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A bibliographical review of DNB data in non-uniformly heated chan­
nels has been carried out. 



The analysis of these data shows that the influence of the non-unifor­
mities on the DNB decreases when the inlet quality increases, all the 
other parameters (geometry, pressure, mass velocity) being kept 
unchanged. 

Various methods of predicting DNB in non-uniformly heated chan­
nels are examined. 

A comparison between experimental values and theoretical predictions 
shows that the use of the F factor developed by Westinghouse, always 
improves the validity of the predictions for all the considered corre­
lations. 

In the case of marked non-uniformities like hot patches and low 
qualities the discrepancies between experimental values and theoretical 
predictions are generally too large as to allow the use of the selected 
method of calculation for detailed design and performance studies. 
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SUMMARY 

A bibliographical review of DNB data in non-uniformly heated chan­
nels has been carried out. 

The analysis of these data shows that the influence of the non-unifor­
mities on the DNB decreases when the inlet quality increases, all the 
other parameters (geometry, pressure, mass velocity) being kept 
unchanged. 

Various methods of predicting DNB in non-uniformly heated chan­
nels are examined. 

A comparison between experimental values and theoretical predictions 
shows that the use of the F factor developed by Westinghouse, always 
improves the validity of the predictions for all the considered corre­
lations. 

In the case of marked non-uniformities like hot patches and low 
qualities the discrepancies between experimental values and theoretical 
predictions are generally too large as to allow the use of the selected 
method of calculation for detailed design and performance studies. 
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BIBLIOGRAPHICAL REVIEW OF DNB DATA IN NON-UNIFORMLY 

HEATED CHANNELS AND COMPARISON WITH THEORETICAL PREDICTIONS 

BY WAPD - 188, W - 2 AND W - 3 CORRELATIONS ( " ) 

INTRODUCTION 

The heat flux distributions to be considered in core design and performance 

studies are generally non-uniform ones. 

In the cases where these distributions have large non-uniformities such as hot 

patches most of the predictions by existing correlations differ appreciably from 

the measured values. In order to achieve a higher core performance in these 

cases it is desired to have an improved method of DNB calculations in non-uniform 

channels. 

A bibliographical review of DNB correlations and methods of calculation has 

therefore been carried out with a view to select the most appropriate means of 

calculation of DNB heat fluxes in the case of marked non-uniformities. 

Γ71 Manuscript received on September 29» 1967, 



1. EXPERIMENTAL DATA FOR AXIALLY NON-UNIFORM 
HEAT FLUX PROFILES. 
A s e a r c h for DNB e x p e r i m e n t a l d a t a for n o n - u n i f o r m l y h e a t e d c h a n n e l s hae 

b e e n c a r r i e d out in the l i t e r a t u r e . Al l the d a t a c o l l e c t e d a r e s u m m a r i z e d in 

the t a b l e s of A p p e n d i x I and Append ix II. Append ix I i s r e l a t i v e to ax i a l non -

u n i f o r m i t i e s , while Append ix II i s r e l a t i v e to r a d i a l n o n - u n i f o r m i t i e s . One 

h a s d i s t r i b u t e d t h e s e d a t a in t h r e e m a i n g r o u p s a c c o r d i n g to the type of 

ax i a l p r o f i l e s .: 

(i) hot pa t ch p r o f i l e s 

(ii) c o s i n e o r chopped c o s i n e p r o f i l e s 

( i i i) and m i s c e l l a n e o u s p r o f i l e s inc lud ing s k e w e d c o s i n e . 

The d a t a e x a m i n e d a r e g e n e r a l l y too s c a n t y and too l a c k i n g in p r e c i s i o n 

to d r a w p r e c i s e c o n c l u s i o n s on the e f fec t s of hea t flux n o n - u n i f o r m i t y on 

DNB. H o w e v e r s o m e g e n e r a l t r e n d s can be found : 

1. 1. Hot p a t c h e s 

T h e s e p r o f i l e s a r e g e n e r a l l y c h a r a c t e r i z e d by a hot spot f a c t o r £ 

which i s the r a t i o of the hea t flux at a poin t in the hot p a t c h to the 

one t ha t would e x i s t at t ha t point if the s e c t i o n w a s not p a t c h e d . 

The e x p e r i m e n t a l v a l u e s a r e often e x p r e s s e d in t e r m s of the p e a k 

e f f e c t i v e n e s s E . T h i s p a r a m e t e r i s g iven by : 

E = q D N B u n i f o r m " q D N B avg 
Ρ q" _ η " 

^ D N B p e a k MDNB avg 

w h e r e : 

ali . , : DNB h e a t flux of a u n i f o r m h e a t e d s e c t i o n wi th the 
n D N B u n i f o r m 

s a m e fluid cond i t i ons (at the in l e t o r at the DNB 

l o c a t i o n d e p e n d i n g on the a u t h o r s ) and the s a m e 

channe l g e o m e t r y . 
q^uTT, , : l o c a l v a l u e of t he hot p a t c h flux when DNB o c c u r s 

DNB p e a k r 



QÌ-L-TT , : average value of the heat flux in the patched section 
DNB avg ö r 

when DNB occurs. 

Data of Weiss (1_0)(1JJ, Styrikowitch (14), Tong (17), Todreas (18) 

and Stevens (19) (2 1) were examined. Qualitatively all these data 

show that the peak effectiveness E decreases when the quality at the 

DNB point increases. In other words at a given pressure the influence 

of a hot patch in DNB will be stronger for smaller values of the local 

enthalpy. A decrease of the length of the hot spot decreases the peak 

effectiveness while an increase of the hot spot factor increases the 

peak effectiveness. 

Consistent trends in the effects of the other parameters as pressure, mass 

velocity, channel geometry, on the peak effectiveness could not be 

deduced from the analysis of the considered results. 

1.2. Cosine or chopped cosine profiles. 

More confusing is the examination of the data obtained with cosine or 

chopped cosine profiles. (1), (7j, (9), (l_3j, (22)> (ID· (lâ)> (§J- (25), 

(26), (27), (28), (29), (30), Q8J, (31), Q6) , (20), (43), (44). 

Indeed the difference between the data for uniform and corresponding 

cosine profile having the same inlet conditions is often smaller than 

the experimental error. 

One can only conclude that the DNB power of a cosine or chopped cosine 

profile is generally comprised between + 20 % of the power for a 

uniformly heated section having the same geometry and the same inlet 

conditions. 

1.3. Miscellaneous distributions. 

These distributions comprise primarily dissymmetrical cosine as 

upskewed or downskewed chopped cosines or ramps (44), (18), (30), 

(26), (22), (15), (42), (3), (4), (5), (12), (37), (38). The downskewed 

cosine profile (peak near the outlet) shows generally a smaller DNB 

power than the uniform one having the same geometry and the same 



inlet conditions. The upskewed cosine profile (peak near the inlet) is 
from the DNB point of view very near the same as the symmet r i c 
cosine profile. 
A consistent t rend for all these dis t r ibut ions is that a profile having 
a peak near the outlet is l e s s favourable than a uniform profi le. The 
influence of the peak is general ly more pronounced when the local 
quality at the level of the peak is sma l l e r . 



2. METHODS OF APPLICATION OF EXISTING CORRELATIONS FOR 

AXIALLY NON-UNIFORM DISTRIBUTIONS. 

One has examined in the literature the main methods used for predicting 

the DNB heat fluxes in non-uniformly heated channels. These methods are 

summarized hereunder. 

2. 1. System parameter and local parameter correlations (2), (39), (6). 

DNB correlations are generally expressed in terms of either system 

parameters or local parameters. In the first type correlations the 

independent variables are generally the inlet enthalpy, the mass 

velocity, the equivalent diameter, the length of the channel and 

the system pressure. The dependent parameter is in this case 

either the DNB heat flux or the DNB enthalpy. 

The second type correlations involve as independent variables : 

local enthalpy or quality, mass velocity, equivalent diameter, length 

of the channel and the pressure, the dependent variable being gene­

rally the DNB heat flux. 

For uniformly heated channels, these two types of correlations can 

be deduced from one another with the help of the heat balance 

equation : 

, /G H 

In this equation : 

DNB H, in P h L 'DNB' 

H DNB 

H. 

enthalpy at the DNB point 

inlet enthalpy 

heated perimeter of the channel 

L : total heated length 

G : mass velocity 

q'!^TT, : DNB heat flux 
HDNB 
This is no more true when the axial heat flux distribution is non-uniform. 
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H o w e v e r s o m e a u t h o r s s t a t e tha t the a v e r a g e DNB hea t flux of a n o n -

u n i f o r m l y h e a t e d channe l i s a p p r o x i m a t e l y equa l to tha t of a u n i f o r m l y 

h e a t e d one hav ing the s a m e in le t e n t h a l p y , m a s s v e l o c i t y and g e o m e t r y . 

H o w e v e r e x p e r i m e n t a l e v i d e n c e shows tha t t h i s i s not a l w a y s t r u e . 

F o r i n s t a n c e a channe l with s u b - c o o l e d ex i t cond i t i ons hav ing a d i s t r i ­

bu t ion wi th a p e a k n e a r the ex i t wil l have an a v e r a g e DNB hea t flux 

s m a l l e r t han in the c a s e of an u n i f o r m d i s t r i b u t i o n . The s i m p l e 

a p p l i c a t i o n of a s y s t e m p a r a m e t e r s c o r r e l a t i o n for a n o n - u n i f o r m l y 

h e a t e d p ro f i l e i s t h u s only va l id for l i m i t e d a p p l i c a t i o n s . 

2 . 2 . R e f e r e n c e c h a n n e l . 

G e n e r a l l y the c a l c u l a t i o n of the DNB h e a t flux for a non u n i f o r m l y 

h e a t e d channe l i s c a r r i e d out for a n u m b e r of po in t s a long the c h a n n e l . 

F o r e a c h point of c a l c u l a t i o n it i s c u s t o m a r y to def ine a " r e f e r e n c e " 

u n i f o r m l y h e a t e d c h a n n e l . The p a r a m e t e r s s e l e c t e d for d e s c r i b i n g 

t h i s " r e f e r e n c e " c h a n n e l d i f fer f r o m one a u t h o r to the o t h e r . The 

m o s t c o m m o n o n e s a r e g iven h e r e u n d e r . 

2 . 2 . 1. Le_ng_th_p_f_the__re_fe r e n ç e _çhaJ^ne_L_ 

(i) L o c a l l e n g t h . 

The l e n g t h of the r e f e r e n c e c h a n n e l i s equa l to the length 

of the n o n - u n i f o r m l y h e a t e d channe l f r o m i t s in le t up to 

the point of c a l c u l a t i o n . 

(ii) T o t a l l e n g t h . 

The l eng th of the r e f e r e n c e channe l i s equa l to the to t a l 

l eng th of the n o n - u n i f o r m l y h e a t e d s e c t i o n . 

( i i i) E q u i v a l e n t l e n g t h . 

The l eng th of the r e f e r e n c e c h a n n e l i s equa l to the l eng th 

of an h y p o t e t i c a l u n i f o r m l y h e a t e d channe l hav ing : 

- a t o t a l p o w e r output e q u a l to t ha t of t he n o n - u n i f o r m l y 

h e a t e d channe l b e t w e e n the in l e t and the c o n s i d e r e d po in t . 

- an u n i f o r m hea t flux e q u a l to the l o c a l flux at the c o n s i ­

d e r e d point of the n o n - u n i f o r m l y h e a t e d c h a n n e l . 
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2 . 2 . 2 . p iam^e j^of^h^^e j ' ^ r^ j i^^channe^^ 

(i) Wetted equivalent d i ame te r . 
The reference channel is assumed to be a round tube 
having a d iameter equal to the wetted equivalent d i amete r 
of the non-uniformly heated channel D e defined by : 

D = I A 
P w 

where : 
D equivalent wetted d iamete r 

e 
A c ro s s section of the channel 
Ρ wetted p e r i m e t e r of the channel 

w 
(ii) Heated equivalent d i ame te r . 

The reference channel is considered as a round tube of 
the same d iamete r as the heated d iameter of the non-
uniformly heated channel defined by : 

D - 4 A 
h " ^ 

where : 
P, heated p e r i m e t e r of the channel. 

(iii) The reference channel has a d i amete r which is a function 
of the values D e and D, defined hereabove. 

2 . 2 . 3 . Reference fluid conditions. 

The m a s s velocity and the enthalpy of the fluid in the reference 
channel are taken the same as in the non-uniformly heated one 
e i ther at the inlet or at the considered point according as use 
is made of a sys tem p a r a m e t e r or a local p a r a m e t e r concept. 

2 . 2 . 4 . Vahae_s_of_tJie_Jie_at^ha2C_c^mjpar^ 
The value of the DNB heat flux predicted by the cor re la t ion can 
be compared with e i ther the local heat flux or the average heat 
flux up to the point of calculation. 
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2 . 3 . C u r r e n t m e t h o d s of c a l c u l a t i o n . 

It r e s u l t s f r o m the h e r e a b o v e p a r a g r a p h s tha t a v a r i e t y of v a l u e s can 

be u s e d in p r i n c i p l e for e a c h of the p a r a m e t e r s i n t e r v e n i n g in the 

DNB c o r r e l a t i o n , l e a d i n g to a n u m b e r of d i f f e ren t v a l u e s of the p r e ­

d i c t e d DNB f l u x e s . H o w e v e r , only t h r e e m e t h o d s of c a l c u l a t i o n a r e 

c u r r e n t l y u s e d : 

2 . 3 . 1. Oy e r_al l_gowe r _o r _§Υ_?_Γ_?Ε.?_ ίΐ-ϋϊ.· 

In t h i s m e t h o d u s i n g a s y s t e m p a r a m e t e r c o r r e l a t i o n , one 

a s s u m e s tha t for the s a m e in le t c o n d i t i o n s and the s a m e 

g e o m e t r y , the n o n - u n i f o r m l y h e a t e d channe l and the r e f e r e n c e 

c h a n n e l have the s a m e to t a l h e a t i n g p o w e r i . e . the s a m e 

a v e r a g e h e a t flux o r the s a m e e n t h a l p y i n c r e a s e when DNB 

o c c u r s . T h i s m e t h o d i s a l s o c a l l e d o v e r a l l l eng th concep t 

b e c a u s e the c o m p a r i s o n i s m a d e on DNB p o w e r o v e r the 

whole channe l length in e a c h c a s e r e g a r d l e s s of the p o s i t i o n 

of D N B . 

2. 3 . 2 . E q u i v a l e n t l e n g t h m e t h o d o r i n t e g r a t e d p o w e r m e t h o d . 

T h i s m e t h o d u s e s a s y s t e m p a r a m e t e r c o r r e l a t i o n . 

At any point of c a l c u l a t i o n r e f e r e n c e i s m a d e to the equivalent 

l eng th def ined a s h e r e a b o v e . C o m p a r i s o n of the DNB h e a t flux 

is m a d e with the loca l hea t flux. 

2 . 3 . 3 . Loc3l_JLej^^_method_. 

C a l c u l a t i o n s a r e m a d e u s i n g the l oca l l eng th concep t def ined 

h e r e a b o v e . 

C o m p a r i s o n of the DNB hea t flux i s m a d e on the l o c a l h e a t 

flux when u s i n g a l o c a l p a r a m e t e r c o r r e l a t i o n and on the 

a v e r a g e h e a t flux for a s y s t e m p a r a m e t e r c o r r e l a t i o n . 
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3. SELECTION OF A PREFERRED METHOD OF CALCULATION OF THE DNB 
HEAT FLUXES FOR AXIALLY NON-UNIFORM DISTRIBUTIONS 

F r o m the previous paragraph it appears that there exis ts three main 
possibi l i t ies of choosing the " r e f e r e n c e " channel for the calculation of 
DNB heat fluxes in non-uniformly heated channels. 
The f irst possibil i ty is based on the overal l power method. Predic t ions 
of the DNB power by this method do not depend upon the shape of the heat 
flux distr ibution and their successful application is therefore l imited. This 
method appears to give fair predict ions of the DNB power in some cases 
as cosine profiles but does not provide any indication on the location of 
DNB. Moreover , this method fails completely to predict DNB occurence for 
hot patched profiles. For this reason, this method has not been selected as 
the p re fe r red one. 
On another hand the equivalent length method and the local length method 
allow to predict the location of DNB occurence. 
The local length method can be easi ly applied and is cur ren t ly re fe r red to 
in the l i t e ra tu re . Fo r this reason this method has been selected he re . 
However the use of this method does not lead to a fair predict ion of the 
known exper imenta l data. An improved mean of calculation based on the 
local length method has therefore been worked out. This makes use of the 
F factor developed by Westinghouse (40). This method takes into account 
the memory effect on DNB. It is based on the fact that the DNB occurence 
depends as well upon the bulk fluid conditions as upon the conditions of the 
boundary l a y e r along the heating surface. A method of determinat ion of 
these boundary l a y e r conditions has been worked out based on the fact 
that a superheated liquid layer is insulated from the bulk coolant flow by 
a bubble layer . 

Using a simplified model for the represen ta t ion of the liquid layer and 
making a heat balance of this l ayer , leads to an express ion giving the 
non-uniform DNB heat flux as a function of the heat flux in the equivalent 
uniformly heated channel. 
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In this express ion the value of a constant C is given by an empi r ica l 
cor re la t ion . This relat ion is genera l and can be used with any cor re la t ion 
predict ing the DNB heat flux in uniformly heated channels. 
Hereaf ter use will be made of this factor in conjunction with three 
co r r e l a t i ons , in o rde r to de te rmine the improvement brought by the 
use of the F factor. 
The express ion of the F factor is as follows : 

,, , /, -C lDNB ν • 
q" loc ( 1 - e ) o 

; : 

DNB % Ν Β - Ζ ' 
q"(z)e 

with 
q" DNB, Ν q" DNB,EU 

F 

where 
q" DNB, Ν 
q" DNB, EU 
C 

DNB 

non-uniform DNB heat flux 
equivalent uniform DNB heat flux 
empi r i ca l constant 
axial dis tance from inception of local boiling 
distance from inception of local boiling to point of DNB 

The value of the constant C in the repor t of Tong (40) is given by : 

C = 0. 44 Ρ " Χ PNB* 
( G / 1 0 6 ) 

7. 9 

1. 72 i n . 
-1 

where 

X DNB : quality at DNB point 

G : m a s s velocity 

Studies have a lso been performed by Fiat and Sorin QJ, (30) i n o rde r to 
improve the value of the constant C in the equation of F. 
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These studies have led to the following equations 

for - 0. 25 < "X < 0. 15 

v sat ; 

with a = 6. 1 0 5 + 0 . 44 10" 3 ( p - 1 0 0 0 ) 

f(T J = 39. 74836 1 0 ~ 1 5 T t - 64.83156 Ι Ο - 1 2 Τ 3 
sat sai sai 

38.6336 ΙΟ" 9 Τ " + 47.189 10" Τ 
sat sat 

1.9452 10" 3 

for 0. 15 < X < 0. 65 

-5 1 -1 
C = 8. 09 10 — in. 

X V (G/106) X · 5 De 
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4. COMPARISON OF THE PREDICTIONS BY THREE SELECTED CORRELATIONS 
WITH EXPERIMENTAL VALUES 

4. 1. Corre la t ions used 

The three following cor re la t ions WAPD-188, Westinghouse W-l or W - 2 
and Westinghouse W-3 have been used for comparing available exper i ­
mental data on non-uniformly heated channels with theoret ical predict ions. 

4. 1. 1. WAPD-188 corre la t ion 

Use has been done of the best fit cor re la t ion for round tubes given 

in the Appendix III. 

4. 1. 2. W-l and_W^2^orj^l_a_tions_(29j 

The W-2 cor re la t ions differ from the W-l ones by a factor taking 
into account the influence of non heated walls in the channel. For 
channels without unheated walls the express ions of the W-l and 
W-2 cor re la t ions a re identical. As in this paper one has only 
considered exper imenta l resu l t s for channels without unheated 
walls no dist inction is made between these two cor re la t ions . The 
equations a re also given in Appendix III. The first equation has 
been used for quali t ies smal le r than zero. The second one is used 
for quality values l a rge r than zero. The DNB margin predicted by the 
two cor re la t ions hereabove is not necessa r i ly the same for a 
quality equal to zero . As it will be shown la ter thie is the reason 
for some observed d i sc repanc ies . 

4. 1. 3. Wj:^^or_relation 

The express ion of this cor re la t ion is given in the Appendix III. 
This equation is valid in the range of outlet quali t ies between 
- 0. 15 and + 0 . 15. When at tempt is made to use it for quali t ies 
l a r g e r than + 0. 15 the cor re la t ion gives very small values of 
DNB heat fluxes and even negative values. Care must thus be 
taken when using this cor re la t ion out of i ts validity range. 
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4. 2. Comparison of theore t ica l predict ions with exper imenta l data 

The difference between the exper imenta l values and the predicted ones 

when the F factor is not used a re general ly more important for d i s t r i ­

butions with hot patches. For this reason the available exper imenta l 

data on hot patches were chosen preferent ia l ly to show the effect of 

the use of the F factor with the three considered cor re la t ions . Almost 

all the known exper imenta l data with hot patches a re relat ive to round 

tubes. This allows to el iminate the uncer ta in t ies involved in the choice 

of the equivalent d iamete r (either wetted or heated). 

4. 2. 1. D a t a j r q m AEE_W_­R_4_26Jl_9) 

These data were ex t rac ted from (19) and were adapted to a 

water sys tem using the scaling factors determined, by Eastwood 

and Stevens (45) (21). Comparison has been made for three 

values of the channel length and one value of the m a s s velocity. 

The exper imenta l values a re plotted v e r s u s the corresponding 

predicted ones for the same inlet enthalpy in Hgures 1 , 2 and 3. 

F igure 1 is relat ive to the WAPD­188 corre la t ion. Agreement 

is much bet ter when the F factor is used although calculat ions 

still largely underpredic t the DNB fluxes. The agreement 

becomes however s imi la r to that obtained for the data on uniform 

heated channels , repor ted in (19). 

The W­2 cor re la t ion predic ts very well in this par t icu la r case 

altough the F factor is not used for quali t ies l a rge r than zero. 

For the points between b racke t s a DNB margin of 1 was calculated 

in the subcooled region before this marg in reaches 1 in the 

quality region. This is due to the overpredic t ion of the Λ H 

equations for the very short lengths. The predict ion of the W­2 

cor re la t ions for these points should therefore not be regarded as 

valid. 

All the points for L = 38. 80 in.and 73. 50 in.in these data have 

outlet quali t ies far out of the validity range of the W­3 corre la t ion. 

For this reason the W­3 cor re la t ion could not be used. When 

applying the F factor it can be seen from F igu re s 1 to 3 that there 

is li t t le difference between the resu l t s obtained with respect ively 

thé Tong and the Fiat express ions . 



4 . 2 . 2 . Data J r om JWAPJD-TH- 338J IO) 

These data a re re la t ive to rec tangular channels . 
The exper imenta l values and the theoret ical predict ions a re given 
for each cor re la t ion on F igures 4, 5 and 6. 
These F igures show that the agreement between exper imenta l 
and predicted values is bet ter when using the F factor for all the 
cor re la t ions . The difference between predict ions using r e spec t i ­
vely trie Tong and the Fiat express ions of F is ra ther small . 

4. 2. 3. D a t a j r o j n D^kladY_vol^J7J^°_7_(l_4) 

In this repor t data obtained in the absence or in the presence of 
a compress ib le volume between the inlet thrott le and the heating 
section a re given in form of curves for var ious total lengths, 
hot spot lengths and m a s s veloci t ies . Only those with no 
compress ib le volume have been examined. One has used the data 
in the - 0. 2, + 0. 2 outlet quality range for the short tubes 
(16 cm) and in the whole outlet quality range for the longer tubes 
(50 and 94. 5 cm). Comparing the exper imenta l and predicted 
values one must bear in mind that the p r e s s u r e (1422 psia) l ies 
out of the validity range (1850 - 2150 psia) of the WAPD-188 
corre la t ion . Again the =r- rat io for the smal les t length (rat io of 
20) l ies out of the β validity range of the WAPD-188 and W-2 
cor re la t ions (between 21 and 365) and the smal les t section length 
(6. 3 in) l ies out of the validity range of the W-3 cor re la t ion 
(10-79 in). These cor re la t ions have never the less been applied 
to the considered data but such a compar ison is given only to 
examine the behaviour of these co r re la t ions out of their validity 
range. 

For the smal les t length notable d i sc repanc ies a re obtained. 
However it can be seen f romFigures 7 to 1 2 that the F factor 
util ization reduces it and in this case e r r o r s a re general ly l ess 
than 20 % in the - 0. 2, + 0. outlet quality range. 
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In the average length case (50cm) the util ization of the F factor 
is most favourable for the WAPD-188 corre la t ion. Discrepancies 
dec rease from about 40 % below 20 % for the highest m a s s 
velocity except for an outlet quality higher than 0. 35 and from 
50 % below 30 % for the lowest m a s s velocity. In the same way 
uti l ization of the F factor reduces d iscrepancy for the W-2 
cor re la t ion but large e r r o r s a r i s e in cer ta in cases (in brackets) 
when along the tes t section the subcooled equation and the quality 
equation a re used success ively , leading to an e r roneous DNB 
predict ion ups t r eam the hot spot assoc ia ted with the q" DNB 
corre la t ion. 
The W-3 cor re la t ion predic ts general ly well except for outlet 
quali t ies far from its validity range (- 0. 15 to + 0. 15) in outlet 
quality. Utilization of the Fia t F factor general ly yields bet ter 
agreement than the util ization of the Tong F factor. 
In the l a rges t considered length, the agreement when F factors 
a re applied to WAPD-188 cor re la t ion is much bet te r ; the e r r o r s 
dec rease from 50 % to 25 % even at high outlet quality (0 . 6), the 
F Fiat uti l ization giving e r r o r s below 20 %. WAPD-188 predic ts 
r a the r well the uniform case . 
Except at outlet quali t ies l a r g e r than 0. 55, the Δ H DNB-
W-2 cor re la t ion gives good resu l t s ( < 20 %) , the agreement 
being bet ter than that for the uniform case prediction (25 %). 
The W-3 cor re la t ion has not been examined for this length, 
the DNB quali t ies lying much out of i ts validity range. 
With the shortcomings mentioned hereabove, it appears that 
uti l ization of the F factor yields an improved agreement (- 20 %) 
within the cor re la t ion validity range, the Fia t F factor being 
general ly be t ter than the Tong F factor especial ly at low DNB 
quali t ies . The best ag reement is general ly obtained with the 
W-3 co r r e l a t i on . 
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4. 2. 4. Ρ ^ ^ £ 9 2 Ώ ^ £ ^ 4 9 _ 0 _ β _ ( 3 0 ) 

These exper imenta l data, obtained with downskewed cosine 
profiles having a form factor of 1.4, have been compared 
with cor re la t ions (Fig. 1 3 to 1 5). Application of F „ and 

v 6 ι vt- Tong 
F p . . factors has pract ical ly no influence on the predicted 
values. This is due to the fact that the values of the F factors 
a re close to unity in the DNB region. Corre la t ions give 
overpredic ted values , par t icu lar ly for the WAPD-188 and W-2 
cor re la t ions at a m a s s velocity of 0. 142 k g / c m sec when the 
exit quality is positive (overpredict ion l a rge r than 20 % for 
χ > 3 % or χ. > - 30 %). Except for this case 

out in 
predict ions by the three considered cor re la t ions show a good 
agreement with exper imenta l values , the W-3 corre la t ion 
appearing to be the best one. 
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CONCLUSIONS 

F r o m the analys is of available exper imenta l data on DNB heat flux in non-
uniformly heated channels one could deduce some genera l t r e n d s . The 
most significant one is that the influence of the non-uniformit ies on the 
DNB d e c r e a s e s when the inlet quality i n c r e a s e s , all the other p a r a m e t e r s 
(geometry, p r e s s u r e , m a s s velocity) being kept unchanged. 
A survey of var ious methods of application of DNB cor re la t ions has a lso 
been pe r fo rmed . Out of these the local length method appears to give 
bet ter predic t ions than the overa l l power method and is more easi ly ap ­
plied than the equivalent length method. The local length method was ap­
plied with the WAPD - 188, W-2 and W-3 c o r r e l a t i o n s . The use of the F 
factor developed by Westinghouse always improves the predict ions p a r ­
t icular ly for profi les with hot pa t ches . 

The values of the F factor calculated by the Tong cor re la t ion do not dif­
fer appreciably from those calculated by the FIAT cor re la t ion . 
Of the th ree considered co r r e l a t i ons , the W-3 appears to be the best one 
when used in its range of validity for what concerns the quality (outlet 
quality between - 0.15 and + 0 .15) . 

However in the case of marked non-uniformit ies like hot patches and low 
quali t ies the d i sc repanc ies between exper imenta l values and theore t ica l 
predic t ions a r e general ly too la rge as to allow the use of the selected 
method of calculat ions for detailed design and performance s tud ies . 
Fu r the r exper imenta l and theore t i ca l work in this field appears t h e r e ­
fore to be d e s i r a b l e . 
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O-

■ ^ 

32 
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>100 
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f
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1
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A r Τ : rounâ tube 
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A P P E N D I X I I I 

E X P R E S S I O N S O F T H E C O R R E L A T I O N S USED 

W A P D ­ 1 8 8 C o r r e l a t i o n (13) 

a" 
q DNB 

0 .28X10 6
 ( J 1 D N B _ ) ­ 2 . 5 ( J + 

10 

G _ , 2 ­ 0 . 0 0 1 2 L / D e 

~ ' e 

10 

w h e r e 

q M D N B 

H D N B 

G 

L 

De 

DNB h e a t f lux 

l o c a l e n t h a l p y a t DNB 

m a s s velocity­

l eng th 

e q u i v a l e n t d i a m e t e r 

B t u / h r f t ' 

B t u / l b 

l b / h r f t 2 

ft 

ft 

W ­ l and W ­ 2 C o r r e l a t i o n s (29) 

for χ < 0 
out 

q"™vTD = ( 0 . 2 3 x 1 0 + 0. 094 G) ( 3 . 0 0 + 0 . 0 1 Δ Τ ) 
DIN Γ) SC 

/Λ Aie j . ι o? ­ 0 . 0 0 9 3 L/De> , . , . . ­ a , 
(0. 4 3 5 + 1 . 2 3 e ) ( 1 . 7 ­ 1 . 4 e ) 

w h e r e 

= 0. 532 

Hr ­ Η. 
f in 

Η 
fg 

3 / 4 ­ 1 / 3 

( e / e f ) 

for χ > 0 
out 

Δ Η ­ . ­ = 0 . 5 2 9 (Η ­ Η . ) + (0. 825 + 2. 36 e " 2 0 4 D e ) Η , β " 1 ' 5 G / 1 ° n w n χ f in χ ' fg DNB 

0. 41 Η , e " 0 ' ° 0 4 8 L / ° e . 1. 12 H Ç / * f + 0. 548 Η 
f 8 fg g f ig 
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Appendix III - ρ 2 

In these equations : 

& Τ : local subcooling = Τ - Τ, 
sc sat loc 

L 

C g 

« f 

: dis tance from inlet to point of DNB 
: sa tura ted liquid enthalpy 

: latent heat of evaporat ion 

: density of sa tura ted s t r e a m 

: density of sa tura ted liquid 

ft 

Btu/ lb 

Btu/ lb 

lb/ f t 3 

lb / f t 3 

W-3 Corre la t ion (39) 

P N B , E U 
I O 6 

where 

Ρ 

Χ 
G 

De 

H 
sat 

[(2. 022 - 0. 0004302 ρ) 

+ ( 0 . 1 7 2 2 . 0 . 0 0 0 0 9 8 4 p) e (18. 177 - 0. 004129 p )X] 

χ Γ(0. 1484 - 1. 596 X + 0. 1729 X. | X | ) G / l 0 6 + 1. O37] 

χ Γ 1. 157 - 0.869 X | x [ " 0. 2664 + 0. 8357 e " 3 · * 5 1 D e ] 

χ Γ 0. 8258 + 0. 000794 (Η - Η. ) 
[ sat in' 

Η in 

: p r e s s u r e 

: local quality 

: m a s s velocity 

: equivalent d iamete r 

: saturation enthalpy 

: inlet enthalpy 

psia 

lb/hr ft' 

in. 

Btu / lb 

Btu/ lb 



- 33 

COMRARfSON OF RESULTS FROM AEEW-R426 WITH Τ HE WAPD-Τάβ CORRELATION 
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- κ
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6
BTl>/hrf t

2
) 

Fig.1 
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COMPARISON OF RESULTS FROM AEEW-426 WITH THE W-2 CORRELATIONS^ DHB ) 
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Fig.2 
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COMPARISON OF RESULTS FROM AEEW-R426 WITH THE W-3 CORRELATION 

2D 

χ 
2 

~ 1.5 
Ο 
(b 

­C 

i l · 

en 

e 
s 
σ 
c 

α 1.0 
χ 

LU 

0.5 

q "exp ( l 0
6
BTU/h r f t

2
) 
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ρ = 1,000 psia 

De =0.24 in 

G = 1.435 IO
6
 lb/hr ft

2 

0 < x
 out < 0.20 

Predicted average heat flux 
q"pr( lO"BTU/hrf t

¿
) 

Rg.3 
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COMPARISON OF RESULTS FROM WAPD^TH-338 WfTH THE WAPD-188 CORRELATION 

Rectangular channel 

X 

g 1.5 
.c 
O· 
en 
o 
χ ­
α» 
> 
σ 

ρ= 2,000 psia 

De= 0.193 ¡η 
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COMPARISON OF RESULTS FROM WAPD-TH-338 WITH THE W-2 CORRELATIONS 

Rectangular channel 

X 

3 

15 
σ 
Οι 

J C 

a> 
en 
σ 

c 
Οι 

E 
¿1.0 
χ 

LU 

0.5 

ρ =2,000 psia 

De = 0.193 in 

L=27 in 

ι L/De = 140 

q " exp
 G

 = 0·5;1.0;15,20 10
6
 Ib/hr f t

2 

(l0
6
BTU/hr ft

2
) 

Il =1.375 in 

l1 /De =7.1 

6 = 1.98 

-0 .2<x o u t <0 .5 

.0<>X+20·/. 
(x) / ·Λ·ν 

-Patched section 

õ no F utilisation 

F Tong utilisation 

- uniform heating 

χ 

q "pr 

0.5 1.0 

Predicted average heat flux 

fi
 1 5

o 

(ΚΓΒΤυ/hrft
2
) 

Fig. 5 
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COMPARISON OF RESULTS FROM WAPD-TH-338 WITH THE W-3 CORRELATION 

Rectangular channel 
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COMPARISON OF RESULTS FROM DOKLADY VOL? M>7 WITH THE WAPD 188 

CORRELATION 
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COMPARISON OF RESULTS FROM DOKLADY VOL,7 NP7 WITH THE WAPD-188 

CORRELATION 

0)0 q"exp(W/crr/) 
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ρ =100 kg/c m
2 
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COMPARISON OF RESULTS FROM DOKLADY V0L.7 M>7 WITH THE W-2 
CORRELATIONS 

200 400 

Predicted average heat flux 
q"pr(W/cm£) 

Fig. g. 
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COMPARISON OF RESULTS FROM DOKLADY VOL.7 N°7 WITH THE W-2 CORRELATIONS 

100 200 
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COMPARISON OF RESULTS FROM DOKLADY VOL.7 NP 7 WITH THE W-3 CORRELATION 
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COMPARISON OF RESULTS FROM DOKLADY VOL7 N°7 WITH THE W-3 CORRELATION 
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Fig. 12 



COMPARISON OF RESULTS FROM EUR 2490e WITH THE WAPD-188 CORRELATION 
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COMPARISON OF RESULTS FROM EUR 2490e WITH THE W-2 CORRELATIONS 
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COMPARISON OF RESULTS FROM EUR 2490e WITH THE W-3 CORRELATION 
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