to the ellipse (I) of Fig, 5, Thus it has been proved for 

the special problem (4.4) that the delayed neutrons do not 

change the region of stability in the state space (xlt x 8). 
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Fig. 6: Determination of the point of contact between V„ : Κ 
and VR = 0. 
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Up) Yi = 0 , γ 2 / Ο, Xi = Pi = Ο, λ2 ¿ Ο, β2 4 O 

System (1.1­¿+) becomes now 

• Δι s 2 i 
x t = ­ r— x t + = x 2 ( 4 . 1 8 ) 

ε 1 2 /Λ 8 γ 8 k 2 0 \ γ 8 

X2 = = Xi ­ \ r­ + =— n20 + p r J X2 ­ r— X2 + \X3 
J­i i­2 J­8 J­2 X2 

(4.19) 

• ^20 , . 

x8 = β η — x2 ­ λχ8 . (4.20) 
■i«* 

As with (4.U), the numbers 

k
20 Yi 

c
2o =

 1
» τ — = °·

1
 and r­ = 1, (4.21) 

■»•Β ·*-ί 

are assumed. This change in the values of (4.4) leads to 
another Liapunoy function 

V = xt
s + XiX2 + -x x2

s + XiX3 + x2x8 ♦ 5.5x8 (4.22) 

but to the same point of contact and hence to the same sta 

bility region in the xt, x2 plane. 

Thus the extent of the stability region in the xlfx2,x8 

state space depends on whether the delayed neutrons are 

considered in the first or the second core. 

As with 4a) it can be shown that the delayed neutrons 

do not influence the extent of the stability region in pa­

rameter space. 



­ 30 

4γ) Yi / O, Ya / Of λ8 ° ßa = 0> λι ^ Ο, ßt ^ O 

The differential equations of these problems are 

• /Δι «κ» \ eai Yi a 

xt m ­ Ι γ­ + β y­­ ♦ et Κ + γ~~ Xa ♦ λΧβ ­ TT χ
ι 

(4.23) 

• /Δ8 Ν e i e Ye a 

*·
 a

 - \ϊ7 * •■/
χ
·
 +

 ~
 Χι

 " ΐ7 χ* (4.24) 

• ΧίΟ 
Χ. a - λχ§ + ß J — Xi . ( 4 . 2 5 ) 

The HORWITZ c o n d i t i o n s are now 

Ai Δ8 « i o 
i ) s— + r— ♦ = — + e i + e 8 + λ > 0 

i-i J-a -»-i 

Δι Δ2 

i i ) τ— ε 8 ♦ τ— βι ♦ ε ι β 8 > Ο 
λχ i g 

χ / Δ ι Δ» \ ΓΔ! Δ2 

i i i) \j?
 + ϊ7 "" e i + ε*/' ΐ7 ε* +

 Î7
 ε ι

 *
 ε ι ε β + 

κ
ι ο /Δβ \ /Ai Δ8 Χίο \ ~ | 

Ρ ϊ Γ Vi." + e»J "" Ηϊ7 + ϊ7 + ε ι + εβ + Ρ ϊ Γ + VJ + 

Χίο [ 7 * ι ο \ /Aa \ Δι Δ. Ί 
Ρ ΤΓ Ι \λ + Ρ i r / vìi + Bs/ + ϊ7 β2 + ΪΓ ε ι + e i e sJ > °· 

As shown in Fig. 7, condition iii) covers the shaded re* 
gion. Thus it follows that the Btability region in parame­
ter space remains unchanged by the delayed neutrons as ie 
seen by comparison with Fig. 1, This can also be proved by 
considering the different paranthesis terms of iii). 
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V V ( T Í ­ W > ° 0 

F i g . 7 : The HURWITZ c o n d i t i o n s i n c a s e of λ8 = p 8 = 0 

ana ( Δ ι = Δ 2 . = 1 ; β ^ = λ = 0 ι 1 ) 
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The Liapunov function is calculated by the GEISS method 

with the parameters (4.4): 

3 V a xt" ♦ xtx, ♦ χβ" ♦ 2xtx8 + x8x8 + 16X8 (4.26) 

and its time derivative with respect to system (4.23­25) 

with Yi/li a Ya/la a 1 is given by 

3 V a ­ 3xt
e
 ­ 3x8

8
 ­ 3x8

8
 ­ 2χΑ

8
 ­ 2χβ

β
 ­ Χι*Χ8 ­ XiXa* ­

2x1*x8 ­ χ8*χ8· (4.27) 

The points of contact between the curves V = κ and 

V a 0 are found by the same procedure as used in 4a). Sys­

tem (4.9­12) becomes 

—6xio"*oXio *"2XioX8o""
x
a# *"4xioXeo

 m
 (2Xio+x8o

+
2x8o)cx 

(4.28) 

—6x8o""6x8o ""Χίο "*2XioX8o'"2xaoX8o * ( X i o ^ X a o + X s o / a 
(4.29) 

"•6x80-2x10 — x 8 0 a (2x10+x80+32x3O )a 
(4.30) 

2Xjo + 2 x 8 0 4·Χιο Xao+XioXeo +2Xio Xso+Xso X30 β 

- (2x tJ ♦2x10Xao­»'2x80
8+l+xsox8o+2xaoXao+32x80

2)a (4.31) 

Now i t i s convenient to eliminate xao t 

!_* * S ^ f e J X l o X a o ­ &Τ32α· x " x » o 8 ♦ [_a ­ 6732aJ Χ β 0 + 

L
1
 · sfSssJ

 Χ β
°

β
 · 
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(II) Γ6+30]χ1β
2
 + Γ6α+30α

8
]χ10 ■ 

2χβ0
8
+4χιο

β
Χβο ­ [12+6θα]χ10Χβο ­ [36+189α]χβ0

8
 ­

[63α
8
+204α+36]χβο 

(III) ­24χιο* + [2(6+32α)
β
­72α­12βα

β
]χ1ο· ♦ [2α(6+32α)

β
 ­

1+8α
8
­128α

8
]χ10· ♦ [2α(6+32α)·­48α­­128α*]χ10Χβο ♦ 

[(6+32a)
B
­36a­64a

e
]x1#x,e* ♦ Γ(6*32α)

β
­36α ­

64α
2
]χιο

β
Χβο ·* 24Xio

a
Xeo

e
 ■ 

6χ8β* ♦ [­2(6+32ο)
β
+18α+32ο·]χ80

8
 ♦ [­2α(6+32α)

β
 ♦ 

12α
β
+32α·]χ80

β
. 

These three curves are plotted in Fig, β for α » 1,5, 1 

and 0.5. It will be noted that there are 3 threefold inter­

section points of the three curves (­1*5, &> 0), (­1, ­1, 

0) and (0, ­1.5, 0) near the origin. As can be seen fron 

Fig. 6, no further threefold intersection of the three cur­

ves is possible for 0 < α < 1,5, This can also be verified 

by calculating the roots along the axis xio and xao. Only 

for α » 1 is the intersection point of curves I and II al­

so an intersection point of curve III for xio 4 0 and 

Xao / 0, Thue it ie proved that from the 24 possible solu­

tion points only these three are in the vicinity of the 

origin. The smallest ellipsoid goes through the points 

(­1,5, 0, 0) and (0, ­1,5, 0). Hence the stability re­

gion is given by 

xi
8
 + xixa ♦ xs

8
 ♦ 2xixa ♦ XaXa ♦ l6x8

e
 = 2,25 . (4.32) 

If no perturbation of the delayed neutron precursors is 

considered, (4.32) reduces to the ellipse in Fig. 3. 
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α « is 
α = 1 
α * 0.5 

(n.-n.-l^.-C-l.-iJ-.-^l) 
Fig. 8: Determination of the points of contact between V = Κ R and VR = 0. 
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Thus it hae been shown in this chapter for some special 
problems that the delayed neutrone have no influence on the 
stability region in parameter space (et, e2) and also no 
influence on the stability region in state space (nt-n10, 
na-n20). 

This is in accordance with the statements of QYFTOPOULOS 
[1] for point reactor dynamics, as the feedback transfer 
functions are here constants (γλ and γ8)· 
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