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flow is made. 
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SUMMARY 

Relationships between the extensive quantities mass, volume, total energy, 
and momentum, and their related specific quantities, their densities, as well as 
their density currents, are compiled. On the basis of the "complete-mixing 
model" (the constituents may have different velocities, but fill each one the 
whole volume) and the conception of partial quantities, equivalent relationships 
are derived also for η-component flowing mixtures. With the aid of these 
expressions the general balances for mass, partial masses, momentum and 
energy (subdivided into internal, displacement, kinetic and potential energies) 
are established in three-dimensional, time-dependent coordinate-free partial 
differential equation notation. Specialization to one-dimensional two phase 
flow is made. 

The "complete-mixing model" is the only field theory tha t permits to avoid 
the consideration of chaotically numerous and transient internal boundary 
conditions at bubbles and droplets during boiling. Its drawback is that slip 
effects, inter-phase viscosity, pressure drop, heat conduction, and the magnitude 
of the heat transfer coefficient for various flow-patterns cannot properly be 
seized. I t is proposed to combine some simplified equations with the necessary 
empirical correlation knowledges. The momentum equation proves to be unable 
for inclusion in a computer programme because of insufficient determination 
of the stress tensor for two phase flow. Details of the energy equation suffer 
equally from this difficulty so that, up to now, only its roughest statements 
could be applied. 

A handy set of two equations is given and repeated in the conclusions which 
may be useful for calculating transients in heat exchangers and around boiling 
water reactor fuel elements, stability problems being excluded. 
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Preface 

Two phase flow has, in particular in connexion with 
boiling heat transfer, become a field of very intense en­
gineering research during the recent past. The interest 
has been stimulated by its appearance in boiling water re­
actors and rocket engines as well as in several types of 
heat exchangers. 

Correlation attempts to interprete numerous experimen­
tal results and to predict the behaviour of designed plants 
are dispersed over well some thousands of papers. A very 
deserving textbook synopsis has recently appeared [1]. 

•My impression is that, despite of an almost "bewilder­
ing abundance of data, the common theoretical foundations 
are to a certain deal fragmentary or even misleading. 

In order to fill this gap this paper shall provide re­
search workers with a systematic classification of basic 
relationships from hydrodynamics and thermodynamics that 
may be suitable for two phase flow investigations. 

As it is irrelevant for our purposes to distinguish 
between chemically different "components" and chemically 
identical but physically different "phases" of the same 
substance in a moving fluid, we speak, for convenience, of 
components only. 

Moreover, most of the used definitions and relations 
are applicable to more than two components so that the no­
tation is simplified by using the summation symbol over all 
components and giving the latter ones a current index i. 
In the case of pure phases, the number of participants is 
normally restricted to 2 due to GIBBS' phase rule so that 
the summation notation may be considered as a pure con­
venience, too. 
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The rigorous relationships derived in this paper are 
partly in a striking contrast to what is sometimes taken 
as a hasis in the literature to describe some two phase 
flow phenomena. It is for this reason that papers which 
further establish on such relations are intentionally 
not quoted. References are but made to such papers which 
deal with the derivation of the fundamental equations and 
which were thus of utility to prepare this paper itself. 

In this sense, the scope of the present paper is li­
mited. It cannot provide any new correlations nor can it 
finally clarify two phase flow mechanisms. The equations 
which will be derived show characteristic differences bet­
ween homogeneous and heterogeneous flow, but are in fact 
scarcely treated further; it is rather discussed why they 
cannot "be solved reasonably without certain specific ex­
perimental informations. 

This is to restrain engineers from too a vigorous em­
pirical advance in some ases. The purpose of this paper 
is to provide research workers with relationships which 
in no case may "be essentially violated, and to suggest 
how the discussed complex of problems should correctly "be 
attacked. 



BASIC RELATIONSHIPS IN n-COMPONENT DIABATIC FLOW 

1. General form of balances *) 

There are two methods of treatment of two phase flow 
and boiling heat transfer problems which do not exclude 
but should complement one another. The one is an empiri­
cal approach to explain isolated phenomena such as pres­
sure drop through pipes e.g., by means of dimensional 
analysis. The other method is the analytical one. This 
means that first the physical equations governing the 
system are established. Then, in principle, if also the 
initial and boundary conditions are given, the solution 
should supply the complete subsequent system behaviour in 
space and time. Of course, such a sanguine expectation is, 
as always, quite academic as sooner or later a point will 
be reached where the rigorous continuation must be stopped 
for a serious lack of informations about details. 

"Nevertheless, just this "rigorous" approach shows in a 
coherent manner where and possibly how the gaps diould be 
filled by empirical informations of the first kind. True 
uncorstanding in sciences has almost ever been achieved in 
this way. 

Thus, we try to establish a set of partial differential 
equations describing the behaviour of a η-component flow 
with heat addition. This is, at least for two phase flow, 
not new, but our treatment will be somewhat more general 
than usual derivations, leading to better understanding. 

*) ' The "general" method of balances is followed also e.g. 
in [2] and [3]. 
Manuscript received on February 20, I967. 



The equations in question are, as known, the balances 
or conservation equations of mass , energy, and momentum, 
The thermodynamics of irreversible processes deals also 
with an entropy balance - the second fundamental lav/ is 
the central problem of non-equilibrium thermodynamics -, 
but, as can be seen so far, no practical applicability 
exists yet for boiling heat transfer problems. 

We consider a volume V to which pertain the three ex­
tensive quantities M (mass), E (total energy), and Ρ (mo­
mentum). The amounts of those quantities can simply be 
added when joining two or more volumes to give the total 
quantity. 

Let Y be any extensive quantity, then the following 
quantities will also be needed: 

- the related "specific" quantity (per mass unit) y = Y/M 
- the related "Y-density" (per volume unit) py (with ρ = 
mass density), 

- the related "Y-current density" Φγ, 
- the Y-flow rate through the closed surface of the given 
volume Qy, 

- the Y-production density inside the volume oy. 

By definition, Y is given by 

Y = /pydV . (1.1) 
V 

*) 
' We prefer the physical notation of mass, not the engi­

neering notation of weight, as for the latter'exists no 
conservation law. 



Its time variation is generated by (positive or negative) 

leakage rate through the(positionally fixed) surface and 

by the production rate within, thus 

dt dt v v 

Qy is obtained by scalarly multiplying the Y­current den­

sity çEy (positive outwards) with the oriented surface dA 

and integrating: 

0γ = ­JÆy.dA , (1.3) 

A 

or, by GAUSS' theorem: 

0γ = ­/­div ̂  dV . (1.4) 

V 

Substituting (1.4) into (1.2) and cancelling the vo­

lume integration yields 

£­ (py) = ­ div 3y + Ογ. (1.5) 

3t 

This is the differential "local" formulation of the 

balance of any specific quantity y. It shall in the 

following be specified to each one of our interesting 

thermo­hydrodynamic quantities. If y is a scalar, then 

ΦΥ is a vector; if y is a vector, then φψ is a tensor 

of second order 

*) 

' We denote, for typing convenience, scalars with arrow­

less characters, vectors with one arrow, and tensors with 

a number of arrows corresponding to their order. 



Note that y, py, Φ*γ, and Cy are "locally" defined va­

riables or "field variables", whereas the other ones are 

"integral variables", no more depending on position co­

ordinates. 

We consider now the balance with respect to any velo­

city field φ, and move the integration volume dV with it. 

The new current density with respect to this velocity field 

is Φγ­pycp. 

If we choose φ = ν, the "center of mass velocity" which 

will be defined exactly in chapter 3, the mass pdV* re­

mains constant along the path. Instead of (1.2) we get 

d 
= ­MdL­ nvv)­dÃ** + /c f^/pydV* = ­ / ( V pyv*)­cLÃ> + /cydV* , (1.6) 

V* A* V­

where the asterisk suggests the moved volume. As pdV* 

remains unchanged in time, the time derivation acts on y 

only. 

When applying once more GAUSS' theorem and cancelling 

the volume integration, one gets 

P 5 t ,
=
 ­

 d i v
 (% " pyv) + oy. (1.7) 

One calls this the "substantial" formulation of the 
*) 

y­balance ' because the substance (mass) of the integra­

tion volume is held constant. The total differential ope­

rator d/dt changes to the "substantial differential ope­

rator" D/Dt which refers just to the mass velocity v, 

*) 

' The denotation "flow" formulation is too vague and 

should not be used. 
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a.'
 :
 no other one. ­his subtle remark becomes important 

] ·. ter on. D/Dt is, as usual, 

2_ = |_ + v\gr„d , (1.8) 

a. relationship .which can also be derived by eliminating 

Cy f rem _ ( '■ . 3 ) ana (1.7). Due to the correction term 

v«grad, the independent position coordinate? remain the 

same ones as before, namely fixed. 
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2. Introduction of thermo­hydrodynsmie variables: 

homogeneous case 

After having the general recipe to establish balances, 

the only task is to specify correctly what is Φγ and o\r 

in each case. 

As already mentioned, we will substitute mass, total 

energy, and momentum, resp., for Y. We will treat all 

these quantities simultaneously and take the volume V it­

self as fourth extensive variable. 

We first give a list of' the involved qua nti ties. The 

nomenclature considers as much as nossible the recomman­

dations of the International Union for Pure and Apnlied 

Physics (IUPAP), document U.I.Ρ 11 (S.U.U. 65­3) from 

1965. Unfortunately, not seldom quantities coïncide which 

usually have equal characters (e.g. ν for specific volume 

and for velocity) so that side­step notations must be used. 

The adopted units system is the "UiS­cystem where caloric ­" 

units have already been transformed (e.g. Joules instead of 

kilocalories). Conversion factors tire so avoided. 

For each of the four blocks (see next page), the pro­

cedure is the same. In order to go from the "basic integral 

Quantity to the corresponding specific quantity, one has 

to divide by the mass M. The ratios are to be understood 

as differential quotients. The specific Quantities are thus 

suitable as field variables, and so do also the various 

densities and. current densities. The "specific mass" χ for 

a homogeneous body is, of course, simply unity, but for 

more than one component the definition becomes non­trivial 

(see S 3.2). 
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Quantity 

mass 

(specific mass) 

mass density 

mass current density 

(= momentum density) 

volume 

specific volume 

(volume density) 

volume current density 

(= "volume" velocity) 

(total) energy 

specific energy 

energy density 

energy current 
density *) 

momentum 

specific momentum 
(= "mass" velocity) 

momentum density 

(= mass current density) 

momentum current 

density *) 

Ol 

Γ 

χ 

Ρ 

V 

ir 

( = 

( = 

Vp 

α 
—» 

v 

E 

e 

ε 
­> 
q 

f 
­> 
v 

-> 

f 

( = 

( = 

= 

( = 

= 

. 

notation 

= M AO 

= MA) 

pv 

(= v/? 

= v/v) 

= E/M) 

pe ( = 
-¿ 

εν 

= f/U) 

pv ( = 

s«) 

= ^ 

ï) 

— ­1 

-Vv) 

?/v) 

m
 3 

m
2 

m
3 

m
3 

m 

m
s 

m
2 

* 
m 

m 

m 

m"
2 

m 

dimension 

kg 

­

kg 

kg 

kg" 

­

kg 

kg 

kg 

kg 

kg 

kg 

s'
1 

1 

s"
1 

s"
2 

s"
2 

S " 

s"
3 

s­
1 

s­
1 

s­
1 

s­
2 

( = 

( = (= J kg-
1
) 

­3; 
■ ) 

S
) m 

Table 1. Quantities involved in balance eQuations 

*) 

' Strictly spoken, the "convective" part of the current den­

sities. 
**) =* 

The representation of the general tensorial quantity Γ as 
a dyadic product with one given factor j, say Γ = ¿ν, with a 

­> 

provisionally undetermined velocity v, is possible only in 
particular cases. Every dyadic ab is indeed a tensor, but not 

every tensor is a dyadic. 

The relationship between Γ and j becomes clear only in § 3.4. 
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The respective third lines, the densities, are derived 

from the integral quantities by division by the volume V. 

Once more, the ratios should be consid.ered as differential 

quotients. The direct way to obtain the densities is to 

multiply the specific quantities with the mass density p. 

Again, the "volume density" α assumes a non­trivial mean­

ing only for more*­component flow (see § 5,i>). 

The various (convective) current densities are obtained 

from the respective densities by multiplying the latter 

ones with appropriate velocities. The right velocity is the 

"mass velocity" ν in the case of mass, the "volume veloci­

ty" ν for volumes, the "energy velocity" ν for energies, 

whereas an averaged "momentum velocity" does not exist for 

more­component flow, unless in the one­dimensional (scalar) 

case, as shall be shown in chapters 3 and 4. These notions 

are unusual and shall thoroughly be explained in § 3.4. 

All velocities are different for more­component flow. The 

current densities are vectors for mass, volume, and energy, 

but a tensorial quantity for momentum, which itself is al­

ready a vector. 

The integral quantities "flow rates" (depending on time 

only) are obtained according to' (1.3) and (1­.4) as 

■•dA* = - / d i · Si = ­ /pv­dA = ­ /d iv (pv)dV rk g s ­ i ] 

A V 

% = 
- > 

v.dX = /d iv ν dV rm3 s" 11 

> 

• dÃ* = ­ /, 

A V 

•a? = - I· 
ν 

ƒ dA·? = - { D i v Γ dV rm kg s " 2 ] 

Q = - /pev.dA = - / d i v (pev)dV fm2 kg s" 3 1 ( = Γ.:νΊ) 
A V 

A V / 
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In the case of momentum, the differential operator 

"Div" under the volume integral means the tensor diver­

gence, leading to a vectorial quantity, defined by 

9Γ k ι 

Div •f . 

Sx t 

V^ sr k2 

V^ sr
k3 

9X; 

·) 

(2.2) 

Concerning GAUSS' theorem for tensorial Quantities, one 

finds in the literature (e.g. [5], p. 134) 

/dA·? = /(Div­rÒdV, (2.3) 

A V 

where the tensor Γ is the postfactor under the surface 

integral, ^hen changing the factor sequence in this 

This holds for rectilinear coordinates only. In the 

case of curvilinear coordinates additional terms with 

CHRISTOFFEL symbols occur (cf. e.g.
 r
41, pr̂ . I65 and 177). 

Our divergence has of course nothing to do v/ith the 

sum at the main diagonal elements, which unfortunately is 

also sometimes called the tensor divergence. The latter 

quantity, a scalar invariant, should preferably be called 

the "trace" of the tensor (not used in this report). 
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non­commutative "sca la r" oroduet, the o r ig ina i tensor Γ 

must be replaced by the transposed tensor* Γ' so tha t an 

a l t e r n a t i v e nota t ion to (2.3) i s 

¡f-äJt = / (Div.? ' )dV = /(?.Div)dV. (2.4) 

A V V 

In general, the above defined momentum flow rate ÖU 

is not parallel to the surface vector dA. The dimension 

of Γ is, superficially considered, that of an energy, but 

has nothing to do with that (different tensor order!). 

The various "production densities" oy, which are lo­

cal auantities, represent in general the unhomogeneous 

terms in the balances (see eq. (1.5) as well as eq.(l.7)) 

and do not follow from the already discussed quantities. 

We denote them as follows: 

mass production density σ,, ̂ m
­3
 kg s

­1
 ] 

(volume production density) o,, [s­1 ] 

energy production density ov, !"m
­1
 kg s~

3
]( = [W m"~

3
l) 

'ill 

momentum production density Off
 r
n
 2
 kg s

 2
1 . 

(2.5) 
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Relationships between thermo­hydrodynamic variables; 

heterogeneous case 

3.1 .Jrrtegral jquan_t,±ti_e_s_ 

The truly interesting case is that our considered vo­

lume consists of n components with current index i, which, 

however, in our model, fill each the whole volume (so as, 

e.g., air as a mixture of nitrogen and oxygen). 

Let us then defi.ne "partial" quantities according to 

partial masses 

partial volumes 

partial energies 

partial momenta 

M
L
 : 

V
L
 : 

E
l
 ■ 

ï* 

= x
L
M 

= a
L
V 

= r
L
E 

= x
L
«P 

> (3.1.1) 

where the non­dimensional Quantities x
L
, a1, γ , and γ1 

may be called "mass fractions","volume fractions", 

"energy fractions", and "momentum fractions", resp. Of 

course: 

η 

x
L 

L=i 

= 1; 

\ , 

a
1 

ί=ι 
= 1; 

η 

YL 
L=i 

= 1; 
η 
'. zi 
Χ 

I =1 
= Γ (unit tensor). ' 

(3.1.2) 

'*) f \ 

' In the two component case (n = 2) with liquid and vapor, ν we will, in chapter 4, write simply χ for χ , and (1-x) 
for χ ; and accordingly also for the other fractions. 
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Strictly spoken, the denotation of the (generally assym-
metric) tensors %L as "fractions" is not good, but shall 
be kept for the moment. At the end of § 3.4, we will 
discuss the general suitability of such tensorial quantities 

We will further make the agreement that "partial" quan­
tities shall be denoted by upper indices, i.e. those quan­
tities whose sum gives directly - without any statistical 
weight - the total quantity '. Thus 
n n n n 
Vi!1 = M; V V1 = V; V Ε1 = Ε; Γ f1 = F* . (3.1.3) 
L=1 I=1 L=i ί=i 

3.2.Specific quantities 

When proceeding'to specific quantities, we must dis­
tinguish between 

- "true" specific quantities, where the starting integral 
quantities are divided by their own (partial) masses Μ*, 
to be denoted by lower indices, 

- "partial" specific quantities, where the starting in­
tegral quantities are divided by the t otal mass M. 

' Provided that a conservation law holds for this kind 
of quantity. This restriction becomes important when 
establishing the energy balance (§ 5.4). 
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T h i s g i v e s 

s p e c i f i c m a s s e s 

" t r u e " " p a r t i a l " 

ML/M' 1 
1 · 1 * ) 

s p e c i f i c vo lumes .(—)L= VL/ML = — 
Ρ PI 

specific energies e-L = EL/ML 

specific momenta · v; = PL/ML 

χι- = Ml/M 
(-)l= VL/M Ρ 
eL = E't/M 

v' = ΡΫΜ 

(3.2.1 
AS in chapter 2, all Quotients should be understood 

as differential quotients; the above quantities are thus 
"field" quantities. 

For the partial specific quantities holds 

xl 
L = 1 L = 1 

η 

P' e" = e vl 
L = 1 I = 1 

(3.2.2) 

They can a l s o be e x p r e s s e d by means o f t h e f r a c t i o n s : 

1 NI ■1 
χ ι · 1 ; (p ) = a1«­; eL = r L e ; v1 XL*v , ( 3 . 2 . 3 ) 

similarly to (3.1.1). It can easily be verified that the 

occurring "fractions" for the specific quantities are 

just the same ones as for the integral quantities. 

•i. \ Ί Ι 
' The relation (-5) ; = Tjr is obtained by comparison with 9' L 

(3.3.1). 
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Whereas the partial quantities are formal but suitable 

quantities for computation purposes, the "true" quantities 

have a physical meaning and numerical values independent 

of the particular experimental situation. Apart from the 

trivial quantity XL = 1, (0)1 means the specific volume 

of each component or phase as it can be found in tables; 

it is a state variable. For a given pressure e.g., it as­

sumes a well­defined constant value at saturation. This is 

important, as then, for isobaric processes, (75)̂  should 

not be differentiated in the balance equation whereas 

(p)1
 should be differentiated. 

e­L, the specific total energy which includes also the 

kinetic energy and other part energies, cannot be read'from 

tables, as it is the case for u(internal energy) or for h 

(enthalpy), which are state variables. The relationships 

between these energy forms are considered in § 5.4. 

The true specific momentum v­L is easily understood to 

be the true mass velocity of the component i. 

In order to compute the partial specific quantities 

from the true ones, one has always to multiply with the 

mass fractions x'
L
 = M

L
/Mf thus 

x
L 

e
l
 = x

L
e 
t ? 

xt = x^xL(= x M ; (¿)
L
 = x

L
(¿) L = jL­ ; 

v
L
 = x

L
vL . (3.2.4) 

By substituting these relations into (3.2.2), one has 

(the first expression being trivial): 

Π ΓΙ Π II 

) χ
1
 = 1; ) .

 χ1(τ\)ϊ = h / . x l ei = ei / . X'L^L = ^ · 

(3.2.5) 

/ ■ ~ ' L · v
P
y
i 

1=1 L=i L=i L=i 
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Here'we have found the recipe how to compute the quan­
1 ­> 

tities —, e, and v, resp., which we must consider to be 

representative for the mixture, from the corresponding 

"true" values of the components. 

The second relation of (3.2.5) must, later on, be com­

pared, with the­ averaging rule for the density p,to be de­

rived in (3.3.6). 

The third equation, applied tc two phases, is the ener­

gy averaginr rule fcr flowing wet steam. An equivalent 

rule holds for the entropy s. However, the well­known rules 

for the internal energy u and for the enthalny h (cf. Γ3], 

p. 163) are restricted to mi\
v
 terres with no relative motion 

of' their components. This may be understood by considering 

that each component carries a kinetic energy k¡_ which, in 

irreversible processes, may be partly or completely de­

stroyed leading to supplementary internal energy of the 

joined body. Thus, for quantities without conservation law, 

such as for u, h, or k, 2 u'
L
 = Σ x^u^ / u, etc. Obviously, 

before establishing averaged Quantities, all components must be 

thought to have already joined one another. 

The last eauation (3.2.5) finally gives the instruction 

how to compute the center of mass velocity ν we had al­

ready spoken about in chapters 1 and 2. 

By comparing formulas (3.2.3) and (3.2.4), the follow­

ing relations between the "fractions" a'1, γ'1, and γ} with 

x'
L
 are obtained: 

a1
·­ = x

L
.(­)L; Yle = x

L
eL; y

L
.v = x

L
vL . 

(3.2.6) 
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lhe last relation indicates that the linear transfor­
mât ­> 

mation described by χ
υ
 turns the vector ν into the di­

rection of vL . 

The steam fraction x of wet steam is also (correctly) 

called "quality" in thermodynamics, α is the "void frac­

tion", γ has no proper name. It is cautioned not to call 

χ a quality, not even for one­dimensional flow where 

it reduces to a scalar, though its value is particularly 

easy to measure at the end of a test path. "Quality" 

suggests a material property that χ is not because of the 

involved velocity situation. 

Further relationships between fractions, specialized 

to two phase flow, will be given in chapter 4. 

3.3. Dens ities 

Let us now proceed to the various densities. Once more, 

we have to distinguish between "true" and "partial" den­

sities, according to whether we divide the integral quan­

tities by the individual partial volumes V'
L
 or by the 

total volume V. 

mass densities 

volume densities 

energy densities 

momentum densities 

. Pt 

a t 

ε ι 

-*· 
3l 

" t r u e " 

= M*L/Vl 

= V L /V l = 1 

= Et/Vi­

= FVVL 

" p a r t i a l " 

pt = ML/V 

a t = VL /V 

ε1 = EL /V 

Î
L
 = P-/V 

(3.3.0 
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­he sum of the partial densities is the total density 

in each case: 

n n n 
"3>i ­3> 

(3.3.2) 

' ( p
L
 = p; / , CL1 = 1; ¿ , ε1 = ε; ' , D ­ J 

Γ=ι L=i t=i ί=ι 

Like (3.1.3·), we find 

pL = xLp; aL = αι·1; ε1 = τ1ε: îT
L
 = v.

L
 · î . (3.3.3) 

Once more, the seme fractions as for th,e integral and 

the specific Quantities occur. This is obvious as the 

partial densities can also be computed from the partial 

specific Quantities by multiplying the latter ones by p: 

p
L
 = px

L
; a1

 = p(£)
1
: ε1

 = pe
l
 ; j

>L
 = pv

L
 . (3.3.4) 

The partial densities are commuted from the known true 

densities by multiplying the latter ones with the volume 

fractions a'
L
 = V'

L
/V: 

p
L
 = a

L
p­L; a.

L
 = a

L
a¡,( = α1); ε

υ
 = α1 ει; tl = aL

j\ . 

(3.3.5) 

This can be summed to y i e l d : 

η η η η 

> i \ ï Λ \ ï \ i -* -> 

; , α PL = ρ; / , ocL = 1 ; /_ , a L e t = ε ; / ay 2χ. = d . 
L =ι Γ=ΐ i. =ι L=i 

( 3 . 3 . 6 ) 
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By comparing (3.3.5) with (3,5.5), one can relate 
xL, γ1 , and γ} to aL : 

χςρ = aLpL ; - ; γ ιε = «le-L ; χ 1 · ? 8 α17ί. (3.3.7) 

The representation of the component densities by the 
specific quantities and the mass densities of the respec­
tive components is given by: 

J ει = pteL ; J, = pLvt (3.3.8) 

; al = oHhl ; et = p ^ ; f- = p<<v\ . ^ ' 5 ' ^ 

Comparison of the second relation of (3.2.5) with the 
f i r s t relation of (3.3.6) gives 

ρ =¿ ,a l pt = — . (3.3.10) 
t = i 

V?! 
l—i Pt 
L=i 

In the case of η = 2, this yields a coupling between 

oc
L
 and xl

 by means "of the known pj,. This shall be con­

sidered in more generality in the following chapter. For 

η > 2, similar equations are not obtainable. Notice that 

eq. (3.3.10) would not be true for the single components. 
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3.4.Current densities 

As in chapter 2, we multiply the various densities with 
appropriate velocities in order to get the nertaining 
current densities. From the demand that once more the par­
tial quantities should sum up to the total quantity, those 
velocities can be computed. 

In order to calculate first the "true" component current 
densities, we multiply the respective true densities with 
the only available true velocities vL , namely 

?t = Pivi ; vL = αιη = vL ; qL = ef.vL ; Γι = jftn . 

(3.4.1) 
Here, in the case of a homogeneous component, we may in-
deed represent r-L as a dyadic product . 

The "true volumetric velocities" vL of components are 
equal to the respective mass velocities v-L.. 

To convert true densities to partial densities, the 
former ones are to be multiplied by aL. As a consequence, 
the current densities behave equally: 

DL = pLvt ; vL = aLvi ; qL = eLvL ; V1 = iLvL = pLvLvL. 

(3.4.2) 

The chosen factor sequence is arbitrary as j\v-L = pi.v\v\ 
is symmetrie, and the dyadic product is exceptionally 
commutative. 
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For the mass current density which is identical with 
the momentum density j, this was airead?/ stated in ( 3...·.-.). 

But for the first time it comes out that the partial 
—> 

"volumetric" velocities v1 of the components are not 
eaual to the respective ΑΛ = x^vj,. 

By summing up the partial quantities we get 
η η η η 

/ . ] = . ! ; / vL = ν : / q1 - q ; / Τ1 = Γ . 
ί=ι Γ=ι 1=1 1=1 

("Λ.3) 

If we substitute the expressions (3.3.3') into (3.4.2) 
and add according to (3.4.3), w.e find 

η η η 

>/ ( x
Lv¡, = pv ; 1 · / auvL = p / x"vL = pv ; i · / orvL = ν ; ε / Y"V­L = εν ; 

ί = ι t = 1 I =1 

η 

/ . (Χ. · 3 ) ν ι = Γ / any ¿ν ­, (3.4­.4) 
L = l 

where the right hand sides are taken from table 

*) 
;
 As no associative law holds for this kind of multinli­

=$· 

cation, it is impossible to turn the linear operator γ1 

-ï ­» ­> 

from j to vj, so as to isolate j and to cancel it froT both 

sides of the equation. 
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The "mixture" velocities in question are thus found 
to be: 

V mass : ν = / _ xLv-L 
Γ=ι 

η 
* V t-

volume: v = ,· α V[ 
ί =ι > 

7? 
V : = T. rlïi 

1 = 1 

energy: 

momentum: "ν" not separately er is ting in general. 

Cï.h.5) 

The statistical weights to construct them are just 

the original ratios known from the integral quantities. 

The following relations may also be useful (to deduce 

from 3.4.5 with 3.2.3): 

π π η 

V L ~» ­* V ,1,U 1 á Vt"»· 

/ x
L
vL = v ; / (p) vL = ρ v ; > eLvL = 

ί=ι l=i L=i 
η 

but / vLvL / vv . (3.4.6) 
i = i 
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It remains still to give relationships between partial 

and total current densities, for which we write ad hoc 

­, ι. _ v
L
 · j ; ν = β ·ν · Q = δ ·Ρ · Γ = ι!/ · Γ . 

(3.4.7) 

The f i r s t r e l a t i o n i s a l r e a d y known from ( 3 . 3 . 3 ) , l a s t 

e o u a t i o n ; χ1 could thus d i r e c t l y be i n t r o d u c e d . 

Eor the o t h e r r e l a t i o n s , we s u b s t i t u t e (5.^.5) i n t o 

(3.4.2), 1eading to 

>
:
 pv i = X

L ,
p v ; a

L
V{, = ß

L
' V ; Y

L
ev-L = ô

L
«ev ; 

(χι·Ϊ)νι = ψ1 · Γ , (3.¿+.8) 

wi th 

η η η ­ η 

^ =*t ? V & 3 V Ä ? V 
/ XL = I : / ßL = I : / ôL = I ­
/ . x

L
 =

 Γ
 ; ζ , ß

L
 = ï ; Ζ . δ

1
 = Ι ; ¡_ . ψ = ï . 

t= i L=i ί= ι ί= ι 

(3 .4 .9) 

The s i g n i f i c a n c e of ß L , oL , and . ψ1 i s p u r e l y academic, 

as f a r as they cannot be computed unambiguously from t h e 
-> ~ 

v a r i o u s given v e c t o r s v , v , e t c . 

* ) =£} 

\V
L
 means a tensor of order 4. 
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This brinrs us to the problem of the utility of such 

tensorial quantities in connection with η­component flow, 

as already mentioned in § 3.1. We do not speak here about 

the tensors in the general balances treated in chapter 2, 

such as the momentum current density Γ, or the dyadic 

products occurring for r
L
. They all have a real physical 

meaning. 

The question is rather what is about the "fractions" 

=*L ^L 3l % 

X » ß » δ , and ψ . Let us discuss e.g. the­last equation 

of (3.2.3), which may be considered as definition for γ}. 

The vectors v
u
 and. ν are all known. Assume for the mo­

ment m­dimensional vectors, then we have just m eouations 

for a certain i, whereas the "unknown" tensor γ1
 contains 

m
2
 elements. Thus, equations of this kind are solvable 

only for m = 1, i.e. for scalers. For m >_ 2, no unambiguous 

solution exists. None of the tensors in question has there­

fore a reasonable meaning except for one­dimensional flow 

where they reduce to scalars. In more­dimensional formu­

lations, they must completely be avoided.. 

3.5 o£'low_ra tes 

Although integral quantities have nothing to do with 

the differential formulation of balances, we bring them 

here for completeness. This is in particular in order 

to show trie virtue of γ} which is widely used as "Quality" 

of a two­phase flow (cf. also eqs. 4.6.3). 
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Similarly to eqs. (2.1), we get partial flow rates 

% = _ ( - ( ( /rjt.dÃ* = - jW'D'tâ 
A 

0, V 
/ vl.di? = ·- /(ft.^.dsr - ; vL«dA 

A' 

JE 
= - íq^.dÃ* = - /(c^-q)-dA 

A 

-H. /cLA«rL = - /< / ά Α · ( ψ ι · Γ ) , 

> 

J 

(3.5.0 

where the relations (3.4.7) have been used. 
=* =* 4: 3· 

In view of the unprofitableness of χ , β, δ1, and ψ1 
(see § 3.4) for more-dimensional flow, we come back to 
the above relations only in chapter 4. 
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4. Relationships for one­dimensional two phase flow 

'When considering two phase flow, in particular water 

and steam, through a straight pipe, it is rather obvious 

to simplify the balance equations by restriction to a 

single axial coordinate. All vectors and tensors reduce 

to scalar quantities, omitting the components pertaining 

to the other coordinates. The objections arising from 

such a neglect shall be treated only in chapter 5. 

Here we will compute the formulas of the nreceding 

chapters for n = 2 phases. The fractions of vapor shall 

be denoted, as usual, by χ, a, etc., without index, those 

of liquid by (1­x), (1­oc), etc. For the indices used, ν 

means vapor, 1 means liquid. For upper indices we write * 

instead of v, and ' instead of 1. 

The elementary volume V is a disk with area A and any 

(insignificant) thickness dz. ¿11 integral quantities 

can equally be considered as quantities per unit length. 

"e give formulas for the practical use without much 

comment, referring simply to the relations of preceding 

chapters where they have been taken from, in square brackets, 

[3.1.1]: 

M' = xM 

V » = αν 

E' = γΕ 

Ρ' = XP 

M' = (l­x)M 

V' = (l­a)V 

E' = (ΐ-γ)Ε 
Ρ' = (ΐ-χ)Ρ 

Ν 

> (4.1.1) 

The Ρ are the z-components of the complete momenta. 
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4.2.Specific Quantities 

"true" specific quantities [3.2.1 ] 

(1) = ï! = i_ 
^p

;
v M' p„ 

E| 
V ~ M' 

ν 
ρ* 

ν ~ M* 

rl) - Ii _ 1 
v
p
;
l " M' Pi 

v. 

M' 

EL 
M' 

> (4.2.1) 

"partial" specific quantities [3.2.1], [3.2.3], [3.2.4]: 

X 

Φ 

e" 

= 

= 

= 

M' 

M 

V 

M 

E ' 

M 

_ vi _ α _ / I N 

. β _ 

M 

= Ye = xe 

= χν = xv. 

(1-x) = 
MJ 
M 

Φ' 

e' 

ν ' 

V' 

' M 

Ξ ' 

" M 

Ρ ' 

' M 

M P
 K Χ Α

Ρ
;
1 

= ( ΐ - γ ) β = ( l - x ) e 1 

> 

( 1 - Χ ) ν = ( ΐ - χ ) ν χ 

( 4 . 2 . 2 ) 
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specific quantities of mixture Γ3.2.5] 

χ 1-x 
— + ν Pi 

= xe + (l-x)e, ν v 1 

ν = xvy + (1-X)V1 

> (4.2.3) 

relations between fractions [3.2.61 

α 
χ 

Y 
χ 

X 
χ 

V 

V V 
V 

1-α 
1-x 

1_y 
1-x 

1"X 
1-x 

Ρ 
Pi 

!i 
e 

V 

> (4.2.4) 

4.3.Densities 

"true" densities Γ3.3.1] , [3.3.8] 

pv = 

ε = 
V 

Κ = 

M" 
V ' 

E ' 
V ' = 

Ρ ' 
V* 

-- ρ e κν ν 

ρ ν *ν ν 

Μ_ 
V' 

Ε' 
ν, κ ι η \ (4.3.1) εΊ , - ρ e. 

EL ν = Ρ ^ 



"partial" densities [3.3.1], [3.3.31, [3.3.4], Γ3.3.5Ι 

» .. M _ l 
V 

E' 

= X p = OCR 
V 

e * = 7j— = γε = αε = pe* = ρ "e V v v 

V" = X3 = α ϋ ν = pv · = p ' v v 

ρ' =ψ- = (1-x) = 0-α) Pi 

EJ 
V = (1 -γ ) = ( ΐ - σ ) ε 1 = pe' = p'e^ \ " ( 4 . 3 . 2 ) 

y = — = (l-x)j = ( l - a ) j 1 = pv' = p'v-

mixture densities [3.3.6]: 

GO 
co 

Ρ = ο.ρν + ( ΐ - α ) ρ 1 

p e = ε = «ε + (ΐ-α)ε1 = o:pvev + (l-a)p1e1 

ρν = j = a j v + ( l - a ) j x = «pvvy + (l-a)p1v1 

> (k.3.3) 

S 
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relations between fractions Γ3.3.7Ι 

N 
χ 

α 

Y 
a. 

y 

a 

v Pve 
V 

pe 

Ρ v Hv v 
pv 

1-x P l 
A-a " p 

1-Y ε χ 

1-α " ε 

1 - X 3\ 
1-α j 

P l e l 
pe 

P l v l 
pv 

> (4 .3 .4) 

4.4.Current densities (now scalars) 

true" current densities [3.4.1] 

J = ρ ν u v * v ν 

ν = ν ν ν 

h = Pivi 

v i = v i 

> 
0 = ε ν = ρ e ν q_ = ε , v., = ρ, e., v., 
'V v v Hv v v ^ 1 1 1 μ 1 1 1 

Γ = J v = ρ Ve 

V V V V V 
Γ 1 = Vi = Ρΐν1 

J 

(U.4.1) 

"partial" current densities [3.4.2 ], [3.4.7] : 

j ' = p ' v v = x j = a j v j ' . = p ^ = ( l - x ) j = ( l - a ) ^ 

v " = αν γ = βν = a v v v ' = ( ΐ - α ) ν χ = ( ΐ - β ) ν = (l-oOvL 

q ' = ε * ν γ = ôq = aq^ q ' = ε ' ν 1 = ( l - ô ) q = ( l - a ) q - L 

> 

Y" = j ' v v = ψΓ = α Γ ν Γ ' = j , v 1 = ( ΐ - ψ ) Γ = ( ΐ - α ) Γ 2 

J 
(4 .4 .2 ) 



mixture c u r r e n t d e n s i t i e s Γ3.4.4"': 

j = a j v + ( l - a ) j 1 = a p v v y + ( l - a ) p 1 v 1 = ρ Γ χν γ + ( ΐ - χ ) ν χ ] = pv 

ν = av v + ( 1 - a ) ^ 

q = aq v + ( l - a ) a 1 = a p ^ e ^ + ( l - a ) p 1 e 1 v 1 = pe [γν γ + ( ΐ - γ ) ν 1 ] = pev 

Γ = αΓ„ + (1-α) ΓΊ = αρ„ν2 + Η - α ) ρ ν | = ρν Γ χν γ + ( ΐ - χ ) ν . , ] = ρνν ' 

> 

ν ν 

(4 .4 .3 ) 

definition of velocities Γ3.4.ΡΙ: 

ν = xv v + ( ΐ - χ ) ν χ 

ν = av y + ( ΐ - α ) ν χ 

ν = γ ν γ + ( ΐ - γ ) ν 1 

> 

ν = Χ% + ( 1 - χ ) ν χ 

* ) 

J 
n 

Here, and only in t h i s one-dimensional ' c a s e , v g e t s a meaning: v = / x l v c 

1=1 

00 
en 

(4.4.4) 



36 

4.5.Relationships between fractions 

In contrast to formulas (4.2.4) and (4.3.4), the re­

lations can also be given without recourse to mixture 

properties, but with the "true" phase properties only. 

For this purpose, we define the following ratios bet­

ween "true" specific Quantities 

­ the specific volume ratio ξ 

­ the specific energy ratio η 

(Vp)y _ PjL 

(Vp)1 pv 

V 

V 
V 

­ the specific momentum ratio S = 
(= velocity ratio or slip ratio) 1 

> Í4.5.1) 

For a given saturation pressure, ξ is numerically 

known. The same is but not true for the slip ratio S, as 

it is not built by state variables, nor for η, as e is 

no state variable. 

Let 

ρ Ρ *) 
= u + k = h ­ (τ0„ + k ; en = u­, + k, = h­, ­ (ñ). + k, r ν ν ν

 v
P'v v' 1 1 1 1

 v
P'l 1 

(4.5.2) 

where k and k. are the· specific kinetic 
ν 2 1 · 2 

energies and u , u, the specific internal energies of the 

components. Then 

u +k ­ (un+k, ) u ­u.. 
ν ν 1 1 Λ ~ ν 1 Λ η = : ­ ι . 

U
l
+k
l U­

(4.5.3) 

Λ, \ "t-J 

h =. u + ρ denotes a specific enthalpy 
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u ­υ... is the evaporation heat at constant volume (con­
v 1

 v 

s tant ρ). In most cases, k­L is negligible against u­L ; 

nevertheless, (4.5.3) is rigorous only for the components 

at rest. 

Similarly, 

η 

hv­(p/p)v+kv­[h1­(p/p)1+k1] 

^­(ρ/ρ)χ+^ 

h ­h, 

­ 1 s ­2—¿ ­ 1, (k.5.k) 

where h ­h­, is the evaporation heat at constant pressure p, 

and the so­called expansion energy p/p is omitted. 

It is further to be noticed that both h, and u, are 

known except for an additive constant. For saturated wa­

ter of 0 C, h, is, by convention, equated to zero. The 

enthalpy difference h, (and u, , too) is free from such 

arbitrariness and thus by far more suitable than η for 

theoretical purposes. 

From (4.2.3), (4.2.4), (4.3.3), and (4.3.4), the fol­

lowing relationships are easily obtainable 

χ = 

α = 

Y = 

α 
α + ξ(ΐ-α) 

Υ 

ΐ£. 
ξχ + (1-χ) 

ηχ 
ηχ + (1-χ) 

Sx 
Χ :: Sx + (1-χ) 

Λ 

ξ γ 

ηα 

- Γ 

+ 

+ 

η ( ΐ · 

η(ι· 

ηα 
ξ ( ι · 

Sa 

- γ ) 

-Υ) 

-α) 

Χ Χ + S(1-x) 
1χ_ 

ξχ + S(1-X) 

m 
ηχ + s(i-x) 

sy 
Sa + ξ(ΐ-α) Sy + η(ΐ-γ) 

> 
(4.5.5) 
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4.6.Flow rates 

"partial" flow rates [3.5.1] 

M 
- ( ■ 

XJ cLA 

Qv = 

°̂  = 

Qp = 

­ /ßv dA 

A 

­ /Ôq dA 

A 

­ /ψΓ dA 

A 

= ­ /(l­x)j dA 

A 

Q¿ = ­ /(l­ß)v dA 

A 

«έ . . f /(l­ô)q dA 

Op = ­ /(l­*)r dA . 

A 

> (U.6.T) 

The integrations must be extended over flow cross sec­

tions A perpendicular to the flow direction. But as a 

variability of the integrands normal to the flow axis can­

not be considered in a consistent one­dimensional theory 

(unique position coordinate is z), the above expressions 

degenerate to 

« 4 -

« , ­

«i = 

< * -

­ XdA 

­ ßvA 

- mA 

­ ψΓΑ 

^ = 

^v = 

% -

< * -

­ (1. 

­(1. 

­ (1 

­ (1 

­X)JA 

­β)νΑ 

­ô)qA 

­ψ) ΓΑ 

(4.6.2) 
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If the left hand expressions are divided by the total 

flow rates Q„, 5L·, Q„, Qp, resp., (see 2.1., specialized 

to one dimension), the area A and the current densities 

j, v, q, and Γ, cancel in all cases so that follows 

Q" 
II 

X ­ o 
¿
M 

* 
"V 

v 

o* 
_E 
0 

% 

\ 

mass flow rate ratio 

β = — volumetric flow rate ratio 

energy flow rate ratio 

ψ = — momentum flow rate ratio. 

> 

J 

(4.6.3) 

All these quantities are integral quantities, thus 

foreign to a differentially formulated theory.
 T
hey are 

results of the processes inside a test distance and have 

a meaning only at its end. 

In particular, the relatively easily measurable quan­

tity χ, frequently called "quality" in the literature, is 

not suitable to be used in our theory. Obviously, any cor­

relation between integrai! and locally defined (field­) 

quantities is without meaning, e.g. between χ and a, or 

similar ones, as it can be stated between two local quan­

tities resp., like between χ and α (see § 4.5). 
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5. The balance equations 

5.I.Mass balance 

After the lengthy preparations of chapters 2, 3, and 4, 

we will now use the general balances, either in "local" 

form (1.5) or in substantial form (1.7), and specify the 

general current densities iL and the production densi­

ties Oy. 

In the case of mass, y is the "specific mass", i.e. 

unity (see table 1). The current density ãL is ~$ = pv, 

anõ., without mass sources, aM = 0. 

This gives 

■— = ­ div pv. (5.1.1) 

The substantial formulation (1.7) is not'directly 

suitable in the mass case. But by applying (1.8) on the 

density ρ and considering (5.1.1) one finds 

=£ = ­ ρ div ν , (5.1.2) 
Dt 

another well­known formulation of the continuity 

equation. 

We now proceed to the balance of partial masses, y is 

here x
L
 (partial mass per total mass, cf. 3.2.1), and 

<£h = j
L
 = p

L
v\ (cf. 3.4.2). This can all be chosen quite 

schematically. 
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■ Thus, according to (1.5): 

a(px
L
) ?P

L
 L­> ? /c , ,x 

8t~
 =
 9t~

 =
 ­

 G 1 V
 Ρ

 v
t
 +
 °M » (5.1.3) 

or substantially (1.7): 

DxL 

Dt 
= ­ d i v (p lV{, ­ p'Lv) + oj, , ( 5 . 1 Λ ) 

n 
τ — · 
\ 

v/here ) σλ = 0 . 
ί : M 
t =1 

The expression pL(v{,-v) will also appear later on. It 
is the excess of the partial current density over the 
correction due to the movement of observation point and 
may be called "(mass-) diffusion current density" 

«Í
1
 = p

l
(vL­v) (5.1.5) 

of the component i. 

η 

Of course, ) J*
1
 = 0. 

l=i 

Eq. (5.1.3) may herewith also be written as 

|£­ = ­ div p
l
v ­ div J*

1
 + o­Jj. (5.1.6) 
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When specializing the formulas to one-dimensional two 
phase flow, we have 

at + V 9z + Ρ 
3v 
Έ =° (5.1.7) 

dp' dp' 9νη , - . 
9t" + Vl θζ~ + Ρ 9z~ = V a » * ) 

9t ν 9z 9z 
9p' 9p' 9v^ „ 

+ ν — + ρ' τ-* = oM(z,t) . 
? (5.1.8) 

The equations are not independent one from the others, 
as the sum of eqs. (5.1.8) gives just ec. (5.1.7). 

In the one-dimensional treatment, the overall suita­
bility of which for boilinr; rhenomena investigations is 
not assured, the partial densities pL can be replaced by 
the known true densities pt. At the same time the vapor 
velocity ν may be reduced to 'the liquid velocity v., by 
introducing the slip ratio S(z,t). The suitability of 
this measure in view of a solution of the system is also 
doubtful. 

Eqs. (5.1.8) transform to 

9v-
9t 

O f V η 
[Ρι(ΐ-α)] + ν χ — ΓΡι(ΐ-α)] + Ρι(ΐ-α) — * ¿(z.t) 

■ΓΤ ( ρ α) + S(z,t)vn -ζ- (ρ α) + ρ α ­r— rS(z,t)v,^ 
3t

 ν
 "ν ' ν

 ' ' 1 3ζ ν r
v "ν 8ζ

 χ * ' \ 

ft 

■
a
L

(z
' 

(5.1 

> 

t) 

.9) 
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or, if ρΊ and ρ are,constant for constant saturation 
pressure, 

3 a 
3t 

oa V l 3z" + (',-a) 
9V. 
3z 

σ^ζ,ΐ) 

, N 3a 3S , . Sv-, . o¿¡(z,t) 
+ ^ + S t z . t ^ ­ + αΓν χ ­ + S(z,t) g^] = ­ ^ 

ι a 

ν 

> 

(5.1.10) 

The state variable α acts as a dimensionless mass 

surrogate, ­mnhasis is to be laid on the fact that S(z,t) 

enters into the equation as a foreign body. The replace­

ment of ν _ by 'h' reveals to be only a pseudo­simplifi­

cation as long as the slin ratio S is not known as fune­

st 

tion of ζ and t ' 

The right­hand inhomogeneous terms must be otherwise 

procured (from the energy equation, as we shall see). 

5.2 .Volu.me_ balance 

Though resulting only in trivialities, the formal pro­

cedure shall also be applied to our volume quantities, in 

order to show the overall consistency. 

The specific volume is y = 1/p, and the volume current 

density is <&, = v, according to table 1 . 

*) 

' This question is illustrated more clearly at the end 
of § 5.Í. 
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Thus, the local formulation yields 

§£ "1" = ­ div ν + σν = 0 (5.2.1) 

which means that no geometrical volume storage is 

possible. The substantial formulation reads 

Ρ Dt 'õ' =
 "

 d l V
 (v ­ v) + Cy (5.2.2) 

or 
1 Dp _> 

­ r κ? = + div ν, (5.2.3.) 
Ρ Dt 

when cancelling div ν due to (5.2.1). This is just 

eq. (5.1.2). 

Notice the important difference between ν and the 

special velocity v. 

The partial volume balances may be omitted. 

5.3. Momentum_balan.c e 

As the energy balance requires some additional thermo­

dynamic considerations, we will first investigate the 

momentum balance. 

This balance is called NAVIER­STOKES' equation of move­

ment in hydrodynamics. Thus, in the case of homogeneous 

one­component flow, we should arrive at some well­known 

notation, but the heterogeneous flow will lead to a more 

sophisticated formulation, as we shall see. 

' Besides, the source can be evaluated to be cy = ) Oy = ) Ojy/Pi 

by comparison with the partial mass balances.
 L=1

 t=i 
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According to our general procedure, we choose for y 
the specific momentum v, a vector; see table 1. 

The momentum current density, to be read from 
eq. (3.4.4), is 

V (χ1.Τ)ν\ V Ρ vivi 
1=1 1=1 

This is the pure convection part ano. is not complete. As 
well known, particles of real fluids interact mutually 
by pressure and viscous forces resulting in a momentum 
transfer. This additional (and preponderant) momentum 
current density is described by the stress' tensor 

P+P xx 

P zx 

Ό xy 

P P+P 
yx yy 

ρ xz 

yz 

P P+P zy * - zz 

*) 

[kg m"1 s"2] (5.3.1) 

The normal pressure ρ ' is superimposed by "viscous 
pressures" pjt which, according to STOKES, are given by 

/3V/.X 9ν/,Λ 
pj l -μ K-ér

1 +
 "ãj '

!
 - l^'

ô
Ji

dl 

31 
div ν 

j = x,y,ζ 

ι = χ,y,ζ . 

(5.3.2) 

s¡0 

' For the description in non­Cartesian coordinates, 

cf. [7]. 

"' This pressure p(t,r) is one of our system variables 

and not equal to the "hydrostatic" pressure. 
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The tensor Π is symmetric: ρjι = Ptj. μ is the usual 

dynamic viscosity and μ' is the so­called "second visco­
2 

sity parameter" which is sometimes specified to ­μ' = =■ μ, 

The latter relation is however rigorously valid only for 

monoatomic gases (ENSKOG 1917). We shall make no use of 

the definition (5.3.2). It is further convenient to use 

the viscous part of Π separately by subtracting the sca­

lar pressure ρ from the diagonal elements: 

ff*= ff - p ? 

Ρ Ρ "O ^xx *xy "xz 

Ρ Ρ Ρ 

yx yy yz 

P P P 
■^zx ^zy ­*ζζ 

It may be anticipated that Div ·? = 0 so ti that 

(5.3.3) ­

Div (P?) = grad p. (5.3.4) 

A momentum production σ=>· may be caused by external for­

ces proportional to mass, such as gravity. Let ft [m/s
2
] 

be this force (per unit mass) on the i· component, then 

σ
^ u >

i
?t 

[kg m"
s
 s

­2
] (5.3.5) 

In the case of gravity which we will consider exclu­
­> ­» 

sively, ft is equal to g, the free­fall acceleration vec­

tor, so that 

σ? = pg. (5.3.6) 
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Substitution of these expressions into eq. (1.5) gives 

the local formulation 

or 

ft (pv) = ­ Div(r+n) + pg , (5.3.7) 

•|t (pv) = ­ Div Γ ­ grad ρ ­ Div Π* + pg. (5.3.8) 

In order to reduce the current density to the given 

velocity field v, we must subtract pvv from ilU = Γ+Π 

(see eq. (1.6)). Thus, the substantial formulation accord­

ing to eq. (1.7) is 

T\ —> —» 

Ρ Dt = ~ D i v ' r + Dj­v«(pvv) ­ Divπ + pg, (5.3.9) 

or 

p ^ = ­ Div(r­pvv) ­ grad ρ ­ Divïï* + pg Κ (5.3.10) 

Unless for homogeneous (one­component) flow, ψ is not 

equal to pvv, as can be seen from the last expression 

in (3.4.4). 

' The term Div(r­pw) can also be written as D i v / v t J1 

L = 1 

with J
L
 defined by (5.1.5). This illustrates the origin 

from more­component diffusion phenomena. 
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The vector Div·(pvv) is parallel to v, as every ex­

pression of this kind is parallel to the last vector in 

the dyadic product: 

­...■rh ­" .-■',,,: -'· ι,"' ',, fr'ïpqioofîl oí 

Div (pat?) = (grad ρ·?)"? + (ρ div a)"t? +p (a«Grad)"b* . 

(5.3.11) 

In contrast to this, ßivr is in general not parallel 

to v, because it cannot be expressed in the form Div.(pvv) 

as we have seen. Thus, the additional term Div·(Γ­pvv) 

changes both magnitude and direction of the time deri­

vative vector ^v/Dt against the case of homogeneous flow. 

The above formulations 5.3.7 to 5.3.10 may be consi­

dered as an extension of the usual NAVIER­STOKES' ecua­

tion to heterogeneous flow. 

The elements of the tensor Π* are, as shown in 

eq. (5.3.2), themselves functions of the velocity compo­

nents and a material property μ, the viscosity. This is 

already true for the simpler case of laminar motion. For 

a turbulent flow, the stress tensor is superimposed by 

the tensor Π. ^ of turbulent "apparent" viscosity, the 

element ajk of which is ρ vjvk. vj etc. are Cartesian 

components of the turbulent oscillation velocity ν' , and 

the bar means a time average '. Their computation as well 

as their measurement are extremely difficult; the theore­

tical statements (PRANDTL's mixing length etc.) are by 

far unable to predict correct results in complex cases 

like ours. 

*i 

' The method applies to quasi­stationary turbulence. For 

macroscopically rapidly changing velocity fields, the 

above time averages loose their meaning. 
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What is still more serious is the fact that the ele­

ments of both tensors n* and Π, , refer of course to 
11
 turb. 

a homogeneous fluid. The important open question is how 

to incorporate two or more entirely different viscosi­

ties μ5_ into the stress tensor, and which velocities 

should reasonably be applied. 

Here the complete­mixing­model suggests some idea but 

not yet a solution. It is obvious that only a unique pres­

sure field p(t,r) is physically possible, and not a set 

of different but completely overlapping (true) pressure 

fields p­L(t,r) . The same must be true for the tensor 

n*(t,r) which is a unique one for the mixture. No dif­

ferent tensor components ρ . can occur because the con­

^xy,i 

stituents are undistinguishible as concerns their po­

sition. 

Hence the "mixture" friction tensor Π* must entirely 

refer to mixture velocity components and a "mixture vis­

cosity" μ. If μ is a material property for homogeneous 

fluids, the same can hardly be true for a mixture, as the 

effect of fricción between ­ really ­ separated components 

i and k must be considered in any way. This latter cross­
—» —> 

effect however depends on both velocity fields vL and νκ, 

strictly spoken on V­L­VK. 

This reasoning reveals that the relatively simple 

STOKES' statement (5.3.2) is insufficient for more­com­

ponent flow and may not be used. The effective viscosity 

for slip­flow must be higher than that computed from mo­

lecular­statistical theories for gas and liquid mixtures 

at rest (see e.g.[8]). 

' "Partial" pressures p
L
 = a

L
p can of course be consi­̂  

dered, if suitable. 
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Obviously, the same physical situation exists already 

for a unique (averaged) momentum balance like eq_. (5.3.10) 

above, so that, simply spoken, the substance of the stress 

tensor elements remains undetermined for more­component 

flow, because statements of type (5.3.2) are no longer 

applicable. 
■ 

As emphasized in the introduction, we want, in this re­

port, to collect basic and assured relationships about 

more­component flow. But we do not wish to enter the field 

of semi­empirical speculations. Here we have arrived at a 

wall, but it is important to know where it is. To inte­

grate the momentum equation for two phase flow, say by 

programming it for a computer, as has occasionally been 

done, reveals to be useless, as the most important data 

are simply unknown. 

After these distressing remarks we may look on the 

slip ratio S(z,t) of the preceding paragraph. Apart from 

the justification of one­dimensional treatment, S(z,t) 

follows directly from the main result of an integration 

of the one­dimensional momentum equation, namely from the 
/ N * ) 

velocities vt(z,t) '. As this­is not possible, efforts 

should be concentrated to obtain S(z,t)""' experimentally 

under various conditions. This would be the only way to 

bypass a solution of the unattackable momentum equation. 

This remark should be understood as a suggestion only; 

no details how to perform such experiments can be given 

so far. ■ 

*) 

Obviously, in order to obtain both velocities vt(z,t) 

at the same time, also two coupled momentum equations (for 

two components) should be solved. 
ft* 1 

'or equivalent momentum equation surrogates. 
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5.4. ¿ιχ2Γ£'ϊ_^£·1ίιΒ£Ε 

The establishment of an energy balance for a hetero­
geneous flow reveals to be unexpectedly complicated if 
asked in coordinate-invariant partial differential equa­
tion notation. Classical thermodynamics show the balance 
written with differentials only, the significance of which 
remains undetermined as soon as all independent position 
and time variables come into play. The formulations found 
in various reports or textbooks differ considerably and 
are sometimes incorrect. 

In order to keep lucidity we will treat the subject 
in different steps. 

5.4.1.Homogeneous flow 

In this case the flow is composed by a single component 
with-unique velocity v. 

The total specific energy e is composed by four parts, 
namely 
- u the "internal energy" which considers the energy 

due to microscopic molecular movement, a state 
variable, 

Ρ 
Ρ 
.-Ja 

sometimes called "flow energy", better "expansion 
*) energy", also a state variable , 

- v2/2 the kinetic energy, no state variable, 
- -g«r the potential energy due to the gravity field, no 

state variable. 

*) ' The distinction between "energy" and "work" becomes 
somewhat academic by our way of treatment. 
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—> 
g is the free fall acceleration vector with Cartesian 
components (0, 0, -g). r = (x,y,z) is the position vec­
tor, with 3r/3t = 0, but Dr/Dt = v. Por ζ = 0, the po­
tential energy may arbitrarily be equated to zero, since 
it is anyhow only defined except a constant amount. For 
ζ > 0, -g«r is of course positive. 

For pure (isothermal) fluid mechanics, BERNOULLI'S law-
gives the energy balance in integral form: 

- + — - g»r = constant. (5.4.1.1) 

This is true for viscous-free flow, where the internal 
energy u is unaffected, but if friction and other heat 
sources come into play, u must be included so that 

e = u + | + γ- - g·? = constant + P(p,T) . (5.4.1.2) 

The internal energy u is, by experience, a function 
of any two basic state variables for which we have pro­
visionally chosen the density ρ and the temperature T. 

'We apply the total differential operator D/Dt on e, 
and multiply by p: 

ρ §| = f(p,T) , (5Λ.1.3) 

where f(p,T) is a function to specify. It signifies the 
divergence of the non-convective energy flow rate iL 
through the surface of our elementary volume, because σ™ 
is in any case zero. 



54 

As known, such a heat transport can be caused by (mo­
lecular) conduction and by radiation. We confine us to 
conduction and write according to FOURIER 

thus 

Φπ = - λ grad Τ, (5.4.1.4) 

ρ g| = + div(X grad Τ) , (5.4.1.5) 

or, according to (1.5) 

g^(pe) = - div(pev - λ grad Τ ) . (5.4.1.6) 

Heat conduction depends on Τ only, and not on p. 
Eq. (5.4.1.4) is one of the "phenomenological equations" 
of thermodynamics of irreversible processes. Τ is no new 
variable but can, in principle, be computed from ρ and ρ 
by the state equation φ(ρ,ρ,Τ) = 0. 

Nevertheless, if, later on, boiling two phase flow 
shall be considered, where the heat, by rights, is sup­
plied only from the walls, it is obviously practically 
impossible to follow the heat propagation through the in­
side with its chaotic and non-stationary mechanical mi­
crostructure. It is for this reason that we replace the 
conduction and radiation flow yields by a volumetric 
energy source q per unit time, the position and time de­
pendence of which must be properly "assumed". 
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Hence 

Ρ 5§ = q , (5.4.1.7) 

and 

1^ (pe) = - div(pev) + q . (5Λ.1.8) 

We emphasize that this notation is only a convenience 
which saves the trouble to compute the temperature field. 
Strictly spoken, we have no other choice because the heat 
propagation depends on the mechanical distribution of par­
ticles of the various phases ( the "flow pattern") which 
is just not computable with our model where the position 
of the phases is not specified. Each of the phases vir­
tually fills the whole space with its proper partial den­
sity. 

Eqs. (5.4.1.7) and (5.4.1.8) are not very useful, as 
the total energy e is not yet related with the variables 
p, p,and v, encountered up to now. On the contrary, the 
energy balance should just supply the fifth needed equa­
tion without introducing a new system variable e or u. 

For this reason, we must successively subtract balan­
ces of the part energies "p-, 75—, and -g»r, in order to 
keep finally the balance for the internal energy u, ex­
pressed by known quantities. 

We begin with the specific potential energy which tem­
porarily shall be called 1. According to (1.5), we have 

-> -»· with Φτ = pi ν: 

|^ (pi) = - div(plv) + σκ_^ . (5.4.1.9) 
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The first index K indicates that the potential energy 
source o is supplied by an equal sink of the kinetic 
energy k. 

Now, 

ft (PI) - ft (- Ρ ? · ? ) = - ? · ? ff (5Λ.1.10) 

and 

- div(plv) = + div[p(q«r)v] = + g«r div(pv) + ρ g· ν ' . 
(5.4.1.11) 

We obtain, as the number of terms of (§.4.1.9) is com­
plete, purely formally, by considering also the mass con­
tinuity ec. (5.1.1): 

oK_ij = - ρ q-v . (5.4.1.12) 

Alternatively, the substantial formulation is 

ρ rFt = " Ρ S#v> » (5.4.1.13) 

an almost trivial result which can also be obtained di­
rectly. 

grad(g.r) = g.^rad r = g·! = g 
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The second part energy balance we establish is that 
of the specific kinetic energy k. This can formally be 
achieved by scalarly multiplying the momentum balance 
by v. Por this end, we choose eq. (5.3.10) where, in the 
homogeneous case, Γ = pvv: 

D ν -> _ -► ,_. ^£_ » -► -► /■■_ ., . ,, » 

Ρ Dt 2~~
 =
 ~

 v,
S^ad ρ ­ v (DivΠ*) + ρ g'v , (5.4.1.14) 

or, in local formulation 

ft (Ρ 2~̂  = ~ a l v ( p 2~ ^ "* v > , S r a d Ρ " V' ( D i v Π*) + ρ g · v . 

( 5 Λ . 1 . 1 5 ) 

Prom this, one can clearly see that there are three 

source terms of kinetic energy, namely 

°L^K
 =
 * °K-L = +

 Ρ «'* » (5.4.1.16) 

and 

<%_% = ­ v grad ρ ­, (5.4.1.17) 

_ ρ 

where D suggests the specific expansion energy d = — , 

and ou „. signifies the amount converted from expansion 

energy to kinetic energy. 

Thirdly, there is 

σρΗΚ = ­ v(Divn*) , (5.4.1.18) 

a term that gives the kinetic energy loss in favour of 

friction energy (denoted by F). The latter one is an 

intermediate energy form, which is converted into internal 
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energy as soon as it originates from kinetic or expansion 

energy. Thus, the sum of all source terms involving Ρ 

must vanish 

°F-#L + °F^D +
 °F^U

 =
 ° * (5.U.1.19) 

The next balance is that of specific expansion ener­

gy d. Here we have again three source terms, namely first 

oK_^ = ­ oJ)_K = + v. grad ρ . (5.4.1.20) 

The other terms, σ™ ­n» the gain from friction energy, 

and σπ ^, the source from internal energy, are not so 

easy to overlook. 

The term o­pjT, "the internal energy produced by fric­

tion, is however known (see [9], p.77): 

°FHU 
= ­ ff*:Grad ν . (5.4.1.21) 

Here ":" means the double scalar product of two second 

order tensors. Thib scalar quantity is obtained by simply 

summing all products of inversely indexed tensor compo­

nents: 

Z-Æ = Ι ,Αικ Bkl . (5.4.1.22) 

l»k 

Now we deduce from the friction balance (5.4.1.19): 

σΡ-ΐ) = + V'(Divn*) + π*:Grad ν = + div(n*»v) . (5.4.1.23) 
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According to the structure of σ­π, .., the lock of the 

source term a. „ can be found by replacing the Π* by pi, 

leading to 

c^j = ­ ρ div ν . (5.4.1.24) 

By collecting σκ_^, oF_£, and σ^^ = ­oD_)U, we get 

for the expansion energy balance 

gr HjH = + div(ff*
#
v) + ρ div ν + v grad 

= + div(n*'v) + div(pv) (5.4.1.25) 

,α ->Λ * ) 

= + div(TI'v) , ' 

or, in local formulation 

3t 
= + div(rt*­v) . *

}
 (5.U.1.26) 

The last expression shows illustratively how local 

pressure changes are generated by the work flow due to 

friction. For stationary processes, there is no exchange 

°T?_j) between friction and expansion energies. 

*) 

' The appearance of the source term σ­ρ ρ in form of a di­

vergence suggests the question if it should not rather be 

considered as a current term through the surface. This is 

but only a matter of definition and does not change the re­

sults. The formal application of (1.5) with y = — gives in­

deed "£+■="­ div(pv) + div(n
#
v) if we add, like in the mo­

mentum equation, the total "work flow rate" π·ν to the 

formal convective term pv. This is just eq. (5.4.1.26). 
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We give now the balance of the specific internal ener­

gy u (o„ = q = oTT, as q is pure heat): 
.ili U 

Du 
Ρ Dt

 = Ö
D­U

 +
 °F^J

 +
 °U 

= ­ ρ div v ­ n*:^rad v + q f (5.4.1.27) 

= ­ Π:Grad v + q 

or 

3t
 ( p u ) ­ div(puv) ­ Tl:Grad v + q (5.k.1.28) 

Internal energy is produced, besides the heat supply q, 

by conversion of convective energy through expansion and' 

friction. 

By summing up all four part energy balances, of course 

the total energy balance is regained. 

Of special interest may be to consider the sum of in­
p 

ternal energy u and expansion energy — , which is called 

the enthalpy h: 

ρ ^ = ­ ff : Grad v + div(n'v) + 
Dt 

= + v (DivTI) + q , 

and, locally formulated, 

(5.4.1.29) 

prr (ph)= ­ div(phv) + v(DivTl) + q (5.k.1.30) 
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By considering again (5.4.1.26), an alternative form to 
(5.4.1.29) is 

PDt = - St - n*:Gradv+ q . (5.U.1.31) 

5.4.2.Heterogeneous flow_ . 

'When considering the heterogeneous case, we must about 
all bear in mind that the stress tensor of a mixed multi-
component flow is, till now, not reasonably defined from 
the respective component stress tensors, as already em­
phasized in § 5.3. So we are indeed unable to compute 
the correct pressure drop from our equations. They re­
main, unfortunately, rather academic for all cases where 
friction plays an important part, e.g. for natural circu­
lation loops. Here, the equilibrium between friction and 
buoyancy forces determines the flow rate, and, by con­
sequence, the amount of transportable heat. 

The second drawback lies in the overall concept of the 
model. As all phases are considered to be arbitrarily 
well mixed and to fill each one the whole volume, the 
phases may indeed have*different velocities; this applies 
however not for individually taken subvolumes such as 
bubbles and droplets. Their buoyancy speeds against the 
surrounding main medium depend on the flow resistances 
at their proper surfaces and are thus from the first 
out of consideration. 

This shows clearly the limitation of the applicability 
of our model. Nevertheless, we will give the equations, 
as they may be useful for forced convection processes 
where the pressure field is nearly entirely dictated from 
outside (by pumps). 
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A n phenomena which basically outgrow from the micro -
structure (flov/ pattern, boundary layer whirling by 
bubbles), such as pressure drop, heat transfer rate from 
walls, conditions of pattern transition including boiling 
crisis (bourn-out), cannot be learned from our model. Em­
pirical correlations therefore fully keep their importance. 
Though it cannot be expected that our equations give suf­
ficient indications on the structure of dimensionless 
parameters of relevance, they may give necessary condi­
tions for what kind of interrelationships are imaginable 
and which not. A striking example is: The slip ratio S 
cannot depend on the "flow quality" χ (see 4.5.5); re-

*) ΓΓΗ 

spective experiments are useless . The basis from which 
parameters for two phase flow pressure drop are usually 
calculated should also be revised. 

On the other hand, an entirely satisfying, i.e. physi­
cally correct model of boiling flow is practically hope­
less, as the inner boundary conditions at all bubble sur­
faces can certainly never be considered. Not even a sta­
tionary description of what is commonly called "steady 
boiling" is possible, since bubble growth, detachment, 
and migration are a priori non-stationary so that indeed 
a "steady two phase flow" does not exist. 

After these preliminaries, we generalize our homoge­
neous flow results by taking into account the different 
velocities we derived in preceding chapters. 

*) 

' Whenever giving graphical or numerical "correlations" 
between any two quantities, at least the pertaining corre­
lation coefficient should be computed according to sta­
tistical principles. In case it is too poor, the necessa­
ry conclusions should be drawn. 
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First we define formally for all part energies of com­

ponent t the "true" specific energies, namely 

u­L "true" specific internal energy 

.p. 

(p)t " " expansion energy 

1 ­> 

­ 2
 v
t
2
 " " kinetic energy 

­g»rt " " potential energy 
■ 

where rt is the position vector of the center of mass 

of component t. 

The "partial" specific energies are, also formally, 

defined by 

u
L
 = x'

L
ut 

­ φ1 ­χιφι 

­ ­g­r
1
 = ­x g«rt . 

The essential feature is that not for all of these 

part energies the sum over all components gives the re­

spective part energy of the mixture, e.g. / ul / u. 

t=i 

Such a relationship is a priori correct only for the to­

tal energy e which is conserved. 

The consequence is that individual definitions of mix­

ture internal energy u, or mixture enthalpy energy h, 

based on those of the constituents, have no meaning as 

long as transitions between the energy forms are not ex­

cluded. 
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Such an exclusion is however often possible. Consider 

the case that the components show no relative motion one 

against the other so that kinetic energy can neither be 

produced nor destroyed. If no inner friction exists 

(ideal fluid), no additional supply of internal energy 

occurs. 

n 
\ 1 i 1 

For a water­steam mixture, (p) = p (cf. eq.3.2.2) 

Γ=ι 
means, with the terminology of chapter 4: 

ρ­= (i­x) ~ + χ p­; . (5.U.2.1) 

η 

•Vith thé above r e s t r i c t i o n s , / uL = u gives 
l=i 

u = (1­X)U1 + xuv . (5.4.2.2) 

*) 
If also the pressure is equal for all constituents , 

η 

eq. (5.4.2.1) may be extended to — . Then ) h'
L
 = h, 

Η i—. ' 

which reads '
L=1 

h = (l­x)^ + xhv . (5.4.2.3) 

All three relationships are well known for wet steam 

(cf. [3], p.163), but their validity limitation should 

*) 

It is emphasized that the com>lete­mixing­model implies 

this equality, as already discussed in the momentum ba­

lance's paragraph. 
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carefully be kept in mind. In particular, by solving 

^5.4.2.2) for x, the "definition" of χ 

h­h., h­h. 

v i lv 

where h, is the latent evaporation heat is 
lv 

restricted to isobaric processes and both phases at ro;­i. 

Though this relationship may be suitable to be extended 

towards negative χ for subcooled boiling where the mix­

ture enthalpy h is below the saturation liquid enthalpy h.. 

(but note that the phases are not at resti), it is better 

to remember that χ is originally a mass fraction. 

Nov/, with a single pressure field ρ for all components, 

we notice that, among the part energies, 1 = ­g»r and 

d = ρ behave "additively": 

η ri η η 

L 11 ­g.x in 1*> ; ) . ( i ) 1 = p ) .t 
P'

 y L^ PL P 
I = 1 L = 1 L = 1 L = 1 

whereas the kinetic energy does not: 

(5Λ.2.5). 

η 

kt = y 1 v w L ¿ k = ΐψ. m (5.U.2.6) 
¿ _ Í 2 

L=i L=i 

·) 
x'Lrt = r is the usual rule to compute the center 

1=1 of mass vector r from those of the con­
stituents. 
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Aa a consequence, as / e 1
 = e, the fourth part energy 

/ Ρ Ν
 L = 1 

u = e ­ (1+—+k) is also not additive in the normal case 

with v­L / vk. 

With the models of eas. (5.4.1.13), (5.4.1.25), 

(5.4.1.14), and (5.4.1.27) the components' energy balan­

ces are in substantial notation: 

ρ g i l = ­ d i v [ p L l l ( v l ­ v ) ] ­ ρ g .y t , ( 5 . 4 . 2 . 7 ) 

Ρ Dt ( P ) L = ­ div[PL(|)L(^­^)] + d i v i f . v 1 ) , ( 5 . 4 . 2 . 8 ) 

D v
L
 «vi , . r ; VÎ

 2
 /-> -*\ Ί ->t / T . . =*,. -» ->; 

Ρ g^ —£-L- = - d iv[p L - £ - ( v L - v ) ] - vL«(Div Π) + ρ g 'VL , 
( 5 . 4 . 2 . 9 ) 

Ρ D t " ' = ~ d i v r p
L u L ( v L - v ) ] - n:Grad v"L + qL . ( 5 . 4 . 2 . 1 0 ) 

A l l four l i n e s can be added to give 

ρ | | Í = - d i v [ p t e i ( v t - v ) ] + a}, * } ( 5 . 4 . 2 . 1 1 ) 

as i t should b e . 

The problem is how to eliminate e and et, resp., in 
order to get an internal energy balance for a more-phase 
flow. 

* ) / ~* ~*\ ""* 
The term in square brackets is just pe(v-v), with v 

introduced in table 1f when summed over all t . 
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When adding eos. (5.4.2.7) and (5.4.2.8), resp., over 

all t, it is convenient to apply once more the diffusion 

current densities J
L
 = p

l
(v\-v) (cf. 5.1.5). This gives: 

n 

ρ gì = - div ) t It?
1
 - ρ g.v , (5.4.2.12) 

Γ=Ί 
n 

Ρ Dt Φ = - div Σ Φ·/' + ̂ (Π·ν) , *} (5.4.2.f3) 
L -ι 

but for the third line, the summation is not allowed, 
thus 

n 
Ρ Dt ¿ ~ d i v Ζ ,*1^1

 " v· (Div Π) + p g.v . 
l=i 

To get the correct expression, we go back to eq. (5.3.10) 

and multiply scalarly with v, considering the pertaining 

footnote: 

Dk -*■ f \ ­» ­H ì ­» , 4 . _> _> 

= ­ v ^ D i v / . vt J J ­ v.(DivIT) + ρ g.v . 
1 = 1 (5.4.2.14) 

Ρ Dt 

* ) ^ Λ 

The term ) (js)iJ1 may also be written p(v­v), as can 

L=i 

easily be verified. 



­ 68 

Of course, all terms containing ¿f
L
 vanish for single­

nhase flow. 

By considering the total energy balance 

ρ || = ­ div 2_,
 e
L^

1 +
 °­ » (5.4.2.15) 

L = 1 

ρ 
the result for u = e ­ 1 ­ — ­ k i s 

ρ gl = ­ div ¿.uto*
1
 ­ div /^ktJ

1
 + ν (Div ¿^ vt ί1) -

ί=ι ί=ι 1=1 

- n:Grad ν + q . (5.4.2.16) 

There is a remarkable residuum (givin." the u-gain from 
kinetic energy and indirectly 'from potential energy) which 
distinguishes more-phase flow from the simple single-
phase· flow (5.4.1.27). 

The enthalpy balance is obtained formally: 

η η η 

υ = - div 2^ ht?1 - div ) ktjt + v (Div ) v^) + 
t = 1 t = 1 t = 1 

+ v(Div Π) + q . (5.4.2.17) 

The corresponding local formulations are omitted here; 
they are easily obtainable by replacing ρ -ft by rr (py) + 
div(pyv), where y stands for any specific part energy. 
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5.4.3.Speci_alization_to one_-dimensi_onal two phase flow_ 

This sub-paragraph is added in view of practical appli­
cations, as, up to now, the equations might appear to be 
little transparent. In contrast with the preceding text, 
we will accept here certain apuroximeitions to which we 
are practically obliged. 

One-dimensional flow parallel to the walls, with a 
single independent coordinate z, does not allow to con­
sider the adhesion conditions for anyone of the velocity 
components. Therefore, the external friction effect which 
gives an appreciable part of the total pressure drop, is 
not computable. 

The pressure field p(t,z) must be inserted from out­
side and is no longer a system variable. The pertinent 
knowledge may be percured from semi-empirical correla­
tions about pressure drops of two phase flow. In the sim­
plest case that we will adopt here, ρ may be assumed con­
stant in position. 

The positional constancy is justified if the static 
pressure is sufficiently high so that the pressure drop 
through the pipe is of little influence on the state 
equation. Then, under boiling conditions, also the tem­
perature and the "true" densities of each phase are constant, 

The time variation of ρ depends mainly on what we sup­
pose at the boundaries of the system, i.e. on the inlet 
pressure p. (t), supplied by a pump, and on the outlet 
pressure ρ +(t), depending on the subsequent hydraulic 

O l i ν 

resis tances, e.g. through a turbine. In order to keep a 
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*) 
"mathematically closed" system , namely without simul­
taneous description of pumps etc., we assume a "perfect 
pressure regulation" that keeps ρ constant or guides it 
according to a given law p(t) '. More complicated as­
sumptions are of course possible. 

J-he terms involving the tensor Π* are anyhow not ap­
plicable for turbulent and more-phase flow, as already 
broadly discussed. This is so more true as soon as the 
component structure of Π* is drastically mangled by uni­
dimensional treatment. As a consequence, effects of (in­
ner) viscosity can also not be considered. Their contri­
bution to the pressure dron could anyhow not be utilized 
(see above), but now their energy aspects can equally 
not be taken into account. This is acceptable as soon as 
the friction heat source Π: Grad ν is indeed negligible 
against the "external" heat supply c. 

In the same sense the enthalpy transformation to ki­
netic energy may be neglected. Its amount is assumed to 
be small against q '; the component kinetic energies 
can anyhow not correctly be calculated if viscous effects 
are omitted. 

*) 
' Although a system like ours is called "physically open", 

if there is a through flow rate. 
This regulation may however not influence the other 

system variables, in particular the flov/ rate, because 
otherwise the regulation should be simultaneously de­
scribed. Here the model must be adapted to the various en­
gineering arrangements. 
**#) 

Applications on turbines, nozzles, rocket engines etc. 
are excluded after this assumption. 
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The remainder of eq. (5.4.2.17) is therefore 

ρ || + div 2 . MJ* = α. (5.4.3.1) 
L=i 

For two phase flov/, ­J' = ­J', so that 

2 

2_f hLJ
l
 = hyJ» + ILJJ' = (hv­h1)J' = hlvJ" , (5.4.3.2) 

L=i 

where h, is the latent evaporation heat at constant 

pressure. With our assumptions, it is independent of z. 

Hence, (5.4.3.1) becomes for two phases 

P K ^ l v f ^ · (5Λ.3.3) 

Now, we look on equation (5.1.4) with the diffusion 

current density of steam (5.1.5) already inserted. This 

reads 

P if
 4
 f

1
 ­ °M · (5Λ.3Λ) 

By applying the substantial differential operator on 

expression (5.4.2.4) we find (h, and h, being both con­

stant) : 

Dx = _L· m (5 4 3 Sì 

Dt h. Dt ' ID.40.5; 

lv 
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./hen dividing (3.4.3.3) by h, and comparing it with 
(5.4.3.4), one gets: 

σΜ = h~ = Λ · (5.4.3.6) 
lv 

This seemingly blamably meagre result means that the 
steam production rate is equal to the heat added per vo­
lume unit, divided by the latent heat. For bodies at rest, 
this relationship pertains to the simplest physical con­
ceptions. 

Emphasis is, however, not laid on the result itself, 
but on the series of restrictive assumptions which al­
lowed us to arrive, also for the very complex boiling 
two phase flow, at relation (5.4.3.6). It is shown that 
it is an approximation only, and one might have an idea 
how good it is. 

The entire energy balance was utilized only to deter­
mine the source terms for the partial mass balances. Its 
function is herev/ith fulfilled, because (5.1.10) is al­
ready a mathematically closed system of two equations with 
the two variables α and v,. 

There still remain two points to discuss, cd is a func­
tion of ζ and t because of q = q(z,t). Por a given wall 
heating in terms of energy per unit length, e.g. elec­
trically, there is no problem. The z- and t-dependence 
is then obvious as one can divide the latter one by the 
pipe cross section. 
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If, however, in the case of a heat exchanger, q is 
given by the wall superheat ΔΤ(ζ,ΐ) (against a proper 
fluid temperature), times the heating surface, divided 
by the pertaining fluid volume, and multiplied by a heat 
transfer coefficient, the question is how to determine 
the latter one. The main difficulty is indeed shifted 
to the solution of this problem. 

The heat transfer coefficient, involving a mixture 
of material property and flow pattern influences, is 
only a surrogate conception for not rigorously describ-
able thermo-hydrodynamic phenomena. Thus, its determi­
na tion is from the first thrown upon correlation tech­
niques. In particular, for boiling flow, its magnitude 
may vary over a very wide range according to the flow 
pattern. When, e.g., passing from a more or less compact 
liquid boundary layer to a gaseous one, it shows a sudden 
break-down which is responsible for the "boiling crisis" 
in the case of energyr-steered heating (in the case of 
temperature-steered heating a crisis cannot occur). All 
these questions are however by far beyond the scope of 
this report. 

The second open noint is the slip problem. As had been 
pointed out in § 5.1., we were obliged to introduce 3(z,t) 
as a coefficient in order to reduce the number of depen­
dent variables from 3 to 2. At the same time, the one-
dimensional (scalar) momentum equation proved to be not 
reasonably atta-ckable in § 5.3. This means that S(z,t) is 
a surrogate for the solution of the momentum equation. As 
there is no hope to obtain S(z,t) from the complete-mix­
ing model, we must once more apply correlation techniques 
to determine S(z,t) as a function of proper parameters, 
e.g. of α (not χ), of p, etc. Also this problem is beyond 
the frame of the article. 
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Conclusions 

The "complete-mixing model" has been applied to estab­
lish a "field" description of η-phase flow with heat 
addition. 

The advantage of the model, where each of the phases 
fills the whole volume but, nevertheless, may have a pro­
per velocity vL , lies in the fact that in this manner, 
and only so, the complicated internal boundary conditions, 
at bubble or droplet surfaces, can be avoided. 

The disadvantage is that certain effects, in particu­
lar those of viscosity and improved heat transfer through 
violently whirling boundary layers, are due to the micro-
structure and are thus irrecoverably lost. -

Moreover, nothing occurs about overpressure in bubbles 
so that fundamental phenomena like that of surface tension 
are systematically disregarded. 

On the other hand, if the microstructure should - hypo-
thetically - appear in some advanced discontinuous descrip­
tion, the mathematical solution would become absolutely 
impracticable. 

The compromise of this report is the proposal to apply 
the complete-mixing model and to add from empirical cor­
relations knowledges at two points, namely for the slip 
ratio and for the heat transfer coefficient. Existing cor­
relations are not yet fully aprropriate to be inserted in­
to the proposed equation set. 

From the rather general formulation in three coordi­
nates, the finally given equation set is a specialization 
to one-dimensional, strictly isobaric flow. Other spe­
cializations are possible. 
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The equa t ion s e t i s 

3a 

9t 

3a 
­ V l 3z­ + 

3a 

(1 ­a ) 
3V. 

3z 

3v­
ooc „ / N σα . \ l 

+ H + S ( z , t ) V l — + a S ( z , t ) — + α ν χ 

3S 

g ( z , t ) 

H l l v 

p ( z , t ) 

> 

3z
 +

 nh 

w i t h 

ν l v 

(6 . <) 

a local void fraction 
dependent variables 

v, = liquid velocity 

S(z,t) = ν /v, = slip ratio 

/■■ .\ τ .χ ­, S given functions 

q(z,t;= energy supply per unit volume \ 

and unit time 

p., , ρ = liquid, vapor densities 

h, = latent evaporation heat at constant pressure. 

Initial and boundary conditions may be given at choice, 

Perturbations may be introduced either by time variations 

of o_ or by changing the boundary conditions with time. 

S(z,t) should rather be given as function of α and ν, , 

thus following automatically the flow­pattern evolution. 

The equations are anyhow highly non­linear. 
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Lis t of symbols 

symbol 

A 
d 
E 
e 
-> 
g 
h 
hlv 
? ? 
—> 
j 
k 
1 
k-
p* 

Ρ 
Pj ι 
*γ 
α 

—> 
q. —> 
r S 
Τ 
t 
u 
V 
-> v 

dimension 

m2 

m2 

m2 

m2 

m 
m2 

m2 

m"2 

m"3 

m2 

m2 

m 
m"1 
m"1 

kg 

-
kg 

kg 

kg 
kg 
kg 
kg 

s - 2 

s-2 

S" 2 

S" 2 

s-2 
s-2 

s"1 

s"1 

s"3 

s"2 

s"1 
s"2 

s"2 

various 

m"1 

m 

m2 

m3 

m 

kg 

kg 

deg 

s"3 

s"3 

s 
s"2 

s"1 

signification 

surface, pipe cross section 
specific expansion energy 
total energy 
specific total energy 
free fall acceleration vector 
specific enthalpy 
latent evaporation heat at 
constant pressure 
unit tensor 
mass diffusion current 
density 
mass current density = 
momentum density 
specific kinetic energy 
specific potential energy 
mass 
momentum 
pressure 
elements of Π* 
flov/ rate of Y through a 
surface 
heat source per unit volume 
and unit time 
total energy current density 
position vector 
slip ratio v /v, * v i 
temperature 
time 
specific internal energy 
volume 
center of mass-velocity = 
specific momentum 

expl 
see 

9 
58 
8, 
13, 
48 
21, 
38 

17 
43 
13, 

37 
56 
8, 
8, 
47 
47 
8, 

55 

13, 
53, 
37 
55 
9 
21, 
8, 
10, 

anation 
page 

13, 17 
19 

38 

22, 25 

13, 17 
13, 17 

14, 30 

25 
54 

37 
13, 17 
19, 27 
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List of symbols (continued) 

symbol 

ν 

V 

ï' 

X 

Y 

y 

ζ 

α 

ß 

Π* 

π 
turb 

m 

m 

m 

dimension 

s"
1 

s"
1 

s"
1 

m 
,­i 

various 

various 

m 

m 
­1 kg s ­2 

1 
ôjl 

ε 

η 

λ 

μ 

μ' 

­

­

m
­1
 kg s""

2 

— 

m .kg s"
3
(°)~

1 

m
­1
 kg s"

1
 * 

m
­1
 kg s"

1 

m
 1
 kg s

 2 

m 
­1 

m 

m 

­1 

­3 

kg s" 

kg s 

kg 

­2 

signification 

"volume" velocity 

"energy" velocity 

"momentum" velocity (in 
one­dimensional case) 

turbulent oscillation 
velocity 

mass fraction 

extensive quantity 

"specific" quantity to Y 

axial coordinate 

volume fraction 

"volume current density 
fraction" 

momentum current density 

total energy fraction 

"energy current density 
fraction" 

= 0 if j/i ; = 1 if j=i 

total energy density 

ratio of true specific 
total energies e /e 

thermal conductivity 

dynamic viscosity 

"second" viscosity 
parameter 

ratio of true specific 
volumes p1/pv 

(complete) stress tensor 

friction tensor 

tensor of turbulent 
"apparent" viscosity 

mass density 

explanation 
see page 

13, 

13, 

13, 

50 

25, 

27 

27, 

27 

36 

' 

13, 17, 19, 31 

8 

8 

44 

13, 17, 22, 31 

28, 41 

13, 25 

17, 31 

28, 41 

47 

13, 22 

37 

55 

47 

47 

37 

47 

48 

50 

8, 13, 22 
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List of symbols (continued) 

symbol 

°Y 

% 

X 

ψ 

indices 

lower 

upper 

I 

' 1 
* 

' V 

dimension 

various 

various 

­

­

1 · 

> (in gener? 

production density of Y 

Y­current density 

"mass current density fraction" 

"momentum current density 
fraction" 

refer to "true" quantities 
3.1 "t " ) 

refer to "partial"» quan­
tities 

refer to linuid 

refer to vapor 

explanation 
see page 

8, 16 

8 

17, 28 31, 41 

28, 41 

18 

18 

•31 

.31 
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