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Summary 

This paper mainly describes the methods employed to calculate thermocouple 
composition changes due to neutron irradiation in thermal reactors. 

For each of the considered elements (Pt, Rh, Mo, Fe, Ru, Pd, Ni) a reaction 
chain has been constructed, and the corresponding set of differential equations 
has been solved by means of a FORTRAN program on an IBM 7090 computer. 

Some interesting results concerning the reliability of the considered thermo­
couples are discussed. 



Introduction 

The in-pile testing of reactor materials and reactor operation 
require accurate temperature measurement in a neutron flux over 
a long period.Thermocouples provide the only practical means of 
temperature measurement at the precise location of the specimen 
while it is being irradiated. 

The acQuracy of the temperature measurement and the life-time of 
the thermocouple depend upon many factors, e.g. the temperature, 
time of exposure to high temperature, chemical reactions between 
thermocouple material and the specimen, diffusion,ect. When exposed 
to neutrons, thermocouples may undergo nuclear reactions, which 
change their composition and consequently their thermoelectric 
cheracteristics. 

In most cases a thermocouple is considered reliable until it breaks 
and its output drops to nil. However, a long time before this poi t, 
its thermoelectric characteristics may have altered and this can 
only be detected by recalibration. In nuclear reactors, the magni­
tude of the composition change due to nuclear transmutation will 
not be negligible when the thermocouple is used in a high flux 
reactor for several days or when it is exposed to a less intense 
neutron field for a very long time. 

From these facts it can be concluded that the life time of a thermo 
couple depends not so much on this material as on its operating 
conditions, which vary from one application to another, 

Some measurements of the in-pile changes in EMF characteristics 
of Chromel/Alumel and Platinum/Platinum-Rhodium thermocouples were 
carried out by M.J.Kelly(1)(2> and by C.W.Ross(3>. They showed 
Manuscript received on August 16, I966. 
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that the net output of the Chromel­Alumel­thermocouples used 

in their experiments was not correlated with exposure to neutrons 

(<4,10 n.v.t.) and the observed errors remained within the 

allowed tolerances. In the case of Pt/Pt­Rh thermocouples, 

however, the observed deviation was correlated with the neutron 

exposure and the error above 10 nvt was not longer négligeable. 

The changes in the thermoelectric properties of W/W­26 Re Thermo­

couples are even greater; the observed deviation for initial 

calibration reached values up to 80°C at temperatures of about 

1000°C after 2.5. χ IO
20
 nvt

(4í
. 

The radiation­induced changes in the composition of Chromel/Alumel, 

Pt/Pt 10% Rh and W/W 2 6% Re thermocouples were calculated by 

(5) 

W.E.Browning Jr. and C.E. Miller Jr. These calculations 

confirm the sensitivity of the Pt/Pt Rh thermocouple. 

From the results of all these studies it can be concluded that for 

the temperature range 0­1000°C, Chromel­Alumel thermocouples can 

be used in nuclear reactors up tc neutron exposures of at least 

5 χ 10 °nvt. For the temperature range above 1000
oC
 the commer­

cially available thermocouple Pt/PtRh and W/W 2 5% Re are no more 

suitable if the neutron exposure exceeds about 10
Λυ
 nvt. 

Consequently there exists a need for new thermocuple alloys which 

are less sensitive to neutrons. In this study, the transmutation 

effect of various binary platinum alloys was calculated for thermal 

14 2 
neutron fluxes of 0,5, 1,2 and 4 χ 10 n/cm S. up to thermal 

23 
neutron doses of 10 nvt. In the choice of the components and 

alloy composition, mechanical, physical, thermoelectrical,chemical, 

metallurgical and nuclear characteristics were taken into account. 
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For temperatures above 1000°C only noble or refractory metals 
can be considered as thermocouple materials. Other metals can 
be used as alloying components if their vapour pressure is low 
at the melting point of the alloy. 

In this study platinum alloys were considered, the aim being to 
obtain lower transmuation rate than Pt/Pt 10% Rh under reactor 
conditions. Among the platinum metals, only Ru, Pa, 0s and Pt 
have relatively small neutron cross-sections, but osmium can be 
ruled out owing to its hexagonal crystal structure and its 
unfavorable metallurgical properties. The melting point of palladium 
is fairly low (1554°C) and both its vapor pressure and its diffusion 
coefficient must be taken into account at high operating tempe­
ratures. With platinum it forms an uninterrupted series of solid 
solutions. The thermoelectric behaviour of Pt-Pd alloys is described 
by R.F.Vines and E.M.Wise*6 . 

Ruthenium melts at 2250°C and its solid solubility in platinum 
exceeds 66 wt%. The thermoelectric emf of Pt-Ru alloys is higher 
than the corresponding values for Pt-Pd alloys. 

Iron and nickel also have small neutron cross-sections and can be 
used as alloying components with platinum. Metallurgical and 
physical studies are being carried out in order to examine their 
suitability as thermocouple material. 

Platinum-molybdenum thermocouples are commercially available and 
can be used in unclear reactors owing to the low neutron cross-
section of molybdenum. The use of this thermocouple at temperatures 
above 1300°C is limited because of the chemical properties of 



- 4 -

the molybdenum. Little is as yet known about its in-pile trans­
mutation effect. 

Experience shows that impurities in concentration higher than 
0.1% can change the thermoelectric characteristics considerably 
and the resulting effect is a function of the nature of the 
impurities. 

In order to predict the change in the thermoelectric curve of 
a thermocouple as a function of the neutron exposure it is necessary 
to prepare alloys containing the calculated elements which are 
formed by transmutation of the virginal thermocouple alloys, 
their concentration being known from transmutation calculations. 

In case of difficulties in the alloy preparation, in-pile 
irradiation experiments and post-irradiation recalibration are 
necessary for estimating irradiation-induced changes in the 
thermoelectric characteristics. 

Calculation of thermocouples composition as a function of irradiatior 

1. The one-group thermal model 

When studying the effect of irradiation on elements or compounds 
the entire range of neutron energies ought to be considered. 
As known in a nuclear reactor the neutron energies range from 

-3 +7 approximately 10 to 10 electron volts, and the classification 
in thermal, epithermal, fast reactors, corresponds in feet to 
a prevalent neutron density respectively in the thermal, epi­
thermal or fast zone. 
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In the case of thermal or nearly thermal reactors, like the 
ones here considered, namely the BR2 at Mol and the HFR at 
Petten, the qualitative behaviour of the neutron spectrum is 
the following: 

W) 

JO' nr* «r1 1 «' *ol •fo3 io'' \0* /|0C 10' fW 

As for the capture cross sections of the isotopes appearing in 
the time dependent composition of the considered thermocouples, 
they show a qualitative behaviour of this type. The resonances 
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are not present for all the isotopes, but for some of them 
(Mo, Ru, Rh, Pd, Pt,- Ag, Au, Hg) they are very strong. 

(7) 

Gfø 

to-> «-< *>'- 1 «-1 » ' *>' *>* ,0, '° *" :w 
A procedure which can be used for the calculation of irradiation 
effect on composition, when very precise results are wanted is 
the following: first of all the neutron spectrum in the considered 

(8) 
reactor is calculated, by means of a nuclear code like GGC ; 
then group cross sections are obtained in some (e.g.3 or 4) 
broad energy groups, by averaging on the spectrum. Finally the 
differential equations describing the composition changes vs. 
time for each isotope in each broad group are written and solved. 

Though such a procedure gives very good results (as far as the 
nuclear data are to be trusted) it is rather cumbersome, and in 
the case of thermal reactors generally other models are used, much 
more straightforward. 

(9) 
The most popular, the one group Westcott model , assumes the 
neutrons to be all of the same energy, corresponding to the thermal 
peak. 
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As for the cross sections the Westcott expression is the following: 
& = ö"0(g+rs) 

where G^Q is the cross section corresponding to 0.02 5 electron 
volt, g and s give a measure of the departure from the 1/v law 
respectively in the thermal and epithermal zone, while r is 
related to the ratio between the thermal and epithermal fluxes 
(r ranges between 0 (all thermal fluxes) and -~-l (all epithermal 
fluxes)), g and s, which depend on temperature, are tabulated 
for the different isotopes. 

In this paper, which treats in fact a first approach to the study 
of the behaviour of thermocouples under irradiation, some further 
hypothesis have been done: more precisely g has been set = 1 (tha­
is 1/v behaviour for the thermal cross sections has been assumed) 
and the product rs has been neglected in respect to 1 (that is 
we have suppoed a small epithermal flux and hence we have 
neglected the resonances in epitnermal region). 

The first hypothesis seems to be quite valid. As for the second 
one, it is in our intention to remove it in future; however we 
are convinced that also with the present hypothesis the results 
we have got permit us to have a good insight into the behaviour 
of thermocouples under irradiation in the considered reactors. 

2. huclear reaction chains 
As already stated the thermocouples considered in this paper have 
the following compositions (in weights % ) ; 



- 8 -

1) Pt 100% 
2) Pt 90% + Rh 10% 
3) Pt 9 9,9% + Mo 0.1% 
4) Pt 99% + Mo 1% 
5) Pt 9 5% + Mo 5% 
6) Pt 99.97% + Fe 0.03% 
7) Pt 99% + Fe 1% 

I 

8) Pt 99.9% + Ru 0.1% 
9) Pt 99% + Ru 1% 
10) Pt 9 8% + Ru 2% 
11) Pt 97% + Ru 3% 
12) Pt 96% + Ru 4% 
13) Pt 99% + Pd 1% 
14) Pt 8 0% + Pd 2 0% 
15) Pt 73% + Pd 27% 
16) Pt 95,5% -f-'Ni 4,5% 

Let us consider the nuclear reaction chains of the elements: Pt, 
Rh, Mo, Fe, Ru, Pd, Ki appearing in the above list. For each of 
the elements a chain has been prepared (see annexed tables) intahic 
the values of <TQ and of the half lives are reported. Nearly all 
the values for the cross sections and half lives, have been picked 

( 7 ) 
up from BNL 325 and ANL 5 8 0 0 ( 1 0 ) , or the Handbook of Nuclear 

Physics. 

However, in the case of unusual information sources, we have 

indicated the corresponding paper. 

In certain particular cases the cross sections were not known, or 
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were given with an error of the order of magnitude of the 

cross section itself. 

In such cases we have tried to vary the cross sections in reason­

able intervals and fortunately we have found that the results 

obtained for the element concentrations during time are not 

significately affected by the variations. 

The same is not true for the isotopie concentrations, of course, 

but when studying thermocouples changes due to irradiation only 

the element concentrations are important. 

We will list on the following the uncertainties encountered. 

Pt chain 

193 
Ö^Pt ' ) is not known, and vie have hence finally assumed a zero 

value for Cf(Pt»
192
) 

193 
<^(Mo ) is not known, and as for the case of Pt we have finally 

assumed ^(Mo
192

)=0. 

19 8 
(5 (No ) : two data are given. In such case the difference obtained 

on elements concentration are somewhat more important, 

and in certain cases both the resulting set of cuvves 

have been reported (see fig.Nr.3 and Nr.16). Elsewhere 

only the value ö =0.18 has been retained. 

Ni chain 

5 9
 α 

­ A variation of ö"(Ni ) between 0 and 10
H
 does not alter the 

final results of element's compositions. 

61 

­ ç/ (Ni )is 2b with an error of Τ lb. The essays with the values 

1, 3 gave the same results. 

­ c^ (Ni )is not well known, but the results for elements do not 

depend on it. 
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3. Methodological aspect and discussion on the results 
Let's consider first the reaction chains originated by the single 
elements Pt, Rh, Mo, Fe, Ru, Pd, Ni. 
First of all whenever an isotope is born from two different 
processes, for instance a decay and a capture, the chain can be 
splitted into two separate chains, and the final results will 
be then summed up. That is the chain 

,K 

Ί 
iK-1 

n - n C K ^ n C K+l 

can be splitted into 

,K-1 
n CK 

nLl 
K+l 

»nLl and 

>K 
n-1 

i 
CK 

n 2 
,K+1 

n 2 

wliere K _ Ρχ , PK 
nL " nLl + nC2 n 

,K+1 _ -K+l pK+l " nul n°2 

In such a way the general balance equation to be solved for each 
isotope of the chains is : 

or d t 
X nK λΛ CM η - 1 Λ n - 1 / 

- ( cfKQ+ λ Κ ) CK 
η η η 

Whenever cr' uf + A is very big as compared to <j W o r 

A , we can suppose that the equilibrium, state is reached 
n-1 
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ve ry soon and we can s e t 

K 

nv 

K ­ l . r, K­ l 
/ ¿Γ U c 
/ n n 

o r 
K 

V n -^
K

 ^ 

( < Τ Cf> + η λ ) ν
 η ^ η ' 

Κ κ+τ 

In such a case the isotopes derived bv C that is c 

.κ
 n n

 .K­l and ,,
u
 , can be considered as derived directly 

n+1 *
 J 

from C 
η 

or 
C
K 

n­1 ' 

Moreover, whenever A is small as compared to ef ^ (-ƒ , and 
the isotope is derived from capture, the equation can be written 

¿nC 

&& n 

K-l K-l 
η 

jf^ * n
C
 » where¿^ = t.t/> 

Numerical experiences have shown that, for the fluxes here 

considered (0.5.10
11
*, 1.10

14
, 2.10

ll+
, 4.10

14
), ana when interested 

in the long­range thermocouple irradiation (order of months, or 

years) then the nuclear chains reactions can be assumed to be 

the ones ¿iven by the dotted lines in the annexed tables. We 

want to note again that this is true for element concentrations, 

and not for the isotopie ones. 

As a consequence one can see that only for the elements Ni and 

Fe, it is important to consider as independent variable the time; 

for the other elements O can be used as well. 
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The composition changes for Pt - Rh - Mo - Fe - Ru - Pd - Ni as 
obtained by means of numerical calculations (see next paragraph) e 
shown in fig.l to 13 respectively. 

Note that this compositions are in atom percent. However they can 
be considered, to a good approximation, also compositions in weJRl· 
percent since differences only of two or maximum three units over 
hundred are found in the weights of the elements considered. -o' 

As for the thermocouples to be studied, apart of the case of pure 
Platinum we have just to weight and sum together the results for 1 
single elements in order to have the results for the given compour 
The results obtained are collected in fig. from 14 to 41. 

4. Numerical method. 

As we have said before, the nuclear reaction chains arising from 
a particular element, can be splitted into a number of individual 
chains in which each element is born from the preceding one and 
goes into the next one. The set of equations corresponding to ar 
individual chain can be written in its general form as follows: 

dW, 
asr = - B1W1 

dW2 
dx 

dW3 

A1W1 - B2W2 

AAW„ - B.W. dx 2 2 3 3 

with given initial conditions W.(0) = W· . 
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Two different numerical approaches have been utilized for the 

solution of the above system. In both the cases a program (in 

Fortran language) has been prepared for the IBM 7090 of CETIS, 

C.C.R.EURATOM, Ispra. 

The first approach is to solve the above system of differential 

equations by means of a double precision integration routine 

based on Runge-Kutta method. 

The second one consists in solving analytically the above system; 

in fact one can easily verify that: 

J+l "Bit 
WT1, = V

1
 a,,-, . e 

J+l 4_J J+l,i 
1 = 1 

where 

J 

a
j +1,J+1

 = W
J+l

( o )
 -JQ

 a
J+l,i 

A
T 

a .(i=l,2...J) = 
J+l,i Β -Β,

 J l 

J + l
 x 

The W termis are then calculated oy means of the computer. It is 

evident that such recursive formulae can be applied only when 

B. ,BT for ijíJ; even when B· and BT are of the sanie order 
if J ι J 

some numerical indéterminations can easily arise in the results. 

Fortunately this was not our case. 

For all the chains arising from the considered elements the two 

mentioned schemes were utilized, giving practically the same results, 

which are then to Le regarded as very satisfactory. 



- 14 -

Preliminary conclusions 

Pure platinum forms mercury and gold by transmutation, the 
concentration of which cannot be ignored at integrated neutron 

21 2 fluxes above 10 n/cm . The Pt 10% Rh wire, however, forms 
palladium in concentrations exceeding 0,2 and about 1% after 

20 21 o 10 and 10 n/cm respectively. Consequently the thermocouple 
Pt/Pt 10% Rh cannot be regarded as reliable after neutron 

9n 2 exposures exceeding 10 un/cm . 

The transmutation effects of iron-,cobalt-,palladium-,ruthenium-
or tungsten-containing platinum- base thermocouples can probably 

21 2 be ignored up to an integrated neutron flux of 10 n/cm , since 
the concentration of the formed elements remains at values of 
less than 0.71%. In fact their composition change is mainly 
determined by the platinum transmutation. 

χ 
X X 
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Rh CHAIN 
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( ) From privat· communication 

(°) From Phys.Rtv. 129 (1963J-769 
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Mo CHAIN 
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Ru CHAIN 
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Fig .40 
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