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SUMMARY 

The decay of a thermalized neutron pulse in a large moderating 
sample is studied by the time moments method applied to the Boltzmann 
equation. The time moments define the mean emission time or lifetime 
for neutrons before escaping or being absorbed at a certain energy. 
The decay constant of the neutron pulse is derived as a mean value of 
the inverse emission time. The first three coefficients in the expansion 
of the decay constant in terms of the geometrical buckling are identical 
with those obtained by Nelkin in his eigenvalue approach. Further 
properties of the time moments and their connection with the experiment 
are pointed out. 



THE CONNECTION BETWEEN THE TIMEMOMENTS AND THE FUNDAMENTAL DECAY CONSTANT 

OF A THERMALIZED NEUTRON PULSE (*) 

The time behaviour of a neutron pu lse in a l a r g e the rmal iz ing medium 

can be descr ibed by the time dependent Boltzmann equation in t h e d i f 

fusion approximation 

J- · JJ + ( 2^+ DB*) ψ = t f f +S(E,B)^(t) (1) 

where 

^(E,B,t) is the neutron flux, 

Β the buckling, 

S(E,B)*0(t) the source distribution induced as a pulse at t = O, 

D(E) the diffusion coefficient, 

y^ (E) the absorption cross section, and 

% the thermalization operator defined in the usual way by 

o? 

% ψ s f :ξ(Ε·*Ε) ^(E')dE'  ¿á(E) ^>(E) (la) 

with 

2"s (E) = ƒ Z,(E-» E»)dE 

The problem of solving eq. (1) becomes more simple by assuming /v - ab
sorption 

ν·2ΰι(Ε) = a = const, (lb) 

a condition generally fulfilled in practical situations. The substitution 

<^(E,B,t) = e"at ψ (Ε,B,t) (IO 

reduces eq. (1) to the absorption free case 

(*) Manuscript received on December 13, 1966. 
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ν τ τ
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f
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 £f
 + s

*^
(t) (2) 

which will be the basis of the following investigation. Nelkin £l] has 

studied the eigensolutions of the source-free eq. (1) by the ansatz 

<^(E,B,t) = e~°Ct . (f> (E.B). (3a) 

This is equivalent to applying the ansatz 

^(E,B,t) = e"
(0C_a)t

. ̂ (E,B) (3b) 

to eq. (2). For the fundamental eigenvalue in terms of the buckling he 

finds 

2. t 
s OC- a = DnB - C B + ... (4) 

with 

J D(E) M(E)dE 
D0 - τ*- (4a) 

J - M(E)dE 

jf(D(E) -£s_ ) ^0(E)dE 
(4b) 

°Ύ 1 
ƒ ~ M(E)dE 

Í V 

where M(E) is a Maxwellian and ψλ ̂ (E) the solution of 

D , 

(  D(E) ) M(E) ·= % %D<-E>· < 4 c ) 
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At it is wellknown, the solution of eq. (1) by a superposition of eigen-
functions cannot be done in the classical way since the eigenfunctions 
do riot form a complete set [2] . However, instead of solving eq. (1) ex
plicitly in time and energy we can obtain the same information by con
sidering the time moments which satisfy a simpler equation. The time 
moments of order k are defined as 

Μ^Ε,Β) =r it" <p(E,B,t) dt = J e~at t* ̂(E,B, t)dt (5) 

or 

m (Ε,Β) Ξ ƒ t ^(E,B,t) dt (5a) 

in the absorption free case of eq. (2). 

The time moments are of interest for three reasons: 

(i) They can be drawn out from pulsed experiments with great preci
sion since they are time-integrated quantities. Moreover, the 
time- and energy-integrated reaction rates measured by a /v -
detector 

E max 
rK(B) = J J- mK (E,B) dE (6) 

E min 

are connected with the fundamental eigenvalue Λ in the follo
wing way 

r0 C B ) τ 2 2 ,D, = λ (Β), (for Β2 « ΣΖ ) (7) r (Β) 8 

a result which will be shown afterwards. 
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(ii) They satisfy a Boltzmann equation which is stationary but with 

a modified source term. Hence they may be calculated by a rou

tine program like GATHER f3] . The latter provides an option for 

time moments. 

(iii) The ratio 

mY (E,B) 

T(E) = (8) 
mc (E,B) 

has a physical meaning. Called "emission time" it is the mean 

lifetime of a neutron before escaping with an energy E. 

, v k 
To derive the equations for the time moments we multiply eq. (2) by t 

and integrate from zero to infinity: 

DB 
Z
 mo(E,B) = if mo(E,B) + S(E,B); (k = 0) (9,0) 

k 
DB mk(E,B) = ¡ζ m^E.B) +  m^íE.B). (k* 1) (9,k) 

To solve eqs. (9) we expand all quantities in a power series of B and 

2 
compare terms of the same order in B : 

m0 (E,B) = moe(E) + B^m^ (E) + B*n^(E) + ... (10,0) 

mi (E
'
B) =

 B
x
 f

mio (E) + B* m « <E) + Β*».,/Β> + 'J (10,1) 

mz (E,B) = 5#[mi0(E) + B^m^ (E) + Β^πι^(Ε) + ...J (10,2) 

The expansions (10,k) observe the fact that the kth moment is an order of 

magnitude (in Β ) larger than the (kl)th. This can be seen from the con

dition of neutron conservation 
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B2(D,ii i) ■ J % mK dE + k  ( ^ , m ^ ) , (11) 
Û 

since for a l l d i s t r ibut ions Jf(E) 

] tf fdE s 0 (11a) 

ρ 

which is a consequence of the definition of the operatori la). The brackets 

mean 

QO 

(u,v) s J u(E) v(E) dE. 

The source in (9,0) must be of the same order as the leakage term on the 

left, hence 

S(E,B) = B2 Sx (E) + Β S (E) + ... (12) 

Eq. (9,0) splits up into 

0 = Ζ m (13,0) 

D**, = £ "ey
 + s

y
 (13

'
2
> 

We infer the solution 

m = M(E) »   exp (
E
/kT) (14,0) 

and,observing eq. ( l i a ) , the conservation conditions 

(D,M) = ƒ S¿ dE (14,1) 

où 

(D,mei) = ƒ S^ dE (14,2) 
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Eq. (9,1) splits up into 

0 

Dm>« 40 

= 

= 

^m1o 

* " » + 

V 

m o o 

V 

mo¿ 

(15,0) 

(15,1) 

(15,2) 

with the conservation conditions 

m1o = c M(E) (16,0) 

c1 (D,M) = (- , M) or c, = Ό~ (see eq. (4a) ) (16,1) 

(D,me) = (̂  , m M ) . (16,2) 

For the determination of the ratio (7) of reaction rates (6) we have for 
small Β 

r*(B) = ( Γ , " ) + B Z ( ; , m 0 1) + ... 

or with (16,2) 

= ( J- , M) + BZ (D, m<a ) + ν 

and 

■<
C B > =

 B* f D c
(
v '

M ) + ß Z (
v '

m
«

) +
 '··] 

Hence 

D
e 

—7T = D Β  Β · τ + 0(B' ) . (17) 

r, (Β) ° < è . M) 
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This is the same result as given by Nelkin (see eqs. (4) ) for the funda

mental eigenvalue. The solution m (E) of eq. (15,1) satisfies 

la 

D 

^(D om^) = ( —  D ) MCE) 

which is exactly Nelkin's equation for his φ . 

2 
The reciprocal emission time in terms of Β is given by 

m CE) 

. meCE,B) MCE) [ l + B - ^ r + . . ] 
MCE) 

T ( E ) m^E.B) r 2 "VL
<E) Τ 

(B
2
Do)

 1
M C E ) [ l + B \ - ^ i T + . .] 

2 
= D

c
ß 2

 ' f
1
 - MT?) C

D
c

m
, z

( E )
 -

 m
c x

( E
> J

 +
0 ( B

4
) J . C18) 

Averaging this quantity over all energies with a Maxwellian density as 

weight function 

fi MÍEJ. 

/L> = *Έ(Ε) ν dE 
OÇ 

Β- dE 
f Míj 
Κ ν 

(19) 

yields same right hand side as eq. (17) so that we have the agreement 

ik -M 0(B
6
) C20) 

2 

for small Β . From a physical point of view it may be more justified 

not to use the Maxwellian density in the averaging prescription Cl9) 

but the actual neutron density connected with the solution of eq.C9,0). 

Operating with m0CE,B) we get the same asymptotic relation C20), now 
6 

with another coefficient of Β . 

The behaviour of the emission time for small values of the energy is of 

interest. For the functions m and m which enter eq. Cl8) we make 

the ansatz 

m02CE) = MCE) [a0 + a^ + .. ] C21.0) 

m nCE) = MCE) [bo + bxE + .. ] . C21,l) 



- 10 -

These expansions are coupled by the condition of neutron conservation 
written in the form of eq. Cl6,2). With the help of eq. Cl6,l) we find 

CD b - a ) (- , M) = a. C~ , EM) - b CD,EM). C22) 
Ο Ο Ο γ T V 7 

The desired expression to be inserted into eq. (18) is 

MTU K m « ( E ) - mo*(E)J - [(D.bo - V + E <Dob, - a
1 > ] · Do 

or , again with Cl6, l ) and C22) 

Do 

Φ » M> 
J a1 [ (J· , EM) - EC ·̂ , M)] + ^ [CD,M)E - CD,EM)] ƒ . C23) 

Averaging in the sense of definition C19) cancels the cofactor of a., 
whereas the second member in (23) yields a diffusion coefficient Cf which 
is an approximation to the true diffusion coefficient C due to the fact 
that we have retained only two terms in the expressions C21,0) and (21,1): 

c* " °Λ°. * <L > M ) " 1 < — - D> EM>· <24> 
1 Ù i ν ν 

The coefficients â  , b can be determined from eqs. Cl3,l) and Cl5,l). 

The equation for &. is 

DCE) MCE) = a,, % [EMJ+ SZCE) . 

The common way to solve for a^ is to multiply by E and to integrate. But 

then the mean source energy would dominate in the above equation. This is 

not desirable since the source has not been specified, except that it is 

concentrated near a mean source energy Esin the high energy range. Instead, 

we weigh by E so that 

I 
o» 

| s z C E ) d E = ¿  | s z d E = J  · CD,M)^C~ , DM) 
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can be neglected. CUse has been made of eq. C14.1)). Now 

é , DM) 
a  f = ■£·<*. DM) C25) 

1
 φ^ΕΜ) f? E 

where the energy transfer moment 

A*= JJ^—^MCE») ^ CE'>E) dE'dE = 2 (^EM)^O C25a) 

σ 

has been introduced CFor the heavy gas operator U - 2*^2^ » where %Σ^ 

is the constant slowing down power). In the same manner we get from 

f^- MCE) = b, ¡C ÍEM] + ~ MCE) 

the coefficient 

b = JL. . (P _ Ì M ) (26) 

In the limit of zero energy the emission time Τ is given by 

^ 3 7  Daß*  C^B* + OCB). (27) 

According to eq. (23) 

= Do C^ , M)"
1
 [a, C~ , EM)  b, CD,EM)] . C28) 

The difference of the Cvalues turns out to be 

C
o 

C  C = Λ - . D0 .
 (
v
>EM)(

v ' E
}
 > 0 (29) 

o i U* ï > 

Γ (r- , M) 

ν 
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so that on the basis of the linear Ctwo terms) approximation (21,0) 

and C21,l) the relation 

| è c o T " λ | 
l i n 

=  (Cc  0Λ ) Β 4 C30) 

holds. Since the difference C20) is only of order Β we state that the 

correct substitute for the fundamental eigenvalue up to corrections of 

order Β is ̂  _ ,„. ̂  instead of 
τ CE) ~ * — — TT CO)* 

So far we have studied the absorption free case with time moments m^CE.B). 

What is really measured or calculated by GATHER is the time moment M^CE,B) 

over the true flux established under the influence of absorption. Assuming 

the absorption to be small we may expand in C5) with respect to the small 

parameter a: 

2 

M^CE.B) = mxCE,B)  a m^fCE,B) + J rn^CE.B) + C31) 

Then the inverse of the emission time comprising absorption I^CE) is 

MÖCE,B) m CE.Β) m CE,Β) m CE,Β) 

C „ ,„ D,l  D + 0U¿) . C32) 
1*^ CE) Μ/Ε,Β) m., CE,Β) rn^CE.B)

3 

We find m CE,Β) by introducing the ansatz Cl0,2) into eq. C9,2) and com

z. 

pa r ing q u a n t i t i e s of t h e same order in Β : 

O = % m¿0 C33.0) 

Dm2£> =£mzl+-m40 C33,l) 

Dm2.i " t *¿y + 7 m
4 2 . « S , 2 ) 

I t fo l lows 

m_ = c„ MCE) (34 ,0) 
2.0 2 



 1 

1
 (

v" '
 M )
 2 

c
2 - D0 - O M O - - ¿J <".« 

(D,m^ = 2 (J , m^) . (34,2) 

Further 

2 2. 
m . _ Β D m 

■••■t ο L1 + B T T Q Ä  J  t i * 2 M(EV 
2 m ι 

m Γ 2 "fi Τ
1 

" J 

Γ t »βΡ>
 D
0
 m

J
E
> *Λ

Ε
> 1 4 

=
 2
 L

1 + B (
 5 ( E 5 F ÏÏCE)

 2 D
"  M 1 Ì ) > J

+ 0(B > 

thus the average value of (32) in the sense of (19) becomes 

¿hç- > = a +<-^-> + <T£(E)>. C35) 

We will show that the error term <i£(E)> vanishes so that 

1 2. ¥ 

<-£r-> = a + <7P> = a + D B  C B C36) 

agrees  up to terms of higher order  completely with Nelkin's result C4) 

for the fundamental eigenvalue <X = a + ̂A . 

The error term is 

<£(E>> « aß2" (¿ , M)"1^ 2(¿ , . . , ) + τξξ , m^i ~ 4 De<J" /  , , > J 

o r , us ing (16,2) and (34 ,2) 

- c o Π oO I} 

= a B^cJ , M)_ 1 · [~2 J CD ^ ) m4ZdE  D0 ƒ CD - 7 ° ) » ^ J # (37) 

Equation (15 ,1) can be w r i t t e n 
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Ζ m,z= (^ - 7 ) · MCE), C38) 

and equation (33,1) , because of (34,1) and (16,0), 

^ = D 7 ' ( D ; - 7 > · Μ ( Ε > . ( 3 9> 

Consequently the difference 2 m - D̂ m is a solution of the homogeneous 
equation 

if [2 « „ - D m z J = 0, 

that means a Maxwellian: 

2 m.,, - D m„ = const. MCE). C40) 

Due to the definition C4a) of D0 the error term C37·) vanishes if we insert 
expression C40). 
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