





EUR 3275.e

THE CONNECTION BETWEEN THE TIME-MOMENTS AND THE
FUNDAMENTAL DECAY CONSTANT OF A THERMALIZED
NEUTRON PULSE by H. HEMBD

European Atomic Energy Community — EURATOM

Joint Nuclear Research Center — Ispra Establishment (Italy)
Reactor Physics Department — Reactor Theory and Analysis
Brussels, February 1967 — 14 Pages — FB 40

The decay of a thermalized neutron vpulse in a large moderating
sample is studied by the time moments method applied to the Boltzmann
equation. The time moments define the mean emission time or lifetime
for neutrons before escaping or being absorbed at a certain energy.
The decay constant of the neutron pulse is derived as a mean value of
the inverse emission time. The first three coefficient= in the exnansion
of the decay constant in terms of the geometrical buekling are identical
with those obtained by Nelkin in hic eigenvalue approach. Further
properties of the time moments and their connection with the experiment
are pointed out,

EUR 3275.e

THE CONNECTION BETWEEN THE TIME-MOMENTS AND THE
FUNDAMENTAL DECAY CONSTANT OF A THERMALIZED
NEUTRON PULSE by H. HEMBD

European Atomic Energy Community — EURATOM

Joint Nuclear Research Center — Ispra Establishment (Italy)
Reactor Physics Department — Reactor Theory and Analysis
Brussels, February 1967 — 14 Pages — FB 40

The decay of a thermalized neutron pulse in a large moderating
sample is studied by the time moments method applied to the Boltzmann
equation, The time moments define the mean emission time or lifetime
for neutrons before escaping or being absorbed at a certain energy.
The decay constant of the neutron pulse is derived as a mean value of
the inverse emission time. The first three coefficient~ in the expansion
of the decay constant in terms of the geometrical buckling are identical
with those obtained by Nelkin in his eigenvalue approach. Further
properties of the time moments and their connection with the experiment
are pointed out.






EUR 3275.e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

THE CONNECTION BETWEEN THE
TIME-MOMENTS AND THE FUNDAMENTAL
DECAY CONSTANT OF A
THERMALIZED NEUTRON PULSE

by

H. HEMBD

1967

Joint Nuclear Research Center
Ispra Establishment - Italy

Reactor Physics Department
Reactor Theory and Analysis



SUMMARY

The decay of a thermalized neutron pulse in a large moderating
sample is studied by the time moments method applied to the Boltzmann
equation. The time moments define the mean emission time or lifetime
for neutrons before escaping or being absorbed at a certain cnergy.
The decay constant of the neutron pulse is derived as a mean value of
the inverse emission time. The first three coefficients in the expansion
of the decay constant in terms of the geometrical buckling are identical
with those obtained by Nelkin in his eigenvalue approach. Further
properties of the time moments and their connection with the experiment
are pointed out.



THE CONNECTION BETWEEN THE TIME-MOMENTS AND THE FUNDAMENTAL DECAY CONSTANT
OF A THERMALIZED NEUTRON PULSE (*)

The time behaviour of a neutron pulse in a large thermalizing medium
can be described by the time dependent Boltzmann equation in the dif-

fusion approximation

o

%.2—t+(2;‘,+m;’)¢ =Z¢’ +S(E,B)-5(t) (1)

where

qb(E,B,t) is the neutron flux,

B the buckling,

S(E,B)‘J}t) the source distribution induced as a pulse at t = O,
D(E) the diffusion coefficient,

Zza,(E) the absorption cross section; and

23 the thermalization operator defined in the usual way by

00
£¢ = /'Z,(E'»E) ¢ e - =, ¢ &) (1a)
[
with

Zg (B)

(- -]
f’Z(E—»E')dE
fo]

1
The problem of solving eq. (1) becomes more simple by assuming /v - ab-

sorption

veZ2,(E) = a = const, (1b)

a condition generally fulfilled in practical situations., The substitution

¢(E,B,t) = e'atf(E,B,t) (1c)

reduces eq. (1) to the absorption free case

(*) Manuscript received on December 13, 1966.
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which will be the basis of the following investigation., Nelkin [1] has

studied the eigensolutions of the source-free eq. (1) by the ansatz

¢(E,B,t) = o X%, 9b (E,B). (3a)

This 1s equlivalent to applying the ansatz

~-(&X -a)t
e

Y’ (E,B,t) = . ¢ (E,B) (3b)

to eq. (2), For the fundamental eigenvalue in terms of the buckling he
finds

A=ot-a = DB -CB’ + ... (4)

with

o0
!D(E) M(E)dE
D = o0 (43)
1
/ * M(E)dE

[

(D(E) - 2 ) QO(E)dE
C = = (4b)

where M(E) 1s a Maxwellian and 42‘,(E) the solution of

D
= cmoum = X @@, (4c)

¢



At it is wellknown, the solution of eq. (1) by a superposition of eigen-
functions cannot be done in the classical way since the eigenfunctions

do not form a complete set [2] . However, instead of solving eq. (1) ex-
plicitly in time and energy we can obtain the same information by con-
sidering the time moments which satisfy a simpler equation, The time

-moments of order k are defined as

o9

= K _ -at K
MK(E,B) = ft ¢(E,B,t) dt = je t f(E,B,t)dt , (5
° 0 ‘
or
oo
n (EB) = [t pEB,0 a (5a)
k ? . f H H

v
in the absorption free case of eq. (2).

The time moments are of interest for three reasons:

(i) They can be drawn out from pulsed experiments with great preci-
sion since they are time-integrated quantities, Moreover, the
1
time-~ and energy-~integrated reaction rates measured by a /v -

detector

1
r (B = v My (E,B) dE (6)
E min

are connected with the fundamental eigenvalue ) in the follo-

wing way

r, (B)
r (B)

2

A B), (for B2 « £2) %3

a result which will be shown afterwards,



(i1) They satisfy a Boltzmann equation which is stationary but with
a modified source term. Hence they may be calculated by a rou-
tine program like GATHER [3] . The latter provides an option for

time moments.
(iii) The ratio
m, (E,B)

T(E) & = (8)
m, (E,B)

has a physical meaning. Called "emission time" it is the mean

lifetime of a neutron before escaping with an energy E.

To derive the equations for the time moments we multiply eq. (2) by tk

and integrate from zero to infinity:

DB m_(E,B) = £ m,(E,B) + S(E,B); (k = 0) (9,0)
DBzmk(E,B) = £ m(E,B) +§ m, ,(E,B). (k21) (9,k)

To solve eqs. (9) we expand all quantities in a power series of Bl'and

2
compare terms of the same order in B :

m, (E,8) = m,,(E) + B'm,,(E) + B'm, (E) + ... (10,0)

- i [' 2 + gt + ( )

m, (,8) = o [m, (E)+B" m,® +B'n (&) +..] 10,1
1 2 i

m, (E,B) = ¢ [m,(E) +Bm, E +Bm, @& +..] (10,2)

The expansions (10,k) observe the fact that the k-th moment is an order of
magnitude (in Bz) larger than the (k-1)-th. This can be seen from the con-

dition of neutron conservation



2 1
B (D,m ) = {Z m, dE + ke (S, m, ), (11)

since for all distributions ¥ (E)

fodE = 0 (11a)
(4

which is a consequence of thedefinition of the operator(la). The brackets

mean

o0
(u,v) = fu(E) v(E) dE.

[-4

The source in (9,0) must be of the same order as the leakage term on the

left, hence

S(E,B) = B S, (E) +B' 5, (E) + ... an’

Eq. (9,0) splits up into

o = X m_, (13,0)
Dmoo = e mo; + S'l- . (13,1)
Dm,, = £ m,, + S, (13,2)

- We infer the solution
E E
m = M(E) = ;-- exp (-~ /KkT) (14,0)

and, observing eq. (lla), the conservation conditions

(D,M) (14,1

S, dE (14,2)

1]
o3 0\5
7]
N
=

(D,m,,)



Eq. (9,1) splits up into

0 = Lm, (15,0)
m
Dm,, = x’mu + _oo0 (15,1)
v
m,,
m, = Xm, + - (15,2)
with the conservation conditions
m,, = ¢ M(E) (16,0)
1 -
q,(D,M) = (; , M) or c, =D, (see eq, (4a) ) (16,1)
- (X
(D,ma) = (v y Mgy ), (16,2)

For the determination of the ratio (7) of reaction rates (6) we have for

small Bz

r_ (B)

]
~~
|
=
s
+
=}
N
~~
<=
B
[
~
s
+

or with (16,2)

< =

and
1 1 1 z. 1
@ = =[5y meB (s, ]
Hence
(B) D(D° D )
r — -D, m
2 - pB -8 A 2 +om¢)H . an
r, (B) ° & W
v’



This is the same result as given by Nelkin (see eqs. (4) ) for the funda-

mental eigenvalue, The solution m, (E) of eq. (15,1) satisfies
D,
Z(-%mu) =(— -Dp) WE)

which is exactly Nelkin's equation for his 420

2
The reciprocal emission time in terms of B 1is given by

- o m,(E)
L m ,(E,B) me) [1+8° S v L L]
TE T m,EB 5 1,(E)
(8%, )7 M(e) [1 + Bp, o=+ .. ]
2

= DoBz . [1 - %(_E?) [Do m, (B) - moz(E)J * 0(34)] *

Averaging this quantity over all energies with a Maxwellian density as

weight function

>0
1 M(E)
1o - {v’C(E) v dE
(.t:> = o
fngz dE
° v

ylields same right hand side as eq, (17) so that we have the agreement

{,% —A} = oi%

for small Bz. From a physical point of view it may be more justified
not to use the Maxwellian density in the averaging prescription (19)
but the actual neutron density connected with the solution of eq.(9,0),
Operating with mo(E,B) we get the same asymptotic relation (20), now

with another coefficient of Be.

The behaviour of the emission time for small values of the energy is of
interest, For the functions L. and m{l which enter eq, (18) we make

the ansatz

m__(E)

o1 ME) [a, + aE+ .. ]

1
M(E) [bo+ b E+ .. ] .

m,, (E)

(18)

(19)

(20)

(21,0)

(21,1)
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These expansions are coupled by the condition of neutron conservation

written in the form of eq. (16,2). With the help of eq. (16,1) we find

1 1
(Dob - a,) (‘—,-,M) = a (;

X , (5, EM) - b (D,EM), (22)

The desired expression to be inserted into eq. (18) is

D,
M(E)

[py m,, ®) - m, 2] = [(,b, -8, +E @B -a)] D,
or, again with (16,1) and (22)

DO
—° L Y )
T A W { g [ @m0 -2@, W]+ [0 (n,Em]} . (23)
v ?

Averaging in the sense of definition (19) cancels the cofactor of &,

whereas the second member in (23) yields a diffusion coefficient C1 which

i8 an approximation to the true diffusion coefficient C due to the fact

that we have retained only two terms in the expressions (21,0) and (21,1):
1 ,D

= e s -1 Do _
c, Db, ¢ (F, DT & -0, BO. (24)

The coefficients a,, b can be determined from eqs. (13,1) and (15,1).

The equation for a, is

D(E) M(E) = a, X [mM]+ 8, (E) .

The common way to solve for a, is to multiply by E and to integrate. But
then the mean source energy would dominate in the above equation, This is
not desirable since the source has not been specified, except that it is
concentrated near a mean source energy Esin the high energy range. Instead,

we weigh by Enl so that

IH

E "2

=

O
S,dE = i.. (D, M) &L (l , DM)
z E
S o

Tls, (E)dE =
° S
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can be neglected. (Use has been made of eq. (14.1)). Now
1
a, = —— . (E , DM) (25)

where the energy transfer moment

©0

2

* E'-E '

p= ]f-(—“—,lucx') 3, (B'>E) aE'iE = 2 (BEEOZ0 (26w
[~4

has been introduced (For the heavy gas operator !("= Z°€Z‘ , Where ?Zs

is the constant slowing down power). In the same manner we get from

D(E) = 1
D,  ME = b Z [=M] + - M(E)

the coefficient

1
b, = =

-2
1 [‘* D, V

B

y = ). (26)

In the 1limit of zero energy the emission time T 1s given by

%(?)- = q,Bl - CoB‘} + o(8). (27)

According to eq. (23)
1 -1

1
s [a, ¢, B0 -b E0] . (28)

The difference of the C-values turns out to be

1 i M
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so that on the basis of the linear (two terms) approximation (21,0)
and (21,1) the relation

1 - - 4
{'L’(O) /\} = -(C, -C,) B (30)
lin

holds. Since the difference (20) is only of order 36 we state that the

correct substitute for the fundamental eigenvalue up to corrections of

1 1
> .
T (E) instead of ()

order 36 ig &

So far we have studied the absorption free case with time moments mk(E,B).
What 18 really measured or calculated by GATHER is the time moment MK(E,B)
over the true flux established under the influence of absorption. Assuming
the absorption to be small we may expand in (5) with respect to the small
parameter ag

2

(E,B) + 2 m_(E,B) ~+ .... (31)

Mk(E,B) = mK(E,B) - am > Mo

K+

Then the inverse of the emission time comprising absorption T, (E) is

M,(E,B) m(E.B) , = m(EB) m/(E,B)

= = (

1 2
T (B — M, (E,B) m, (E,B) m, (E,B)% - 1) + 0(a™), (32)

We find mz(E,B) by introducing the ansatz (10,2) into eq. (9,2) and com-

2
paring quantities of the same order in B :

0 =K m,, (33,0)
2

Dm,, = & m,, +Sm,, . (33,1)
2

Dm,, = Lmy+ v M4z . (33,2)

It follows

m,,= ¢ M(E) (34,0)



(=, M
1 v 2
c = = = (34,1)
2 D, (D,M) D% !
1
(D,ng = 2 (;', m4z) . (34,2)
Further
m BZDz m
2 "oz _1. (4 22 + -
mpm (100" S T (e —+ S5 ]
2 m
m 2 42 2
! [1+10,8° Gt -]
m,{E) D° m,(E)  m (E)
= 2 o4 ' o _227° Ad 4
= 2 [1 + B" ( M(ES 2 MCE) 2D, M(E))]+ o(B")
thus the average value of (32) in the sense of (19) becomes
ey - it R v <sm®)> (35)
Ta T .
We will show that the error term < £ (E)> vanishes so that
<Ly - as<k> -a+pB*-csB' ' (36)
Ta - T = 3

agrees — up to terms of higher order - completely with Nelkin'®s result (4)

for the fundamental eigenvalue & = a-+).

The error term is
S 1 2.1 L
<E€®> = aB” (T, M -I_-Z(v » Mgy * D (T, my,) - 4D, (T, n“)]

or, using (16,2) and (34,2)

) D oo D
L 2 | -1 [ _o
—as'd, w2 fo(D—v—)madE-Dol(D-v)lludE]. (am

Equation (15,1) can be written



D _1 :
L om,= G =5 M, (38)

and equation (33,1), because of (34,1) and (16,0),

2 D 1
Z m, = b, Ty SME (39)
Consequently the difference 2 mfz - D‘,mzz i8 a solution of the homogeneous

equation
’Z[z T4z ~ %mzz.] =0
that means a Maxwellian:
2 m -D m = const - M(E), (40)

Due to the definition (4a) of D, the error term (37) vanishes if we insert

expression (40).
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