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differential equation notation. Specialization to one-dimensional two phase
flow is made.

The “complete-mixing model” is the only field theory that permits to avoid
the consideration of chaotically numecrous and transient internal boundary
conditions at bubbles and droplets during boiling. Its drawback is that slip
cffects, inter-phase viscosity, pressure drop, heat conduction, and the magnitude
of the heat transfer coefficient for various flow-patterns cannot properly be
seized. It is proposed to combine some simplified equations with the neccssary
cmpirical correlation knowledges. The momentum equation proves to be unable
for inclusion in a computer programme because of insufficient determination
of the stress tensor for two phase flow. Details of the energy equation suffer
equally from this difficulty so that, up to now, only its roughest statements
could be applied.

A handy sct of two equations is given and repeated in the conclusions which
may be uscful for calculating transients in heat exchangers and around boiling
water reactor fuel clements, stability problems being excluded.
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SUMMARY

Relationships between the extensive quantities mass, volume, total energy,
and momentum, and their related specific quantities, their densities, as well as
their density currents, are compiled. On the basis of the ‘“‘complete-mixing
model” (the constituents may have different velocities, but fill each one the
whole volume) and the conception of partial quantities, equivalent rclationships
are derived also for n-component flowing mixtures. With the aid of thcse
expressions the general balances for mass, partial masses, momentum and
energy (subdivided into internal, displacement, kinetic and potential energies)
are cstablished in three-dimensional, time-dependent coordinate-free partial
differential equation notation. Specialization to one-dimensional two phase
{low is made.

The “complete-mixing model” is the only field theory that permits to avoid
the consideration of chaotically numerous and transient internal boundary
conditions at bubbles and droplets during boiling. Its drawback is that slip
effects, inter-phase viscosity, pressure drop, heat conduction, and the magnitude
of the heat transfer cocfficient for various flow-patterns cannot properly be
seized. It is proposed to combine some simplified equations with the necessary
cmpirical correlation knowledges. The momentum cquation proves to be unable
for inclusion in a computer programme because of insufficient determination
of the stress tensor for two phase flow. Details of the energy equation suffer
equally from this difficulty so that, up to now, only its roughest statements
could be applicd.

A handy set of two cquations is given and repeated in the conclusions which
may be uscful for calculating transients in heat exchangers and around boiling
water reactor fuel elements, stability problems being cxcluded.



CONTENTS

Preface

Te

2e

3

5e

General form of balances

Introduction of thermo-hydrodynamic variables,
homogeneous case

Relationships between thermo-hydrodynamic
variables, heterogeneous case

3¢7. Integral quantities B

5¢2. Specific quantities

3.3, Densities -

%.4s Current densities

3.5. Flow 'rates

Relationships of one-dimensional two-phase -
flow

Le1. Integral ocuantities

1.2, Specific quantities

u.;. Densities

L., Current densities

L.5. Relationships between fractions

L.6. Flow rates

The balance egquations

5.1+ Mass balance

5.2, Volume balance

5¢3. Momentum balance

5.4. Energy balance
5.4.1. Homogeneous flow
5.4.2., Heterogeneous flow 7 _ v
5¢4+3, Specialization to one-dimensional

two-phase flow

Conclusions
List of symbols -

References

)

nage

1"

o

"
L
1"

1"

-1

1"

'7.51 :

11

6
16
L7

21
o2k

.0
- 36

11

L5

52

52

69
7%
e

79



SUMMARY

Relationships between the extensive quantities mass, volume, total energy,
and momentum, and their related specific quantities, their densities, as well as
their density currents, are compiled. On the basis of the ‘‘complete-mixing
model” (the constituents may have different velocities, but {fill each one the
whole volume) and the conception of partial quantities, equivalent relationships
are derived also for n-component flowing mixtures. With the aid of these
cxpressions the general balances for mass, partial masses, momentum and
energy (subdivided into internal, displacement, kinctic and potential cnergies)
are established in three-dimensional, time-dependent coordinate-free partial
diffcrential equation notation. Specialization to one-dimensional two phase
flow is made.

The ‘“‘complete-mixing model” is the only field theory that permits to avoid
the consideration of chaotically numerous and transient internal boundary
conditions at bubbles and droplets during boiling. Its drawback is that slip
effects, inter-phase viscosity, pressure drop, heat conduction, and the magnitude
of the heat transfer cocfficient for various flow-patterns cannot properly be
scized. It is proposed to combine some simplified equations with the necessary
empirical correlation knowledges. The momentum equation proves to be unable
for inclusion in a computer programme because of insufficient determination
of the stress tensor for two phase flow. Details of the energy equation suffer
cqually from this difficulty so that, up to now, only its roughest statements
could be applied.

A handy set of two cquations is given and repeated in the conclusions which
may be useful for calculating transients in heat exchangers and around boiling
water reactor fuel clements, stability problems being excluded.
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Preface

Two phase flow has, in particular in connexion with
boiling heat transfer, become a field of very intense en-
gineering research during the recent past. The interest
has been stimulated by its appearance in boiling water re-
actors and rocket engines as well as in several types of
heat exchangers.,

Correlation attempts to interprete numerous experimen-
tal results and to predict the behaviour of designed plants
are dispersed over well some thousands of papers. A very
deserving textbook synopsis has recently appeared [1].

My impression is that, despite of an almost bewilder—
ing abundance of data, the common theoretical foundations
are to a certain deal fragmentary or even misleading.

In order to fill this gap this paper shall provide re-
search workers with a systematic classification of basic
relationships from hydrodynamics and thermodynamics that-
may be suitable for two phase flow investigations.,

As it is irrelevant for our purposes to distinguish
between chemically different “components' and chemically
identical but physically different "phases'" of the same
substance in a moving fluid, we speak, for convenience, of
components only.

Moreover, most of the used definitions and relations
are applicable to more than two components so that the no-
tation is simplified by using the summation symbol over all
components and giving the latter ones a current index i.
In the case of pure phases, the number of participants is
normally restricted to 2 due to GIBBS' phase rule so that
the summation notation may be considered as a pure con-
venience, too,



The rigorous relationships derived in this paper are
partly in a striking contrast to what is sometimes taken
as a basis in the literature to describe some two phase
" flow phenomena, It is for this reason that papers which
further establish on such relations are intentionally
not quoted. References are but made to such'papers.which
deal with the derivation of the fundamental equations and
which were thus of utility to prepare this paper itself,

In this sense, the scope of the present paper is 1li-
mited. It cannot provide any new correlations nor can it

finally clarify two phase flow mechanisms. The equations

which will be derived show characteristic differences bet-
ween homogeneoﬁs and heterogeneous flow, but are in fact
scarcely treated further; it is rather diséussed why they
cannot be solved reasonably without certain specific ex-
perimental informations.,

This is to restrain engineers from too a vigorous em- ..
pirical advance in some ~-4ses, The purpose of this paper
is to provide research workers with relationships which
in no case may bé essentially violated, and to suggest
how the discussed complex of problems should correctly be
attacked,



BASIC RELATIONSHIPS IN n-COMPONENT DIABATIC FLOW -

1. General form of balances *)

There are two methods of treatment of two phase flow
and boiling heat transfer problems which do not exclude
but should complement one another. The one is an empiri-
cal approach to explain isolated phenomena such as pres-
sure drop through pipes e.g., by means of dimensional
analysis., The other method is the analytical one, This
means that first the physical equations governing the
system are established. Then, in principle, if also the
initial and boundary conditions are given, the solution
should supply the complete subsequent system behaviour in
space and time, Of course, such a sanguine expectation is,
as always, quite academic as sooner or later a point will
be resched where the rigorous continuation must be stopped
for a serious lack of informations about details,

Nevertheless, Jjust this "rigorous" approach shows in a
coherent manner where and possibly how the gaps should be
filled by empirical informations of fhe first kind, True
uncerstanding in sciences has almost ever been achieved in

this way.

Thus, we try to establish a set of partial differential
ecuctions describing the behaviour of a n-component flow
with heat addition. This is, at least for two phase flow,
not new, but our treatment will be somewhat more general

than ususl derivations, leading to better understanding.

E 3
) The "general'" method of balances is followed also e.g.
in [2] and [3].

Manuscript received on February 20, 1967,



The equations in question are, as known, the balances
or conservation equutions of mass * , energy, and momentum,
The thermodynamics of irreversible processes deals also
with an entropy balance - the second fundamental law is
the central problem of non-equilibrium thermodynamics -,
but, as can be seen so far, no practical applicability
exists yet for boiling heat trensfer problems,

We consider a volume V to which pertain the three ex-
tensive quantities M (mass), E (total energy), and P (mo-
mentum). The amounts of those quantities can simply be
added when joining two or more volumes to give the total
quantity.

Let Y be any extensive quantity, then the following
gquantities will also be needed:

- the related "specific" quantity (per mass unit) y = Y/M

- the related "Y-density" (per volume unit) py (with p =
mass density),

- the related "Y-current density" 8&,

- the Y-flow rate through the closed surface of the given
volume QY,

- the Y-production density inside the volume Oy e

By definition, Y is given by

Y = Jpydv . (1)

%)

neering notation of weight, as for the latter exists no

We prefer the physical notation of mass, not the engi-

conservation law,
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Its time variation is generated by (positive or negative)
leakege rate through the(positionally fixed) surface and
by the production rate within, thus

@ . 4 /pde = QY+,,[oYdV. (1.2)
dt dt v V

is obtained by scalarly multiplying the Y-current den-

sity 3} (positive outwards) with the oriented surface ax
and integrating:

& = "./%'df\" | (1.3)
A

or, by GAUSS' theorem:

Qy = -jdaiv &, av . (1.4)
s

Substituting (1.4) into (1.2) and cancelling the vo-
lume integration yields

2 (py) = —div¥Y+oy. : (1.5)
ot

This is the differential "local' formulation of the
balance of any specific quantity y. It shall in the
following be specified to each one of our interesting
thermo-hydrodynamic quantities., If y is a scalar, then

- . cp s 3
oy 1s a vector; if y is a vector, then o 1s a tensor
of second order

*)

less characters, vectors with one arrow, and tensors with

We denote, for typing convenience, scalars with arrow-

a number of arrows corresponding to their order.
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Note that y, py, 2., and oy are "locally" defined va-
riables or "field variables", whereas the other ones are
"integral variables'", no more depending on position co-

crdinates,

We ccnsider now the balsnce with respect to any velo-
city field 3, and move the integration volume dV with it.
The new current density with respect to this velocity field

. — -
1s @Y—py(p.

If we choose 3 = V, the "center of mass velocity" which
will be defined exsctly in chapter 3, the mass pdV* re-
mains constant along the path. Instead of (1.2) we get

o [ I
ot JeydvE = -[(EﬁY— pyv) - ak* + o, dV* , (1.6)
v A v

where the asterisk suggests the moved volume, As pdV#*
remains unchanged in time, the time derivation acts on y

only.

“hen applying once more GAUSS' theorem and cancelling

the veolume integretion, one gets

o 5% = = div (5& - py?) + Oy (1.7)

One calls this the "substantial' formulation of the
y=balance * because the substance (mass) of the integra-
tion volume is held constant., The total differential ope-
rator d/dt changes to the "substantial differential ope-
rator" D/Dt which refers just to the mass velocity ?,

:}e)

should not be used,

The denotation "flow" formulation is too vague and
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o other ona, this subtle remcrk becemes important
1:ter on, /Lt is, s usaal,
D E" s ¢
ST T Gt vegrad (1.8)

¢ relcticnehir which cen slco be derived by elimineting

o, from (*.,5) ené (1.7). Tme to the correction term

d . - <y - . .\
verrad, the inderendent vposition coordinates remain the

jal

csame ones &as before, namely fixed.
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2, Introduction of thermo-hydrodynsznic varisbles:

homogeneous case

After having the general recipe to establish balsnces,
the only task is to specify correctly what is EV and Oy

in each case,

As already mentioned, we will substitute mass, total
energy, and momentum, resp.,, for Y. e will treat all
these quantities simultaneously and take the volume V it-
self as fourth extensive vcrisble, '

vie first give a list of the involved quentities, The
nomenclature considers as much 2s nossible the recomman-
dations of the Internaticnal Union for Pure snd Arnlied
Physies (IUPAP), document U1,I.T7 11 (S,U,%¥., 65-3) from
1965, Unfortunately, not seldom guantities coIncide which
usually have equal charzcters (e.g. v for srecific volume
and for velocity) so that sidec-step notations must be used.
The adopted units syster is the KS-system where caloric -
units have already besen transformed {e.:. Joules instead of.

kilocalories), Conversion factors are sc avcided.

For each of the four blocks (see next page), the pro-
cedure is the ssme. In order to go from the besic integral
ouantity to the corresponding specific ouantity, one has
to divide by the mess M. The ratios are to be understood
os differential quotients. The specific gununtities are this

10

suitable as field variables, and sc do also ths v

m

r
densities and current densities. The "specific mass" x for
a homogeneous body 1is, of course, simply unity, but for
more than one component the definition becomnes non-trivial
(see & 3.2).
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aumantity our notation dimension
m&ss I kg
(specific mass) x (= u/M) =1 -
mesas density o (= 1/V) m3 kg
. - - - -
masa current densit 7= pv m° kg st
= momentur density
volume v m>
stecific volume 1/p (= V/¥) m® kgt
(volume density) a (= V/V) = -
ﬁ
volume current density v m s~t
(= "volume'" velocity)
(totsl) energy E m® kg s72 (£ J)
specific energy e (= B/M) m> s7% (2 J kg 1)
. N - - - -3
energy density e =pe (= 3/V) | m* kg s~ (£ O )
- = ~ - -

enersy current g = eV kg s7% (2 . m?)
dcecneity =)
momentum B m kg s”?
snecific momentum v (= B/M) m s—1
(= "mass" velocity)

. -2 - — -
momentum density 7= ov (= B/V) m~2 kg s~?
(= mass current density)
momentum current T et ) m~ ! kg s7°
density =)

Table 1., “uentities involved in balance ecuaticons

)
sities.

ats ats
e gxd

a dyadic product with one given factor 3, say T = fg, with a

Strictly spoken, the "convective" part of the current den-

. . , 3
The representation of the general tensorial quantity T as
s . . v . * .
provisionally undetermined velocity Vv, is possible only in
. End ] - g 2 1
particular cases, Every dyadic ab is indeed a tensor, but not
every tensor 1s a dyadic.

=
The relationship between T and 3’becomes clear only in § 3.4.
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The respective third lines, the densities, are derived
from the integral quantities by division by the volume V,
Once more, the ratios shoul@ be considered as differential
gquotients, The direct way to obtain the densities is to
‘multiply the specific quantities with the mass density p.
Again, the "volume density" o assumes a non-trivial mean-

ing only for more~component flow (see & 3.5).

The various (convective) current densities are obtained
from the respective densities by multiplying the latter
ones with -appropriate velocities. The right velocity is the
”masi velocity" ¥ in the case of mass, the "volume veloci-
ty" v for volumes, the "energy velocity" ¥ for energies,
whereas an averaged "momentum velocity" does not exist for
more-component flow, unless in the one-dimensional (scalar)
case, as shall be shown in chepters 3 and 4. These notions
are unusual and shall thoroughly be explained in & Z.4.

All velocities are different for more-comronent flow. The
carrent densities are vectors for mass, volume, and energy,
but a tensorial quanfity for momentum, which itself is al-

ready a vector.

The integral quantities "flow rates" (devendin: on time -

‘only) are obtained according to (1.5) an¢ (+.4) as

\
o= T /p\?-d@' = - /div (pV)aV kg st
A v
= = N L
Q’V = - / V'd;: = - /ldiv v 4av rma S—i] , R R REREEA
A v , e E S >’
~ red /- . = r.o -3 AT
Op = = [pef.ad = - Jdiv (pe?)aV  m® kg s™31 (2[7)
A v '
=3
';3? = - / d.t—;:'? = = /.D].V'I‘ av rm kg 8—2}

A Y ’ ",

(2.1)
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In the case of momentum, the differential operator
"Div" under the volume integral means the tensor diver-

gence, leading to a vectorial quantity, defined by

. ’\X
C
K 1

DiveDd = ir‘avkz  (2.2)

o]
i (‘JX =]
k <

K_\ aT\K 3

Concerning GAUSS' theorem for tensorial ouantities, one
finds in the literature (e.g. (51, p. 134)

[dK-? = /(Div-?)dv, » (2.3)
A Vv

where the tensor ? is the postfactor under the surfece

integral. #When changing the factor sequence in this

*)
case of curvilinesr coordinates zsdditional terms with
CHRISTOFFEL symbols occur (cf. e.g. 4], pr, 165 and 177).

This holds for rectilinear coordinates only. In the

Our divergence has of course nothing to do with the
sum at the main diagonal elements, which unfortunastely is
also sometimes called the tensor divergence, The latter
guantity, a scalar invariant, should preferably be called

the "trace" of the tensor (not used in this report).



ncn-commutative "scalear'" or
must be rervlaced by the tra

alternative notation to (2,

/?-dZ? - /(Div.?')dv -
A

- 15 -

=
oduct, the origépal tensor T
nsposed tensor T' so that an
3) is

j[(%-Div)dV. (2.4)

\ v

In generel, the zbove de
is not parsllel to the surf
of ? is, superficielly cons
has nothing to do with that

The various "production
cul aucntities, rerresent
terms in the belsnces (see
and do not follow from the

ie denote them as follows:

mass production density
(volume nroduction cdensity)
energy production density

momentum vproduction density

fined momentum flow rate Q?

ace vector dA, The dimension

idered, that of an energy, but
(different tensor order!).

densities" Oy s which are lo-
in general the unhomogeneous
eq. (1.5) as well as eq.(1.7))
alresdy discussed cuantities.

Oy m™® kg s™1] )
oy [s7%!]

Ogy 'm™* kg s™3 (&[4 m™237) >
8? M2 kg s”%1 . P
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e SRelationships between thermo-hvdrodynamic variables;

heterogeneous case

j.1.Integral qusntities
The truly interesting case is that our considered vo-
lume consists of n components with current index i, which,
however, in our model, fill each the whole volume {so as,

e.g., air as a mixture of nitrogen and oxygen).

LLet us then define "partial' quantities according to

partial masses Mb o= xty )
partial volumes vt = qlv > (21 1)
partial energies Bl = YLE c
partial momenta Pl = %L-ﬁ' ,

: J

: : C s i i 3
where the non-dimensionsl ocuantities x', o', YL, and v

g

i
mey be called "mass fractions'",'"volume fractions",

"energcy fractions'", and "momentum fractions", resp. Of

C'Our'ge:
& L 0, o,
. \ L N i =32 .:.)
xt o= 1; a = 1; Yt o= 1 Y o= 7 (unit tensor).”
=1 =1 i=1 i=1

(3.1.2)

*
) In the two component case (n = 2) with ligquid and vapor,
we will, in chapter 4, write simply x for XV, and (1-x)

for xl; and accordingly also for the other fractions.
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Strictly spoken, the denotation of the (gererally assym-—
metric) tensors ?1 as "fractions" is not good, but shall

be kept for the moment. At the end of § 3.4, we will

discuss the general suitability of such tensorial cuantities.

We will further make the agreement that "partial" auan-
tities shzll be denoted by upper indices, i.e. those cuan-
tities whose sum gives directly - without any statistical
weight - the total ouantity *). Thus

L .' L n n'\ .
T‘Mi‘ = M" TVL = V; K_\Ei‘ = E; v\ ?’l‘ = P’ . (5.1-5)
L =1 L=1 L=1 L=1 i : ol :

When proceeding to specific quantities, we must dis-
tinguish between

- "true" specific quantities, where the starting integral
quantities are divided by their own (partial) masses Mt,
to be denoted by lower indices,

- "partial" specific guantities, where the starting inél
tegral quantities are divided by the total mass M,

*)

of quantity. This restriction becomes important when

Provided that a conservation law holds for this kind

establishing the energy balance (§ 5.4).



This gives

"true" "partial" )
specific masses Cxg o= Mb/mt o= o xi = Mi/M
specific volumes .(%)L: vi/pt = %E *) !(%)Lz vi/M F
specific energies ei = El/ML E el = Ei/M
specific momenta - v = BL/Mt | i'?i = BYm

(3.2.1)
A8 in chanpter 2, all ocuotients should be understood

as differential quotients; the above quentities are thus

"field" quantities.

For the partial specific quantities holds

et =e; ) v =V, (3.2.2)

They can also be expresced by mesns of the fractions:
= xt.1; (%)L = at.s; el = yle; vt o= XLV, (3.2.3)

similarly to (3.1.1). It can ezsily be verified that the
occurring "fractions'" for the specific quantities are

just the same ones as for the integral guantities.

1 . .
*) The relation (%).L = oy 1s obtained by comparison with
(3.%.1).
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Wheress the partial quantities are formal but suitable
quantities for computation purposes, the "true" guantities
have a physical meaning and numerical values independent
of the particular experimental situation. Apart from the
trivial cuantity xi = 1, (%)L means the specific volume
of each component or phase as 1t can be found in tables;
it is a state variable. For a given pressure e.g., it as-
sumes a well-defined constant value at saturation. This is
important, as then, for isobaric grocesses, (%)- should
not be differentiated in the balence equatlon whereas
( )i should be dlfferentlated.

ey, the specific total energy which includes also the
kinetic energy and other part energies, cannot be read from
tables, as it is the case for u (internal energy) or for h
(enthalpy), which are state variables. The relationships

between these energy forms are considered in § 5.4,

The true specific momentum ?L is easily understood to
be the true mass veloecity of the component i.

In order to compute .the partial svecific quantities
from the true ones, one has always to multiply with the
mass fractions xt = Ml/M, thus

. . . 1 1 . 1 X . ’ .‘
xt = xtx(=xt);  (§)" =x(p) =5 ; e =x‘er ;
\_/')i‘ = XL?[, . _ - - N B (3'2‘“’)

By substituting these relations into (3.2.2), one has
(the first expression being trivial): -
n

n ) n
?;‘ Lo 4. ?;‘ vely - L. N L= e
xt =1 X (p).L = { xley = e
=1

/ b 7 . p 3 2
=1 =1

n
srfoV
1=1

(3.2.5)
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Here we have found the recine how to commute the cuan-

1 - . .
o’ e, oand v, resn,, which we must consider to te
represaentative for the mixture, from the corresponding

tities
"true" values of the components.

The second relation of (3.2.5) must, later on, be com-
pared with the averaging rule for the density p,to hec de-

rived in (J.5.6).

The third equation, aprnlied tc two phases, is the ener-
gy averagings rule feor flowins wet steam. £An equivalent
rule holds for the entropy s. However, the well-known rules
for the internsl energy u and for the enthalny h (cf. 27,
p. 16%) are restricted to mivtwres with no relaiive motion
of their comvonents. Thiz may be urndsrstood by considering
that each component carries = kinetic enersgy ki which, in
irreversible processes, may be partly or completely de-
stroyed leading to supplementary internal energy of the
joined body. Thus, for quantities without conservation law,
such as for u, h, or k, 3> ul = 3 xLuL £ u, etc. Obviously,

before establishing averaged cuantities, all components must

thought to have already joined one another,

The last eocuation (%,2.5) finally gives the instruction
how to compute the center of mass velocity Vv we had al-

ready spoken about in chanters 1 and 2,

By comparing formulas (3.2.3) and (3.2.4), the follow-
ing relations between the "fractions" ol, i, and ;ﬁ with

x! are obtained:

be
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The last relation indicates that the linear transfor-
3
mation described by XL turns the vector v into the di-

. . =
rection of vi.

The steam fraction x' of wet steam is also (correctly)
called "“aquality" in thermodynamics., av is the "void frac-
tion". Yv has no proper name, It is cautioned not to call
?V 8 quality, not even for one-dimensiocnal flow where
it reduces to a scalar, though its value is particularly
easy to measure at the end of a test path., "Quality"

suggests a material property that 3V is not because of the

A"

involved veloclity situation.

Pur ther relationships between fractions, specialized
to two phase flow, will be given in chapter L.

Densities

Let us now proceed to the various densities., Once more,
we have to distinguish between "true" and "partial den-
sities, according to whether we divide the integral quan-
tities by the individual partial volumes Vi op by the
total volume V,

"true" "partial®
mass densities | py = Mb/VE et =My
volume densities ap = VE/VL = 1 i at = vi/v
energy densities gy = BL/Vi I et = El /v
momentum densities Ji = Bt/vi U o= Bl

(3.3,1)
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)
o
)]
ol
=3
O
=
ct
=y
o

3
{:_J
i
pre
s
o
—
(o]
]
3
03]
[N
e
e
.
wn
[N
03]
o+
=
D
pure
O
C*.
W]
[
jol}
(4]
3
0]
[N
C*.
g

N n n N
Y_\ T_‘\ T‘\ ) ‘T\ﬁ. N
L o= A ; L = 1. L~ .. (A
‘/ , P - p’ ,OC - H / ,8 = &5 : J J .
=1 t=1 U=1 t=1
(2.3.2)
Like (%.1.:), we find
ot = xtp; ab = abtet; et = ylte; Gt =T (403.3)

Once irore, the scme froctions cs for the integral and
the cepecific cuantities occur., This is obvious as the
nartizl densities cen also be computed from the partisl

svrcific ouantities by multiolying the latter ones by p:

(A "L: L = (—-){: gl' = pei'; jl’ = p'\_;i' . (3.30“)

The partial densities are comruted from the known true
densities by multivlying the latter ones with the volume
fractions o' = V!'/V:

. . L R A T T
pt = alpr; o =atair(=oat); e =aler; J° = alJy .
(3.5.5)
this can be summed to yield:
n N n n

) i \ L = 1. ; i = oo > i3, = 3

: &' pt = P / ar = ’ L,ael,"ea / avdy = J e

L =1 L=1 [:1 =1
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By comparing (2.3,5) with (3,5.3), one cum relate - -

. = .
wt, yt, and ¥' to ol:

L

i ; - L7
x*p=a‘p 5 - s rte = aley 3 XeT = atF. (3.3.7)

The representation of the component densities by the
specific guantities and the mass densities of the respec-
tive components is given by:

|

e
|

e
™
-
il
je
-
@
Pl

-
.
P
]

o .
- 5 oat= oDy, o= ol L (3.3.9)

oe
™
!
Lo
o
®
-

Comparison of the second relation of (3.2.,5) with the
first relation of (3.3.6) gives

n

P =§\,OCLDL = (3.3.10)
x _

L
[.:/1 i

In the case of n = 2, this yields a coupling between
al and x! by means of the known p;. This shall be con-
sidered in more generality in the following chapter. For
n > 2, similar equations are not obtainable, Notice that
eg. (3.3.10) would not be true for the single components.
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As in chapter 2, we multivly the various densities with
aroropriate velocities in order to get the vertaining
current densities. From the demand that once more the par-
tial quantities should sum up to the total quantity, those

velocities can be computed.

In order to calculate first the "true'" component current
densities, we multiply the respective true densities with
the only available true velocities ?L, namely

- - — - — 3 - -
Ji = pPLVL 3 Vi = aiVy = Vi ;3 Ay = eivy 53 Ty o= Jivie.
(3.4.1)

. . =
The "true volumetric velocities" v; of components are

equal to the respective mass velocities v;.

To convert true densities to partial densities, the
former ones are to be multiplied by ai. As a conseguence,

the current densities behave equally:

— —>
—)L _ L= NL L—) - — > - = T =
v = p'vi 3 vt =alvy ;3 o' = e'vy ;3 T' = F'vi = p'vivi.
(3.4.2)
*) . . > o - -
The chosen factor sequence is arbitrary as Jivi = pivivi

is symmetric, and the dyadic product is exceptionally
commutative,
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For the mass curwent density wnich is identical with
the momentum density 3, this was slresdv stated in (5...7).

But for the first time it comes out that the partial
_) 0
"yolumetric" velocities V' of the comvonents are not

ecual to the respective vt o= xlY

By summing up the partial aqusa ntlul s we get

3

n : n

| Gl v r\ I
.>.5‘=3; PR =T
i=

1 t=1

<U

P
VL -

o
il
A

ws

fﬂ
‘-'; /JD

(,‘."‘,—I-- ?

If we substitute the expressions (3.5.5) into (%*.it.2)
and add according to (3.4.3), we find

‘_n_\ n t|’1

T '._‘\

> = S T 1= = \ 12 2

p/ x*vy = pv ; e/ arvy =V 5 e/ yVy = eV

- /.

=1 =1 =1

n

v\_‘ 21 7 e *) NI,
;o (e d)vy = T 4 any 7 y P (3.0440)
i=1

where the right hand sides sre tav¥en from t~b1€

*)

; s s s . =2
cation, it is impossible to turn the linear overstor y'

.8 no ascocliative law holds for this kind of multinli-

- — . e s o .
from j to vy so as to isolate J and to cencel it fror voth
sides of the ecuation,
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The "mixture'" velocities in auestion are thus fcund

: N
n
— ; L2
mass: v = /7 xtvi
=1
8]
~ ‘ L=
volume: v o= vy
=1 >
n
= ; 12
eneryy: v= ¥V
{:1
. N2 e St : ‘
momentum: v"'" not separately eristing in general, y
(7,1.5)

The statistical weights to construct them are just

the criginal ratios known from the integral quantities,

The following relations may also be useful (to deduce
from 5.L4.5 with 5.2.5):

n N n
r_\
> L= - T‘l 1 32 Y\ L= ~
) XV =V 5 ) (R V=5V 5 ) eV = el
=1 t=1 t=1
iR .
S e -7 A
but viv, £ vV . (3.4.6)
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It remeins still to ;ive relationshins between pertial

and total current densities, for which we write &d hoc

- e AN = 3 = 3 3 . =3 —3» 3 *)
o= vbed 5 vh o= gtev 5 ob = 8bec ; TH = gbeT .
(3.4.7)

The first relation is alrecdy

5! known from (%.3.%), last
eocuation; ¢' could thus directly

be introduced.

For the other reletions, we substitute (3.3.%) into
( .1.2), leadins to

T T L—»_%? -
pVE = XTepv 5 arVp = BV s yrevVy = bv eV
——)

’ (:5.i»}-.8)
with'

T ” v NERE:

L/_!__)-{fi' = ? N y?i‘ = ? ; Z./ gi‘ = ? : L \bl. - I .

L=1 i=1 =1 L=1

(4ai4eC)

: 3 F >, .
The significance of g', &', ard y' is purely academic,

as far as they cennot be gpmputed unambiguously

from the
. . -+
various given vectors v, v, etc.

*)

' means a tensor of order L4,
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This brinss us to the vrcblem of the utility of such
tensorial quantities in connection with n-component flow,
os alrcady mentioned in § 5.7, Yie do not speak here about
the tensors in the general balances treated in chavpter 2,
such as the momentum current density ?, or the dyadic
vroducts occurring for ﬁt. They all have a real phvsical

meaning,

The question %ﬁ rather what is about the "fractions"
3 F K { e an .
v', By &6, and ¥ . Let us discuss e.g. the-last ecuation
of (%.2.%), which may be considered as definition for ?L.
The vectors vt and v are all known, Assume for the mo-
ment m-dimensional vectors, then we have Jjust m ecuations
for a certain i, whereas the "unknown'" tensor ?t contains
m® elements. Thus, equations of this kind are solvable
only form = 1, i,e. for scalars, For m > 2, no unambiguous
solution exists. Hone oi the tensors in cuestion has there-
fore a ressonable meaning except for one-dimensional flow
where they reduce to sczlars., In more-dimensional formu-

lations, tney must completely be avoided,

3.5.Flow rates
Although integrsl quantities have nothing to do with
the differential formulation of balances, we bring them
iiere for comrleteness, YThis is in varticular in order
to show tne virtue of XL which is widely used as "ouality"
of a two-phase flow (cf. also eas. L.6.3).
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Similarly to eas. (2.1), we get partial flow rates

ol = ../ Fi.a® = /(E‘L.%’).dzz’
A

V
—~~
(SN
.
n

.

.
~

- = ,
Gp = - [r?‘vdff = - [(6“-(?)@3
I J
A A
- 3 3 3
%o -l o fadd
A A :

where the relations (3.4.7) have been used.

= 3 3
In view of the unprofitableness of y , B, &%, and V"
(see § 3.4) for more-dimensional flow, we come back to
the above relations only in chapter 4,



- 30 -

Ii, Relationships fcr one-dimensiongl two phase flow

iWhen considering two phase flow, in particular water
and steam, throu:h a straisht nipe, it is rather obvious
to simplify the balance e~uations by restriction to a
single axial cocrdinate. All vectors and tensors reduce
to scalar quantities, omitting the components pertaining
to the other coordinates. The objections arising from
such a neglect shall be treated only in chapter D.

Here we will compute the formulss of the nreceding
chapters for n = 2 phases. The fractions of vapor shall
be denoted, as usual, by %, a, etc., without index, those
of liquid by (1-x), (1-a), etc. For the indices used, v
means vapor, 1 means liquid. For upper indices we write

instead of v, and ’ instead of 1.

The elementary volume V is a disk with area A and any
(insignificant) thickness dz. £11 integral quantities

can equally be considered as guantities per unit length.

e give formulas for the practical use without much
comrment, referring simply to the relations of preceding

chapters where they have been taken from, in saguare brackets,

(2.1.1]
N\
v = XM ; MY = (1-x)M
Vo = aVv ; v/ = (1—a)v > ( ; )
‘Ll'. .1
Er = YE ; B’ = (1—Y)E
P* = xP ; P’ = (1-%)F )

The P are the z-components of the complete momenta.
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- e s (" P ettt S —

)
L v_ 1 Ly ¥ _ 4
(p)v"Mn - pV | (p)]_ - M pl
_ B e, = B
v T M7 1. ° N7
P P?
Vy T wWF V1T W

P

R

(u.2.1)

"partial' specific quantities [3.2.1], [3.2.3], [3.2.4]:

X - M ("—X)—M"- A
M ' TN

WV o L R AR el 1
B = eroxd, @ 2T -l aad),

II—E-:— = ! ...E.i.— - -
er =~ = Ye = xe, e == (1-v)e = (1-x)e1

o _ BY_ _ r _BL_ o - (4-
VY= TS XV = XV vio= s (1=-x)v = (1 x)v1

Y
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specific quantities of mixture [3.2.,57:

1o ox o, 1= A

p—pv 1

e = #ev + (1-X)e1 g (Lo2.3)
Vo= xv, o+ (1-x)v1 )

relations between fractions [3.2,61:

\
a _ P = _ P
X Py 1-x P
Y v -y ©1
L T
X - v 1-x v
/
L.3.Densities
"true" densities 3.3,11, [3.3.8]:
W
- Ms - M
by = V7 Pr = v
- B - B _
v T T T RSy €1 T v T P& >’ (4.3.1)
. Pr : P/
by = v T Ry b T ¥y = PiV;
J



r3.3.,37, 3.3.47, 3.5.57:

"partial" densities [3,3.71]1,

N
- MY - P - (1=
o) =7 —Xp—ocpv o) =V —(1 X) —(1 (X)pl
E' ” # B! o -
" =y = Ye = ag, = pef = pley el =g = (1-y) = (1-0)eq = pe’ = pleg >- (Le3.2)
B . : , E’ . . -
J" =5 =% =al, = pv' = o'V, == (1=0)3 = (1-a)j; = pv' = o'vy
mixture densities [3.3.6]:
:\- .
p = apv + (1—a)p1
= = 1 - = - .
pe = e = me + (1-a)e, op.e, + (1-a)p eq : S > (L4e3.3)
pvV.= J = od, (1-61)31 = op,v, t (1“0()91"1

—88—



relations between fractions (3,%.7]1:

Jy = P,V

v v'v
?V = v,

Uy = &y¥y = °
Ly = 3V = PV

"partial' current densities

e s
it = p'v, = %3

]

q’ = g’'v 6a

il

I"” = J ’vv \b'I"

]

1

Q' =

T’ o=

_h )
p
€ P €
i _ -1 y
=3 = Toe & (Lao5.14)
_d1_Pha
J 7 pv
y,
PV, )
Vi
>, (Lolyo1)
&1V1 T A%V,
: - 2
1V, = Py )

[3.4.27, [3.4.7]:

\

p'vl = (1—X)j = (1-a)j1

(1-a)vy = (1-B)¥ = (1-a)¥y

1]

(1-8)a

™
<

-l
it

(1—(1)(11

(1-y)T

e
-~
<
(-
!

(1-a)Pl

J
(4.4,2)



mixture current densities [2.4.41:

N : - 3 — 1_ — r -\\X -E -
Jo=aj, o+ (1 o:)Jl = op vV, + ( oc)plv1 pfxv._ + (1= )y ov
Vo= oov, + (1-a)¥y
, . | > (Llie3)
Q= ca, + (1—a)01 = ap,e v, + (1-a)plelv1 = pe{yvv + (1-Y)v1] = pe? B ‘
L% .
T = ol + (_1_a)p1 = apvvf, + (1-q) plvi = pvlivv_ + (1—X)v1] = pv¥ )J

definition of velocities (3,L.51:

i

Vo= v o+ (1—x)v1

<R
]

av, + <1‘a>v1f

<
1}

> ()
YWy F (f-Y)Vl f;gﬂ R r

\'/: = va + (1—'/\(_)\/’1.

%) - oo : NI ERE

Here, and only in this one-dimensional case,¥ gets a meaning: ¥ = / XV R
: £ B

el : H . B
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———— — - ——— — — g T S ——— T — — " A " S T —— — W —— —

In contrast to formules (L.2.4) ané (L.3.4), the re-

lations cen also be given without recourse to mixture

properties, but with the "true'" phase properties only.

For this purpose, we define the following rctios bet-

ween "true'" specific cuantities

- the specific volume ratio 3

- the specific energy retio n

- the specific momentum ratio S
(= velocity ratio or slip ratio)

For a given saturation pressure,

known. The same is but not true for

it is not built by state variables,

no state variable.

(1/p)v Py T

(1/0)) " oy

e
5% > (L.5.1)

"l

£ is numerically
the slip ratio S, as

nor for n, 8s e 1is

Let
_ - nh - (2 . - _ )
e, =u, +k_=h (p)v + k5 e =u; + ki =hy - (p)1 +
(lha5.2)
v2 Vz
where kv = —%— and k1 =, é are the specific kinetic

energies and U,s Uy the specific internal energies of the

components, Then

u +k - (u1+k1) N u_~-u

n = -1
u1+k1

-1 (Le5.3)

h =u+ % denotes a specific enthalpy
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uv-u1 is the evaporation heat at constant volume (con-

stant p). In most cases, ki is negligible against ug;
nevertheless, (4.5.3) is rigorous only for the components

at rest,
Similarly,
ny(B/p)ythymThy - (B/p) k) Ryl (L.5.4)
T'] - - z - ’ o50
| hl—(p(p)1+k1 . o By L

where h -h, 1s the evaporation heat at constant pressure p,xé
and the so-called expansion energy p/p is omitted,

It is further to be noticed that both h1 and u, are
known except for an additive constant. For saturated wa-
ter of 0°C, hy

enthalpy difference h,_ (and Uy too) is free from such

is, by convention, equated to zero. The

arbitrariness and thus by far more suitable than m for
theoretical purposes.,

From (4.2.3), (L.2.4), (4.3.3), and (4.3.4), the fol-
lowing relationships are easily obtainable .

. - o _ Y _ X
a + E(1-a) vy « n(1-v) X + S(1-x)
o = EX - &Y — EX
Ex + (1-x) By + n(1-yv)  EX + S(1-%)
% (4e5.5)
¥y = w no _ nx

T o+ (1-x)  me + E(1-a) | mx + S(1-x)

_ Sx _ Sat L Sy
X = 5x + (1-x) = Sa + E(1-a) = Sy + m(1-¥)
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"partial" flow rates [3.5.1]:

%=—ijcm %“/“'X)”A
A A
Q\', - _A‘ BG dA Q’\’f = ‘A[(1'B)‘7’ dA e » ,
O = - [éq aa % = - /[“"5)‘1 aa
A . A
Q,:é N /‘III' dA ‘ % = - /(1"'1![)11 dA .
A | A y

The integrations must be extended over flow cross sec-
tions A perpendicular to the flow direction., But as a
variability of the integrands normal to the flow axis can-
not be considered in a consistent one-dimensional theory
(unigque position coordinate is z), the above expressions
degenerate to

v =~ XJA Qp = = (1=-x)JA 1
Qp = - BvA | "'QQ = - (1-p)vA ,jf
Qp = - 60A A = - (1-5)qA
Qp = - yTA Qp = = (1-y)rA |
J



- 40 -

If the left hand expressions are divided by the total
flow rates QM’ X QE’ QP’
to one dimension), the area A and the current densities

resp., (see 2,1., specialized

j, ¥, a, and TI", cancel in all cases so that follows

(Q:‘II \
N = aM mass flow rate ratio
“M
Q'
B = 0 volumetric flow rate ratio
k'
> (L.6.%)
.:I
5 =5 energy flow rate ratio
‘K
Q,’
¥ o= éi momentum flow rate ratio.

All these quantities are integrsl quantities, thus
foreign to a differentially formulated theory. They are
results of the processes inside a test distance and have

a meaning only at its end.

In particular, the relatively easiiy measurable quan-
tity v, frequently called '"quality" in the literature, is
not suitable to be used in our theory. Obviously, any cor-
relation between integral and locally defined (field-)
quantities is without meaning, e.g. between y and ¢, or
similar ones, as it can be stated between two local gquan-

tities resp., like between x and o (see § L.5).
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Y. The balsnce egustions

‘Afﬂer the lengthy pfeparatibns of chapteré'2, 5, and L,
we will now use the general balances, either in "locel"
form (1.5) or in substantial form (1.,7), and svecify ‘the - -
general current densities 8& and the production densi-
ties Oy e

In the case of mass, y is the ”specific mass', i.e.
unity (see table 1). The current density 8& is 3 = ov,

and, ‘without mass sources, Oy = C.

This gives R SR T

— = = @di o R A,
e div pv. ot Ao (5.141)

The substantial formulation (1.7) is not ‘directly
suitable in the mass case, But by avrlyin: (1.8) on the
density p and considering (5.7.1) one finds ‘

%% = - paiv ¥, ; ;:;,;:;‘4 (5.1.2)

another well-known formulation of the continuity
equation, '

We now proceed to the balance of partial masses, y is

here xt (partial mass per total mass, cf. 3.2.1), and
'%L 2t

M dJ
schematically.

= ot¥y (cf. 3.4.2). This can all be chosen quite
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- Thus, according to (1.5):

alpxt) _ apt
3t~ Bt

- Hillncd 1 .
= - aiv p'vy + o , (5.743%)

or substantially (1.7):
P Dt = - div (pL\?i, - pL‘_’)) + O]l\:![ ’ ‘(5-1-1—'-)

where / ol = 0.

. A .
The expression p'(vi-v) will also appear later on. It
is the excess oi the partial current density over the
correction due to the movement of observation point and

may be called "(mass-) diffusion current density"

3}1 = DL(‘_’)L—‘—; ) 7 (5.105)

of the component i.

Of course, > Jt = o,
E,:i

Eqg. (5.1.3) may herewith also be written as

L .
a .
5 = - aiv o'V - aiv It « oy (5.1.6)



~43 -

When svecializing the formulas to one-dimensioncl two

phase flow, we have

op op ov :  ;4}
-é-E + Vv 57 + p 37 0 (5.'.7)
op’ op’ vy
ot t oz + pf 9z o&(z,t) :
# (5.1.8)
op* ap” ov
. o ' . J o .

The equations are not independent one from the others, . -
as the sum of egs. (5.1.8) gives just eo. (5.%1.7).

In the one-dimensional treatment, the overall suita-
bility of which for boilins rvhenomena investigations is
not assured, the partial densities p'L can be replaced by
the known true densities pi. &t the same time the vapor
velocity Vo may be reduced to the liguid velocity v,y by
introducing the slip ratio S(z,t). The suitability of
this measure in view of a solution of the system is also
doubtful. : , e |

Egs. (5.1.8) transform to

0 ov

?Q(Z.t)

3 2 G
— —_ — T 1
=T (pva) + S(z,t)v1 52 (pva) + P05 S(z,t)v1

—OI'\I"(‘Z’t)

(5.1.9)
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or, if P and Py zre constant for constant saturation

Pressure,

3
S, S, (1-a) oy - Sﬁiﬁfﬁl
at 1 oz ez , Py >
Ca 2 8s v oy(z,t)
o ¥ $(z,t)vy & *alvy 55+ S(z,t) -8—7-17 =- T 5.
v
(5.7.10)

The stote variable o acts as & dimensionless mass

[

surrogete., mphasis 1s to be laid on the fact that S z,t)

enters into the eguation as a foreign body. The replace-

”v] reveals to be only a pseudo-simplifi-

cation as lons as the slir ratio 5 is not known as func-

*)

ment of v, by

tion of 2z and t

The right-hand inhomogeneous terms must be otherwise

procured (from the energy eguation, as we shall see).

5.2.Volume_kzlunce
Though resulting only in trivialities, the formal pro-
cedure shall also be applied to our volume quantities, in

order to show the overall consistency.

The specific volume is y = 1/p, and the volume current
=
density is 5v = v, according to table 1.

:::) P

of § ».".

his question is illustrated more clearly at the end
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Thus, the local formulation yields

3 - S S -
R"’l":—leV'*'OV_O : (b'2°1)

which means that no geometrical volume storage€ ?S
possible. The substantial formulation reads '

) = - div (3-V)+0V *) e (5.2.2)

b e W

o~

D
p 5t (

or . ' o e T ;,-"."t:’? It

s

: vaiv ¥, 7 (5.2.3)

=
when cancelling div v due to (5.2.1). This is just
€0. (5.102)0

Notice the important difference between v and the
=
special velocity v.

‘The partial volume balancee may be omitted;

5¢5.Momentum_balance
As the energy balance requires some additional thermo-
dynamic considerations, we will first investigate the
momentum balance,

This balance is-called NAVIER-STOKES' equation of move-
ment in hydrodynamics. Thus, in the case of homogeneous
one-component flow, we should arrive at some well-known
notation, but the heterogeneous flow will lead to a more
sophisticated formulation, as we shall see.

n
*) Besides, the source can be evaluated to be ¢ = EZ:O§ = }i:o&/pi
by comparison with the partial mass balances, =1 i=1
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According to our general rrocedure, we choose for y

R —
the srecific momentum v, & vector; see table 1,

The momentum current density, to be read from

eo_o (_,/-).}—L.Ll")’ iS

n n

L NEE R TS

r

i=1 i=1

This is the rure convection part and is not complete. As
well known, particles of real fluids interact mutually
by pressure and viscous forces resulting in a momentum
transfer., This additional (and prevonderant) momentum

current density is described by the ztress’ tensor

:3:)
p+pxx pxy pXZ
- + r]( =1 S—z 0701
i Pox PP Py, kg m 1 (5.3.1)
pZX pzy p+pZZ -

s
The normal pressure p ) is superimposed by "viscous

pressures" pj; which, according to SYOKLS, are given by

WMOPMONN i=%,5,2
o1 aj

Dijt = -p w' ojidiv v
L = X,¥,2 .

(5.3.2)

*) For the description in norn-Cartesian coordinates,
cf. [7].

%k . > .
) This pressure p(t,r) is one of our system variables

and noct equsl to the "hydrostatic" pressure.
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The tensor ﬁ is symmetric: pj, = Pyj. p 1s the usual
dynamic viscosity and p’ is the so-called '"second visco-
sity parameter'" which is sometimes specified to -p’ = % Le
The latter relation is however rigorously valid only for
monoatomic gases (ENSKOG 1917). Ye shall make no use of
_the definition (5.3.2). It is further convenient to use
the viscous part of ﬁ separately by subtracting the sca-
lar préésure p from the diagonal elements:

- Pxx pxy =Xz o S

#= 1 - pT = L | ';J‘ 3 %

T i fyx o Py Py PR T
P,x Poy Py s

It may be cnticipated that DiV'? = O so that ;3Z<e

Div'(p?) = grzd Dp. ) S (5.3.1)

-

A momentum production 03 may be caused by external for-

ces proportional to mass, such as gravity. Let fl [m/szj

th

be this force (per unit mass) on the i~ component, then

LA

n ) . o ?,.A;. Lren T e ey - A S 3

O = QL?L kg m™2 s72] | 1 (5.3.5)

f=i

td}

In the case of gravity which we will consider exclu-
sively, FL is equal to g, the free-fall acceleration vec-
tor, so that '

.

R o SR ST
O§ = PE. , : ‘*, (50306)
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Substitution of these expressions into eq. (1.5) gives
the local formulation

o o .
e (p9) = - Dive(T+l) + o8, - - (5.3.7)
or
0 - . 3 . 3* - =z
o (pv) = - DiveT - grad p — DiveDl* + pg. (5.3.8)

In order to reduce the cﬁrrent density té the given
veloecity field‘?, we muét subtract p?? from g% = §+ﬁ
(see eq. (1.6)). Thus, the substantial formulation accord-
ing to eq. (1.7) is ‘

- .
PEL =" Div-?'+ Div.(pvv) - DiV-ﬁ; + D, (543.9)

or -

- = =3 *
o g% = - Div.(r—pv—);)) - gr‘ad D - Divell* + pé? )o (503010)

Unless for homogeneous (one-component) flow, ? is not
equal to p??, as can be seen from the last expression

in (3.4.4).

]
) The term Div-(?Lp??) can also be written as Dive ?iij

t=1
with J' defined by (5.1.5). This illustrates the origin

from more-component diffusion phenomena,
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The vector Div-(p??) is parallel tO'?, as every ex- ‘v -

pression of this kind is parallel to the last vector in
the dyadic product:

HieToe

(1.3 ’H)

. mﬁ
Dive(pab) = (grad pea)d + (p div 53b +p (a-Crad)bk.,r

. : o .o
cE T T I T L Tls T b

- e

In contrast to this, Dive ? is in general not parsllel
to Vv, because it cannot be expressed in the form Dlv-(pvv)
as we have seen. Thus, the additional term Div-(ﬁ-dﬂa
changes both magnitude and direction of the time deri-
vative vector DGVDt against the case of homogeneous flow,

The above formulations 5.,5.7 to 5.3.10 may be consi-:izz

Aot

dered as an extension of the usual NAVIER-STOKES' eoua—;atg

tion to heterogeneous flow. S ' SRR \gk}wﬂf

P - 4.,_‘_‘,

« g o S 5~L3xﬁm, a5y, qqﬂar N
The elements of the tensor 1* are, as shown in ,93 1axen

eq. (5.3.2), themselves functions of the velocity compo- ;o

nents and a material property W, the viscosity. This isipiz

alrecady true for the simpler case of laminar motion. or 2=

a turbulent flow, the stress tensor is sunerimposed by iz

the tensor Htu b of turbulent "aprarent" viscosity, thee;ﬁs
=TT

element ajk of which is p vjvk. vJ etc. are Cartesian .ixde

components of the turbulent oscillation velocity V', and

the bar means a time average « Their computation as well

as their measurement are extremely difficult; the theore-~ *
tical statements (PRANDTL's mixing length etc.) are by
far unable to predict correct results in conplex cases = "1

like ours, - e

Lo i cmafiiimiig L :auj.~..: [ L.. u\! LA mp\Jw &

*) The method applies to quasi-stationary turbulence. FO?:*

b

macroscopically rapidly changing velocity fields, the v \f

above time averages loose their meaning. .rg.-igs 34 Hagas

g

<
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wWhat is still more serious is the fact that the ele-
ments of both tensors ﬁ* and ﬁturb. refer of course to
a homogeneous fluid. The important open question is how
to incorporate two or more entirely different viscosi-
ties pi into the stress tensor, and which velocities

should reasonably be applied,

Here the complete-mixing-model suggests some idea but
not yet a solution. It is obvious that only a unicue pres-
sure field p(t,r) is physically possible, and not a set
of different but completely overlapping (true) pressure
fields pi(t,fﬁ* . The same must be true for the tensor
ﬁ*(t,?) which is a unique one for the mixture. No dif-
ferent tensor commonents pxy,i can occur because the con-
stituents are undistinguishible as concerns their po-

sition,.

Hence the '"mixture" friction tensor ﬁ* must entirely
refer to mixture velocity components and a "mixture vis-
cosity" p. If u is a material property for homogeneous
fluids, the same can hardly be true for a mixture, as the
effect of fric.lon between - really - separated components
i and k must be considered in any way. This latter cross-
effect however depends on both velocity fields GR and G@,

. - -
strictly spoken on vi-Vke.

This reasoning reveals that the relatively simple
STCKES' statement (5.3.2) is insufficient for more-com-
ponent flow and may not be used. The effective viscosity
for slip-flow must be higher than that computed from mo-
lecular-statistical theories for gas and liguid mixtures
at rest (see e.g.[81).

*) "Partial' pressures p' = q'p can of course be consi-
cered, if suitable.
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Obviously, the same physical situation exists already »:eli -
for a unique (averaged) momentum balance like eq. (5.3%.10)

above, so that, simply spoken, the substance of the stress
tensor elements remains undetermined for more-~component »ii s

flow, because statements of type (5.3.2) are no longer >an

. B e O S ; g B s s PrGEE
appllcabl (S3 PO T I A PR N L TGl TS AN ] Sd AL F31} ld'
IR N g g s o

As emphasized in the introduction, we want, in this re-
port, to collect basic and assured relationships sbout
more-~component flow. Put we do not wish to enter the field
of semi-empirical speculations., Here we have arrived at a
wall, but it is important to know where it is. To inte-
grate the momentum equation for two vhase flow, say by
programming it for a computer, as has occasionally been ‘
done, reveals to be useless, as the most important data : ff>, i
' &ﬁ;iaﬁgghfi#;é;

After these distressing remarks we may look on the

PR B I SR O G S S AN LA RS e X

are simply unknowWlNe ., oy oumoegcier s e o

ST

slip ratio S(z,t) of the preceding varagraph. Apart from D

the justification of one-dimensional trestment, S(z,t) .lgg"
follows directly from the main result of an integration

of the one-dimensional momentum equation, namely from the -
velocities vL(z,t)*). As this.is not possible, efforts “”ﬁﬁﬁ{_"!“
should be concentrated to obtain S(z,t)**) experimentally ;fﬂ f
under various conditions., This would be the only way to |

This remark should be understood as a suggestion only;“ij ’;
no details how to perform such experiments can be given L

so far,

faal
i

e oa e e e e T e s Bel el RS
wiada on Jvatsne oldsabd efdd

&
) Obviously, in order to obtain both velocities vi(z,t)
at the same time, also two coupled momentum equations (for

two components) should be solved.
%k )

e e . " USRI SN NPV DU S DY A
seswtod rostobodbds iy

or equivalent momentum equation surrogates. ...
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The establishment of &n enerysv balance for a hetero-—
iceneous flow revezls to be unexpectedly commlicated if
asked in coordinate-invariant nartial differential ecua-~
tion notation, Clessicel therrodynamics show the balance
written with differentials only, the significance of which
remains undetermined as soon as all independent position
and time variables come into play. The formulations found
in various reports or textbooks differ considerably and

are sometimes incorrect.

In order to keep lucidity we will treat the subject

in different steps.

5.4.1,ilomogeneous flow

In this case the flow is composed by & single component

with.-unique velocity v.

The total specific energy e is composed by four parts,

namely

- u the "internal energy' which considers the energy
due to microscopic molecular movement, a state
variable,

b
-5 sometimes called "flow energy", better "expansion
%

energy'", also a state variable y

- 5»/2 the kinetic energy, no state variable,

- —g-? the potential energy due to the gravity field, no

state variable.

E
) The distinction between "energy" and "work" becomes

somewhat academlc by our way of trestment,
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E is the free fall accelerztion vector with Cartesian
components (0, O, -g). © = (x,y,2) is the position vec-
tor, with an/dt = O, but Dr/Dt = V. For z = O, the po-
tential energy may arbitrarily be equated to zero, since
it is anyhow only defined except a constant amount, For

- = . PR
z > 0, -ger is of course positive,

For pure (isothermal) fluid mechanics, RERNOULI.I's law
gives the energy balance in integral form:

- g7 = constant. (5el4e1.1)

|3
+
ml<:t3|,

This is true for viscous-free flow, where the internsl
energy u is unaffected, but if friction and other hest
sources come into play, u must be included so that

mlddl,

e = u + % + - g-? = constant + F(p,T) . (5.4.1.2)

The internal energy u is, by experience, a function
of any two basic state variables for which we have pro-
visionally chosen the density p and the temperature T,

We apply the total differential operator D/Dt on e,
and multiply by p:

022 = £(pT), . (5.L.1.3)

where f£(p,T) is a function to specify. It signifies the
divergence of the non-convective energy flow rate Sﬁ
through the surface of our elementary volume, because Op

is in any case zero,
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As known, such a heat transport can be caused by (mo—-
lecular) conduction and by radiation. We confine us to

conduction and write according to FOURIER

8E = - A grad T, (5014-010L'-)
thus
P %% = + diV(x grad T) ’ (50“—0105)

or, according to (1.,5)
0 . -
Ef(pe) = - div(pev - A grad T) . (5.4.7.6)

Heat conduction depends on T only, and not on p.
Eq. (5.4.1.4) is one of the "phenomenological equations"
of thermodynamics of irreversible processes, T 1s no new
variable but can, in principle, be computed from p and p

by the state equetion ¢(p,p,T) = O.

Nevertheless, if, later on, boliling two phase flow
shall be considered, where the heat, by rights, is sup-
plied only from the walls, it is obviously practically
impossible to follow the heat propagation through the in-
side with its chaotic and non-stationary mechanical mi-
crostructure. It is for this reason that we replace the
conduction and radiation flow yields byAa volumetric
energy source g per unit time, the position and time de-
pendence of which must be properly "assumed",
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Hence
oo L g, S G
and
& (p0) = - asv(ped) +a o i (5.0.1.8)

We emphasize that this notation is only a convenience
which saves the trouble to compute the temperature field,
Strictly spoken, we have no other choice because the heat
propagation depends on the mechanical distribution of par-
ticles of the various phases ( the "flow pattern") which
is Jjust not computable with our model where the position
of the phases is not specified. Each of the phases vir-
tually fills the whole space with its prorer partial den—LJ
sity.

Bose (5.4.1.7) and (5.4.1.8) are not very useful, as
the total energy e is not yet related with the variables
D, p,and'?, encountered up té now, On the contrary, the
energy balance should just supply the fifth needed equa-

tion without introducing a2 new systemn variable e or u.

For this reason, we must ggccess1ve1y subtract balan-
ces of the part enérgies %, 5, and —g r, in order to
keep finally the balance for the internal energy u, ex-
pressed by known quantities, . SRR

We begin with the specific potential energy which tem—
porarily shall be called 1, According to (1.5), we have
with & = plv: - R

o

%E (pl) = - div(plvy) + gy, * (5e4.1.9)
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The first index X indicates that taec potential energy

ource O
S L

encrgy X.

is supplied by &n ecuzl sink of the kinetic

Now,

_a'Tt- (pl) = -a_t_ <_ P g'F) = - g7 5'% (5-L|-01-1O)
and

3
- div(plVy) = + Aivip(a-T)¥] = + g7 aiv(po?) + p &V )

(54l.1.11)

‘'le obtain, as the number of terms of (5.&.1.9) is com-
nlete, parely formally, by considering also the mass con-—
tinuity ec. (5.1.1):

g = - AT (5.0.1.12)
Alternatively, the substantial formulation is

Dl > -
p ﬁ = - p g.v b4 (50“—01013)

an almost trivial result which can also be obtained di-
rectly.
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The second part energy balsnce we establish is that
of the specific kinetic energy k. This can formelly be
achieved by scalzrly multiplying the momentum balance
by v. For this end, we choose eq, (5.5.10) where, in the

3 -
homogeneous case, T = pvv:

—

gﬁ = - Fegrad p - T (DiveI®) + p B2V, 77 (5.ba1.10)

©
UIU
ot

or, in local formulation

a_ \_73 _ . \:r:"a_ —> — _ 2 . 3* > > =
5T (p 5 ) = - aiv(p 5 ) v.g?ad p - vi(D%v-qr} + p geV.
(5.4.1.15)
From this, one can clearly see that there are three
source terms of kinetic energy, namely = .. .. . ...
Ok =" kg =t PEV, . (5.4.1.16)
and 4 ‘
opg = - Veerad v, . .. - . (5.4.1.17)
where D suggests the specific expansion energy 4 = % ;

and GDHK signifies_the amount converted from expansion
energy to kinetic energy. Y wm a

Thirdly, there is

L, 3 R 2 S et
Cpg = ve(Div.T*) , (5.&.1.18)

L e

a term that gives the kinetic energy loss in favour of
friction energy (denoted by F). The latter one is an
intermediate energy form, which is converted into internal
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energy as soon as it originates from kinetic or expansion
energy. Thus, the sum of all source terms involving F

must vanish

OF—)I‘{+OF")D+OF—U:O. ) (5.L|-o1n19)

The next balance is that of specific expansion ener-
gy d. Here we have again three source terms, namely first

_._) — &
Ogp =~ Opg = + vegrad v . (5.4.1.20)

The other terms, the gain from friction energy,

OF"D’

and o the source from internal energy, are not so

U-D’
easy to overlook,

The term o the internal energy produced by fric-

F-U°
tion, is however known (see [9], Dp.77):

Opgy = - T*:0rad v . (5oa1.21)

Here ":" means the double scalar product of two second
order tensors. This scalar quantity is obtalned by simply
summing all products of inversely indexed tensor compo-

nents:

2B = YALR Bii - (5..1.22)

Ly k

Now we deduce from the friction balance (5.4.1.19):

Opp = * 7o (Div.T*%) + T*:Grad ¥ = + div(T*.¥) . (5el4e1423)
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According to the structure of quU, the lock of the
source term Sp g can be found by replacing the ﬁ* by p?,
leading to

opy = - P div v . (5.4.1.24)

By.collectlng Ox_p’ Op_D? and Sup = ~Opy’ WE get
for the expansion energy balance

P %E <%> = + div(ﬁ*-?) + p div ¥ + Vegrad p R %Q
= + div(ﬁ*-V) + div(pv) *i;" T (5.4.1.25)
= + div(ﬁ'V) , *) . o
or, in local formulation Jf%q -  $f::£Q;f??;;2;_ ;
%% = +.div(ﬁ*r7) . *) o .  - (5.le1.26)

The last expression shows illustratively how local
pressure changes are generated by the work flow due to
friction. ¥For stationary processes, there is no exchange

Sp_D between friction and expansion energies.

*)

vergence suggests the question if it should not rather be

The appearance of the source term Op.p in form of & d4i-

considered as a current term through the surfsce. 'fhis is
but only a matter of definition and does not change the re-
sults, The formal application of (1.5) with y = % gives in-
deed %{1 = - aiv(p?) + div(T7) if we add, like in the mo-
mentum equation, the total "work flow rate" ﬁf? to the
formal convective term p?. This is Jjust eq. (5.4.1.26).
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ile give now the balance of the specific internal ener-
gy u (OF = q = oy, as q is pure heat):

Du )
Ppt = %psu T % T %
. - = J-. — \ =
= - p div v - M*:lrad v + g (5elte1427)
3
= - T:Grad v + a ’
or
=3

g—t (pu) = - div(pu¥) - M:Grad ¥ + q . (5.4.1.28)

Internal energy is produced, besides the heat supoly g,
by conversion of convective energy through exXpansion and’
friction,

By summing up all four part energy balances, of course
the totzl energy balance is regained.

Of special interest may be to consider the sum of in-
ternal energy u and expansion energy % , which is called
the enthalpy h:

Dh
P Dt

il

=3
- H:Grad v o+ div(H'?) + g
N (5.4.1.29)

+ ve(Dived) + a ,

and, locally formulated,

g—t (ph)= - aiv(ph¥) + ¥+ (Divem) + q . (5.4.1.30)
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By considering agsin (5.4.1.26), an alternative form to
(5.4.1.29) is

Dh _ _ Dp _ 3. 7 B
Pot =~ bt T iGrad V + q e .f {§§.&.Z:?1)

phod

When considering the heterogeneous case, we must about
all bear in mind that the stress tensor of a mixed multi-

L

component flow is, till now, not reasonably defined from ¥,
, ‘;

the respective component stress tensors, as already em-— o

phasized in § 5.%. So we are indeed unable to compute . .

the correct pressure drop from our equations. They re-

main, unfortunately, rather academic for all cases where*«m
friction plays an important part, e.g. for natural circu-
lation loops. Here, the equilibrium between friction and
buoyancy forces determines the flow rate; and, by con-
sequence, the amount of transportable heat,

The second drawback lies in the overall concept of the
model. As all phases are considered to be arbitrarily -
well mixed and to fill each one the whble volume, the
phases may indeed have-different velocities; this applies
however not for individually taken subvolumes such as "~
bubbles and droplets. Their buoyancy speeds against the
surrounding main medium depend on the flow resistances
at their proper surfaces and are thus from the first

out of consideration.

This shows clearly the limitation of the applicability
of our model. Nevertheless, we will give the equations,
as they may be useful for forced convection processes
where the pressure field is nearly entirely dictated from
outside (by pumps). o
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All phenomena which basically outgrow from the micro -
structure (flow pattern, boundary layer whirling by
bubbles), such as pressure drop, heat transfer rate from
walls, conditions of pattern transition including boiling
crisis (bourn-out), cannot be learned from our model, Em-
pirical correlations therefore fully keep their importance.
Though it cannot be expected that our equations give suf-
ficient indications on the structure of dimensionless
parameters of relevance, they may give necessary condi-
tions for what kind of interrelationships are imaginsble
and which not., A striking example is: The slip ratio S
cannot depend on the "flow quality" y (see L.5.5); re-
spective experiments are useless * . The basis from which
parameters for two phase flow pressure drop are usually
celculated should also be revised,

On the other hand, an entirely satisfying, i.e. physi-
cally correct model of boiling flow is practically hope-
less, as the inner boundary conditions zt all bubble sur-
faces can certainly never be considered, Not even a sta-
tionary description of what is commonly called "steady
boiling" is possible, since bubble growth, detachment,
and migration are a priori non-stationary so that indeed
a "steady two phase flow" does not exist,

After these preliminaries, we generalize our homoge-
neous flow results by taking into account the different

velocities we derived in preceding chapters,

*) Whenever giving graphical or numerical "correlations"
between any two quantities, at least the pertaining corre-
letion coefficient should be computed according to sta-
tistical principles. In case it is too poor, the necescsa-
ry conclusions should be drawn,
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First we define formally for all part energies of com-

vonent { the "true" specific energies, namely

"true" specific internal energy

1"

o

" expansion cnergy

kinetic energy

potential energy

where ?L is the position vector of the center of mass

of component t.

The "partial" specific energies are, also formally,
defined by | - - |

1
—~
o]
~r
-

-

I" 'x.

The essential feature is that not for all of these

part energies the sum over all components g%ves the re-

spective part energy of the mixture, e.g. }Z:ui £ u,

i=1

Such a relationship is a priori correct only for the to-

tal energy e which is conserved.

The consequence is that individual definitions of mix—

ture internal energy u, or mixture enthalpy energy hy ...

based on those of the constituents, have no meaning as“

long as transitions between the energy forms are not ex-

cluded.,
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Such an exclusion is however often possible, Consider
the case that the components show no relative motion one
against the other so that kinetic energy can neither be
produced nor destroyed. If no inner friction exists
(ideal fluid), no additional supnly of internal energy

OCCurs.

For a water-steam mixture,

T (5"

i=1
means, with the terminology of chapter u:

= % (cf. €G.%.2.2)

1 1 1 |
_— = 4—' b L - . . . .
5 = (1-x) ot X b (5.4.2.1)
n
T\
Jith the above restrictions, . u' = u gives
i=1
%)

If also the pressure is equal for all constituents 9
n

ea, (5.4.,2,1) may be extended to % . Then Ejiht = h,
which reads i=1
= (1= '
h = (1-x)h; + xh, . (5elte2.3)

All three relationships are well known for wet steam
(ef. T3], p.163), but their validity limitation should

*)

this equclity, as already discussed in the momentum ba-

It is emphasized that the com lecte-mixing-model imvlies

lance's paragraph.
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carefully be kert in mind, In particular, by solving

(%.4.2.2) for x, the "definition'" of x

where h1v is the lat=nt evaporation heat is

restricted to isoberic vrocecsses snd hoth phases uit roai,
Though this relationship may be suitable to be extended -. .
towards negztive X for subcccled boiling where the mix- )
ture enthalpy h is below the ssturation liquid enthalvy hl
(but note that the phases are not at rest!), it is better

to remember that x is originslly a mass fraction.

Now, with a single pressure field p for all comronents,

we notice that, among the part energies, 1 = —g-? and
d= %behave "gdditively™:
i & n 4
- i

L o_ =0 - *).z Pyt _ YX___B
Z_Jl—Z’JgXPL—l ’ (p)_p.__jt_p, o ‘
L=1 L=1 t=1 L=1 s =

: (5.4.2.5)

wherees the kinetic energy does not:

D k=) Lod st  (5.4.2.6)

%) AN
EZ:XL?L = © is the usual rule to compute the center
L= of mass vector r from those of the con-

stituents., .-
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As a consequence, as / el = e, the fourth part energy
fo. .t

=1
u=e - (1+%+k) is also not additive in the normal case

with v, # V.
With the models of eas. (5.4.1.13), (5.4.1.25),

(5.4.1.14), and (5.4.1.27) the components' energy balan-
ces are in substantial notation:

D1t ) , '

p D-t == le[lei(\—;L-?)] - p g..‘?)i' ? (5-“-02-7)
D /Dt I .3

P BT () = = divp"(g), (vi-v) ] + div(Tvt) , (541442, 8)
D -‘—;L .-i?. . L \7’.2 -y - _)i. . 3 - —)L

Py 5~ = - diviet = (vi-v)] - v'+(Div ) + p gevt,

(5.442.9)

Dut . s = = j’.G = i

e = - divliptui(vi-v)] - H:Grad v* + g'. (5.442,10)

All four lines can be added to give

eL . . -y -). . ﬁk)
ppr— = - div[pte (vi-v)] + o',

g

(5.4.2,11)

as it should be,

The problem is how to eliminate el

and ey, resp., in
order to get an internal energy balance for a more-phase

flow,

%)

introduced in table 1, when summed over all i .

- - -
The term in square brackets is just pe($-v), with #
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When adding eos. (5.4.2.7) and (5.4.2.8), resp., over
all i, it is convenient to apply once more the diffusion
current densities J¢ = p!(¥;-v) (ef. 5.1.5). This gives:

o Bt = - div y L3 -pEY o, - (5.h.2.12)
{=1 N R
D D ) P - = N %) oo o=
p 2 (B) = - aiv ) (), T+ aiv(Tn) , ) T (i)

but for the third line, the.summation is not allowed,
thus

, S -
Dk k{JIt - Ve(Divel) + p 2oV .

P Dt £ - div

™~

o

=1

To get the correct expression, we go back to ea, {5,7%.10)
and multiply scalarly with ?, considering the pertaining
footnote:

3

Dk 3
B (o) ) - hoieD s e gd.
i=1 oo (50“-.201Ll-)

%) n
_)
The term };:(%)Ljﬁ may also be written p(¥-v), as can
=1
essily be verified.
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Of course, all terms containing Jt venish for single-
phase flow,

By considering the total energy balance

N
D i
p i_)_i_ - - le Ze j)’L + (1 ’ (5-"—L02015)
=1
D .
the result for u = e - 1 - 5~ k is
n n n
T3 - —> h
p P = - div ) wJt - aiv ) x I+ ve(Div Z_, nJt) -
i=1 i=1 i=1

3 ‘ )
- MGrad v + q . (54k4.2.15)

There is a remarkable residuum {givins the u-gain from

kinetic energy and indirectly from potential energy) which

distinguishes more-phase flow from the simple single-
phase: flow (5.4.7.27).

The entlhalpy balance is obtained formally:

n

Dh | _oaiy ) V?
p D = — aiv Lﬂ;ht - aiv ) kiJb + ve(Div )

=1 i=1 =1

+ ve(Div ﬁ) +q . (5.10.2,17)

The corresponding local formulstions are omitted here;

they are easily obtainable by replacing p 5% by 5{ (py) +

div(pyv), where y stands for any specific part energy.
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S5.4.3.Specialization_to one-dimensional two phese flow_

This sub-paragraph is added in view of practical appli-
cations, as, up to now, the equations might appear to be
little transparent. In contrast with the preceding text,
we will accept here certain aporoximations to which we

are practically obliged.

One-dimensional flow parallel to the walls, with a
single independent coordinate z, does not allow to con-
sider the adhesion conditions for anyone of the velocilty
comnonents, Therefore, the external friction effect which
gives an appreciable pari of the total pressure drop, is
not computable,

The pressure field p(t,z) must be inserted from out-
side and is no longer a system variable. The pertinent
knowledge may be percured from semi-empirical correla-
tions about pressure drops of two phase flow. In the sim-
plest case that we will adopt here, p may be assumed con-
stant in position, ’

The positional constancy is Jjustified if the static
pressure is sufficiently high so that the pressure drop
through the pipe is of little influence on the state
equation. Then, under boiling conditions, also the tem-

perature and the "true" densities of each phase are constant.

The time variation of p devends meinly on what we sup-
rose at the boundsries of the system, i.e. on the inlet
pressure pin(t), supplied by a pump, and on the outlet
pressure pout(t), depending on the subsequent hydraulic
resistances, e.g. through a turbine. In order to keep a
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*)

taneous description of pumps etc., we assume a "perfect

"mathematically closed" system , namely without simul-

pressure regulation'" that keeps p constant or guides it
%k

according to a given law p(t) ). liore complicated as-

sumptions are of course possible,

The terms involving the tensor ﬁ* are anyhow not ap-
plicable for turbulent and more-phase flow, as already
broadly discussed. This is so more true as soon as the
component structure of 33 is drastically mangled by uni-
dimensional treztment. As a consequence, effects of (in-
ner) viscosity can also not be considered. Their contri-
bution to the pressure drov could anyhow not be utilized
(ez2e above), but now their energy aspects can equally
not be taken into account., This is acceptable as soon as
the friction heat source ﬁ:Grad Vv is indeed hegligible
against the "external'" heat supply a.

In the same sense the enthalpy transformation to ki-
netic energy may be neglected., Its amount is assumed to
be small against q***);the component kinetic energies
can anyhow not correctly be calculated if viscous effects
are omitted.

*)
if there is a through flow rate,

k)

This regulation may however not influence the other

Although a system like ours is called '"physically open',

system variables, in particular the flow rate, because
otherwise the regulstion should be simultaneously de-
scribed. Here the model must be adapted to the various en-

gineering arrangements,

Rk
)Applications on turbines, nozzles, rocket engines etc.

are excluded after this assumption.
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The remainder of eq. (5.4.2.17) is therefore

n

P %:‘% + div Yhtjt = Q. : ) (5.‘14-03.1)
(=1
For two phase flow,.dJ’ = =J*', so that
2 : _ e
I o A n - - . ”
Z hidt = h " + h J* = (hv hl)J = h, ", (5.4.3.2)

[
Il
¥e

where h1v is the latent evaporation heat at constant

pressure. With our assumptions, it 1s independent of z.

Hence, (5.4.3.1) becomes for two phases

Dh ’
p ﬁ + hlV g;- = q_ . (50“-.3.3)

Now, we look on equation (5.1.4) with the diffusion
current density of steam (5.1.5) already inserted. This
reads

Dx , ad" _ ,* |
P Dt + Y = OM . . (5.”-.30”-)

By applying the substantial differential operator on
expression (5.4.2.4) we find (h1 and h
stant):

1v being both con-

Dx 1 Dh
ﬁi = h 5{ ¢ (5-&-305)
1v
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‘hen dividing (5.4.3.3) by h v and comparing it with

1
(5.4.3.4), one gets:
L4 q 7
S hy = =0y - (5.4.3.6)
v

This seemingly blamebly meagre result means that the
steam production rate is equal to the heet added per vo-
lume unit, divided by the latent heat. For bodies &t rest,
this relationship pertains to the simplest physicel con-

ceptions,

Emphasis is, however, not laid on the result itself,
but on the series of restrictive assumptions which al-
lowed us to arrive, also for the very complex boiling
two phase flow, at relation (5-&.3.6). It is shown that
it is an approximation only, and one might have an idea
how good it is.

The entire energy balince was utilized only to detaor-
mine the source terms for the partizl msss balances., Its
function is herewith fulfilled, because (5.1.10) is al-
ready a mathematically closed system of two equations with
the two variables ¢ &and vy

There still remain two points to discuss., o& is a func-
tion of z and t because of q = a(z,t). For a given wall
heeting in terms of energy per unit length, e.g. elec-
trically, there is no problem. The z- and t-dependence
is then obvious as one can divide the latter one by the

pipe cross section,
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If, however, in the case of a heat exchanger, q is
given by the wall superheat AT(z,t) (against a proper
fluid temperature), times the heating surface, divided
by the pertaining fluid volume, and multiplied by a heat.
trensfer coefficient, the gquestion is how to determine
the latter one. The main difficulty is 1ndeed shifted
to the solution of this problem. o ' -

The heat transfer coefficient, involving a.mixtureg*o
of material property and flow pattern influences, is
only a surrogate conception for not rigorously describ-
able thermo—hydrodynamic phenomena, Thus, its determi-
nation is from the first thrown upon correlation tech-
niques., In particular, for boiling flow, its magnitude
may vary over a very wide range according to the flow
pattern., When, e.g., paSsing from a more or less compact
liquid boundary layer to a gaseous one, it shows a sudden
break-down which is responsible for the "boilin‘ crisis"
in the case of energy-steered heating (in the case of
temperature-steered heating a crisis cannot occur). All
these gquestions are however by far beyond the scope of
this report.

The second open rnoint is the slip problem. 48 had been
pointed out in § 5.1., we were obliged to introduce S(z,t)A
as a coefficient in order to reduce the number of deven-
dent varisbles from 3 to 2. At the same time, the one-
dimensional (scalar) momentum equation proved to be not
reasonably attackable in § 5.5, This means that S(z,t) is
a Surrogate for the solution of the momentum equation, As .
there is no hope to obtain S(z,t) from the complete-mix=
ing model, we must once more apply correlation techniaues
to determine S(z,t) as a function of proper parasmeters,
e.g. of a (not %), of p, etc. Aleo thls problem is beyond
the frame of the article. - w '
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6. “Yonclusions

The "complete-mixing model has been applied to estab-
lish a "field" description of n-phase flow with heat
addition.,

The advantage of the model, where easch of the phases
ills the whole volume but, nevertheless, may have a pro-
per velocity Vi,'lies in the fact that in this manner,
and only so, the comnlicated internal boundary conditions,
at bubble or droplet surfaces, can be avcided. S

The diszdvantage is that certzin effects, in particu-
lar those of viscosity and imnroved heat transfer through
violently whirling boundary layers, are due to the micro-

structure and are thus irrecoverably lost. -

oreover, nothiny; occturs gbout overpressure in bubbles
so that fundemental phenomena like that of surface tension

are systematically disregarded.

Cn the other hand, if the microstructure should - hypo-
thetically - eppear in some advanced discontinuous descrin-
tion, the mathematical soclution would become absolutely
impracticable. |

The compromise of this report is the proposal to apply
the complete-mixing model and to add from empirical cor-
relstions knowledges at two points, namely for the slip
ratio and for the heat transfer coefficient. Existing cor-
relations are not yet fully aprropriate to be inserted in-
to the proposed equation set, »

From the rather general formulation in three coordi-
nates, the finally given equation set is a specialization
to one-dimensional, strictly isobaric flow., Other spe=-
cializations are possible.



- The equation set is: o
i )
L - LI (1-a) EZL S _ a(z,t)
ot ‘ 1 3z 0z , plhlv
. S
oa \. ea ov oS a(z,t)
gt S(z,t)v =t s(z, t) st 0V =t ST
: = TV y
L Nt
with : - R :: ToepE g TE , ‘fi
a = local void fraction | U 7T A

v, = liquid velocity -

S(z,t) = v /ﬁl = slip ratio -
a(z,t)= energy supply per unit volume etven funct;ons
and unit time

51, p.. = liquid, vapor densities

hlv = latent evaporation heat at constant pressure.

Initial and boundary conditions mey be given at choice,
Perturbations may be introduced either by time variations
of a or by changing the boundary conditions with time.

Y Tl . . T e :
g T e RS I P 7 LI R SIS EENE AL ‘

S(z,t) should rather be given as function of ¢ and v

_ 1’
thus following automatically the flow-pattern evolution.
The equations are anyhow highly non-linear. T -

H : "\_
of !

" dependent varisbhles B
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List of symbols

symbol| dimension signification explanation
see page
A m=2 surface, pipe cross section 9
a m? s”? |specific expansion energy 58
E m? kg s~2 |total energy 8, 13, 17
e m?= s—2 |specific total energy 13, 19
g m s—2 |free fall acceleration vector L8
h m?2 s—2 |specific enthalpy 21, 38
hy, m? s=2? |latent evaporation heat at 38
constant prescure
? - unit tensor 17
7 m~2? kg s™' |mass diffusion current L3
density
il m~2 kg s™! |mass current density = 13, 22, 25
momentum density
k m? s”% |specific kinetic energy 37
1 m? s™2 |specific potential energy 56
M. kg mass 8, 13, 17
P m kg s”™! |momentum 8, 13, 17
D m~! kg s7? |pressure L7
o m~! kg s2 !elements of ﬁ* L7
U various flow rate of Y through a 8, 1L, 30
surface
a m~! kg s7% |(heat source per unit volume 55
and unit time
a kg s7® |total energy current density 13, 25
r m position vector 55, 54
S - slip ratio vv/v1 37
T deg temperature 55
t s time 9
u m=2 s™2 |specific internal energy 21, 37
v m3 volume 8, 13, 17
v m s~! |center of mass.velocity = 10, 19, 27

specific momentum
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List of symbols (continued)

symbol dimension significetion explanztion
: see page
~
v m s™1 "volume" velocity 13, 25, 27
= - . ' ..
7 m s~1 "energy" velocity 13, 27 o
A m -1 "momentum" velocity (in 13, 27, 36 =
one-dimensional case) '
v m st turbulent oscillation 50 | . E
velocity w0 | g 2
X - mass fraction . ~
Y various extensive quantity
h's various "specific'" quantity to Y
Z m : ‘ -] axial coordinate
% - . : ~ volume fraction
B - "volume current density
fraction"
? m™t kg s”2 ‘| momentum current density 13, 25
g - total energy fraction 17, 31
o) - "energy current density 28, 41
fraction"
851 - = 0 if ;#1 ;3 = 1 if j=1 iy7
€ m-1 kg s”=2 total energy -density 13, 22 °
7 - ratio of true specific 37
total energies ev/e1
A m kg s”3(0)"1 thermal conductivity 55
L m1 kg st - dynamic viscosity L7
w! m~* kg s™* "second" viscosity : L7
parameter -
E - ratio of true specific 37
volumes pl/pv
i m™! kg s”2 (comnlete) stress tensor | 47
IT* m~t kg s7% friction tensor L8
ﬁturb m~1 kg s~%2 tensor of turbulent 50
"aprarent" viscosity
o m~2 kg mass density 8, 13, 22
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List of symbols (continued)

symbol dimension ex¥planation
see page

Oy various production density of Y 8, 16

3& various Y-current density 8

=3 .

Y - "mess current density fraction" 17, 286 31, L1
W - "momentum current density 28, 41

fraction" '
indices:
lover refer to "true" quantitiesj) 18
(in general "(") " .
upper : refer to "partial', quan- 18
tities
', refer to liocuid 31
# refer to vapor 31
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