EUR 3141.e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

PLUTHARCO,

A PLutonium, Uranium, THorium Assembly Reactivity COde Physical Concepts, Compatisons with Experiments and Code Description

W-DE HAAN and R. MEELHUYSEN

Joint Nuclear Research Center Ispra Establishment - Italy

Reactor Physics Department
Reactor Theory and Analysis

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM).

Neither the EURATOM Commission, its contractors nor any person acting on their behalf

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights ; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4

When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by Vanmelle s.a.
Brussels, November 1966

This document was reproduced on the basis of the best available copy.

EUR 3141.e

PLUTHARCO, A PLutonium, Uranium, THorium Assembly Reactivity COde - Physical Concepts, Comparisons with Experiments and Code Description by W. DE HAAN and R. MEELHUYSEN

European Atomic Energy Community - EURATOM Joint Nuclear Research Center - Ispra Establishment (Italy) Reactor Physics Department - Reactor Theory and Analysis
Brussels, November 1966 - 128 Pages - FB 175
In the framework of the ORGEL reactor physics development program, a new method for heavy water lattice calculations has been established.

This method is intended for design survey type calculations and for preliminary fuel cycle analysis.

EUR 3141.e

PLUTHARCO, A PLutonium, Uranium, THorium Assembly Reactivity COde - Physical Concepts, Comparisons with Experiments and Code Description by W. DE HAAN and R. MEELHUYSEN

European Atomic Energy Community - EURATOM
Joint Nuclear Research Center - Ispra Establishment (Italy) Reactor Physics Department - Reactor Theory and Analysis Brussels, November 1966 - 128 Pages - FB 175

In the framework of the ORGEL reactor physics development program, a new method for heavy water lattice calculations has been established.

This method is intended for design survey type calculations and for preliminary fuel cycle analysis.

EUR 3141.e

PLUTHARCO, A PLutonium, Uranium, THorium Assembly Reactivity COde - Physical Concepts, Comparisons with Experiments and Code Description by W. DE HAAN and R. MEELHUYSEN

European Atomic Energy Community - EURATOM
 Joint Nuclear Research Center - Ispra Establishment (Italy)
 Reactor Physics Department - Reactor Theory and Analysis
 Brussels, November 1966 - 128 Pages - FB 175

In the framework of the ORGEL reactor physics development program, a new method for heavy water lattice calculations has been established.

This method is intended for design survey type calculations and for preliminary fuel cycle analysis.

Lattices fueled with uranium, thorium and plutonium can be investigated. The method is based on the four factor formula, the two group theory and the Westcott cross-section formalism.

The method has been written in Fortran II for the IBM-7090 computer, with the name PLUTHARCO (PLutonium, Uranium, THorium Assembly Reactivity COde). The code gives directly with the results the input data for RLT-4 burn-up calculations.

Lattices fueled with uranium, thorium and plutonium can be investigated. The method is based on the four factor formula, the two group theory and the Westcott cross-section formalism.

The method has been written in Fortran II for the IBM-7090 computer, with the name PLUTHARCO (PLutonium, Uranium, THorium Assembly Reactivity COde). The code gives directly with the results the input data for RLT-4 burn-up calculations.

Lattices fueled with uranium, thorium and plutonium can be investigated. The method is based on the four factor formula, the two group theory and the Westcott cross-section formalism.

The method has been written in Fortran II for the IBM-7090 computer, with the name PLUTHARCO (PLutonium, Uranium, THorium Assembly Reactivity COde). The code gives directly with the results the input data for RLT-4 burn-up calculations.

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

PLUTHARCO,

A PLutonium, Uranium, THorium Assembly Reactivity COde
Physical Concepts, Comparisons with Experiments and Code Description

by

W. DE HAAN and R. MEELHUYSEN

1966

Joint Nuclear Research Center
Ispra Establishment - Italy
Reactor Physics Department
Reactor Theory and Analysis
Introduction 2
Section I 4I. 1 The thermal multiplication factorI. 2 The fast fission factor
I. 3 The resonance escape probability
I. 4 The thermal utilisation factor
I. 5 Average to uranium thermal flux ratio
I. 6 The diffusion area
I. 7 The thermal diffusion coefficient
I. 8 The slowing down area
I. 9 Fast diffusion coefficient
I. 10 Lethargy range
I. 11 The initial conversion ratio
I. 12 The infinite multiplication factor and buckling
I.13 Two group diffusion constants
Section II - Comparison with experimental results 26
II. 1 EXPO experiments
II. 2 CISE experiments
II. 3 Savannah River experiments
II. 4 Chalk River experiments
II. 5 Conclusions
Figures
Section III - Compilation of formulae it
III. 1 Cross sertions
III. 2 Physical parameters
III. 3 Geometrical parameters
Section IV - List of Tables ò?
Section V - PLUTHARCO, Directions for use 10'
V. 1 Input
V. 2 Card formats
V. 3 List of entries for PLU'IHARCO
V. 4 Output
V. 5 Example of output
References

SUMMARY

In the framework of the ORGEL reactor physics development program, a new method for heavy water lattice calculations has been established.

This method is intended for design survey type calculations and for preliminary fuel cycle analysis.

Lattices fueled with uranium, thorium and plutonium can be investigated. The method is based on the four factor formula, the two group theory and the Westcott cross-section formalism.

The method has been written in Fortran II for the IBM-7090 computer, with the name PLUTHARCO (PLutonium, Uranium, THorium Assembly Reactivity COde). The code gives directly with the results the input data for RLT-4 burn-up calculations.

Introduction (*)

Since 1961 at Euratom a method is in use to calculate the physical constants of an ORGEL reactor lattice cell.

This method has been programmed under the name of CAROLINE I for the IBM 7090 and it has been found to be well adapted especially for survey and optimation calculations. However with the use a great number of shortcomings have been found giving rise to the necessity of an improvement and a greater serviceableness. A modification of the program has been done, called CAROLINE 1 M , At first the program has been recoded such, that only the differences with respect to the former calculation have to be introduced, decreasing significantly the number of input cards.

Secondly new geometries have been added together with an increased choise of coolants. Furthermore an entry has been left open to introduce special materials in any of the compounds, like fuel, canning, filler, pressure tube, calandria tube. Only the moderator has to be a mixture of heavy water.

The physical scheme however was not changed. The recent interest in Thorium fuelled reactors showed the necessity to have again an easy to use method to study the possibilities of this fertile material together with U233, U235 or eventually Plutonium.

For this reason the existing code CAROLINE 1 M was modified again. The geometrical part has remained as formerly but adaption to any general fuel composed of any U, Pu , or Th isotope made it necessary to change completely the physical base, from the correlational type to the straight-on physical type. For this reason it was decided not longer to speak about a member of the CAROLINE family, but give to the code a new name, PLUTHARCO.

It is realised, that this description, though fairly acceptable, is only a raw scheme. It should however be remembered, that the purpose of such a scheme is to allow the fast execution of reasonably reliable survey calculations often involving the variation

[^0]of an appreciable number of parameters. For this reason the recipe must be fairly simply. In later stages where more accuracy is needed, these calculations should be compared with more refined schemes present at Euratom (Ref. 25).

Results of this scheme have been compared with measurements and are show in another section of the paper. The agreement in general is quite reasonable.

The report is divided into sections being
I. The general description of the theory with the references
II. Comparison with experiments
III. A compilation of the formulae used in the program
IV. Tables of basic quantities and cross sections
V. Directions for use of the PLUTHARCO program.

Section I

I.1. The thermal multiplication factor

The thermal multiplication factor η is defined as the number of fast neutrons produced per neutron absorbed in the fuel.

As this may be diluted with oxygen carbon and other materials, their oross sections have to be taken into account in η.

It may thus be written as

$$
\eta=\frac{\left(\nu \Sigma_{f}\right)^{t}}{\Sigma_{a}^{t}}=\frac{S_{i} \nu(i) \Sigma_{F}(i)}{S \Sigma_{a}(i)+N_{d} \Sigma_{a, d}}
$$

where i is one of the 8 isotopes being present in the fuel mixture
$v(i)$ is the mean number of fast neutrons born per absorption of a neutron in a fissionable nucleus
$\Sigma_{f}(i)$ is the fission cross section of each of the isotopes being present in the fuel mixture
$\Sigma_{a}(i)$ the absorption cross section of each of the isotopes being present in the fuel mixture
$\Sigma_{a, d}$ the absorption cross section of the N_{d} diluent atoms per atom of fuel mixture.
The cross sectionsare the mean over the fuel spectrum. These spectrum effects are calculated assuming the Westcott conventions (Ref.I), 1.e. the spectrum may be supposed to be built up of a Maxwellian and a $1 / E$ tail characterised by the parameters T and r.
The method to caloulate r is outlined in Ref. 2 and 3.
The spectrum mean cross sections are then found from the formula

$$
\sigma=\sqrt{\frac{\pi}{4} \cdot \frac{T_{0}}{T}} \quad \hat{\sigma}=\sqrt{\frac{\pi}{4} \cdot \frac{T_{0}}{T}}(g+r s) \sigma_{0}
$$

in which	σ_{0}	is the $2200 \mathrm{~m} / \mathrm{sec}$ cross section
$9, \mathrm{~s}$	Westcott's constants	
$\hat{\boldsymbol{\sigma}}$	the equivalent $2200 \mathrm{~m} / \mathrm{sec}$ cross section averaged	
	over the above defined spectrum	
$\boldsymbol{\sigma} \quad$	the mean cross section of neutrons with spectral	
	constant T over the above defined spectrum	
T_{0}	$=293,6^{\circ} \mathrm{K}$	

For elements having resonances at low energies (Pu239, Pu240) s is replaced by s^{\prime} (Ref.2) where

$$
s_{i}^{\prime}=s_{i} / \sqrt{1 \cdot+4 \cdot \frac{V}{S_{\text {sff }}} \cdot N_{i} \cdot I}
$$

with	V/Seff being the mean chord length in the fuel element
I	the resonance integral
N_{i}	the number density of atoms of species i in the fuel
	element.

In fact the former formula represents the assumptions of the N.R.I.Md approximation. For isotopes being present in large concentrations U238, Th232 the Westcott scheme is not usable any more, and the three values have been set zero. The resonance absorption due to these materials is calculated taking into account the self shielding of the resonances and not by taking the infinite dilution as is assumed in Westcotts treatment. Also for the structural materials s is set to zero, i.e. supposing them to be pure $1 / v$ absorbers.

Having once the mean spectrum microscopic cross sections; the mean fuel cross section for fission, $\sigma_{f(f u e l)}$ and absorption $\sigma_{a(f u e l)}$ may be written as:

$$
\begin{aligned}
& \sigma_{a(f u e l)}=S_{i} \sigma_{a}(i) f(i)+N_{d} \cdot \sigma_{d} \\
& \sigma_{f(f \cup e 1)}=S_{i} \sigma_{f}(i) f(i)
\end{aligned}
$$

where \int_{i} is the summation over i terms ($i=1,8$)
$f(i)$ the density fractions of the ith fuel or fertile isotope
N_{d} the number of diluent atoms per atom of fuel and fertile material (i.e. for UO_{2} is 2)
σ_{d} the spectrum mean cross section of the diluent atoms.

The macroscopic fuel cross section is now simply found from

where
Σ
fuel is the mean fuel cross section over the Maxwellian $+1 / E$ spectrum for the fuel composition as defined in input
$P_{\text {fuel }}$ is the density of the fuel compound in $\mathrm{Gr} / \mathrm{cm}^{3}$
M fuel is the molecular weight of the fuel mixture
A is Avogadro's constant.
To calculate the microscopic cross sections the spectral constants have to be known.

Very often however f.i. in the case of Plutonium isotopes they cannot be defined properly.

For this reason a switch has been built into the progeam giving a choice of 3 different methods as given in the next table.

Choice	input 20	Description
1	-1	Candu correlated spectral constants
2	0	Spectral constants to be provided by the user
3	1	Input of TERMIDOR parameters

Choice 1
Canadians have (Ref.5) measured the relative reactionrates Pu239/U235 and $\mathrm{Lu} / \mathrm{Mn}$ in the fuel and moderator of a Candu lattice cell and analysed them to obtain the spectral constants of the Westcott formalism. Coolant channels containing different mixtures of light and heavy water at various temperatures were successively used in the experiments.

As result an empirical formula has been derived to calculate the spectral constants in fuel and moderator for lattices with similar geometry.

These formulae can be written as:

$$
\begin{aligned}
T_{f}^{\prime} & =T_{m}+300 \cdot r+b_{1}\left(V \Sigma_{a}\right)+b_{2}\left(V \Sigma_{s}\right) \\
& +b_{f}\left(V \Sigma_{s}\right)_{f}\left(T_{f}-T_{m}\right)+b_{t}\left(V \Sigma_{s}\right)_{t}\left(T_{t}-T_{m}\right)+b_{c}\left(V \Sigma_{s}\right)_{c}\left(T_{c}-T_{m}\right) \\
T_{m}^{\prime} & =T_{m}+300 r
\end{aligned}
$$

with r is the relative epithermal weight of the neutron spectrum
T physical temperature
T ' spectral constant
m, f, t, c moderator, fuel, tubes and coolant respectively
b variables obtained from fit with experiments
a,s absorption, resp. acattering labels to macroscopic cross sections.

When no region subscripts are attached to the parameters $V \Sigma_{s}$, the mean over the fuel bundle is meant.

Apart from these two most important spectral constants one needs the same for the tubes and outer coolant region. These were calculated supposing that in these regions the spectral constants were the mean of the former two.

Choice 2

Spectral constants are provided by the user.

Choice 3

TERMIDOR parameters input (Ref.6)
Giving the characteristics of a simplified lattice, the TERMIDOR code calculates the macroscopic cross sections of some important not $1 / v$ (U235, Pu239) absorbers together with the $1 / V$ cross sections (per unit cross section at $2200 \mathrm{~m} / \mathrm{sec}$) averaged over a neutron spectrum calculated by the code ($f 1 / v$).

The not $1 / v$ microscopic cross sections can directly be entered in PLUTHARCO, whether the $f_{\frac{l}{}}$ parameter serves in calculating the spectral constants of every $1 / \mathrm{v}$ isotope.

The calculation of this spectral constant is done by the formula

$$
T=\frac{T}{4} \cdot \frac{T_{0}}{f_{\frac{1}{2}}^{2}}
$$

a formula on its turn derived from

$$
F_{\frac{1}{V}}=\sqrt{\frac{\pi}{4} \cdot \frac{T_{0}}{T}}
$$

Although the not $1 / v$ cross sections (as said before) are entered directly, the code writes the spectral constants in the output for every isotope (thus included the not I / v ones).

Two iterations are made in every calculation. At the first iteration the value of r is taken to be zero. With this assumption a complete calculation is made until the lattice buckling. Fron these data another value of r is calculated. After entering this value in the Westcott formalisn the microsoopic cross sections are corrected and another buckling calculation performed.

The cross section values are given in tables ${ }^{3}$. Except the first method of calculations the fuel microscopic and macroscopic cross sections the program accepts directly the num-erical values of the macroscopic cross sections by the so called "7 choice" (see: Directions for use).
x see table 1 a and $] b$

I.2. The fast fission factor

The calculation of the fast fission factor E is based on the method of Fleishman and Soodak (Ref.7); however the scheme was simplified to a two group structure instead of a 3 group one. The main reason of this simplification is the uncertainty of the inelastically slowed down spectrum. This is supposed to be described by the function

$$
n(E)=E \cdot e^{-E}
$$

The form of this spectrum however is very similar to the fission spectrum of the region below 1 MeV , so that the division into 3 groups of different spectra was felt to be a little bit to luxuous. Although the scheme remained unchanged, the cross sections of the two groups until 1 MeV were taken equal.

The groups are separated by the fission thres-hold. The region in which fast fission appears is defined as the region surrounded by a rubberband strung around the fuel element. The fission source is supposed to be flat as well as the souraes of the neutrons of the next generations. In the first group neutrons are able to give fission, capture and scatter elastically and inelastically.

In the second group fission is not permitted as well as inelastic scattering.

Atoms with fissionning capacity beneath the U 238 fission thres-hold are corrected for the fact that sub-thres-hold fissionning is not permitted, i.e. the fast fission in the second group is normalized and added to the first.

The microscopic group cross seotions are calculated from data of Ref. 8 by contraction of 3 groups to the epifission thres-hold group and 6 groups to the subfission thres hold group. They were calculated with the aid of the following relations:

$$
\begin{aligned}
& \sigma_{t, I}=S_{k} \underset{I, k}{ } \cdot \sigma_{t r} \\
& \underset{I \rightarrow I}{ }=S_{k} f_{I, k} \sigma_{k, I \rightarrow I}=S_{k} \underset{I, k}{f}\left(\sigma_{n, n^{\prime}, k}-{\underset{k}{k}, k}_{3}^{S} \sigma_{k \rightarrow k^{\prime}}\right) \\
& \sigma_{I \rightarrow I}=\sigma_{t, I}-\sigma_{I \rightarrow I} \\
& \sigma_{c, I} \quad-\quad \underset{k}{f} \quad \underset{c, k}{ } \quad \sigma_{c, k} \\
& \sigma_{f, J}=\underset{k}{f} \underset{I, k}{f} \sigma_{f, k}+\underset{j}{S} \underset{\mathbf{I}, j}{ } \cdot \sigma_{f, j} \cdot W_{2} \\
& \nu \sigma_{f, I} \quad-\quad S_{k} \underset{I, k}{f}\left(\nu \sigma_{f}\right)_{k}+\underset{j}{S} f_{I, j}\left(\nu \sigma_{f}\right)_{j} \cdot W_{2} . \\
& \boldsymbol{\sigma}_{t, I I} \quad=\quad \underset{j}{S} \underset{\mathbf{i}, j}{ } \quad \boldsymbol{\sigma}_{t, j} \\
& \sigma_{c, I}=\underset{j}{S}{\underset{X}{x}, j}^{\sigma_{c, j}} \\
& \sigma_{s, I}=\underset{j}{S} \underset{I, j}{f} \sigma_{s, j}=\sigma_{t, I}-\sigma_{c, I}
\end{aligned}
$$

with the notations: k is the group index for the calculation of cross sections of broad (epithres-hold) group I of the two group scheme
j is the group index for the calculation of the cross sections for the subthreswhold broad group II of the two group scheme

The subscripts:

```
    t = total
I->II = (inelastic) scattering from group I to II
I->I=(elastic) scattering from group I to I
    c= capture
    f}=fissio
    s = scattering
n,n',k= inelastic scattering out of fine group k
    k,k'= scattering from group k into group k'.
```

The calculation of the mean macroscopic cross sections is done in two steps:

1. The calculation of the macroscopic cross sections of the different materials by

$$
\Sigma=\frac{P \cdot A}{M}\left(N_{1} \sigma_{1}+N_{2} \sigma_{2}+\ldots \ldots \ldots\right)
$$

where again
$P=$ density of the compound material
$\mathrm{A}=$ Avogadro's number
$M=$ molecular weight of the compound
$N_{1}, N_{2}=$ the number of atoms $1,2 \ldots$ per molecule of the compound. The calculation of the homogenized macroscopic cross sections by weigh ing the material cross sections with their respective volume fractions.

The volume fractions are calculated from the different volumes occupied within a rubber band stretched around the bare fuel pins.

The mean cross sections are calculated for all of the following interactions:

$\Sigma_{t, I}$	$=$ the total mean macroscopic cross sections in group I
$\Sigma_{I \rightarrow I}=$	scattering mean macroscopic cross section in group I
$\Sigma_{I \rightarrow I I}=$	the mean macroscopic transfer cross section out of group I
$\Sigma_{f, I}=$	the mean macroscopic fission cross section of group I
$V \Sigma_{f, I}=$	the mean fission source density per unit of flux . second
	in group I
$\Sigma_{c, I}=$	is the mean macroscopic capture cross section in group I
$\Sigma_{t, I}=$	the mean macroscopic total cross section in group II
$\Sigma_{c, I}=$	the mean macroscopic capture cross section in group II
$\Sigma_{s, I}=$	the mean macroscopic scattering cross section in group II

The number of collisions in group i, C_{i} per original fast neutron can now be written:

$$
\begin{aligned}
& C_{I}=\frac{0.561 \cdot P\left(\alpha_{B} \Sigma_{t, I}\right)}{\left(1-P\left(a_{B} \Sigma_{t, I}^{\prime}\right) \cdot \frac{\left(0.561 \cdot \nu \Sigma_{f, I}+\Sigma_{I \rightarrow I}\right)}{\Sigma_{t, I}}\right)} \\
& C_{I}=\frac{0.439 P\left(a_{B} \Sigma_{t, I}\right) \cdot\left(\frac{\nu \Sigma_{F, I} \cdot C_{1}+1}{\Sigma_{t, I}}\right)+P\left(a_{B} \Sigma_{t, I}\right) \cdot C_{I} \cdot \frac{\Sigma_{I \rightarrow I}}{\Sigma_{C, I}}}{1-P\left(a_{B} \cdot \Sigma_{t, I}\right) \cdot \frac{\Sigma_{S, I}}{\Sigma_{t, I}}}
\end{aligned}
$$

The extra number of fast neutrons generated per original fast neutron ($\varepsilon-1$) is then the product of the collision probabilities and neutron gain per collision summed over the two groups or:

$$
E-1=C_{I} G_{I}+C_{I I} G_{I}
$$

where 8

$$
\begin{aligned}
G_{I} & =\frac{v \Sigma_{f, I}-\Sigma_{f, I}-\Sigma_{c, I}}{\Sigma_{t, I}} \\
G_{I} & =-\frac{\Sigma_{c, I}}{\Sigma_{t, I}}
\end{aligned}
$$

I.3. The resonance escape probability

The calculation of the resonance escape probability may be devided into the following parts.

1. The effective surface per gram of fuel

For the fuel element the effective surface per gram is calculated by the method of Hellstrand (Ref.9). This means, that the fuel element is replaced by a rod with external surface equal to the rubber band surface (strung around the bare rods). The inside moderator holes are supposed to be a number of circular cylinders whose radii r are those of the inscribed circles of the holes.

The surface generated by this cylinders however has an efficiency given by the formula

$$
Y=2 \Sigma^{\prime} r\left(1-P_{0}\left(\Sigma^{\prime} r\right)\right)
$$

where
Σ^{\prime} being the mean volume weighed scattering cross section of the canning, organic and filler present in the holes of the cluster, which on its turn derived from

$$
\frac{S}{4}=\Sigma^{\prime} V\left(1-P_{0}\right)
$$

This relation is derived in Ref.l0 for cylindrised as well as cluster cases.

This recipe is easily usable in all regular lattices because in all these cases the holes are of cylindrical square or triangular shape. For the 22 rod cluster, where the holes are irregular, the effective radius of the inscribed circle was calculated as follers. The volume of the moderator inside the rubber band strung around the cluster was divided by the number of holes, to obtain the mean volume per hole.

If this hole was circular it would have an internal radius

$$
r_{e}=\sqrt{\frac{4 V_{0 i}}{21 T}}
$$

For an hexagonal arrangement one can show that the effective radius of the circular hole would be

$$
r_{e}^{\prime}=\sqrt{\frac{\frac{1}{4} \pi d^{2} \sqrt{3}-\frac{1}{2} \pi s^{2}}{\pi}}
$$

with $d=$ cluster pitch
$s=r o d$ radius
In this case the inscribed circle would be

$$
r_{i}^{\prime}=\frac{\alpha}{\sqrt{3}}-s
$$

If it is supposed that the holes are hexagonal the inscribed radius might be written

$$
\begin{aligned}
& r_{i}=r_{e} \cdot \frac{r_{i}^{\prime} / d}{r_{e}^{\prime} / d} \\
& r_{i}=\sqrt{\frac{V_{0}}{24 \pi}} \cdot \frac{\frac{1}{\sqrt{3}}-\alpha}{\sqrt{\frac{1}{4} \sqrt{3}-\frac{1}{2} r \alpha^{2}}}
\end{aligned}
$$

$$
\left(\alpha=\frac{s}{d}\right)
$$

The effective rod radius is found by the relation

$$
22 \pi s^{2}=V_{f u e l}
$$

when $V_{\text {fuel }}$ is fuel volume.
2. Calculation of the resonance integral

The cluster is now identified with an effective rod with the same surface per gram. For this rod the resonance integral can be looked-up in a table.

These tables were prepared formerly by calculating for uranium and thorium compound (metal, dioxide, mono and dicarbide) the resonance integrals as a function of the surface per gram and temperature (Ref.ll) by the method of Nordheim with the aid of the programs ZUT and TUZ.

The results were fitted for temperatures between 20° and $1600^{\circ} \mathrm{C}$ as

$$
I=A+B \sqrt{\frac{S}{M}}
$$

For any temperature the values of A and B can now be interpolated giving rise to its proper resonance integral. (see table l). For fuels composed of more than one fertile material, the resonance integral of each material is obtained first and the density weighed mean value calculated afterwards, i.e. with the assumption that the resonances of the different materials do not interfer with each other.
3. Calculation of resonance escape probability

Being known now the slowing down cross section $\boldsymbol{\xi}_{\boldsymbol{s}} \boldsymbol{\Sigma}_{\mathbf{s}}$ of the lattice, the resonance escape probability can be calculated by

$$
p^{\prime}=e^{-\frac{N I V_{f}}{E \Sigma_{s} V_{m}} \beta}
$$

```
where N = number of atoms of the absorber per unit volume
    V = volume
    \beta= the flux ratio at the resonanoe energy between fuel
        and moderator
    f = fuel
    m = moderator
```

The factor β is the product of two terms:
-the first one (ω) is due to the non uniformity of the fast sources. As a consequence of this fact, at large pitches, the slowing down distribution of the neutrons in the cell is not flat. $\boldsymbol{\omega}$ is calculated as in CAROLINE (Ref. 26), simply by assuming age theory to be valid and by calculating the energy-space distribution in a bath of heavy water for a linear source (neglecting the presence of the fuel rod);

- the second one (γ) due to the depression in one resonance occurred from the neutron absorption at higher resonances and, for the lowest resonances, to the fact that the NR-approximation in the moderator is not anymore valid.

The γ term is quite difficult to evaluate in a simplified manner. By assuming that the resonance absorption is spread out in a lethargy interval Δu, and by using the diffusion theory, it can be writtens

$$
\gamma=\frac{K r}{2} \cdot \frac{I_{0}\left(K_{r}\right)}{I_{1}(K r)} \approx\left(1+\frac{1}{8} K^{2} r^{2}\right)^{-1}
$$

where k is the reciprocal slowing down length at resonance energies and r the effective fuel rod radius.
K is calculated from

$$
K^{2}=\frac{3 \Sigma \Sigma_{s}}{\Delta u} \cdot \Sigma_{t r}\left(1-0.8 \frac{\xi \Sigma_{s} / \Delta u}{\Sigma_{t r}}\right)
$$

$\boldsymbol{\xi} \Sigma_{s}$ being the mean volume weighed slowing down cross section of the fuel, canning, organic and filler present in the homogenized cluster. $\Sigma_{\text {tr }}$ the volume weighed mean transport cross section of the former four materials.

The choice of $\Delta u \quad$ is somewhat arbitrary. Different authors propose values between 3 and 7 lethargy units. Therefore a mean value of 5 lethargy units has been chosen and it was found that with this figure good results were obtained by comparison with different experiments.

I.4. The thermal utilisation factor

For the calculation of the thermal utilisation factor, defined as the number of neutrons absorbed in the fuel per neutron absorber in the total lattice cell, the lattice cell is approximated by a cylindrical homogeneous fuel assembly at the center being surrounden by five cylindrical regions, i.e.

1. the outer coolant region
2. the pressure tube region
3. the insulation region
4. the calandria tube region
5. the moderator region.

Having once decided this, the calculation of f can be divided into two parts

1. the calculation of the fuel to cluster utilisation factor $f_{f c}$ 2. the calculation of the cluster to cell utilisation factor $f_{c c}$
with f equal to

$$
f=f_{F C} \cdot f_{c C}
$$

Because the cluster is composed of four materials being fuel (f), canning (g), filler (r) and coolant (0) the factor $f_{f c}$ can be written as the ratio of the reaction rates in fuel and cluster or

$$
f_{f c}=\frac{\varphi_{f} V_{f} \Sigma_{f}}{S_{i} \phi_{i} V_{i} \Sigma_{i}}
$$

$\$$ being the sum of the former four components of the fuel rod. Once the volumes and cross sections are known the only factors to be found are the relative fluxes.

These now are calculated from an expression suggested by Amouyal and Benoist (Ref.l2), giving the ratio of the flux at the fuel rod periphery to the mean flux in the rod. In the program is supposed that canning, filler and coolant are exposed to the same flux being the one at the periphery. The expression then writes

$$
\varphi_{g}=\frac{\phi(\alpha)}{\bar{\phi}}=1+\frac{\Sigma_{s}}{\Sigma_{t}} A\left[1+\alpha \frac{\Sigma_{s}}{\Sigma_{t}}+\beta\left(\frac{\Sigma_{s}}{\Sigma_{t}}\right)^{2}\right]
$$

where the subscripts c, s and t mean capture scattering and total respectively and A, α and B are functions of $a . \Sigma_{t}$ the pin radius in units of total mean free paths (Table 2). The cluster to cell utilisation factor is calculated by the method of Amouyal, Benoist and Guionnet (Ref.13). In this method the lattice cell has to be divided into a number of cylindrical regions (see description before) making the following hypotheses

1. the angular neutron density at the different surfaces is isotropic
2. the collision densities for the second order and multiple collisions are supposed to be independent of the place in the region.

From these two assumptions the collision probabilities for the inner, the proper and the outer region can be calculated for any of the regions.

Once these are known, the currents in out and inward directions can be found for every boundary. This gives rise to a set of two current equations for every region which may be solved by matrix calculus.

The currents on their turn give the absorption fraction in every region from the consideration that:
absorption fraction in region $i=$

source in region i - net outscattering from region i

total source in cell lattice

For the homogenized fuel region this absorption fraction is equal to the former defined factor $f_{c c}$. The flux in every region can now easily be found from the equivalence relation between sinks and sources in a region

$$
\begin{array}{ll}
& \Sigma_{a i} V_{i} \varphi_{i}=F_{i} \int_{j=1}^{N} Q_{j} V_{j} \\
\text { or } \quad & \bar{\varphi}_{i}=\frac{f_{i}}{\Sigma_{a i} V_{i}} \int_{j=1}^{N} Q_{j} V_{j}
\end{array}
$$

Furthermore the cell homogenized absorption cross section becomes

$$
\Sigma_{a}=\frac{\int_{j=1}^{N} \Sigma_{a_{j}} V_{j} \varphi_{j}}{\int_{j=1}^{N} V_{j} \varphi_{j}}
$$

In these formulae j is the region index, Σ_{a}, V, φ the macroscopic absorption cross section, volume and flux respectively and
f_{i} the absorption fraction in region i.
I.5. Average to uranium thermal flux ratio

Once defined the cluster to uranium flux ratio and known the flux in the six regions the fuel to mean lattice flux ratio can be easily found to be the product of

$$
\frac{\varphi_{\text {ceu }}}{\bar{\varphi}_{\mu}}=\varphi_{f c} \cdot \varphi_{c c}-\frac{V_{f}+\varphi_{q}\left(V_{q}+V_{r}+V_{0}\right)}{V_{f}+V_{q}+V_{c}+V_{0}}
$$

The following symbols have been used:

$$
\begin{array}{ll}
V=\text { volume } & g=\text { canning } \\
\mathbf{f}=\text { fuel } & \circ=\text { coolant } \\
r=\text { filler } &
\end{array}
$$

In the thermal energy group the cluster is supposed to be formed by a rubber band strung around the canned cluster. The volumes have to be calculated in agreement with this assumption.
I.6. The diffusion area

For the calculation of the diffusion area, $L^{\mathbb{2}}$, the lattice cell is supposed to be divided into two different regions, the central non-moderator region and the peripheral moderator region. It is furthermore supposed, that the absorption of the neutrons in the central region is totally due to the fuel so that

$$
f_{c}=f
$$

and

$$
f_{m}=1-f
$$

where f_{c} is the capture fraction of the central region f the thermal utilisation factor for the lattice cell f_{m} the capture fraction of the moderator.

Furthermore if the regions are thick one may write the diffusion area of the lattice (Ref.14) as:

$$
L^{2}=f_{c} L_{c}^{2}+f_{m} L_{m}^{2}
$$

The diffusion area of both the central and the moderator region are found with

$$
L^{2}=\frac{1}{3 \Sigma_{t r} \Sigma_{a}}
$$

For the moderator region these quantities can be directly calculated from microscopic cross sections.

For the central region however these data are derived with the formula

$$
\Sigma_{t r}=\frac{S_{i} \Sigma_{t r i} V_{i} \varphi_{i}}{S_{i} V_{i} \varphi_{i}} \quad \text { and } \quad \Sigma_{a i}=\frac{V_{f} \Sigma_{a f}}{S V_{i} \varphi_{i}}
$$

i.e. for the absorption cross section the absorption of all the other materials in the central region is neglected with respect to the fuel absorption.

I.7. The thermal diffusion coefficient

Once known the cell absorption cross section and the diffusion area the lattice diffusion coefficient is given by

$$
D=L^{2} \cdot \bar{\Sigma}_{a}
$$

I.8. The slowing down area

The insertion of a fuel element in a bath of heavy water influences on two different ways the Fermi-age:

1. by a change of the fast neutron spectrum
2. by a change of slowing down and transport properties.
3. The neutrons born in the fuel element have a definite probability to collide with the fuel to have an inelastic collision and the moderator atoms (especially H) to collide elastically.

Both collisions decrease the neutron energy giving rise to a perturbed fission spectrum.
Defining the Fermi-age of heavy water for a fission spectrum, inelastic scattered spectrum and elastic scattering (by H atoms) τ_{1}, τ_{i} and τ_{e} respectively, one may write the corrected value in the moderator by

$$
\tau_{m}=\tau_{1}\left(1-P_{H}-P_{i}\right)+\tau_{e} P_{H}+\tau_{i} P_{i}
$$

with
$P_{H} \quad$ being the probability of a fission neutron to collide with an H atom in the fuel rod
P_{i} the probability of a fission neutron to collide inelastically with an uranium atom in the fuel rod.

Assuming that inelastic scattering is only possible in group I of the fast spectrum (see calculation of E) and knowing the total collision probability C_{I}, the value is easily calculated from

$$
P_{i}=C_{I} \frac{V_{f} \Sigma_{I \rightarrow I, f}}{V_{B} \Sigma_{t, I}}
$$

with
f resp. $B \quad$ fuel and bundle respectively
$\Sigma_{I \rightarrow I}$ the inelastic fuel scattering cross section
$\Sigma_{t, I}$ the total fast cross section of the bundle
As elastic scattering to H atoms is possible in both fast groups I and II the formula P_{H} can be written

$$
P_{H}=C_{I} \frac{V_{0} \Sigma_{I \rightarrow I, 0}}{V_{B} \Sigma_{t, I}}+C_{I} \frac{\Sigma_{S, I, H} V_{0}}{V_{B} \Sigma_{t, I}}
$$

In the Fleischmann-Soodak scheme neutrons of group I only can scatter out of the group or scatter with conservation of energy in the group. For this reason the inelastic organic scattering oross section has been used in group I, thus supposing that inelastic soattering is only due to hydrogen.

In group II where all scattering is supposed to be with conservation of energy only the hydrogen part has been taken, i.e. multiplying the organic oross section with the fraction of the hydrogen scattering. The Fermi-ages for the different fast spectra can be written as follows, supposing that the cross sections of the moderator are not energy dependent over the whole energy range from fast to .025 ev and the values of τ_{1} and τ_{i} are 120 and $72 \mathrm{~cm}^{2}$ respeotively.

$$
\begin{aligned}
& \tau_{1}=120\left(\frac{\rho_{0}}{\rho}\right)^{2}-Q \Delta u_{1} \\
& \tau_{i}=J^{2}\left(\frac{\rho_{0}}{\rho}\right)^{2}-Q \Delta u_{1} \\
& \tau_{e}=120\left(\frac{\rho_{0}}{\rho}\right)^{2}-Q\left(1-\Delta u_{1}\right) \\
& \Delta \tau_{\text {res }}=Q \Delta u_{\text {res }} \\
& \text { with } \quad Q^{-1}=3\left(\xi z_{s}\right)_{m} \cdot\left(\Sigma_{t r}\right)_{m} \\
& \text { and }
\end{aligned}
$$

is the lethargy difference between neutrons of energy E and E_{0}. For τ_{1} and τ_{i} the last term on the right side corrects the age values to spectral constants T.

In τ_{e} another unit of lethargy is subtracted to take into account the elastic scattering due to the H atoms.
For $\tau_{\text {res }}$ the same relation is used calculating the lethargy range between neutron temperature and mean resonance energy which is supposed to be 30 eV .

The Fermi-age to resonance energy in the moderator thus is the difference between the one over the total range and the range from thermal to resonance energy

$$
\tau_{r e s, m}=\tau_{m}-\Delta \tau_{r e s}
$$

2. Supposing that after one collision in the moderator the neutrons have been diffused out perfectly, ice. the fluxes in the lattice cell are space independent, one may use the theory of homogeneous mixtures (Ref.15) to obtain

$$
\tau=\tau_{m} \cdot\left(\frac{V_{f}}{V_{m}}\right)^{2} \frac{1}{\left(1+\frac{\left(V \Sigma_{t r}\right)_{B}}{\left(V \Sigma_{t r}\right)_{m}}\right)\left(1+\frac{\left(V \Sigma_{s} I\right)_{B}}{\left(V E Z_{s}\right)_{m}}\right)}
$$

Assuming further that also in the cluster the slowing down and transport cross sections are energy independent one may correlate the lattice cell ages to the moderator ones by

$$
\frac{\tau_{\text {res }}}{T}=\frac{\tau_{\text {res }, m}}{\tau_{m}}
$$

The mean lattice cell slowing down cross section parameter i.e. E $\bar{\Sigma}_{s}$ is obtainad by taking the mean over the different materials present in the lattice cell weigh ing every cross section with the respective material volume of the cell i.e. again assuming that the flux is spatially constant.

I.9. Fast diffusion coefficient

The lattice cell fast diffusion coefficient is then calculated by

$$
D_{f}=\frac{\left(E \Sigma_{s}\right) \cdot \tau}{\Delta U}
$$

a formula obtained by assumptions already described in the former parts.
I.10. Lethargy range

The mean lethargy range travelled by the neutrons can easily be obtained from the fundamental formula

$$
\Delta u=T_{m}\left(E \Sigma_{s}\right)_{m}\left(\Sigma_{t_{v}}\right)_{m}
$$

I.ll. The initial conversion ratio The initial conversion ratio is defined as the number of fissile atoms produced per fissile atom burned.

The production of fissile atoms however takes place after absorption of neutrons of every energy, so that the production is divided into the thermal, fast and epithermal part.

For the thermal region the contribution is simply

$$
\frac{\Sigma_{a}^{f e, t}}{\sum_{a}^{f i, t}}
$$

with fe resp. $f i$ the fertile resp. fissile isotopes
t, f, e resp. the thermal, fast or epithermal energy group. The fast and epithermal contribution to the fissionable isotope production can be found as follows, knowing that the number of fission neutrons per burned fissile nucleus is

$$
\frac{\nu \Sigma_{f}^{f_{i, t}}}{\Sigma_{a}^{f i, t}}
$$

one only needs to know what is the production of fissionable isotopes per fast neutron born in these two regions.

In the framework of the two group theory this may be written for the fast (fission region) as

$$
C_{I} \frac{\Sigma_{c}^{F_{e}(1)}}{\Sigma_{t}^{(1)}}+C_{I I} \frac{\Sigma_{c}^{f e(2)}}{\Sigma_{t}^{(2)}}
$$

For the epithermal region this is easily found from the fact that (1-p) is the absorption per neutron entering the epithermal region. As furthermore the number of these neutrons per fast neutron is:

$$
\text { E. } \frac{1}{1+B^{2} \tau}
$$

the total production can then be writton in the form:
$\gamma_{0}=\left[C_{I} \frac{\Sigma_{c}^{f e(1)}}{\Sigma_{t}^{(1)}}+C_{I} \frac{\Sigma_{c}^{f e(2)}}{\Sigma_{t}^{(2)}}+\frac{\varepsilon(1-p)}{1+b^{2} \tau}\right] \frac{\nu \Sigma_{f}^{f i, t}}{\Sigma_{a}^{f i, t}}+\frac{\Sigma_{a}^{f e, t}}{\Sigma_{a}^{f i, t}}$

Connected with these parameters are the parameters X_{1}, being the number of fast fissions of the fertile material per fast born neutron, and:
X_{0} being the fast and epithermal capture in the fertile material per fast neutron born which are to be used in the long term reactivity program RLT 4.

This first formula can be derived easily from the former theory to be

$$
X_{1}-C_{I} \frac{\Sigma_{f}^{f e(1)}}{\Sigma_{E}^{(1)}}
$$

The second is already explained and is the form in square brackets in the formula of γ_{0}. The totals of X_{1}, X_{0} and γ_{0} for a lattice are simply the sum of the respective terms for the different isotopes.
I.12.The infinite multiplication factor and buckling

From the detailed nuclear parameters described formerly the infinite multiplication factor is obtained as

$$
k_{c o}=\eta E p f
$$

and the buckling as defined in conventional theories is then calculated by

$$
B^{2}=-\frac{1}{2}\left(\frac{1}{L^{2}}+\frac{1}{\tau}\right)+\frac{1}{2} \sqrt{\left(\frac{1}{L^{2}}+\frac{1}{\tau}\right)^{2}+\frac{4\left(k_{c-}-1\right)}{L^{2} \tau^{2}}}
$$

as well as the negative root of the criticality equation being used in diffusion theory programs. This negative root is found with a minus sign before the square root.
I.13. Two group diffusion constants

For the study of spatial effects in reactors with the aid of diffusion theory a set of group constant is required.

The scheme used in the calculation method gives us the possibility to obtain a set of two group constants. Except of the thermal constants already mentioned before, the fast constants are calculated as follows:

$$
\begin{aligned}
\nu \Sigma_{F} & =\frac{k_{c o} \Sigma_{a}}{p} \\
\Sigma_{1} & =\frac{D_{1}}{\tau} \\
\Sigma_{r 1} & =p \cdot \Sigma_{1} \\
\Sigma_{a 1} & =\Sigma_{1}-\Sigma_{r 1}
\end{aligned}
$$

II. Comparison with experimental results

To check the calculation scheme a number of comparisons has been made with experiments performed by different laboratories.

1. EXPO experiments (Euratom)
2. CISE experiments
3. Savannah River experiments
4. Chalk River experiments

A description of the lattice types will follow together with the method of interpretation and other details.
The comparison of the calculated and measured values is given in a series of plots at the end of this chapter.

II.1. EXPO experiments

A number of exponential measurements have been made at Euratom to find the buckling of a lattice compcsed of "7-rod cluster" elements fuelled with uranium carbide and cooled with diphyl.

The measurements were made for ten dffferent pitches ranging from $22-30 \mathrm{~cm}$. More details are given in ref.16. The inaccuracies are mainly originated by the limited number of test elements contained in the experimental facility giving rise to large inhomogeneity effects etc.

The error however is supposed not to exceed. $\cdot 2 \mathrm{~m}^{-2}$. A plot of the calculated curve, together with some measured data is given in fif.l. The agreement is very satisfactory for lattices with a pitch $\geqslant 22 \mathrm{~cm}$. The differences are notably smaller then the inaccuracies remained at the interpretation of experimental results.

Table 1 gives the calculated detailed parameters, together with the measured values of the buckling.
II.2. CISE Experiments

A set of bucklinr measurements in Aquilon II has been performed by CISE in contract ivith Euratom (ref.l7). In this experiment the successive replacement method has been used. The tested configurations were made-up of concentric annuli elements, fuelled by natural uranium and having polystyrene to simulate the hydrogeneous coolant.

Two concentrical tubes have been used in the measurements; $A C_{1}$ a composition of two concentrical tubes filled with "coolant" and $A C_{2}$, a tube with a bar of the same outer most size as the internal tube of $A C_{1}$. Two densities of polystyrene have been used with respective densities of .307 and .578 gram/ cm^{2} indicated by resp. T_{1} and T_{3} in the fuel element index.

One sees in fig. 2 that the best agreement is found for the tube-and-bar element AC_{2} at high pitches, where the difference is within the accuracy. of the measurements. For the $A C_{1}$ cluster the disagreement between experiment and theory is the greatest of all the comparisons made and is of the order of $.5 \mathrm{~m}^{-2}$.

The only encouragement is here, that the Euratom scheme gives even better results than those obtained with the fundamental scheme used at CISE. In both cases the calculations give to low results (Ref.l8).

Besides the fundamental scheme a correlated one has been constructed by CISE with adjustment prameters, in the resonance integral and k_{∞}. In table 6 and 7 these results are compared with ours.

The factor p in the CISE results given in the tables is corrected such, to give the correlated k_{∞} with the normal four factor formula. Although differences in the partial parameters occur, one sees that their total effect on the infinite multiplication factor is very small. The main differences arise in the values of the migration areas \mathbf{l}^{2} and τ, which on their turn lead to those large differences in the buckling.
II.3. Savannah River experiments

A generalised study of the reactor physics of natural uranium, heavy water systems has been made at Savannah River Laboratories (Ref.19). Detailed nuclear parameters $\eta, \varepsilon, p, f \quad$ etc. were measured in the PDP for $D_{2} 0$ moderated lattices of natural uranium rod clusters of 1 , 3,7 and 19 rods. These rods were 1 inch in diameter and cladded with. .032 inch of aluminium.

Apart from this way of obtaining the buckling this parameter was obtained by flux mapping analysis.

The first method however, can only be performed with the aid of a theoretical scheme, which is only a raw pitture of reality. However it helps us to esłimate the accuracy of every parameter .

It seems therefore, that the most canfidence could be given to the flux mapping experiments. The figures of all the experinents are given in Fig.3-5.

For any of the 4 cluster types, measurements have been made for a wide range of pitches.

Tables 8-10 give the comparisons of the detailed nuclear parameters obtained from the experiments with the calculated ones. One sees, that the Savannah River η and ε are always greater than the ones calculated by us.

Their p values are mostly greater for small pitches and may sometimes obtain smaller values at large pitches especially in the small clusters. Their f values are always a little smaller then the ones calculated by us.
Nevertheless the Savannah River k-inf values are always greater by some percents, the difference increasing at larger pitches.

This difference however is compensated by the fact that their values of the migration parameters are greater.

All these differences result in PLUTHARCO calculated bucklings, which are too large for the single rod compared with both types of experiments. For the 3 rod clusters our calculated results are intermediate with respect to both experimental results, whereas for the 7 -rod cluster both techniques give values who are larger the ones calculated by us. In the 1 and 7 rod clusters the difference may amount to $.5 \mathrm{~m}^{-2}$.

For the lowest pitches calculations of the spatial constants were nade by using the CANDU-scheme as well as the TERMIDOR scheme.

The plots show, that for large clusters the TERMIDOR results are in favour to the CANDU ones.
Differences in the 7 -rod cluster case amount to about . $4 \mathrm{~m}^{-2}$ at undermoderated lattices. For single rod lattices the difference is of the same order of magnitude but of opposite sign.
II.4. Chalk River experiments

In the $Z E D-I I$ reactor at Chalk River, a zero energy critical facility, a series of experiments has been made of the spectral constants, Westcott values in the fuel and moderator regions, thernal neutron spectrum spatial distributions relative conversion ratio's and fast fission ratio's. With the aid of these figures the detailed nuclear parameters could be calculated.

To obtain a broad experimental background for recipes to be checked measurements were made for various lattice arrangements, i.e. with as variables the lattice pitch, coolant (organic - HB ${ }_{40}$, heavy water and air); fuel compounds (uranium metal and oxide) and cluster type (7 and 19 rod hexagonal with about the same fuel volume per cm).

From above mentioned parameter 3 the critical buckling was calculated. Apart from this results direct buckling measurements were made (Ref.20-23). Comparisons with PLUTHARCO calculations have been performed for oxide fuel only.
The olusters are identified by a symbol which is devided into three parts (eq. $7 \mathrm{D}_{2} 018$) the number of fuel pins per cluster, the coolant type and lattice pitch respectively.

For the 7 rod clusters the comparisons with detailed data are given in Table ll-13, the bucklings in fig.6-8; for the 19 rod olusters resp. Table 14-16 and fig.9-11.
A very good agreement is found for η, ε and f, with differences in the order of 1 permille, the only appreciable difference found is in p, being of the order of 15 permille for small pitches and decreasing for larger ones.

The migration areas L^{2} and τ show relatively the greatest differences with the cAmD results L^{2} being too great and τ too small by about 6%. For the 7 rod clusters the differences of L^{2} and τ are of different sign, in the 19 rod case both are appreciably smaller tran the ones obtained from the measurements. As a result of this, one sees (Fig. 6-8) that the calculated bucklings are better in agreement with the experiments (differences about . $1 \mathrm{~m}^{-2}$) for the 7 rod cluster than for the 19 rod cluster, which are all too high by at most $.5 \mathrm{~m}^{-2}$. The measured Westcott r factor for the Chalk River cluster has been compared with PLUTHARCO. The measured values turned out to be 3% smaller independent of the pitch.
The measured moderator spectral constants correspond very well with the calculated ones too, the last ones being smaller by about $3-5^{\circ} \mathrm{K}$. The calculated fuel spectral constants however, are too low by $30^{\circ} \mathrm{K}$ for smell pitches decreasing to $15^{\circ} \mathrm{K}$ for large pitches. The resulting buckling difference on the other hand never exceed $.2 \mathrm{~m}^{-2}$.
II.5. Conclusions

As conclusion may be said that in general the detailed nuclear parameters η, ε, p and f were good compared with the measurements. The migration area L^{2} and τ show reletively much greater differences than the former four. Whether L^{2} shows differences in both directions little can be said from the comparisons. However the Fermi-age calculated in PLUTFARCO is without exception smaller than the values quoted from experiments.
The buckling values are generally sufficiently near to the values given by the experiments. Differences are mostly within. $3 \mathrm{~m}^{-1}$.

Furthermore the results show that for small pitches systematicly too low values of the buckling are obtained with PLUTHARCO. This may be caused by two effects:

1. Inaccuracy in the scheme describing the flux disadvantage factors in the epithermal range,
2. Appoximation in the assumption of the Nestcott scheme, due to spectrum hardening.

Indeed is found from the Savanah River comparisons that a more ricorous method to calculate the spectral constants improver the Eeneral ageement with the experimental results at low pitches (see Fig.4).

Ess.9 Comparison teowsen Chalk Rtwer expertiments and PUUTHAGCO calodations (V) rod cluster, go cooled)

- experpments
- salculacions

III. Compilation of formulze

A complete set of formulae is given in the next part of the report together with a list of symbols.

List of symbols

III.1. Cross sections
a. Subscripts

The first index refers to the type of reaction, the second to the type of material.
Type of reaation
$\mathrm{a}=$ absorption $=$ capture + fission
c = capture
$e=$ fast elastio scattering
$f=$ fission
$i=f a s t$ inelastic soattering
$s=$ elastic scattering
$t=$ total $=$ absorption + scattering
$\operatorname{tr}=\operatorname{transport}$
Type of material
$c=$ fuel
$g=$ canning
$\mathrm{m}=$ moderator
$0=$ coolant (organic or heavy water)
$r=f i l l e r$
$\mathrm{t}=$ assembly of pressure tube (1) and calandria tube (3)
$u=u r a n i u m$
b. Superscripts
$e=$ epithermal
FE = fertile isotope ($\mathrm{Th}-232, \mathrm{U}-238, \mathrm{Pu}-240$)
$F I=$ fissile isotope (U-233, U-235, Pu-239, Pu-241)
$\mathrm{t}=$ thermal
(1) $=$ fast above fission thresshold
(2) = fast beneath " "

1 = fast group in 2 group scheme
.III. 2. Physical parameters
a.

EXSAP = extra absorption in SAP due to inpurities (value at $2200 / \operatorname{secxl}^{5}$)
$F(i)=$ atomic fraction of isotope i
$f(1 / v)=$ spectrum mean microscopic $1 / v$ abs.cross section/barn (2200m/sec)
g $\quad=$ Hestcott averaging factor
HBR $=$ percentage of high boiling residues in santowax
M = \quad molecular number
$\mathrm{N}=$ number of nuclei $/ \mathrm{cm}^{3}$
$\mathrm{N}_{\mathrm{h}} \quad=$ number of H-atoms/organic molecule
$\mathrm{N}_{\mathrm{c}} \quad=$ number of C-atoms/organic molecule
$\mathrm{Pu}=$ purity of heavy water
$\mathbf{r} \quad=$ epithermal flux fraction
s $\quad=$ Hestcott factor
S = reference density
$\mathbf{T}=$ temperature (${ }^{{ }_{i}}$)
$T_{n}=$ spectral constant (${ }^{\circ} \mathrm{K}$)
$T_{0}=$ room temperature $\left(293^{\circ} \mathrm{K}\right)$

ALPA $=$ weight percentag of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in SAP
?HO $=$ density ($\mathrm{gr} / \mathrm{cm}^{3}$)
RLTR = inverse reference transport cross section
BSH = averaged scattering cross section/H-atom
SAL = effective absorption section (averaged over a Maxwellian flux at fuel temperature T_{n}) due to alloys contained in the fuel
CHV = additional heavy water absorption section due to impurities other than light water (value at $2200 \mathrm{~m} / \mathrm{sec}$)
b. Subscripts

$\mathrm{c}=$ fuel	$\mathbf{s}=$ Santowax
$\mathrm{d}=$ iphenyl	SAP $=$ Sintered Aluminium Power
$\boldsymbol{g}=$ canning	t

gr $=$ graphite
(1) and calandria tube (3)
m $=$ moderator
$0 \quad=$ coolant (organic or heavy water)
Oi = inner coolant
$00=$ duter coolant
$r=f i l l e r$

III.3. Geometrical parameters

a.
$V=$ volume
$Z=$ square pitch
$\mathrm{b}=$ lattice cell radius
$\mathrm{a}=\mathrm{bundle}$ radius
$S=$ bundle effective fuel surface / cm
$R_{c}=$ inscribed circle between fuel rods in cluster
$\gamma=$ escape probability
b. subscripts

For region identification see 2 . (physical parameters)
$u=$ total (in connection with S)
$\mathbf{f}=$ outer (in connection with S)
$t_{1}=$ first tube (pressure tube)
$t_{2}=$ seaond tube (isolation tube)
$t_{3}=$ third tube (calandria tube)
$t=$ three former tubes
$B=$ bundle
c. superscripts
$t=$ thermal
$f=f a s t$
$e=$ epithermal

FUEL

1. Calculation of spectral constants

a. Correlated spectral constants

$$
\begin{aligned}
& \left(T_{n}^{\prime}\right)_{f}=6.8 \cdot\left(V_{c} \cdot z_{a c}^{t}+V_{q} \cdot z_{a q}^{t}+V_{0} \cdot z_{a 0}^{t}+V_{r} \cdot z_{a c}^{t}\right)-0.11 \cdot V_{0} \cdot z_{s o}^{t} \\
& +0.0044 \cdot V_{c} \cdot Z_{s c}^{t} \cdot\left(T_{c}-T_{m}\right)+0.00168 \cdot\left(V_{q}+V_{t_{1}}\right) \cdot \Sigma_{m q}^{t} \cdot\left(T_{0}-T_{m}\right) \\
& +\left(T_{0}-T_{m}\right) \cdot\left(1-0.8 e^{-0.1 V_{0} z_{50}^{t}}-0.2 e^{-0.7 V_{0} \sum_{50}^{t}}\right)+T_{m}+300 \% \\
& \left(r_{n}^{\prime}\right)_{g}=\left(T_{n}^{\prime}\right)_{q} \\
& \left(T_{n}^{\prime}\right)_{0 i}=\left(T_{n}^{\prime}\right)_{F} \\
& \left(T_{n}^{\prime}\right)_{T}=\left(T_{n}^{\prime}\right)_{00}=\frac{\left(T_{n}^{\prime}\right)_{F}+\left(T_{n}^{\prime}\right)_{m}}{2} \\
& \left(T_{n}^{\prime}\right)_{t_{2}}=\left(T_{n}\right)_{r} \\
& \left(T_{n}^{\prime}\right)_{t_{s}}=\left(T_{n}\right)_{r} \\
& \left(T_{n}^{\prime}\right)_{m}-T_{m}+300 r
\end{aligned}
$$

b. Spectral constants directly entered
c. TERMIDOR spectral constants for calculating $\frac{1}{v}$-cross sections
$\left(T_{n}\right)_{f}=\frac{\pi}{4} \cdot \frac{293 \cdot 6}{f^{2}\left(\frac{t}{5}\right)_{c}}$
$\left(T_{n}\right)_{g} \cdot\left(T_{n}\right)_{f}$
$\left(T_{n}\right)_{0} \cdot\left(T_{n}\right)_{f}$
$\left(T_{n}\right)_{r}=\left(T_{n}\right)_{\infty}=\frac{\left(T_{n}\right)_{f}+\left(T_{n}\right)_{m}}{2}$
$\left(T_{n}\right)_{t_{2}}=\left(T_{n}\right)_{r}$
$\left(T_{n}\right)_{t_{s}}=\left(T_{n}\right)_{r}$
$\left(T_{n}\right)_{m}=\frac{\pi}{4} \cdot \frac{298.6}{f^{2}(t)_{m}}$
For non $-\frac{1}{v}$-cross sections : data are entered directly

$\sigma_{a}(236)$	$\sigma_{2}(239)$
$\sigma_{F}(235)$	$\sigma_{F}(239)$

2. Calculation Westcott constants

$q_{a}(232)=1$.
qa (238) - 1 .
$S_{a}(236) \cdot 50 \cdot \sqrt{\frac{T_{n}}{293.6} \cdot \frac{T}{4}}$
$S_{a}(240)=\frac{S_{Q}(240)}{\sqrt{\frac{1+4 \cdot V_{C} \cdot N \cdot 115000 \cdot F(240)}{S_{\text {eff }}}}}$
S_{Q} (209) $=\frac{S_{a}(239)}{\sqrt{\frac{1+4 \cdot V_{C} \cdot N \cdot F(239) \cdot 3100}{S_{\text {eff }}}}}$
S_{f} (23g) $\cdot \frac{S_{f}(25 \mathrm{~g})}{\sqrt{\frac{1+4 \cdot V_{c} \cdot N \cdot F(25 g) \cdot 5100}{s_{\text {aff }}}}}$

3. Calculation Westcott cross sections

$$
\begin{aligned}
& \hat{\sigma}_{a}(i)=\sigma_{a}^{\dagger}(i) \cdot[g(i)+r \cdot s(i)] \\
& \hat{\sigma}_{F}(i)=\sigma_{p}^{\dagger}(i) \cdot[g(i)+r \cdot s(i)]
\end{aligned}
$$

4. Mixed fuel microscopic cross sections

$$
\begin{aligned}
& \sigma_{a}^{+} \quad \sum_{i=1}^{g} F(i) \cdot \hat{\sigma}_{a}(i) \cdot \sqrt{\frac{\pi}{4} \cdot \frac{293.6}{T_{m}}} \\
& \sigma_{s}^{t}=\sum_{i=1}^{s} F(i) \cdot \sigma_{s}^{t}(i) \\
& \sigma_{f}^{*} \quad=\sum_{i=1}^{8} F(i) \cdot \hat{\sigma}_{i}(i) \cdot \sqrt{\frac{\pi}{4} \cdot \frac{299.6}{T_{n}}} \\
& \left(-\sigma_{F}\right)^{t}=\sum_{i=1}^{8} \cdot F(i) \cdot v(i) \cdot \hat{T}_{f}(i) \cdot \sqrt{\frac{\pi}{4} \cdot \frac{293 \cdot 6}{T_{n}}} \\
& \sigma_{i r}^{t}=\sum_{i=1}^{s} f(i) \cdot\left[\sigma_{t r}^{+}(i)+\hat{\sigma}_{a}(i)\right] \\
& \sigma_{s}^{e}=\sum_{i=1}^{\infty} F(i) . \sigma_{s}^{e}(i) \\
& \sigma_{t r}^{e}=\sum_{i=1}^{q} F(i) \cdot \sigma_{t_{i}}^{e}(i) \\
& \left(\xi \sigma_{s}\right)^{e} \cdot \sum_{i=1}^{e} F(i) \cdot\left(\xi \sigma_{s}\right)^{e}(i) \\
& \sigma_{t}^{(1)}=\sum_{i=1}^{8} F(i) \cdot \sigma_{t}^{(1)}(i) \\
& \sigma_{e}^{(1)} \quad=\sum_{i=1}^{8} F(i) \cdot \sigma_{e}^{(1)}(i) \\
& \left(v \sigma_{f}\right)^{(4)}=\sum_{i=1}^{i} F(i) \cdot\left(v \sigma_{f}\right)^{(i)}(i) \\
& \sigma_{i}^{(1)} \cdot \sum_{i=1}^{z} F(i) \cdot \sigma_{i}^{(4)}(i) \\
& \sigma_{i}^{(4)} \cdot \sum_{i=1}^{8} F(i) \cdot r_{i}^{(1)}(i) \\
& r_{c}^{(i)}=\sum_{i=1}^{n} F(i) \cdot r_{c}^{(i)}(i) \\
& \sigma_{t}^{(2)}=\sum_{i=1}^{\frac{2}{2}} F(i) \cdot \sigma_{t}^{(2)}(i) \\
& \sigma_{s}^{(2)}=\sum_{i=1}^{8} F(i) \cdot \sigma_{s}^{(a)}(i)
\end{aligned}
$$

i. | 1 | $T h 232$ |
| ---: | :--- |
| 2 | $U 238$ |
| 3 | $U 235$ |
| 4 | $U 236$ |
| 5 | $U 235$ |
| 6 | $P_{4} 239$ |
| T | $N 240$ |
| 8 | $R 241$ |

5. Fertile isotope macroscopic cross sections

$$
\begin{aligned}
& \sum_{a}^{\text {Flt }}=\sum_{k=1}^{3} F(k) \cdot N \cdot \hat{\sigma}_{a}(k) \cdot \sqrt{\frac{\pi}{4} \cdot \frac{293.6}{T_{n}}}=\sum_{k=1}^{3} \Sigma_{a}^{\text {Pat }}(k) \\
& \sum_{F}^{F F(1)} \cdot \sum_{k=1}^{3} F(k) \cdot N \cdot \sigma_{F}^{(1)}(k)=\sum_{k=6}^{3} \sum_{f}^{F E(1)}(k) \\
& \begin{array}{rr}
k=1 & \text { Th } 292 \\
2 & \text { U } 238 \\
3 & \text { P } 240
\end{array} \\
& \sum_{c}^{F=(1)}=\sum_{k=1}^{B} F(k) \cdot N \cdot\left[\sigma_{t}^{(1)}(k)-\sigma_{e}^{(1)}(k)-\sigma_{i}^{(1)}(k)-\sigma_{F}^{(1)}(k)\right]=\sum_{k=1}^{3} \sum_{i}^{F E(1)}(k) \\
& \Sigma_{c}^{F G(2)}=\sum_{k=1}^{3} F(k) \cdot N \cdot\left[\sigma_{t}^{(2)}(k)-\sigma_{b}^{(2)}(k)\right]=\sum_{k=1}^{3} \sum_{c}^{F E(2)}(k)
\end{aligned}
$$

6. Resonance integrals

$$
\begin{aligned}
& A(k, j) \text { Function of }[T] \\
& B(k, j) \text { function of }[T] \\
& U(k)=F(k) \cdot N \quad A(k, j) \\
& U_{2}(k)=\frac{F(k) \cdot N \cdot B(k, j)}{\sqrt{P \cdot F(k)}}
\end{aligned}
$$

$j=1$	Metal
2	Oxide

3 Monocarb.
4 Dicarbide
7. Fissile isotope macroscopic cross sections

$$
\Sigma_{a}^{\text {rit }}=\sum_{L=1}^{4} F(l) \cdot N \cdot \hat{\sigma}_{a}(l) \cdot \sqrt{\frac{\pi}{4} \cdot \frac{295.6}{T}}
$$

1.1	$U 233$
2	$U 235$
3	Pu 239
4	Pu 244

8. Fuel compound macroscopic cross sections

$$
\begin{aligned}
& \Sigma_{a}^{t}=M \cdot\left[\sigma_{a}^{t}+\delta_{a}^{t}(i)\right]+\Sigma_{a b y} \\
& \Sigma_{i}^{t}=N \cdot\left[r_{i}^{t}+\boldsymbol{c}_{+1}^{t}(i)\right] \\
& \left(\nu \Sigma_{f}\right)^{t} \quad=N \cdot\left(\nu \sigma_{f}\right)^{t} \\
& \Sigma_{s}^{t} \quad N \cdot\left[\sigma_{s}^{t}+\sigma_{s d}^{t}(i)\right] \\
& \Sigma_{t r}^{t}=N \cdot\left[\sigma_{t r}^{t}+\sigma_{t r d}^{t}(i)\right] \\
& \Sigma_{s}^{\bullet} \quad-N \cdot\left[\sigma_{s}^{\bullet}+\sigma_{s d}^{\bullet}(i)\right] \\
& z_{t r}^{e} \cdot N \cdot\left[\sigma_{t r}^{e}+\sigma_{t+d}^{e}(i)\right] \\
& \left(\xi \Sigma_{s}\right)^{e}=N \cdot\left[\left(\boldsymbol{G} \sigma_{s}\right)^{e}+\left(\xi \xi_{s}\right)^{\bullet}(i)\right] \\
& \left(\nu \Sigma_{i}\right)^{(4)} \cdot N . \quad\left(\sigma_{F}\right)^{(4)} \\
& Z_{t}^{(1)}=N \cdot\left[\sigma_{t}^{(1)}+\sigma_{t d}^{(1)}(i)\right] \\
& \Sigma_{e}^{(1)}=N \cdot\left[\sigma_{e}^{(4)}+\sigma_{e d}^{(1)}(i)\right] \\
& \Sigma_{i}^{(1)}=N \cdot\left[\sigma_{i}^{(1)}+\sigma_{i \alpha}^{(4)}(i)\right] \\
& \boldsymbol{Z}_{f}^{(4)} \cdot N \cdot{ }_{f}^{(4)} \\
& \Sigma_{c}^{(1)}=N \cdot\left[\sigma_{c}^{(1)}+\sigma_{i d}^{(1)}(i)-\sigma_{d d}^{(4)}-\sigma_{i d}^{(1)}\right] \\
& \Sigma_{t}^{(a)}=N \cdot\left[\sigma_{t}^{(e)}+\sigma_{t d}^{(e)}(i)\right] \\
& \Sigma_{s}^{(e)}=N \cdot\left[\delta^{(\varepsilon)}+\sigma_{s d}^{(2)}(i)\right] \\
& \Sigma_{c}^{(e)}=\Sigma_{t}^{(e)}-\Sigma_{s}^{(e)}
\end{aligned}
$$

ORGANIC COOLANT ($\mathrm{C}_{\mathrm{N}_{\mathrm{C}}} \mathrm{H}_{\mathrm{N}_{\mathrm{H}}}$)
α. Thermal cross sections

$$
\begin{aligned}
& \Sigma_{a}^{t}=\frac{0.6024}{M}\left[N_{H} \cdot 0.332+N_{c} \cdot 0.00483\right] \cdot \sqrt{\frac{\pi T_{0}}{4 T_{n}}} \cdot \rho_{0} \\
& \Sigma_{s}^{t} \cdot \frac{0.6024}{M}\left[N_{H} \cdot \bar{\sigma}_{S M}(T)+N_{c} \cdot 4.8\right] \cdot \rho_{0} \\
& \Sigma_{t r}^{t}=\frac{0.6024}{M}\left[N_{H} \cdot\left[\lambda_{\lambda_{t}}\right]_{4}+N_{c} \cdot 4.53\right] \cdot P_{0}
\end{aligned}
$$

p. Resonance and epithermal cross sections

$$
\begin{aligned}
& \Sigma_{6}^{e}=\frac{0.6024}{M}\left[N_{H} \cdot 20.4+N_{c} \cdot 4.66\right] \cdot \rho_{0} \cdot \\
& \Sigma_{\text {lr }}^{e}=\frac{0.6024}{M}\left[N_{H} \cdot 20.4 \cdot(1-0.667)+N_{c} \cdot 4.66 \cdot(1-0.056)\right] \cdot \rho_{0} \\
& \left(\xi \Sigma_{6}\right)^{e}=\frac{0.6024}{M}\left[N_{H} \cdot 20.4+N_{c} \cdot 0.1589 \cdot 4.66\right] \cdot \rho_{0}
\end{aligned}
$$

8. Fast cross sections

$$
\begin{aligned}
& \Sigma_{t}^{(H)}=\frac{0.6024}{M}\left[N_{H} \cdot 1.91+N_{c} \cdot 4.49\right] \cdot p_{0} \\
& \Sigma_{e}^{(4)} \cdot \frac{0.6024}{M}\left[N_{H} \cdot 0.45+N_{c} \cdot 1.27\right] \cdot p_{0} \\
& \Sigma_{i}^{(1)}-\frac{0.6024}{M}\left[N_{H} \cdot 1.46+N_{c} \cdot 0.22\right] \cdot p_{0} \\
& \Sigma_{t}^{(2)}-\frac{0.6024}{M}\left[N_{H} \cdot 4.56+N_{c} \cdot 2.70\right] \cdot p_{0} \\
& \Sigma_{e}^{(L)}=\frac{0.6024}{M}\left[N_{H} \cdot 4.56+N_{c} \cdot 2.78\right] \cdot p_{0}
\end{aligned}
$$

SANTOWAX ($\mathrm{C}_{18} \mathrm{H}_{14}$)
α Thermal cross sections

$$
\begin{aligned}
& \rho_{s}=4.099-0.00072 T+0.0009 \cdot x \quad\left(x=x \text { HER } T T \text { in }{ }^{0} c\right) \\
& \Sigma_{a}^{t}=\frac{0.6024}{230}[14.0 .512+48.0 .00488] \cdot \sqrt{\frac{\pi T_{0}}{4 T_{n}} \cdot \rho_{s}} \\
& \Sigma_{s}^{t}=\frac{0.6024}{280}\left[14 . \bar{T}_{s M}(T)+48.4 .8\right] \cdot \rho_{s} \\
& \Sigma_{t r}^{t}=\frac{0.6024}{230}\left[14 .\left[\rho \lambda_{t r}\right] d+18.4 .53\right] \cdot \rho_{s}
\end{aligned}
$$

p. Resonance and epithermal cross sections

$$
\begin{aligned}
& \Sigma_{s}^{*}=\frac{0.6024}{230}[14 \cdot 20.4+18 \cdot 4.66] \cdot \rho_{5} \\
& \Sigma_{t r}^{*}=\frac{0.6024}{280}[14 \cdot 20.4(1-0.667)+48 \cdot 4.66(1-0.056)] \cdot P_{s} \\
& \left(E \Sigma_{s}\right)^{e}=\frac{0.6024}{220}[14 \cdot 20.4+12 \cdot 0.1589 .4 .66] \cdot P_{s}
\end{aligned}
$$

8. Fast cross sections

$$
\begin{aligned}
& \Sigma_{t}^{(1)}=\frac{0.6024}{230}\left[\begin{array}{llll}
14 \cdot 1.94 & +18 \cdot 1.49
\end{array}\right] \cdot \rho_{5} \\
& \Sigma_{0}^{(1)}=\frac{0.6024}{230}[14 \cdot 0.45+18 \cdot 1.27] \cdot \rho_{5} \\
& \Sigma_{i}^{(1)}=\frac{0.6024}{230}\left[\begin{array}{lll}
14 \cdot 1.46+18 \cdot 0.22
\end{array}\right] \cdot \rho_{5} \\
& \Sigma_{t}^{(2)}=\frac{0.6024}{230}[14 \cdot 4.66+18.2 .78] \cdot \rho_{b} \\
& \Sigma_{e}^{(2)}=\frac{0.6024}{280}[14.4 .56+18.2 .78] \cdot \rho_{5}
\end{aligned}
$$

DIPHENYL ($\mathrm{C}_{12} \mathrm{H}_{10}$)
α Thermal cross sections

$$
\begin{aligned}
& \Sigma_{a}^{t}=\frac{0.6024}{164}[10 \cdot 0.332+12 \cdot 0.00483] \sqrt{\frac{\pi T_{0}}{4 T_{n}}} \cdot \rho_{d} \\
& \Sigma_{s}^{t}=\frac{0.6024}{154}\left[10 \cdot \bar{\sigma}_{\Delta H}(T)+12 \cdot 4.8\right] \cdot \rho_{d} \\
& \Sigma_{t r}^{t}=\frac{0.6024}{154}\left[10 \cdot\left[\rho \lambda_{t r}\right]_{d}+12 \cdot 4.53\right] \cdot \rho_{d}
\end{aligned}
$$

β. Resonance and epithermal cross sections

$$
\begin{aligned}
& \Sigma_{B}^{e}=\frac{0.6024}{154}[10.20 .4+12.4 .66] \cdot p_{d} \\
& \Sigma_{t r}^{e}=\frac{0.6024}{154}[10 \cdot 20.4(1-0.667)+12 \cdot 4.66(1-0.056)] \cdot p_{d} \\
& \left(\xi \Sigma_{s}\right)=\frac{0.6024}{154}[10 \cdot 20.4+12.0 .1529 .4 .66] \cdot \rho_{d}
\end{aligned}
$$

8. Fast cross sections

$$
\begin{aligned}
& \Sigma_{t}^{(1)}=\frac{0.6024}{154}[10 \cdot 1.94+12 \cdot 1.49] \cdot P_{d} \\
& \Sigma_{0}^{(1)}=\frac{0.6024}{154}[10 \cdot 0.45+12 \cdot 1.27] \cdot P_{d} \\
& \Sigma_{i}^{(1)}=\frac{0.6024}{154}[10 \cdot 1.46+12 \cdot 0.22] \cdot P_{d} \\
& \Sigma_{t}^{(2)}=\frac{0.6024}{154}[10.4 .56+12 \cdot 2.78] \cdot P_{d} \\
& \Sigma_{0}^{(8)}=\frac{0.6024}{154}[10.4 .56+12.2 .78] \cdot P_{d}
\end{aligned}
$$

HEAVY WATER (coolant)
ब. Thermal cross sections

$$
\begin{aligned}
& Z_{a}^{t}=\left[0.6428 \cdot 10^{-4}-0.0481(P U-0.998)+\sum_{m v} \sqrt{\frac{\pi}{2}}\right] \sqrt{\frac{\tau_{0}}{T_{n}}} \cdot P_{m} \\
& \Sigma_{s}^{t} \cdot[0.4216 \cdot P U+2.68(1-P U)] \cdot \rho_{m} \\
& Z_{t r}^{t}=[0.3628 \cdot P U+0.995(1-P U)] \cdot P_{m}
\end{aligned}
$$

及. Resonance and epithermal cross sections

$$
\begin{aligned}
& Z_{t_{r}}^{*}=0.287 \cdot P u+0.995(1-P u) \cdot P_{m} \\
& \left(\xi Z_{s}\right)^{e}=0.1604 \cdot P u+2.56(1-P u) \cdot P_{m}
\end{aligned}
$$

γ Fast cross sections

$$
\begin{aligned}
& \Sigma_{t}^{(1)}=0.1842 \cdot p_{m} \\
& \Sigma_{0}^{(1)}=0.0708 \cdot p_{m} \\
& \Sigma_{l}^{(1)}=0.0888 \cdot p_{m} \\
& \Sigma_{c}^{(1)}=0 . \\
& \Sigma_{t}^{(2)}=0.2800 \cdot p_{m} \\
& \Sigma_{0}^{(8)}=0.2800 \cdot p_{m} \\
& \Sigma_{c}^{(8)}=0 .
\end{aligned}
$$

α. Thermal cross sections

$$
\begin{aligned}
& \Sigma_{a}^{t}=[0.004547-0.00213 g \alpha+E \times S A P] P_{\text {SAP }} \sqrt{\frac{T_{0}}{T_{n}}} \\
& \Sigma_{s}^{t}-[0.0308+0.0608 \alpha] \cdot P_{\text {SAP }} \\
& \Sigma_{t r}^{t}=[0.0300+0.0576 \alpha] \cdot P_{\text {SAP }}+\Sigma_{a}^{t}
\end{aligned}
$$

p. Epithermal cross sections

$$
\begin{aligned}
&\left(\xi \Sigma_{s}\right)^{e}=[0.00222+0.00793 \alpha] \cdot P_{\sin } \\
& \Sigma_{t_{\gamma}}^{e}=[0.0300+0.0576 \alpha] \cdot P_{\sin P}
\end{aligned}
$$

r. Fast cross sections.

$$
\begin{aligned}
& \Sigma_{t}^{(1)}=0.60248\left[\frac{1-\alpha}{27} \cdot 1.7+\frac{2 \alpha}{102} \cdot 1.7+\frac{3 \alpha}{102} \cdot 1.92\right] \cdot P_{\text {SAP }} \\
& \Sigma_{e}^{(0}=0.60242\left[\frac{1-\alpha}{27} \cdot 1.5+\frac{2 \alpha}{102} \cdot 1.5+\frac{3 \alpha}{102} \cdot 1.7\right] \cdot P_{\text {SAP }} \\
& \Sigma_{i}^{(1)}=0.60248\left[\frac{1-\alpha}{27} \cdot 0.2+\frac{2 \alpha}{102} \cdot 0.2+\frac{3 \alpha}{102} \cdot 0.22\right] \cdot \rho_{\text {SAP }} \\
& \Sigma_{c}^{(1)}=0 . \\
& \Sigma_{t}^{(2)}=0.60248\left[\frac{1-\alpha}{27} \cdot 3.025+\frac{2 \alpha}{102} \cdot 3.025+\frac{3 \alpha}{102} \cdot 3.57\right] \cdot P_{\text {SAP }} \\
& \Sigma_{e}^{(2)}=0.60242\left[\frac{1-\alpha}{27} \cdot 3.025+\frac{2 \alpha}{102} \cdot 3.025+\frac{3 \alpha}{102} \cdot 5.67\right] \cdot P_{\text {SAP }} \\
& \Sigma_{c}^{(2)}=0
\end{aligned}
$$

STEEL

```
ג. Thermal cross sections
\(z_{a}^{t} \cdot 0.2182 \cdot \sqrt{\frac{T_{0}}{\tau_{1}}}\)
\(\sum_{5}^{t}\) - 0.843
\(z_{t r}^{t} \cdot 0.832+z_{a}^{t}\)
```

p. Epithermal cross sections
$\left(\xi z_{s}\right)^{\circ}=0.02972$
$z_{t T}^{e} \cdot 0.832$
r. Fast cross sections
$\Sigma_{t}^{(1)} \cdot 0.1755$
$z_{0}^{(1)}=0.1831$
$\Sigma_{i}^{(1)}=0.0424$
$\Sigma_{c}^{(1)}$ - 0
$\sum_{1}^{(2)} \cdot 0.2008$
$\sum_{0}^{(2)} \cdot 0.2085$
$\Sigma_{c}^{(8)}=0$

ALUMINUM OXIDE

α. Thermal cross sections

$\Sigma_{a}^{t}-0.00938 \cdot \sqrt{\frac{T_{0}}{T_{n}}}$
$\Sigma_{8}^{\text {t. }}-0.3548$
$\Sigma_{\text {tr }}^{t}=0.3410+\Sigma_{a}^{t}$

及. Epithermal cross sections
$\Sigma_{s}^{8}-0.3648$
$\Sigma_{t r}^{e}=0.3410$
$\left(E I_{s}\right)^{6}=0.05949$
8. Fast cross sections
$\Sigma_{t}^{(1)}=0$
$\Sigma_{e}^{(0)}$ - 。
$\Sigma_{i}^{(1)}$ - 0

SILICIUM OXIDE

α. Thermal cross sections
$\Sigma_{a}^{t}=0.003129 \cdot \sqrt{\frac{\zeta}{T_{n}}}$
$\Sigma_{s}^{t} \cdot 0.2229$
$\Sigma_{t r}^{t}=0.2143+\Sigma_{a}^{t}$
β. Epithermal cross sections
Σ_{s}° - 0.2229
$\Sigma_{t r}^{*}=0.2143$
$\left(\xi I_{s}\right)^{\circ}=0.02486$
8. Fast cross sections
$\Sigma_{t}^{(1)} \cdot 。$
$\Sigma_{e}^{(i)}=0$
$z_{i}^{(1)}=0$

GRAPHITE
α. Thermal cross sections
$\Sigma_{a}^{t}=0.0004 \cdot S_{9 r} \cdot \sqrt{\frac{T}{4} \frac{T_{0}}{T_{n}}}$
$\Sigma_{5}^{*} \cdot 0.3972 \cdot 5_{9}$
$\Sigma_{t r}^{t}=0.3972(1-0.086) \cdot S_{q}$

阝. Epithermal cross sections
$\Sigma_{5}^{0}=0.386 . S_{9 r}$
$z_{t r}^{e}=0.326(1-0.066) .5_{g r}$
$\left(\xi J_{s}\right)^{6}=0.06127 \cdot S_{95}$
8. Fast cross sections
$\sum_{f}^{(1)} \cdot 0.1234 \cdot S_{9}$
$\Sigma_{8}^{(1)} \cdot 0.1052 \cdot 5^{59}$
$\Sigma_{i}^{(1)} \cdot 0.0132 \cdot S_{9}$
$z_{c}^{(1)}=0$.
$z_{t}^{(3)} \cdot 0.2503 \cdot S_{g}$
$\Sigma_{0}^{(2)} \cdot 0.2303 \cdot S_{9 r}$
$\Sigma_{c}^{(e)}$ - o.

HEAVY WATER (moderator)
α. Thermal cross sections

$$
\begin{aligned}
& \Sigma_{a}^{t}=\left[0.6423 \cdot 10^{-4}-0.0481(P U-0.998)+\Sigma_{M W} \cdot \sqrt{4}\right. \\
& \Sigma_{s}^{t}=[0.4216 \cdot P U+(1 \cdot-P U) \times 2.68] \cdot \rho_{m} \\
& \Sigma_{m} \\
& \Sigma_{m} \cdot\left[\rho_{m}\right. \\
&=[0.4216 \cdot(1-0.1395) \cdot P U+0.995(1-P U)] \cdot P_{m} \\
&=[0.3628 \cdot P U+0.995(1-P U)] \cdot P_{m}
\end{aligned}
$$

p. Epithermal cross sections

$$
\begin{aligned}
& \Sigma_{t r}^{e}=[0.237 \cdot P u+0.995(1-P u)] \cdot P_{m} \\
& \left(\Sigma \Sigma_{s}\right)^{e}=[0.1601 \cdot P u+2.56(1-P u)] \cdot P_{m}
\end{aligned}
$$

8. Ages

$$
\begin{aligned}
& S_{m}^{2}=\left[\frac{P_{m}}{4.1054}\right]^{2} \\
& \tau \text { function of }[\ln (1-P U)] \\
& \tau_{1} \quad-\frac{\tau^{*}}{S_{m}^{2}}-\frac{\ln \tau_{n}}{3\left(\Delta x_{s}\right)_{m}^{*} \cdot \Sigma_{t r m}^{*}} \\
& \tau_{i}=\frac{0.6 \tau^{*}}{S_{m}^{2}}-\frac{\ln \frac{T_{n}}{\tau_{o}}}{B\left(E \tau_{s}\right)_{m}^{i} \cdot \Sigma_{t r m}^{e}}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta T_{n}=\frac{\ln \frac{E_{g}}{L_{k T}}}{3\left(E I_{s}\right)_{m}^{e} \cdot 2_{t r m}^{e}}
\end{aligned}
$$

THERMAL UTILISATION

$$
\begin{array}{ll}
R_{p}=\frac{\Sigma_{a l l y}}{\Sigma_{a c}^{d}} \\
\Sigma_{a w}^{t}=\Sigma_{a c}^{t}+\Sigma_{a l l y}
\end{array} \quad\left[\Sigma_{a b y} \Sigma_{a b s} \text { due to alloys]}\right]
$$

For all cases : $A ; \alpha ; \beta$ function of $\left[\left(\Sigma_{\text {icc }}^{t}+\Sigma_{a v}^{t}\right) \cdot 5\right]$
For circular tubes : $A ; \alpha ; \beta$ function of $\left[\frac{\left(z_{s e}^{q}+z_{a u}^{t}\right) \cdot s}{\pi\left(B+E_{1}+E_{2}+S_{3}+r_{i}+d r+d+d_{1}\right)}\right]$

$$
\begin{aligned}
& \Phi_{f c}=1+A \cdot \frac{z_{a u}^{t}}{\Sigma_{c c}^{t}+\Sigma_{a u}^{t}} \cdot\left[1+\alpha \frac{z_{s c}^{t}}{z_{i c}^{t}+\Sigma_{a u}^{t}}+\rho \cdot\left(\frac{\Sigma_{z c}^{t}}{z_{\Sigma_{c}}^{t}+\Sigma_{a u}^{t}}\right)^{2}\right] \\
& R_{g}=\frac{y_{g} \cdot \Sigma_{a q}^{t}}{V_{c} \cdot \Sigma_{a c}^{t}} \cdot \varphi_{f c}
\end{aligned}
$$

For the calculation of the thermal utilisation factor f the cell is divided into 6 regions :

1. Homogenised Fuel region

$$
\begin{aligned}
& \bar{\Sigma}_{a c}=\frac{V_{c} \cdot \Sigma_{a c}^{t}}{V_{b}^{t}} \\
& \bar{\Sigma}_{\text {ot }}=\frac{V_{c} \cdot \Sigma_{o u}^{t}+\Phi_{i c}\left[V_{g} \cdot \Sigma_{a g}^{t}+V_{r i}^{t} \cdot \Sigma_{a r}^{t}+V_{o i}^{t} \cdot \Sigma_{\infty}^{t}\right]}{V_{b}^{t}} \\
& \bar{\Sigma}_{s t}=\frac{V_{c} \cdot \Sigma_{s t}+\varphi_{k c}\left[V_{g}, \Sigma_{s g}^{t}+V_{t i}^{t} \cdot \Sigma_{s t}^{t}+V_{s i}^{t}, \Sigma_{80}^{t}\right]}{V_{B}^{t}} \\
& \bar{E} \bar{Z}_{s}=\frac{V_{c} \cdot\left(E \Sigma_{s}\right)_{c}^{e}+V_{g} \cdot\left(E \Sigma_{s}\right)_{g}^{e}+V_{r i}^{t} \cdot\left(E \Sigma_{s}\right)_{r}^{e}+V_{i t}^{t} \cdot\left(\xi \Sigma_{s}\right)_{0}^{e}}{V_{B}^{t}}
\end{aligned}
$$

2. Homogenised outer coolant region

$$
\begin{aligned}
& \bar{\Sigma}_{a t}=\frac{\left(v_{r}-v_{r i}^{t}\right) \cdot \Sigma_{a r}^{t}+\left(\boldsymbol{\pi} \cdot a^{2}-v_{B}^{t}\right) \cdot \Sigma_{a 0}^{t}}{r \cdot a^{2}-v_{t}^{t}} \\
& \bar{\Sigma}_{s t}=\frac{\left(y_{r}-V_{r i}^{t}\right) \cdot \bar{\Sigma}_{s t}^{t}+\left(T \cdot a^{2}-v_{t}^{t}\right) \cdot \Sigma_{s o}^{t}}{\tau a^{2}-V_{b}^{t}}
\end{aligned}
$$

3. Pressure tube region
4. Insulation region
5. Calandria region
6. Moderator region

DIFFUSION AREA

$$
\begin{aligned}
& \Phi_{B}=\frac{v_{c}+v_{g} \cdot \Phi_{g}+\left(v_{i}^{t}+v_{i}^{t}\right) q_{g}}{v_{g}^{t}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\beta(\Sigma) \cdot v_{t 1} \cdot z_{t+t_{1}}^{t}+\beta(\mathbb{E}) \cdot v_{t 2} \cdot z_{t+t_{2}}^{t}+\beta(x) \cdot v_{t 2} \cdot \sum_{t+t_{0}}^{t}\right] \\
& R_{m}=\frac{f_{m}}{f}
\end{aligned}
$$

AVERAGE THERMAL FLUX

$$
\frac{\phi_{\mathbf{R}}}{\phi_{U}}=\frac{v_{D} \cdot \phi_{D}+v_{m} \cdot \phi_{B} \cdot p(\mathbb{I})}{z^{2}}
$$

AVERAGE THERMAL ABSORPTION CROSS SECTION
$\Sigma_{a n}$ is calculated by method of Amouyal-Benoist

THERMAL DIFFUSION COEFFICIENT

$$
D_{k}=L^{2} \cdot \Sigma_{a m}
$$

FAST FISSION FACTOR

$$
\begin{aligned}
& \bar{\Sigma}_{t}^{(1)}=\frac{V_{c} \cdot \Sigma_{t c}^{(1)}+V_{g i}^{f} \cdot \Sigma_{t g}^{(1)}+V_{0 i}^{f} \cdot \Sigma_{t 0}^{(1)}+V_{i}^{f} \cdot \Sigma_{t r}^{(4)}}{V_{t}^{7}} \\
& P \text { function of }\left[\bar{\Sigma}_{t}^{(1)} \cdot \hat{a}_{v}^{+}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\Sigma}_{i}^{(1)}=\frac{V_{c} \cdot \Sigma_{i c}^{(1)}+V_{g i}^{f} \cdot \Sigma_{i g}^{(1)}+V_{0 i}^{f} \cdot \Sigma_{i 0}^{(1)}+V_{i i}^{f} \cdot \Sigma_{i c}^{(1)}}{V_{B}^{f}} \\
& \bar{\Sigma}_{c}^{(1)}=\frac{V_{c} \cdot \Sigma_{f c}^{(1)}}{V_{c}^{F}} \\
& \left(\bar{\nu}_{i}\right)^{(1)} \cdot \frac{k_{c} \cdot\left(\nu \Sigma_{f}\right)^{(1)}}{V_{B}^{f}} \\
& \bar{\Sigma}_{c}^{(1)} \cdot \frac{V_{c} \cdot \Sigma_{c c}^{(1)}+V_{g i}^{F} \cdot \Sigma_{c g}^{(1)}+V_{0 i}^{F} \cdot Z_{c}^{(1)}+V_{r i}^{F} \cdot \Sigma_{c r}^{(1)}}{V_{b}^{\ddagger}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{Z}_{c}^{(z)} \cdot \frac{V_{c} \cdot \sum_{c}^{(q)}+V_{g i}^{f} \cdot \Sigma_{c q}^{(z)}+V_{\theta i}^{f} \cdot \Sigma_{c o}^{(z)}+V_{r i}^{f} \cdot \Sigma_{c}^{(z)}}{V_{0}^{f}} \\
& \bar{\Sigma}_{t}^{(z)}=\bar{\Sigma}_{e}^{(z)}+\bar{\Sigma}_{c}^{(\alpha)} \\
& P_{4} \text { function of }\left[\left(\bar{\Sigma}_{e}^{(2)}+\bar{\Sigma}_{c}^{(2)}\right) \cdot a_{0}\right] \\
& C_{1}=\frac{0.5 G_{1} \cdot P}{\frac{1-\left[0.561\left(\sqrt{\Sigma_{E}}\right)^{(1)}+\bar{\Sigma}_{f}^{(1)}\right] \cdot P}{\bar{\Sigma}_{i}^{(1)}}} \\
& e_{E}=0.439 P_{1} \cdot \frac{\frac{\left(v \bar{Z}_{f}\right)^{(1)} \cdot C_{1}}{\bar{\Sigma}_{t}^{(1)}}+1}{1-\frac{\sum_{\varepsilon}^{(2)} \cdot P_{1}}{Z_{\varepsilon}^{(2)}+\bar{\Sigma}_{C}^{(2)}}} \\
& c_{3}=\frac{p_{1} \cdot c_{1} \cdot \bar{\Sigma}_{1}^{(1)}}{\bar{\Sigma}_{t}^{(1)} \cdot\left(1-\frac{P_{1} \cdot \bar{\Sigma}_{q}^{(2)}}{\bar{\Sigma}_{0}^{(2)}+\bar{\Sigma}_{c}^{(2)}}\right)} \\
& G_{1}=\frac{\left(\bar{\Sigma}_{f}\right)^{(1)}-\bar{\Sigma}_{f}^{(1)}-\bar{z}_{c}^{(1)}}{\bar{\Sigma}_{t}^{(1)}} \\
& G_{2}=-\frac{\bar{\Sigma}_{c}^{(2)}}{\overline{\mathcal{Z}}_{c}^{(2)}+\bar{\Sigma}_{c}^{(\Omega)}} \\
& \varepsilon \quad=\quad 1+C_{1}+G_{1}+\left(C_{2}+C_{3}\right) \cdot G_{2}
\end{aligned}
$$

SLOWING DOWN AREA

$$
\begin{aligned}
& V_{B} \Sigma_{t r s}=V_{c} \cdot \Sigma_{t r c}^{e}+V_{q} \cdot \Sigma_{t_{r g}}^{e}+V_{0} \cdot \Sigma_{t r o}^{e}+V_{r} \cdot \Sigma_{t r r}^{e}+V_{t_{1}} \cdot \Sigma_{t r t_{1}}^{e}+V_{t 2} \cdot \Sigma_{t r t_{2}}^{e}+V_{t_{3}} \cdot \Sigma_{t_{r t t_{b}}^{e}}^{e} \\
& V_{B}\left(E \Sigma_{s}\right)_{s}=V_{c} \cdot\left(E \Sigma_{s}\right)_{c}^{e}+V_{g} \cdot\left(E \Sigma_{s}\right)_{g}^{e}+V_{0} \cdot\left(E \Sigma_{s}\right)_{0}^{e}+V_{r} \cdot\left(E \Sigma_{s}\right)_{q}^{e}+V_{t_{1}} \cdot\left(E \Sigma_{s}\right)_{t_{1}}^{e}+V_{2} \cdot\left(\xi \Sigma_{s}\right)_{t_{2}}^{e}+V_{t 3} \cdot\left(E \Sigma_{s}\right)_{t z}^{e} \\
& P_{i}=C_{1} \cdot \frac{V_{c} \cdot \Sigma_{i c}^{(1)}}{V_{b}^{f} \cdot \Sigma_{t}^{(1)}} \\
& P_{0}=C_{1} \cdot \frac{V_{0 i}^{\ddagger} \cdot \Sigma_{i 0}^{(1)}}{V_{B}^{7} \cdot \bar{\Sigma}_{t}^{(1)}}+0.67^{2} \cdot\left(C_{2}+C_{3}\right) \frac{V_{0 i}^{q} \cdot \Sigma_{\infty}^{(2)}}{V_{0}^{f} \cdot \Sigma_{t}^{(1)}} \\
& \tau_{m}=\tau_{1} \cdot\left(1-P_{i}-P_{0}\right)+\tau_{i} \cdot P_{i}+\tau_{0} \cdot P_{0} \\
& \tau=\tau_{m} \cdot\left(\frac{Z^{2}}{V_{m}}\right)^{2} \cdot \frac{1}{\left(1+\frac{V_{B} \cdot \Sigma_{t r B}}{V_{m} \cdot \Sigma_{t r m}^{\ell}}\right) \cdot\left(1+\frac{V_{B}\left(E \Sigma_{s}\right)_{E}}{V_{m}\left(E \Sigma_{s}\right)_{m}^{E}}\right)} \\
& \tau_{m R}=\tau_{m}-\Delta \tau_{k} \\
& \tau_{R}=\tau \cdot \frac{\tau_{m R}}{\tau_{m}}
\end{aligned}
$$

SLOWING DOWN CROSS SECTION

$$
\left(\xi \Sigma_{s}\right)_{R}=\frac{V_{B} \cdot\left(\xi \Sigma_{s}\right)_{B}+V_{m} \cdot\left(\xi \Sigma_{s}\right)_{m}^{e}}{Z^{2}}
$$

FAST DIFFUSION COEFFICIENT

$$
\begin{aligned}
& \Delta U=3 \cdot \tau_{m} \cdot\left(\xi \Sigma_{s}\right)_{m}^{e} \cdot \Sigma_{t r m}^{e} \\
& D_{v z}=\frac{\left(\xi \Sigma_{s}\right)_{R} \cdot \tau}{\Delta U}
\end{aligned}
$$

RESONANCE ESCAPE PROBABILITY

$\Sigma_{z} \quad-\frac{V_{0 i}^{t} \cdot \sum_{s 0}^{*}+V_{i}^{t} \cdot \sum_{s i}^{*}+\left[V_{q i}^{t}+r\left(r^{2}-(r-d r)^{2}\right)\right] \cdot \sum_{m}^{t}}{V_{0 i}^{t}+V_{i n}^{t}+V_{i}^{t}+r\left(r^{2}-(r-d r)^{2}\right)}$
$R_{i}=\frac{d}{\sqrt{3}}-s$
$P_{C} \quad$ function of $\left[\Sigma_{R} \cdot R_{i}\right]$
$\gamma^{\prime}=2 \cdot \Sigma_{R} \cdot R_{i} \cdot\left(1-P_{C}\right)$
$S_{4} \quad 14.4 .5$
S. - 6.d + 2.t. 5
$\left.\begin{array}{ll}R_{i} & =\frac{d}{\sqrt{B}}-s \\ P_{c} & \text { function of }\left[\Sigma_{R} \cdot R_{i}\right] \\ \gamma^{\prime} & =2 \cdot \Sigma_{R} \cdot R_{i} \cdot\left(1-P_{c}\right) \\ S_{u} & =38 \cdot \pi \cdot s \\ S_{f} & =12 . d+2 \cdot \pi \cdot s\end{array}\right\}$ 19-ROD HEXAGONAL
$R_{i 1}=\frac{d}{\sqrt{2}}-s$
$R_{i 2}=\frac{d}{\sqrt{2}}-s$
$P_{C 1}$ function of [$\Sigma_{R} \cdot R_{i 1}$]
$P_{C 2}$ function of $\left[\Sigma_{R} \cdot R_{i 2}\right]$
$\gamma^{\prime}=\frac{4 \cdot \Sigma_{R} \cdot R_{i 1}^{2} \cdot\left(1-P_{c 1}\right)+2 Z_{R} \cdot R_{i 2}^{2} \cdot\left(1-P_{B 2}\right)}{2 R_{i 1}+R_{i 2}}$
$S_{4}=38 . \pi .5$
S. - 12.d+2.T. 8
$R_{i}=d-s-r$
$P_{c} \quad$ function of $\left[\boldsymbol{I}_{\mathbf{R}} \cdot \boldsymbol{R}_{\boldsymbol{i}}\right.$]
$\boldsymbol{r}^{\prime} \quad=2 \cdot \mathbf{Z}_{\mathbf{z}} \cdot \mathrm{R}_{\mathrm{i}} \cdot\left(1-\mathrm{R}_{\mathrm{E}}\right)$
$S_{4} \quad$ - 8.T.S
$\varepsilon_{F} \quad$ - 4. $\sqrt{2} . d+2 . \pi . g$

7-ROD HEXAGONAL

19-ROD HEXAGONAL

19 - ROD CIRCULAR
4. ROD

$P_{1}^{v i} \& P_{1}^{v i z} \quad$ function of $\left[\frac{S_{8}}{\delta_{1}}, S_{1} \cdot \Sigma_{s o}^{*}\right]$
$P_{2}^{v i} \& P_{2}^{v i}$ function of $\left[\frac{r}{S_{3}}, S_{3}, \Sigma_{\text {so }}^{e}\right]$
P_{s}^{n} \& $P_{s}^{v e}$ function of $\left[\frac{d}{d r}, d r . \Sigma_{50}^{e}\right]$
$P_{4}^{v i}$ \& $P_{4}^{v i} \quad$ fünction of $\left[0 ., \Sigma_{i o}^{*} \cdot\left(1-\frac{v_{i}^{p}}{T \cdot d_{i}^{2}}\right)+\Sigma_{s r}^{e} \cdot \frac{V_{i i}^{F}}{r d_{i}^{2}}\right]$

S. . 2.T. 5
$s_{i}=4 . P^{w} \cdot \Sigma_{s o}^{e}$
$S_{\text {en }}=\varepsilon_{e}+S_{i}$

$$
\begin{aligned}
& k^{\prime} \quad=\quad 3 \cdot Z_{k}^{\prime} \cdot Z_{k}^{*} \cdot\left(1-0 . \frac{Z}{i}_{Z_{i}^{\prime}}^{Z_{i}^{\prime}}\right) \\
& \text { Pi. function of }\left[\frac{X^{2}}{4.5 . x_{n}}\right] \\
& P_{B} \quad-\quad \frac{P_{B}^{\prime}}{1+0.125 \cdot K^{2} \cdot a_{0}^{\dagger}} \\
& I_{r o s}(i)=u_{1}(i)+u_{2}(i) \cdot \sqrt{\frac{g_{2 j}}{v_{c}}} \\
& p_{0}(i)=\exp -\frac{V_{c} \cdot 1_{\text {nog }}(i)}{V_{0} \cdot\left(\Pi \Sigma_{s}\right)_{0}^{e}+V_{T} \cdot\left(\Omega \Sigma_{s}\right)_{q}^{e}+V_{m} \cdot\left(\Omega v_{s}\right)_{m}^{e}} \\
& p(i)=1-\left(1-t_{0}(i)\right) \cdot P_{0} \\
& p \quad-\prod_{i=4}^{\infty} b(i)
\end{aligned}
$$

THERMAL FISSION FACTOR

$$
\eta=\frac{\left(\nu \Sigma_{f}\right)^{t}}{\Sigma_{a c}^{t}}
$$

MULTIFLICATION FACTOR

$$
k_{\infty}=\varepsilon \cdot p \cdot f \cdot \eta
$$

MATERIAL BUCKLING

$$
\begin{aligned}
& s^{2}=\mu^{2}=\frac{-\left(\frac{1}{12}+\frac{1}{t}\right)+\sqrt{\left(\frac{1}{2}+\frac{1}{t}\right)^{2}+4 \frac{k_{00-1}}{\tau \cdot t^{2}}}}{2} \\
& -v^{2}=\frac{-\left(\frac{1}{v^{2}}+\frac{1}{2}\right)-\sqrt{\left(\frac{1}{2_{2}}+\frac{1}{2}\right)^{2}+4 \cdot \frac{k_{0}-1}{\tau+1^{2}}}}{2}
\end{aligned}
$$

RATIO OF EPITHERMAL TO THERMAL FLUX

$$
\begin{aligned}
& \beta_{v}^{\prime}=1.0061 \frac{\eta \cdot p \cdot E}{1+B^{2} \tau} \cdot \frac{v_{c} \cdot \Sigma_{a c}^{t}}{I^{2} \cdot\left(v I_{z}\right)_{z}} \\
& b=\frac{4}{\sqrt{5 \cdot x}} \\
& r=\frac{p_{v}^{\prime}}{b \cdot\left(1+p_{v}^{\prime}\right)}
\end{aligned}
$$

Calculation of input data for RLT 4

$$
\begin{aligned}
& \left(\overline{v \bar{\Sigma}_{f}}\right)^{t} \cdot\left(v \Sigma_{f}\right)^{t} \cdot \frac{v_{c}}{v_{s}^{t}} \\
& \bar{\Sigma}_{a}^{\text {rat }} \cdot \Sigma_{a}^{\text {mat }} \cdot \frac{v_{c}}{v_{b}^{\text {t }}} \\
& \bar{\Sigma}_{a}^{\text {rit }} \cdot \Sigma_{a}^{\text {rit }} \cdot \frac{V_{c}}{V_{0}^{f}} \\
& \bar{\Sigma}_{a}^{r_{e}^{(1)}}=\sum_{c}^{F_{E}(1)} \cdot \frac{V_{c}}{V_{B}^{f}} \\
& \bar{\Sigma}_{f}^{\mathrm{FE}(1)}=\sum_{f}^{m=(1)} \cdot \frac{V_{c}}{V_{i}^{*}} \\
& \bar{\Sigma}_{a}^{\text {sEt }} \text { (i) }=\sum_{a}^{\text {pet }} \text { (i) } \frac{v_{f}}{v_{c}^{t}} \\
& \bar{\Sigma}_{f}^{F=(i)}(i)=\sum_{f}^{F=(i)}(i) \cdot \frac{V_{c}}{V_{s}^{T}} \\
& \bar{\Sigma}_{e}^{\mathrm{Fa}(1)}(i)=\Sigma_{e}^{\mathrm{Fa}(1)}(i) \cdot \frac{k_{c}}{V_{i}^{f}} \\
& \Sigma_{c}^{F I(2)}(i) \cdot \Sigma_{c}^{F l(2)}(i) \cdot \frac{V_{c}}{V_{c}^{F}} \\
& x_{1}(i) \quad \frac{C_{1} \cdot \bar{\Sigma}_{t}^{F E(i)}(i)}{\bar{\Sigma}_{t c}^{(1)}}
\end{aligned}
$$

$$
\begin{aligned}
& r(i) \quad \frac{\bar{\Sigma}_{a}^{* E Y}(i)}{\bar{\Sigma}_{a}^{\text {Kit }}}+\frac{\left(\overline{\Sigma_{F}}\right)^{t} \cdot X_{0}(i)}{\Sigma_{a}^{\text {Fit }}} \\
& x_{1}=\sum_{i=1}^{3} x_{1}(i) \\
& x_{0} \quad-\sum_{i=1}^{3} x_{0}(i) \\
& r=\sum_{i=1}^{j} r(i) \\
& w \quad-\frac{4 \cdot V_{c}}{S_{\mathrm{eH}}} \\
& v=\frac{v_{c}}{v_{c}^{\psi}} \\
& k \\
& \frac{-\left[V_{q}+r\left(r^{2}-(r-d r)^{2}\right)\right] \cdot \Sigma_{a g}^{t}+V_{a i}^{t} \cdot \Sigma_{a 0}^{t}+V_{i i}^{t} \cdot \Sigma_{a r}^{t}}{V_{i}^{t}} \\
& z=\frac{\phi_{B}}{a_{B}^{t}} \\
& F_{0} \quad-\quad F_{1}
\end{aligned}
$$

INITIAL CONVERSION FACTOR

$\gamma=\frac{\bar{\Sigma}_{a}^{\text {FEt }}}{\bar{\Sigma}_{a}^{\text {rit }}}+\frac{\left(\overline{\Sigma_{i}}\right)^{t} \cdot x_{0}}{\bar{\Sigma}_{a}{ }^{\text {Frt }}}$

TWO GROUP CONSTANTS FOR FLUX DISTRIBUTION CALCULATIONS
$\nu \Sigma_{f} \cdot \frac{k_{-} \cdot \Sigma_{a q}}{p}$
$\Sigma_{1} \quad-\quad \frac{D_{v a}}{\tau}$
$\Sigma_{r 1} \quad-\quad \Sigma_{1}$
$\Sigma_{a 1}=\Sigma_{1}-\Sigma_{r 1}$

SINGLE ROD

$$
\begin{aligned}
& V_{c}=\pi \cdot s^{2} \\
& V_{g} \cdot \pi \cdot\left(s_{2}^{2}-s_{1}^{2}\right) \\
& v_{0}=r \cdot a^{2}-v_{c}-v_{q} \\
& v_{v}=r \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& k_{11} \cdot \mathbf{r} \cdot\left(a_{i}^{2}-a^{2}\right) \\
& V_{42}=r \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& k_{n}=\pi \cdot\left(a_{i}^{2}-a_{2}^{2}\right) \\
& v_{4}=v_{t 1}+v_{t 2}+v_{t 3} \\
& V_{m}=\left(\frac{V_{m}}{V_{c}}\right) \cdot v_{c} \\
& z=\sqrt{V_{m}+V_{c}+V_{g}+V_{0}+V_{v}+V_{t}+V_{r}} \\
& \text { - } \sqrt{V_{m}+\pi \cdot a_{i}^{a}} \\
& \text { b. } \frac{z}{\sqrt{\pi}}
\end{aligned}
$$

For f calculation only

$$
\begin{aligned}
& V_{B}^{t}=T \cdot s_{z}^{2} \\
& a_{B}^{t}=s_{z} \\
& V_{B A}^{t}=0 \\
& V_{O G}^{t}=V_{0}
\end{aligned}
$$

For ε calculation only

$$
\begin{aligned}
& v_{8}^{\ddagger} \cdot \tau \cdot s^{2} \\
& a_{i}^{\prime}=s \\
& v_{V_{1}}^{*}=0 \\
& v_{6}^{*}=0
\end{aligned}
$$

4 ROD ASSEMBLY

$$
\begin{aligned}
& V_{c}=a \cdot \pi \cdot s^{2} \\
& V_{q}=4 \cdot \pi \cdot\left(s_{1}^{2}-s^{2}\right)+\pi \cdot\left[r^{2} \cdot(r \cdot d r)^{2}\right] \\
& V_{0}=\pi \cdot\left(a^{2}-r^{2}\right)-V_{c}-V_{q}-V_{r} \\
& V_{v}=\pi \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& V_{t 1}=\pi \cdot\left(a_{1}^{2}-a^{2}\right) \\
& V_{t 2}=\pi \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& V_{t 3}=\pi \cdot\left(a_{3}^{2}-a_{2}^{2}\right) \\
& V_{t}=V_{t 1}+V_{t 2}+V_{t s} \\
& V_{m}=\left(\frac{V_{m}}{V_{c}}\right) \cdot V_{c} \\
& I=\sqrt{V_{m}+V_{c}+V_{g}+V_{0}+V_{t}+V_{v}+V_{r}} \\
& =\sqrt{V_{m}+\pi \cdot a_{3}^{2}} \\
& b=\frac{z}{\sqrt{\pi}}
\end{aligned}
$$

For f calculation only

$$
\begin{aligned}
& V_{B}^{t} \cdot V_{r b}=2 d^{2}+r \cdot s_{1}^{2}+4 \cdot s_{1} \cdot d \cdot \sqrt{2} \\
& a_{B}^{t}=\sqrt{\frac{V_{B}^{t}}{T}} \\
& V_{G}^{t}=V_{B}^{t}-V_{c} \cdot V_{q} \cdot V_{r i}^{t} \cdot r \cdot r^{2} \\
& V_{o g}^{t} \cdot V_{0}-V_{a}^{t}
\end{aligned}
$$

For ε calculation only

$$
\begin{aligned}
& V_{B}^{7}=2 \cdot d^{2}+\pi \cdot s^{2}+4 \cdot 5 \cdot d \cdot \sqrt{2} \\
& a_{B}^{f} \cdot \sqrt{\frac{v_{s}^{\prime}}{r}} \\
& V_{q_{3}}^{\xi}=V_{9}-4 \cdot\left(s_{1}^{2} \arccos \frac{s}{s_{1}}-s \sqrt{s_{1}^{2}-s^{2}}\right)-\pi \cdot\left(s_{1}^{2}-s^{2}\right) \\
& V_{0 i}^{*}-V_{z}^{*}-V_{c}-V_{g z}^{*}-V_{n i}^{*}-r^{2}
\end{aligned}
$$

7 ROD ASSEMBLY

$$
\begin{aligned}
& V_{c}=7 \cdot \mathbf{t} s^{2} \\
& v_{g} \quad 7 \cdot T \cdot\left(s_{4}^{2}-s^{2}\right) \\
& Y_{0} \quad T \cdot a^{2}-\left(V_{c}+V_{g}+V_{r}\right) \\
& V=\pi \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& k_{1} \text {. } \quad \pi \cdot\left(a_{1}^{2}-\alpha^{2}\right) \\
& V_{t z}=\pi \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& \text { ks. } \quad \pi \cdot\left(a_{i}^{2}-a_{2}^{2}\right) \\
& v_{t}=\quad v_{t 1}+v_{t 2}+v_{t s} \\
& v_{m} \cdot\left(\frac{v_{m}}{v_{c}}\right) \cdot v_{c} \\
& z=\sqrt{V_{m}+V_{c}+V_{q}+V_{0}+V_{r}+V_{v}+V_{q}} \\
& \text { - } \sqrt{\pi \cdot a_{3}^{2}+V_{m}} \\
& \text { b. } \frac{2}{\sqrt{t}}
\end{aligned}
$$

For f calculation only

$$
\begin{aligned}
& V_{B}^{t}=V_{b b}=7 \cdot \frac{1}{2} \cdot v_{z} \cdot d^{t} \\
& a_{B}^{t}=\sqrt{\frac{V_{B}^{t}}{T}} \\
& V_{o z}^{t}=V_{B}^{t}-V_{c}-V_{g}-V_{r z}^{t} \\
& V_{o c}^{t}=V_{0}-V_{o z}^{t}
\end{aligned}
$$

For ε calculation only

$$
\begin{aligned}
& v_{B}^{f}=\frac{1}{2} \cdot \sqrt{6} \cdot d^{2}+\pi s^{2}+6 \cdot d \cdot s \\
& a_{0}^{f} \cdot \sqrt{\frac{V_{b}}{\mathbf{x}}} \\
& V_{g z^{2}}^{*} V_{q}-\left[6 \cdot\left(s_{1}^{2} \cdot \arccos \frac{g_{2}}{g_{i}}-s \cdot \sqrt{s_{1}^{2}-s^{2}}\right)+\pi\left(s_{1}^{2}-s^{2}\right)\right] \\
& v_{a z}^{f}=v_{B}^{q}-v_{c}-v_{q z}^{q}-v_{r z}^{\prime}
\end{aligned}
$$

19 ROD ASSEMBLY(19e)

$$
\begin{aligned}
& V_{c}=19 \cdot \pi \cdot s^{2} \\
& V_{q}=19 \cdot \pi \cdot\left(s_{1}^{2}-s^{2}\right) \\
& V_{0}=\pi a^{2}-V_{c}-V_{q}-V_{r} \\
& V_{V}=\pi \cdot\left(a_{i}^{2}-a_{1}^{2}\right) \\
& V_{t 1}=\pi \cdot\left(a_{1}^{2}-a^{2}\right) \\
& V_{t 2}=\pi \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& V_{t}=\pi \cdot\left(a_{i}^{2}-a_{2}^{2}\right) \\
& V_{t}=V_{t 1}+V_{t 2}+V_{t t} \\
& V_{m}=\binom{V_{m}}{V_{c}} \cdot V_{c} \\
& Z=\sqrt{V_{m}+V_{c}+V_{q}+V_{0}+V_{t}+V_{V}+V_{r}} \\
& =\sqrt{V_{m}+\pi a_{t}^{2}} \\
& b=\frac{z}{\sqrt{\pi}}
\end{aligned}
$$

For f calculation only

$$
\begin{aligned}
& V_{B}^{t}=V_{r b}=19 \cdot \frac{1}{2} \cdot \sqrt{B} \cdot d^{2} \\
& a_{8}^{t} \text {. } \sqrt{\frac{V_{0}^{t}}{\pi}} \\
& v_{\sigma t}^{t} \cdot v_{s}^{t}-v_{c}-v_{g}-v_{r t}^{t} \\
& V_{0 \in}^{t}=V_{0}-V_{\sigma I}^{t}
\end{aligned}
$$

For ε calculation only

$$
\begin{aligned}
& V_{8}^{4}=6 \cdot \sqrt{3} \cdot d^{2}+\pi \cdot s^{2}+42 d \cdot 6 \\
& a_{0}^{*} \cdot \sqrt{\frac{V_{k}}{v}} \\
& v_{g 2}^{F}=V_{q}-12 \cdot\left(s_{1}^{2} \cdot \arccos \frac{s}{s_{1}}-s \sqrt{s_{1}^{2}-s^{2}}\right)-\pi\left(s_{1}^{2}-s^{2}\right) \\
& v_{a}^{\prime} \cdot v_{B}^{\ddagger}-v_{g z}^{\prime}-v_{c}-v_{\text {ti }}^{\ddagger}
\end{aligned}
$$

19 ROD ASSEMBLY (19c)

$$
\begin{aligned}
& V_{c}=19 . r^{2} \\
& k_{q} \cdot 19 \cdot \pi \cdot\left(s_{1}^{2}-s^{2}\right) \\
& v_{f}-x a^{2}-v_{c}-v_{q}-v_{r} \\
& \forall . \quad \mathbf{v}\left(a_{2}^{2}-a_{1}^{2}\right) \\
& V_{H}=\pi \cdot\left(a_{1}^{2}-a^{2}\right) \\
& V_{t a}, \pi \cdot\left(a_{i}^{2}-a_{4}^{2}\right) \\
& k_{5} \cdot \pi \cdot\left(a_{5}^{2}-a_{8}^{2}\right) \\
& v_{t}=v_{t 1}+v_{t 2}+v_{t 5} \\
& V_{m} \cdot\left(\frac{V_{m}}{V_{c}}\right) \cdot V_{c} \\
& Z \cdot \sqrt{V_{m}+V_{c}+V_{g}+V_{0}+V_{r}+V_{v}+V_{t}} \\
& \text { - } \sqrt{V_{m}+\pi a_{i}^{2}} \\
& b=\frac{2}{\sqrt{\pi}}
\end{aligned}
$$

For f calculation only

$$
\begin{aligned}
& v_{B}^{t}=v_{b 0}=\left(o v_{B}+6\right) \cdot \alpha^{2}+\left(2 \cdot \alpha \cdot s_{1}+\pi \cdot s_{1}^{t}\right. \\
& a_{B}^{t}=\sqrt{\frac{v_{B}^{t}}{z}} \\
& v_{0 I}^{t}=v_{B}^{t}-v_{c}-v_{g}-v_{-1}^{t} \\
& v_{0 G}^{t}=v_{0}-v_{0 I}^{t}
\end{aligned}
$$

For e calculation only

$$
\begin{aligned}
& v_{1}^{f} \cdot(3 \sqrt{3}+6) \cdot \alpha^{2}+12 d \cdot 6+86^{2} \\
& a_{i}^{F} \cdot \sqrt{\frac{V_{i}^{7}}{\frac{1}{2}}} \\
& V_{g_{1}}^{q}=V_{q}-\left[12 \cdot\left(s_{1}^{2} \arccos \frac{8}{s_{1}}-8 \sqrt{s_{1}^{2}-s^{2}}\right)+T \cdot\left(s^{2}-s^{2}\right)\right] \\
& V_{o r}^{*}=V_{s}^{f}-V_{c}-V_{g]}^{q}-V_{\pi}^{4}
\end{aligned}
$$

22 ROD ASSEMBLY

$$
\begin{aligned}
& V_{c}=T \cdot s_{1}^{2}+7 \cdot \pi \cdot s_{2}^{2}+14 \cdot T \cdot s_{1}^{2} \\
& V_{q}=\left[r \cdot\left(s_{1}+\alpha_{1}\right)^{2}-r \cdot s_{1}^{2}\right]+7 \cdot\left[r \cdot\left(s_{2}+\alpha_{2}\right)^{2} \cdot \boldsymbol{T} \cdot s_{2}^{2}\right]+14 \cdot\left[\mathbf{r} \cdot\left(\xi_{2}+\alpha_{2}\right)^{2}-\boldsymbol{r} \cdot s_{1}^{2}\right] \\
& V_{0}=r \cdot a^{2}-V_{q}-V_{c}-V_{r} \\
& v_{v}=T \cdot\left(a_{i}^{2}-a_{1}^{2}\right) \\
& V_{t 1}=\pi \cdot\left(a_{1}^{2}-a^{2}\right) \\
& V_{42}=\pi \cdot\left(a_{2}^{2}-a_{1}^{2}\right) \\
& V_{43} \cdot T \cdot\left(a_{3}^{2}-a_{2}^{2}\right) \\
& v_{t}=v_{t 1}+v_{t 2}+v_{t s} \\
& V_{m} \cdot\left(\frac{V_{m}}{V_{c}}\right) \cdot V_{c} \\
& I=\sqrt{V_{m}+V_{c}+V_{g}+V_{0}+V_{b}+V_{v}+V_{r}} \\
& \text { - } \sqrt{V_{m}+\pi \cdot a_{i}^{2}} \\
& \text { b }=\frac{x}{\sqrt{r}}
\end{aligned}
$$

For f calculation only

$$
\begin{aligned}
& V_{B}^{t}=V_{r b}=3.0388 d^{2}+\pi \cdot\left(s_{0}+\alpha_{0}\right)^{2}+6.2342 \cdot d \cdot\left(s_{2}+d_{0}\right) \\
& a_{B}^{t} \cdot \sqrt{\frac{V_{B}^{t}}{T}} \\
& V_{o I}^{t}=V_{B}^{t}-V_{c}-V_{g}-V_{f I}^{t} \\
& V_{o c}^{t}=V_{0}-V_{o r}^{t}
\end{aligned}
$$

For ε calculation only

$$
\begin{aligned}
& V_{B}^{\prime}=3.0380 \cdot \alpha^{2}+\pi \cdot s_{i}^{2}+6.2342 \cdot d \cdot s_{b} \\
& \text { at. } \sqrt{\frac{V_{2}^{\prime}}{T}} \\
& V_{q}^{f}=V_{g}-14 \cdot\left[\left(s_{i}+\alpha_{0}\right)^{2} \arccos \frac{s_{1}}{s_{3}+d_{0}}-s_{i} \sqrt{\left(s_{0}+d_{3}\right)^{2}-s_{i}^{2}}\right]-\pi \cdot\left[\left(s_{i}+\alpha_{i}\right)^{2}-s_{i}^{2}\right]
\end{aligned}
$$

CIRCULAR TUBES

CIRCULAR TUBES

$$
\begin{array}{ll}
v_{c} & =T\left(s^{2}-s_{1}^{2}+s_{2}^{2}-s_{3}^{2}+r^{2}-d_{r}^{2}+d^{2}-d_{i}^{2}\right) \\
v_{9} & =2 \cdot r \cdot\left(s+s_{1}+s_{2}+s_{3}+s+d r+d+d_{1}\right) \cdot d_{3} \\
v_{0} & =v_{0 i}^{t}+v_{0 F}^{t} \\
v_{t 1} & =T\left(a_{1}^{2}-a^{2}\right) \\
v_{t 2} & =T\left(a_{2}^{2}-a_{1}^{2}\right) \\
v_{t 2} & =T\left(a_{i}^{2}-a_{2}^{2}\right) \\
v_{t} & =v_{t 1}+v_{t 2}+v_{t 3} \\
v_{m} & =\left(\frac{v_{m}}{v_{c}}\right) \cdot v_{c} \\
2 & =\sqrt{T \cdot a_{3}^{2}+v_{m}} \\
b & =\frac{2}{\sqrt{r}}
\end{array}
$$

For \ddagger calculation only

$$
\begin{array}{ll}
v_{B}^{t} & -\tau \cdot\left(s+d_{B}\right)^{2} \\
a_{B}^{t} & =s+d_{B} \\
v_{0 i}^{t} & =v_{B}^{t}-\left(v_{c}+v_{g}+v_{\pi i}^{t}\right) \\
v_{0 E}^{t} & =\pi \cdot\left(a^{2}-\left(s+d_{0}\right)^{2}\right)-\left(v_{r}-v_{v i}^{t}\right)
\end{array}
$$

For ε calculation only

	$\Phi_{\text {a }}$	σ_{0}	σ_{8}	$\sigma_{t r}$	v	σ_{s}	\%	RG\%
Ti 232	7.56	-	12.5	12.46	-	11.	10.97	. 0924
[233	578.	525.	12.5	12.46	2.5091	12.5	12.46	. 105
[235	683.04	577.01	17.	16.95	2.4491	10.	0.97	. 084
U 236	6.0	-	14.	13.96	-	10.	9.97	.084
J 238	2.71	-	10.5	10.47	-	9.5	9.47	.08
Pu 23%	1029.1	742.2	20.	19.94	2.885	20.	19.94	. 168
Pu 240	277.87	-	30.	29.91	-	30.	29.91	. 252
Pu 241	1397.4	1015.2	60.	59.92	3.06	60.	59.82	. 504
0	-	-	4.23	4.05	-	4.23	4.05	. 507
c	. 007	-	4.8	4.53	-	4.8	4.53	. 75
I	. 332	-	!	!	-	20.4	6.8	20.4
41	. 225	-	1.38	1.34	-	1.38	1.34	. 1
Fe	. $218 \mathrm{E}-4^{\text {\# }}$	-	. $843^{\text {x }}$. $832^{\text {x }}$	-	-	. $832^{\text {x }}$. 02987
I	. 6423	-	. $422^{\text {x }}$	$.363^{x}$	-	-	. $237{ }^{\text {x }}$. $1601{ }^{\text {² }}$
$z r$. 18	-	8.	8.2	-	8.	8.	. 17

3 macroscopic

TEble 1 B Fast microscopic cross sections

Group 1
Group 2

	σ_{t}	σ_{e}	σ_{i}	$\sigma_{\text {f }}$	${ }^{\nu} \sigma_{\ddagger}$	σ_{c}	σ_{t}	$\sigma_{\text {s }}$	σ_{c}
Tn 232	4.51	2.23	2.28	. 116	. 302	. 049	6.01	5.85	. 16
U 233	4.69	1.48	1.27	3.35	9.15	. 027	6.18	6.05	. 13
U 235	4.59	2.01	1.26	2.23	6.04	. 041	6.14	5.95	. 19
U 236	-	-	-	-	-	. 033	-	-	-
U 238	4.56	1.95	2.05	. 527	1.53	. 033	6.12	5.98	. 14
Pu 239	4.82	1.72	1.08	3.22	10.05	. 081	6.36	6.20	. 16
Pu 240	4.56	1.79	1.12	2.20	7.52	. 054	6.12	6.06	. 06
Pu 241	4.64	1.53	1.27	3.17	10.01	. 027	6.13	6.	. 13
0	1.92	1.70	. 22	-	-	-	3.57	3.57	-
c	1.49	1.27	. 22	-	-	-	2.78	2.78	-
H	1.91	. 45	1.46	-	-	-	4.56	4.56	-
A1	1.70	1.5	. 20	-	-	-	3.03	3.03	-
Fe	2.07	1.57	. 50	-	-	-	2.40	4.40	-
D	1.60	. 32	1.28	-	-	-	2.03	2.03	-
2 r	3.13	2.36	. 77	-	-	-	5.65	5.64	. 01

$\binom{\mathrm{m}_{\mathrm{f}}^{\mathrm{f}} \mathrm{~F}}{\hline}$	Thorium							
	Netal		Oxide		Monocarbide		Dicarbide	
	\triangle	B	A	B	A	B	A.	B
300	3.8053	16.0746	3.9734	17.2043	3.8506	16.5815	3.8958	17.0884
700	3.5863	19.1923	3.8124	20.5542	3.7846	19.5718	3.8830	19.9514
1100	3.6059	21.3037	3.7347	22.7674	3.6818	21.8064	3.7576	22.3092
1500	3.5350	22.9836	3.6467	24.5020	3.6426	23.4234	3.7502	23.8633
1900	3.5793	24.0501	3.5560	26.1745	3.6650	24.6586	3.7507	25.2671

Uranium

	Metal		Oxide		Monocarbide		Dicarbide	
	A	B	A	B	A	B	A	B
293	2.79	25.286	4.652	25.090	4.123	24.519	5.456	23.752
693	2.805	27.12	4.787	27.092	4.224	26.411	5.543	25.702
1093	2.706	28.695	4.784	28.781	4.199	28.005	5.692	27.315
1493	2.530	30.019	4.774	30.269	4.175	29.397	5.720	28.775
1893	2.515	31.273	4.730	31.619	4.116	30.671	5.717	30.069

Table 2 - Amouyal-Benoist Constants

$a \Sigma_{4}$	α	$a \Sigma_{t}$	β	$a \Sigma_{t}$	A	
0.	0.	0.	0.	0.	0.	
0.5	0.0325	0.5	0.0190	0.4	0.1346	
1.	0.0628	1.	0.0260	0.8	0.3334	
1.5	0.0900	1.5	0.0280	1.2	0.5920	
2.	0.1124	2.	0.0270	1.6	0.8952	
2.5	0.1315	2.5	0.0250	2.	1.2292	
3.	0.1468	3.	0.0225	2.4	1.5841	
3.5	0.1526	3.5	0.0215	2.8	1.9524	1
4.	0.1733	4.	0.0208	3.2	2.3295	\cdots
4.5	0.1828	4.5	0.0203	3.6	2.7126	,
5.	0.1868	5.	0.0200	4.	3.0998	
5.5	0.1885	5.5	0.0199	4.4	3.4897	
6.	0.1895	6.	0.0198	4.8	3.8815	
				5.2	4.275	
				5.5	4.669	
				6.	5.064	
				5.4	5.458	
				6.8	5.853	

Collision	probability	Flux disadv. factor		$\begin{aligned} & \text { Fermi-a.ge } \\ & \ln \left(1-P_{U}\right) \end{aligned}$	Heavy water τ^{*}
		$\frac{z^{2}}{4 \pi \tau}$	P_{E}		
$\Sigma_{a b}^{t}$	${ }^{p}$	0.0	1.0	-9.	120.
0.3	0.28351	0.2	1.0	-8.	120.
0.6	0.15225	0.4	1.0	-7.	119.45
0.9	0.55389	0.6	1.0212	-6.	118.1
1.2	0.64183	0.8	1.0850	-5.	116.9
1.5	0.69843	1.0	1.1875	-4.	112.4
1.8	0.74087	1.2	1.3250	-3.	98.9
2.1	0.77357	1.4	1.4950	-2.	68.1
2.4	0.79936	1.6	1.6550	-1.	45.6
2.7	0.82012	1.8	1.8300	0.	36.75
3.0	0.83714	2.0	2.0037		
3.3	0.85130	2.2	2.1820		
3.6	0.86325	2.4	2.3610		
3.9	0.87346	2.6	2.5400		
4.2	0.88228	2.8	2.7180		
4.5	0.88996	3.0	2.59\%		
4.8	0.89671	3.2	3.0770		
5.1	0.90268	3.4	3.2560		
5.4	0.90802	3.6	3.435		
5.7	0.91280	3.8	3.6540		
6.0	0.91712	4.0	3.7035	-	
6.3	0.92102	4.2	3.9720		

Table 4

Comparison between PLUTHARCO and EXPO experiments

	Pitch 18		Pitch 22		Pitch 25		Fitch 29.2		
	EXPO	PLUTH	EXPO	PLUTH	EXPO	PLUTE	ETPO	PLETH	
η		1.298		1.303		1.305		1.307	
\boldsymbol{E}		1.041		1.041		1.041		1.041	
p		0.833		0.878		0.897		0.909	∞
\pm		0.908		0.901		0.896		0.890	1
$L^{2}\left[\mathrm{~cm}^{2}\right]$		67.222		118.936		168.273		234.851	
$\tau\left[\mathrm{cm}^{2}\right]$		96.363		100.391		102.760		104.614	
$\mathrm{B}^{2}\left[\mathrm{~m}^{-2}\right]$		1.356	3.42	3.321	3.38	3.340	2.85	2.009	
$\mathrm{k}_{\text {co }}$		1.022		1.074		1.092		1.101	

Table 6

Comparison between PLUTPARCO and CISE results

	ACl-T3-19		AC1-T3-21		AC1-T3-24	
	CISE	PLUTH	CISE	PLUTH	CISE	PLUTH
η	1.3199	1.307	1.3201	1.309	1.3202	1.310
ε	1.0322	1.036	1.0322	1.036	1.0322	1.036
p	$0.8819^{\text {x }}$	0.893	$0.8961^{\text {x }}$	0.910	$0.9119^{\text {x }}$	0.927
\pm	0.9191	0.911	0.9161	0.907	0.9110	0.902
$\mathrm{L}^{2}\left[\mathrm{~cm}^{2}\right]$	115.6	128.760	148.1	165.160	205.1	229.166
$\tau\left[\mathrm{cm}^{2}\right]$	112.5	110.434	112.7	110.425	112.9	110.949
$\mathrm{B}^{2}\left[\mathrm{~m}^{-2}\right]^{\mathrm{x}}$	4.69	4.121	4.59	4.227	4.13	3.554
	(4.74土.10)		(4.56 $\pm .12)$		(4.15 $\pm .07$)	
$\mathrm{k}_{\boldsymbol{\omega}}$	1.1044	1.101	1.1187	1.120	1.1321	1.135
$\mathrm{x}_{\text {corrected }}$ to four factor scheme						
+ experimental results in brackets						

Comparison between PIUTHARCO and CISE

	AC2-T1-19		AC2-T1-21		AC2-T1-24	
	CISE	PLUTH	CISE	PLUTH	CISE	PLUSTI
n	1.319	1.303	1.319	1.306	1.3192	1.308
ε	1.0414	1.047	1.0414	1.047	1.0414	1.04 ?
p	$0.8675^{\text {x }}$	0.874	0.8852^{x}	0.896	0.9042^{X}	0.918
F	0.9443	0.944	0.9416	0.940	0.9369	0.936
$L^{2}\left[\mathrm{~cm}^{2}\right]$	111.5	116.686	141.9	149.101	195.	205.974
$\tau\left[\mathrm{cm}^{2}\right]$	123.8	122.670	121.8	120.314	119.7	118.295
$B^{2}\left[\mathrm{~m}^{-2}\right]^{n}$	$\begin{gathered} 5.48 \\ (5-67 \pm .10) \end{gathered}$	5.067	$\begin{gathered} 5.55 \\ (5.70=12) \end{gathered}$	5.448	$\begin{gathered} 5.16 \\ (5.33 \pm .09) \end{gathered}$	5.206
k_{c}	1.1252	1.125	1.1450	1.152	1.1639	1.175

$x_{\text {corrected to }}$ four factor soheme

+ experimental results in

Table 8

[^1]Table 9

Comparison between PLUTHAFCO and Savannah River experiments

	3 Rod - 7.00			3 Rod - 0.33		3 Rod - 12.12		3 Rod - 14.00	
	SRE	PLUTH	$\begin{gathered} \text { PLUTH } \\ \text { TERM } \end{gathered}$	SRE	PLUTH	SRE	PLUTH	SRE	PLUTH
η	1.314	1.302	1.309	1.314]. 308	1.314	1.311	1.314	1.312
E	1.048	1.036	1.036	1.048	1.036	1.048	1.036	1.048	1.036
p	0.866	0.864	0.864	0.921	0.922	0.940	0.946	0.943	0.951
\pm	0.984	0.989	0.989	0.976	r.081	0.961	0.966	0.948	0.953
$\mathrm{L}^{2}\left[\mathrm{~cm}^{2}\right]$	95.	84.713	87.789	181.	160.142	331.	313.126	459.	435.817
$\tau \cdot\left[\mathrm{cm}^{2}\right]$	128.	114.638	114.344	122.	112.957	120.	112.607	120.	112.542
$\mathrm{B}^{2}\left[\mathrm{~m}^{-2}\right]^{\text {F }}$	$\begin{gathered} 7.58 \\ (7.59) \end{gathered}$	7.420	7.562	$\begin{gathered} 7.56 \\ (7.11) \end{gathered}$	7.503	$\begin{array}{r} 5.24 \\ (5.05) \end{array}$	5.420	$\begin{gathered} 3.93 \\ (3.81) \end{gathered}$	4.081
$\mathrm{k}_{c s}$	1.173	1.153	1.159	1.238	1.226	1.244	1.241	1.231	1.232

[^2]
Table 10

Comparison between PLUTHARCO andSavannah River Exp.

	7 Rod - 9.33			7 Rod - 12.12		7 Rod - 14.00		$7 \operatorname{Rod}-18.52$		7 Rod - 21.00	
	SRI	PLUTH	$\underset{\text { TERII }}{\text { PLUTH }}+$	SPE	PLUTH	SRE	PLUTTH	SRE	PLUTH	SRE	PLUTH
η	1.310	1.292	1.306	1.310	1.301	1.310	1.303	1.310	1.306	1.310	1.307
ε	2.053	1.041	1.041	1.053	1.041	1.053	1.041	1.053	1.041	1.053	1.041
p	0.843	0.837	0.837	0.889	0.885	0.902	0.894	0.917	0.901	0.916	0.903
f	0.985	0.986	0.984	0.978	0.978	0.970	0.970	0.945	0.945	0.931	0.927
$L^{2}\left[\mathrm{~cm}^{2}\right]$	86.	83.356	84.038	164.	167.433	242.	244.113	496.	491.521	648.	663.890
$\tau\left[\mathrm{cm}^{2}\right]$	129.	113.911	113.911	124.	111.265	123.	110.851	121.	110.159	120.	110.076
$B^{2}\left[m^{-2}\right]^{*}$	$\begin{gathered} 6.49 \\ (6.02) \end{gathered}$	5.465	5.886	$\begin{gathered} 6.57 \\ (6.11) \end{gathered}$	5.943	$\begin{gathered} 5.41 \\ (5.20) \end{gathered}$	4.781	$\begin{gathered} 3.07 \\ (2.92) \end{gathered}$	2.563	$\begin{gathered} 2.24 \\ (2.10) \end{gathered}$	1.768
k_{∞}	1.145	1.111	1.119	1.199	1.172	$1.20{ }^{\circ}$	1.176	1.195	1.158	1.176	1.139

[^3]Comparison between PLUTHARCO and Chalk River values

	$7 \mathrm{D}_{2} \mathrm{O}$		$7 \mathrm{D}_{2} \mathrm{O}$		$7 \mathrm{D}_{2}$	28	$7 \mathrm{D}_{2} \mathrm{O}$		
	CANT.	PLUTH.	CAN.	PLUTH.	CAN.	PLUTH.	CAIN.	PLUTII.	
η	1.304	1.304	1.308	1.308	1.312	1.311	1.314	1.313	
ε	1.030	1.029	1.030	1.029	1.029	1.029	1.028	1.029	
p	0.845	0.834	0.895	0.890	0.932	0.928	0.947	0.929	1
f	0.971	0.971	0.966	0.966	0.954	0.955	0.934	0.935	\bigcirc
$L^{2}\left[\mathrm{~cm}^{2}\right]$	83.810	86.406	134.779	139.518	241.801	246.111	435.754	437.889	1
$\tau\left[\mathrm{cm}^{2}\right]$	134.012	124.855	128.602	120.089	124.747	117.199	122.430	115.498	
$B^{2}\left[m^{-2}\right]^{2}$	$\begin{gathered} 4.585 \\ (4.56 \pm .025) \end{gathered}$	3.999	$\begin{gathered} 5.992 \\ (5.969 \pm .027) \end{gathered}$	5.826	$\begin{gathered} 5.256 \\ (5.160 \pm .011) \end{gathered}$	5.152	$\begin{gathered} 3.382 \\ (3.448 \pm .009) \end{gathered}$	3.342	
$\mathbf{k}_{\boldsymbol{c}}$	1.102	1.086	1.164	1.157	$1.2 \overline{0} 1$	1.195	1.195	1.191	

Comparison between PLUTHARCO and Chalk River values

	7 Air 19		7 Air 22		7 Air 28		7 Air 36	
	CAIN.	FIUTIT.	CAN.	PIUTIE.	CAIN.	PIUTH.	CATT.	PIUNTE.
η	1.304	1.305	1.307	1.308	1.312	2.311	1.314	2.313
ε	1.032	1.031	1.032	1.031	-	1.031	-	1.031
P	0.865	0.848	0.902	0.850	-	0.930	-	0.945
f	0.971	0.971	0.967	0.967	0.056	0.957	0.938	0.939
$L^{2}\left[\mathrm{~cm}^{2}\right]$	95.705	93.540	135.346	132.711	236.204	234.509	416.917	418.418
$\tau,\left[\mathrm{cm}^{2}\right]$	148.930	139.968	140.090	131.813	131.187	124.181	126.004	119.791
$\mathrm{B}^{2^{-2}}\left[\mathrm{~m}^{-2}\right]$	$\begin{gathered} 5.176 \\ (4.87 \pm .03) \end{gathered}$	4.488	$\begin{gathered} 6.157 \\ (5.69 \pm .038) \end{gathered}$	5.831	$\left(5.28_{ \pm}^{-} .018\right)$	5.407	$(3.6 \overline{17} \pm .007)$	3.604
$\mathrm{k}_{\text {co }}$	1.130	1.107	1.177	1.160	-	1.202	-	1.200

Comparison between PIUTHAPCO and Chalk River values

	$70 r g 18$		7 ORG 19		7 ORg 22		7 ORG 28		7 Ona 36	
	CAT.	PLUTH.	CAIT.	PLUTH.	CATV.	PLUTH.	CAN.	PLUTH.	CAIT.	PLUMH.
η		1.306	1.305	1.308	1.308	1.309	1.311	1.312		1.314
ε		1.029	1.031	1.029	1.031	1.029	1.030	1.029		1.029
p		0.874	0.893	0.884	0.910	0.907	0.932	0.931		c. 941
\pm		0.895	0.889	0.893	0.884	0.888	0.872	0.876		c. 256
$\mathrm{L}^{2}\left[\mathrm{~cm}^{2}\right]$		81.607	92.48	94.310	134.71	138.874	254.84	255.039		464.287
$\tau\left[\mathrm{cm}^{2}\right]$		84.228	113.13	86.249	114.59	91.940	116.27	99.094		104.155
$E^{2-2}\left[m^{-2}\right]$		3.031	$\begin{gathered} 3.24 \\ (3.24) \end{gathered}$	3.387	$\begin{gathered} 3.34 \\ (3.48) \end{gathered}$	3.598	$\begin{gathered} 2.55 \\ (2.68) \end{gathered}$	2.787		1.537
k_{∞}		1.051	1.068	1.062	1.085	2.085	1.097	1.101		1.088

Comparison between PLUTHARCO and Chalk Piver valuer (Tef.23)

	Ox-19-D20-18		$0 \times-19-\mathrm{I}_{2} \mathrm{O}-21$		$\mathrm{OX}-1 \mathrm{O}-\mathrm{D}_{2} \mathrm{O}-24$		$0 \mathrm{x}-19 \mathrm{D}_{2} 0-28$		$0 \times-10-120-36$	
	CAN.	PLUTTH.	CATV.	PLUTH.	CANS.	PLUTH.	Chit.	PLUAH.	CATI.	PLUCH.
η	1.302	1.301	1.305	1.305	1.309	1.307	1.310	1.309	1.313	1.311
ε	1.028	1.027	1.027	1.027	1.026	1.027	1.0 .25	.].027	1.025	1.027
p	0.830	0.805	0.873	0.863	0.902	0.897	0.927	0. 222	0.954	0.940
f	0.940	0.942	0.936	0.937	0.931	0.932	0.922	0.923	0.901	0.901
$\mathrm{L}^{2}\left[\mathrm{~cm}^{2}\right]$	87.2	74.733	120.9	109.403	161.8	152.006	230.2	220.263	407.3	395.480
$\tau\left[\mathrm{cm}^{2}\right]$	167.8	149.962	152.2	138.136	143.3	131.269	136.3	125.7:5	129.2	120.259
$\mathrm{B}^{2-}\left[\mathrm{m}^{-2}\right]$	$\begin{gathered} 1.73 \\ (1.407 \pm .05) \end{gathered}$	0.640	$\begin{gathered} 3.42 \\ (3.48 \pm .03) \end{gathered}$	3.374	$\begin{gathered} 4.07 \\ (4.05 \pm .02) \end{gathered}$	4.229	$\begin{gathered} 3.91 \\ (3.95 \pm .013) \end{gathered}$	4.075	$\begin{gathered} 2.82 \\ (2.75 \pm .0 \end{gathered}$	$12)^{2.675}$
\mathbf{k}_{∞}	1.045	1.014	1.096	1.085	1.128	1.123	1.148	1.146	1.155	1.141

Tabie 15

Comparison between PLUTHARCO and Chalk River values（ref．24）

	0x－19－Air－18		Ox－19－Air－21		ox－19－Air－24		0x－19－Air－28		0ッープーAir－30	
	CAN．	PLUPH．	CANS．	PLUTH．	CANT．	PLTTTE．	CAIJ．	PLUTH．	CAN．	PLUTH．
η		1.301		1.306		1.308		1.310		1.312
ε		1.031		1.031		1.031		1.031		1.031
p		0.798		0．862		0.898		0.925		0.944
f		0.945		0.941		0.936		0.928		0.907
$\mathrm{L}^{2}\left[\mathrm{~cm}^{2}\right]$		71.842		105.155		145.646		210.677		378.323
$\tau\left[\mathrm{cm}^{2}\right]$		178.668		155.505		143.566		134.339		125.278
$B^{2}\left[\mathrm{~m}^{-2}\right]$		0.444	$3.35 \pm .055$	3.429	$4.115 \pm .036$	4.471	$4.07 \pm .018$	4.439	2．97土．006	3.042
k_{∞}		1.011		1.091		1.134		1.159		1.158

Comparison between PLUTHARCO and Chalk River values

	OX-19-0RG-18		OX-19-ORG-21		ox-19-ORG-24		OX-19-ORG-28		OX-19-CRG-36	
	CATV.	PLJTE.	CAN.	PLUTH.	CAN.	PLUTH.	CAN.	PLUTH.	CAN. PLUTH.	
η		1.306		1.308		1.310		1.311	1.313	1
$\underline{\xi}$		1.027		1.027		1.027		1.027	1.027	\bigcirc
p		0.861		0.892		0.912		0.927	0.938	1
f		0.867		0.860		0.853		0.844	0.820	
$L^{2}\left[\mathrm{~cm}^{2}\right]$		65.104		102.150		147.515		220.719	409.131	
$\tau\left[\mathrm{cm}^{2}\right]$		93.958		97.984		101.027		103.778	106.920	
$B^{2}\left[\bar{m}^{-2}\right]$		0.109	$1.214 \pm .035$	1.544	$1.568 \pm .019$	1.865	$1.528 i .012$	1.640	0.750	
$\mathrm{k}_{c o}$		1.002		1.031		1.047		1.054	1.039	

V. PLUTHARCO, Directions for use

The code PLUTHARCO written in Fortran II, version 2, can be run on a normal IBM 7090 with a 32.000 words memory. The time of execution is about 20 seconds per case. The number of output lines is of the order of 250 per case. For the execution a tape is needed on channel B5, entering a table of Amouyal-Benoist escape probabilities (Tape no.806).

For the perforation of the data for RLT4 input a tape shall be mounted on A6 (11).

V.1. Input

Much effort has been done to make the program as elastical as possible i.e. that heavy water moderated reactors of the most different types can be calculated.

This elasticallity has been achieved by introducing an option for every structural part of the reactor e.q. fuel, canning, coolant, filler, tubes and geometry.

Apart from these choices, which are all possibilities foreseen in the program, a so-called "7 choice" exists, making it possible to enter the macroscopic cross sections and geometry directly. In this case detailed constants for the calculation of these data need not to be entered (f.i. in the case of direct macroscopic coolant input the coolant spectral constant and physical temperature may be omitted).

By using th. "7 choice" for the geometry the user should provide a Fortran subroutine, called DUMMY, which calculates the geometrical constants from detailed parameters or gives them directly.

Before beginning a calculation a vector of input data shall be provided to the program. This vector is not altered during the course of the calculation and will remain in the computer as long as no changements are made. Using this principle calculations belonging to one "family " can be made by simply altering the figures to be varied. Hereafter one has to give the order to start the cal-
culation again. This order is given by entering an asterisk (*) in column 1 of the last input card of the calculation.

The advantage of this system is the very limited number of input cards, because only changements have to be made with respect to the former calculation, which very of ten are few. However one has to be very careful to remove all old unnecessary data of the former calculations from the vector before beginning a calculation of another "family".
It is therefore very advantageous to provide a dummy input set, which clears the whole vector between two series of calculations.

V.2. Gard formats

Every calculation uses two sets of cards.

1. A set of two identity cards, in which any message may be punched in col. l-72. This will be printed out on listing before starting the calculation.
2. Data cards

The data cards enter the desired input for the oalculations into a storage blook.

The data will remain, during the execution as long as they are not overwritten by other ones.

We thus need only to replace the entries which have to be ohanged after a oalculationk instead of giving all the data again.

The set-up is as follows:
col. 1 Any figure (numeric or alfabetical card oount f.i.) may be entered here. An asterisk (x) however must be used only in the last oard of the set, which form part of one oalculation.
col. 2-4 The inputlist looation which will be modified by the first of the siz data fields on the card.

1. 5-7 The inputlist location whioh will be modified by the last (between 1 and 6) data field of the card.
ool. 8-17 Data fields The decimal point
18-27 may be placed on the places
28-37 $\quad 10 n+12(n=0,5)$
38-47 If no decimal points are entered, the point is supposed to
48-57 be between col. $10 n+12$ and $10 n+13$ ($n=0,5$).
58-67

To obtain the complete RLT4 output (for description of this program see ref. 27) punched automatically, attention should be payed to the following:
The two identity cards read in at the start of every calculation are written out in the testing but also punched out forming the first cards of the RLT4 input.
The total RLT4 input consists of a set of 6 cards, divided in one identity card, 1 option card and four physical data cards. The last four cards are output data of PLUTHARCO.
From this is clear that this second (option) card for RIT4 should already be entered in PLUTHARCO.
The follawing test describes the format of this card.

Column	Format	Symbol	Descriptinn
1-6	E6. 2	TEND2	End of life (n / kb)
7-18	E-12.8	FIE	Constant flux in units of 10^{13} neutrons/ cm^{2} sec or constant power in MWD/T (see i2)
19-20	I_{2}	K_{1}	00 (obligatory)
27-28	I_{2}	I_{1}	Multiplication factor to be applied to the basic time step (the last being equal to $\left.0.01_{n} / \mathrm{kb}\right)$
29-30	I_{2}	I_{2}	if $i 2=00$ the flux is assumed to be constant during burn-up, if $i 2=01$, the power is assumed to be constant during burn-up
31-32	I_{2}	I_{3}	obligatory 01
35-36	I_{2}	I_{5}	if i5 = 00 The principal data (buckling fuel atomic density etc) are printed out I5 = OI Print-out as option 00 together with fission product densities
			I $5=03$ Printout as option 01 together with lattice parameters I5 = 04 Print-out as option 03 but with burm-up integrals

Column	Format	Symbol	Description
37-38	I_{2}	I_{1}	Ideal circulation calculation performed if $L_{1} \neq$ on
39-40	I_{2}	I_{2}	two element circulation calculation porformed if $I_{2} \neq 0$
41-42	I_{2}	L_{3}	single element circulation calculation performed if $\mathrm{L}_{3} \neq 00$
43-44	I_{2}	L_{4}	crossed circulation calculation performed if $\mathrm{J}_{4} \neq 00$

V.3. LIST OF ENTRIES FOR PLUTHARCO

VERSION 26.04.66

PAG。 1

LIST OF ENTRIES IN PLUTHARCO

1. COMP OUND INDEX
2. METAL
3. OXIDE
4. MONOCARBIDE
5. DICARBIDE
6. OTHER FUEL ICROSS-SEETIONS TO BE ENTFRED IN VRS 72-89)
7. DILUENT SPECTR: CONST。 (K)
8.
9. CANVING SPECTRe CONST. (K)
10. COOLANT INDIX
11. VOID
12. GILOTHERM (SANTOWAX)
13. DIPHENYL
14. HEAVY WATER
15. OTHER ORGANIC COOLANT IDATA TO BE ENTERED IN NRS 90,91,104 AND 1051
16. OTHER COOLANT ICROSS-SECTIONS TO BE ENTERED IN NRS 127-149 AND 167-1791
17. COOLANT AND INNTR FILLER SPECTR CONST. (K.)
18.
19. OUTER COOLANT AND OUTER FILLER SPECTR. CONST. (K)

PAG. 2

9。
10. PRFSSURE TUBF SPECTR. CONST (K)
11. INSJLATION INDFX
0. VOID

1. GILOTHERM (SANTOWAX)
2. DIPHENYL
3. HEAVY WATER
4. AL2 03
5. SI O
6. OTHER MATERIALICROSS-SECTIONS TO BE ENTEFED IN NRS.152-164)
7. INSJLATION SPECTRe CONST. (K)
8.
9. Calamipia spfecte comet ik.
10. MOCFRATOK SFECTI. COHST IKI
11. PHYSICAL TEMPERATURE FUFL
12. PIIYSICAL TEMPERATURE COOLANT
13. PHYSICAL TEMPERATURE INSULATION
14. PHYSICAL TEMPERATURF MODERATOR
```
PAGo 3
    20. SPEETRAL CONSTANT INDEX
                - 1. CORRFLATED SPECTR. CONST
                O. OTHER SPECTR. CONST.
                1. TERMIDDR SPECTRU CONST, (ENTER DATA IN NRS.195-200)
    21。
    22. SGR FILLEP. DENSITY(GRAPHITE) RELATIVE TO RFFERENCE DENSITY
        (1.65 GR/CM3)
    23. ALFA WEIGHT PEFCENTAGE OF ALE 03 IN SAP (VALUE BETWEEN O AND 1)
    24. RHO-SAP SAP DENSITY (IN GR/CM3)
    25. HBR PERCENTAGE OF HIGH BOILING RESIDUES IN SANTOWAX
                            (IN PERCENTS)
26．SAL EFFECTIVE ARSORPTION SECTION（AVERAGED OVER A MAXWELLIAN FLUX AT FUEL TEMPERATURE \(T(N) I D U E\) TO ALLOYS CONTAINED IN TH FUEL
27．PU PURITY OF HEAVY WATER（VALUE BETWEEN 0 AND 11
28．CHW ADDITIONAL HEAVY WATER ABSORPTION SECTION DUE TO IMPURITIES OTHER．THAN LIGHT WATER（VALUE AT 乞200 M／SEC）
29．EXSAP EXTRA ABSORPTION IN SAP DUE TO IMPURITIES （VALUE AT \(2200 \mathrm{M} / \mathrm{SEC}\) TIMES 1。OE 5）
30．\(S\) CYLINDRICAL GEOMETRY OUTER RADIUS OF FIRST（OUTER）TUBE
```

PAGe 4
ALL OTHFR GEOMETRIES FUEL ROD RADIUS

31. S1 | 7-ROD HEXAGONAL |
| :---: |
| 19-ROL HEXAGONAL |
| 19-ROD CISCULAR |
| 22-ROD |
| |
| |
| |
| |
| |
| |
| |
| |
| |

CLAD ROD RADIUS
CLAD ROD RADIUS
CLAD ROD RADIUS
RADIUS OF CENTRAL ROD
CLAD ROD RADIUS
CLADDING INNER RADIUS
IVNER RADIUS OF FIEST (OUTER) TUBE

RADIUS OF SECOND-RING RODS
CLADDING OUTER RADIUS
OUTER RADIUS OF SECOND TUBE

RADIUS OF THIRD-RING RODS
INVER FADIUS OF SECOND TUBE

INTERNAL RADIUS OF PRESSURE. TURE

EXTERNAL RADIUS OF PRESSURE TUEIE

I VTERNAL RADIUS OF CALANDRIA TUBE

EXTERNAL RADIUS OF CALANDRIA TUBE

EXTERNAL RADIUS OF CENTRAL FILLINC TUBE

OUTFR RADIUS OF THIRD TURE

THICKNESS OF CENTRAL FILLING TURE

PArio 5
CYLII:LRICAL INVER RADIUS OF THIRD TURE

```
40. GEOYETRY INDEX
            1. T-P.OD HEXAGONAL
            2. 19-ROD IIEXAGONAL
            3. 19-ROD CIRCULAR
            4. =2-P.OD
            5. 4-ROD
            6. SINGLF ROD
            7. OTIITR GFOMETPY ITO BE SPFCIFIED IN SURROUTINEI
            8. CYLINDRICAL
            9. SPECIAL C.EOMLTRY IDATA TO HF ENTERED IN NRS.107-126)
```

41. D T-ROD HEXAGONAL AXIAL OISTANCE FROM ROUS IN HEXAGOYAL
GEOMETRY
AXIAL DISTANCE FROM RODS IN HEXAGOVAL
GEDMETRY
17-ROO CIRCULAR AXIAL DISTANCE FROM RODS IN HEXAGONAL
GEOMETRY
22-ROC DISTANCE FROM CENTRE OF EXTERNAL RING
OF RODS TO CENTRE OF ELEMENT
UISTANCE FROM CENTPE OF ELEMENT TO
OTHER PODS
OUTER RADIUS OF FOIJRTH (INNFR) TUBE
42. D1 2人-ROR
CYLINIIRICAL
42. D2 22-ROD
CLADOING THICKNESS OF RODS IN FIRST
R.I VG

PAGo 6

44.	03	$22-\mathrm{ROO}$	CLADDING THICKNESS OF RODS IN SECOYD
			RING
		CYLINDRICAL	CLADDING THICKNESS OF EYLINDRICA!
			TUAES
45.	VR	CYLINDRICAL	TOTAL VOLUME OF FILLIṄ AT CENTRE OF
			FUEL ELEMENT
		ALL OTHER CEOMETRIES	TOTAL VOLUME OF FILLINS
46.	VRIT	CYLINDRICAL	VOLUME OF FILLING AT CENTRE OF FUEL
			ELEMENT FOR CALCULATION OF THERMAL
			UTILISATION FACTOR
		ALL OTHER GEOMETRIES	VOLUME OF FILLING INSIDE HOMOGEVIZED
			CENTRAL ROC FOR CALCULATION OF THER-
			MAL UTILISATION FACTOR
47.	VRIF	CYLINDRICAL	VOLUME OF FILLING AT CENTRE OF FUEL
			ELEMENT FOR CALCULATIOV OF FAST
			FISSION FACTOR
		ALL OTHER GFOMETRIES	VOLUME OF FILLING INSIDF HOMOGFVIZED
			CENTRAL ROD FOR CALCULATION OF THER-
			MAL UTILISATION FACTOR

48.
49. PUNEHING INDEX

- 1. PUNCH CAPDS FOR RLT-?

0. 110 CARD-PUNCH
1. PUNCH CARDS FOR RLT-4

PAG. 7
50. PRIVTING INDEX
0. OUTPUT WITH INTEPMEDIATE RESULTS

1. OUTPUT WITHOUT INTERYEDIATE RESULTS
2. SECJND FLIGIIT CORRECTION

CORRECTION FACTOR TO MAKE ALLOHANCE FOR NON-UNIFORMITY OF NEUTRON DENSITY AFTER FIRST COLLISION
52. ATOYIC FRACTION TH-232
53. ATOYIC FRACTION U-233
54. ATOMIC FRACTION U-235
55. ATOMIC FRACTION U-236
56. ATOMIC FRACTION U-238
57. ATOMIC FRACTION PU-239
58. ATOMIC FPACTION PU-2.40
59. ATOYIC FRACTION PU-241
60. MIXED FUFL DENSITY

61 MIXED FUEL MOLICULAR NUMBER

62 SPESTR. CONST. K (K) TH-232

PAG． 8

```
63 SPE:TR. CONST_(K) 11-23E
64 SPEETR. CONST.(K) U-235
65 SPE=TR. CONST.(M) (1-236
66 SPELTR. CONST&IK) U-238
67 SPEこTR. CONST.(K) PU-239
68 SPEこTR. CONST。(K) PU-240
69 SPE:TR. CONST.(K) PU-241
70. LATTICF CELL INDEX
1. VM/VF
2. SQUAFFF PITCH
3. HFXAGONAL PITCII
71. VALJE OF VM/VF (DIMENSIONLESS) OR PITCH (CM)
    CROSS-SECTIONS FOR SPECIAL FUEL (SEE 1. COMPOUND INJEX)
72. ABSORPTION (THERMAL) (SACT)
73. FISSION (THEPMAL) (SFCT)
74. SCATTERING (THERMAL) (SSCT)
75. TRAVSPORT (THERMAL) (STRCT)
76. SCATTERING (EPITHERMAL) (SSCE)
77. TRAVSPORT (EPITHERMAL) (STRCE)
78. SLONING DOWN (EPITHERMAL) (SXSCE)
```

```
PAGu 9
    79. TOTAL (FAST) (STCF)
    80. ELASTIC (FAST) (SECF)
    81. INELASTIC (FAST) (SICF)
    82. FISSION (FAST) (SFCF)
    83. CAPTURE (FAST) (SCCF)
    84. NU TIMES FISSION(FAST) (SNUCF)
    85. TOTAL 2. (FAST) (STCF2)
    86. SCATTERING 2 (FAST) (SSCF2)
    87. CAPTURE 2. (FAST) (SCCF2)
    88. A- ZES.INT. (Ul)
    89. B- २ES.INT. (U2)
    90. ORGANIC DENSITY AT O CENTIGRADE (SEE 5. COOLANT INDEX)
    91. -(DENSITY TEMP。COEFF.) TIMES 1,E4 (SEE 5. COOLANT INDEX)
    92. NU TIMES FISSION (THERMAL) (SNUFCT)
    93-103
```

104. NUMBER OF C-ATOMS/ORGANIC MOLECULE (SEE 5. COOLANT INDEX)
105. NUMBER OF H-ATOMS/ORGANIC MOLECULE (SEE 5. COOLANT INDEX)
106
GEOMETRICAL DATA FOR SPECIAL GEOMETRY (SEE 40。 GEOMETRY INCEX)
106. VC
107. VG
108. Vo
110.VTI

PAG. 10
111. VT2
112. VT3
113.
114.

115。
116. VBT
117. ABT
118. VOIT
119. VOET
120. VBF
121. ABF
122. VGIF
123. VOIF

124 SU
125 SF
126 DAN
127-136

CROSS-SECTIONS FOR SPECIAL こOOLANT (SEE 5. COOLANT INDEX)
137 ABSJRPTION (AT $2200 \mathrm{M} / \mathrm{SEC}$ I (SANT)
138 SCATTERING (THEPMAL) (SSNT)
139 TRAVSPORT (THERMAL) (STRNT)
140 SCATTERING (EFITHERMAL) (SSNE)
141 TRAVSPORT (EFITHERMAL) (STRNE)
142 SLONING DOWN (EPITHERMAL) (SXSNE)
143 TOTAL (FAST) (STN)
144 ELASTIC (FAST) (SEN)
145 INELASTIC (FAST) (SJN)
146 CAPTURE (FAST) (SCN)
147 TOTAL 2 (FAST) (STNZ)

```
PAG. 11
```

148 SCATTERINC 2 (FAST) (SEN2)
149 CAPTURE 2 (FAST) (SCN2)

```
150-151
```

CROSS-SECTIONS FOR SPECIAL INSULATION (SEE 11. INSULATION INDEX)
152 ABSJRPTION (AT $2200 \mathrm{M} / \mathrm{SECl}^{2}$ (SANT)
153 SCATTERING (THERMAL) (SSNT)
154 TRAVSPORT (THERMAL) (STRNT)
155 SCATTERING (EPITHERMAL) (SSNE)
156 TRAVSPORT (EPITHERMAL) (STRNE)
157 SLONING DOWN (EPITHERMAL) (SXSNE)
158 TOTAL (FAST) (STN)
159 ELASTIC (FAST) (SEN)
160 INELASTIC (FAST) (SJN)
161 CAPTURE (FAST) (SCN)
162 TOTAL 2 (FAST) (STN2)
163 SCATTERING 2 (FAST) (SEN2)
164 CAPTURE 2 (FAST) (SCN2)
165-166
CROSS-SECTIONS FOR SPECIAL JUTER COOLANT (SEE 5. COOLANT INDEX)
167 ABSJRPTION (AT $\left.2.200 \mathrm{M} / \mathrm{SECl}^{2} \mathrm{ISANT}\right)$
168 SCATTERING (THERMAL) (SSNT)
169 TRAVSPORT (THERMAL) (STRNT)
170 SCATTERING (THERMAL) (SSNE)
171 TRAVSPORT (THERMAL) (STRNE)
172 SLOWING DOWN (EPITHERMAL) (SXSNE)
173 TOTAL (FAST) (STN)

PAG。 12

174	ELASTIC	（FAST）	（SFN）
175	INELASTIC	（FAST）	（SJN）
176	CAPTURE	（FAST）	（SCN）
177	TOTAL 2	（FAST）	（STN2）
178	SCATTERING $=$	（FAST）	（SENZ）
179	CAPTURE 2	（FAST）	（SCN2）

180－194

TERYIDOR CROSS－SECTIONS ISEE 20：SPECTRAL CONSTANT INDEXI

195
196
197 SPEETRUM MEAN MICROSCOPIC PJ－239 ABSORPTION CROSS－SECTION
198 SPEこTRUM MEAN MICROSCOPIC Pリ－239 FISSION CROSS－SECTION

201
202
203
204
205
206
207
208 SPEこTRUM MEAN MICROSCOPIC U－235 ARSORPTION CROSS－SECTION SPE二TRUM MEAN MICROSCOPIC U－235 FISSION CROSS－SFCTION SPEこTRUM MEAN MICROSCOPIC I／V ABSORPTION CROSS－SECTION／BARN （ $2200 \mathrm{M} / \mathrm{SEC}) \mathrm{IN}$ FUEL SPE：TRUM MEAN MICROSCOPIC $1 / V$ ABSORPTION CROSS－SECTION／BARN （ $2200 \mathrm{M} / \mathrm{SLC})$ IN MODERATOR

VOLJME FRACTIONS OF STRUCTURAL MATERIAL FOR CANNING
AIR
BERYLIUM
GEAPHITE
MAGNESIUM
LEAD
SAP
STAIHLESS STEEL
ZIRCALOY－：

209－210

```
FAG. 13
    VOLUME FFACTIONS OF STRUCTURAL MATERIAL FOR PRESSURE TUBE
211
    AlP
212 BERYLIUM
213
214
    MAGNESIUM
215
    LEAD
216
    SAP
217 STAINLESS STEEL
218 ZIPCALOY-2
219-2%0
    VOLJME FRACTIONS OF STRUCTUZAL MATERIAL FOR CALANDRIA
22.1
222
223
224
225
226
227
228
    AlR
    BERYLIUM
    GRAPHIITE
    MAGNESIUM
    LEAD
    STAINILESS STEEL
    ZIRCALOY-?
229-230
231
232
233 GRAPHITE
234
235
236
237
```

```
VOLUME FRACTIONS OF STRUCTUZAL MATERIAL FOR INNFR FILLER
```

VOLUME FRACTIONS OF STRUCTUZAL MATERIAL FOR INNFR FILLER
AIR
AIR
BERYLIUM
BERYLIUM
MAGNESIUM
MAGNESIUM

```
    LEAD
```

 LEAD
 SAP
 SAP
 STAINILESS STEEI.
    ```
    STAINILESS STEEI.
```

PAG. 14
238
$239-240$$\quad$ ZIPCALOY-

VOLJME FRACTIONS OF STRUCTURAL MATERIAL FOR OUTER FILLER

241
242
243
244
245
246

248
249-250

247 STAINLESS STEEL
ZIRCALOY-?
AIR
BERYLIUM
GRAPIIITE
MAGNESIUM
LEAC
SAP

V.4. Output

This part describes the output page by page.
Page 1: List of input to detect errors in punching or order
Page 2: Lay-out of the input vector; for abbreviations see V. 3
Page 3: Properties of the 6 regions with their macroscopic cross sections, fluxes and capture fractions. The region division is described in I.4. ${ }^{\text { }}$

Page 4: Printing of the most important lattice characteristics and PLT 4 input data. On the bottom of this page a warning may be printed that some input lists have been extrapolated. These lists are found in part IV.

Page 5: Gives the properties of the different materials of the lattice cell. The abbreviations are to be divided into three parts.

Part 1 , the symbols S resp. XS having the meaning of "sigma" and "Xsi-sigma"

Part2, A, E, S, TR, T, E, I, F, C, T2, S2, C2 symbols corresponding with III.l a Part 3, T, E, F symbols with the meaning Thermal, epithermal and fast respectively For the symbols TAU see I.8.

Page 6: Gives the volumes of the different components of the reactor lattice
The symbols are again divided into three groups
Group $1, \mathrm{~V}, \mathrm{Z}, \mathrm{B}, \mathrm{A}, \mathrm{S}, \mathrm{RC}$ symbols corresponding with III. 3a Oroup 2, $C, G, O, M, T_{1}, T_{2}, T_{3}$ symbols corresponding with III. 2 b Group 3, T, E, F again meaning thermal, epithermal and fast respectively, see part III.4.
The next part of this page gives for atomic density calculations the vdlume fractions of the different components in the first two regions together with the total volume.

[^4]V.5. Example of output
plutharco
A PLUTONIUM-URANIUM-THORIUM ASSEMBLY REACTIVITY COEF

YOUR INPUT CARD ARRANSEMEHT WAS AS FOLLOWS

ORGEL-19-TH/235/2.0/10

| 1 | 6 | 0.2 OnOE 01 | 0. |
| :---: | :---: | :---: | :---: |
| 7 | 12 | 0. | 0.3508 SE 3 |
| 13 | 18 | 0.80 -se Ot | 0.35 50e 03 |
| 19 | 24 | 0.3636ne 73 | -0.1sorse 01 |
| 25 | 30 | 0.3anim 12 | 0. |
| 31 | 36 | 0.789 - 0 - 0 | -0. |
| 37 | 42 | 0.478 OOE 31 | -0. |
| $\begin{aligned} & 49 \\ & 52 \end{aligned}$ | $\begin{aligned} & 49 \\ & 57 \end{aligned}$ | $\begin{aligned} & 0.1 \operatorname{GCE} 01 \\ & 0.9 \text { OCCE BC } \end{aligned}$ | -0. |
| $\begin{aligned} & 60 \\ & 62 \end{aligned}$ | $\begin{aligned} & 61 \\ & 67 \end{aligned}$ | $\begin{aligned} & 0.77 C O E E \\ & 0.35 \text { ORE } 3 \end{aligned}$ | $\begin{aligned} & 0.26400 \mathrm{E} 33 \\ & -0 . \end{aligned}$ |
| 70 | 71 | 0.10000 O | 0.15 MSEC2 |

0.1 OOGOE 01
$0.800 \mathrm{O}=1$
$0.890 \mathrm{O}=1$
0.35 COEF 03
-0.
0.9980 E G
-0.
-0.
0.2MAREE-C1
-0.
0.35 UN: 03 -0.

0 .
-0.
0.35000E :3
0.350 : F : 3
$0.1100 \mathrm{OE}: 4$
$0.413 \mathrm{FiE} ? 1$
0.3 rooge of
0.1rGine :1
0.
0.63cen : 3
0.70このOE-T1
-0.
0.433 20E O 1 0.463rOE 01
0.1678 : $: 1$-0.
-0.
-0 .
$0.35 \% \mathrm{EE} 03$
0.35 OE 03
0.60 COE 03
0.273 E 01
0.709 EE 00
0.463 OE 01
-0.
-0.
-0.

```
PLUTHASCO - A PLUTOMIUM-UTNOIUH-THORIUM ASSFMMLY BEACTIVITY GODF
JCH ORここL-19-TH/ころ5/2.0/10
```



```
PLUTHAREO - JO
```

 OスGEL-19-T:1/235/2.0/10
 THERMAL CHMRACTCRISTICS OF THE LATTICE CELL

| REGION | FUEL ABSOPRTIOM | TOTAL ABSORSTIOA | total scatter | SOUREE | VOLUME | Ext. RADIUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $0.1636035-70$ | 0.171780E-00 | 0.6b5, 0 7E 00 | 0.188496E-00 | 0.233678502 | 0. 2964 にE 21 |
| 2 | 0. | $0.7413 .15-02$ | 0.145569 O | 0.597567 E 00 | 0.421800 ¢ 01 | 0.413000E 01 |
| 3 | 0. | 0.70:3797E-02 | 0.956073E-01 | 0.757602E-02 | $0.531557 E 01$ | 0.433000 E 01 |
| 4 | 0. | 0. | 0. | 0. | 0.844460 E 01 | 0.46 .3000501 |
| 5 | 0. | 0.908709E-02 | 0. $356073=-01$ | 0.757602E-02 | 0.443436 F 01 | $0.479000 E 01$ |
| 6 | 0. | 0.581801E-04 | 0.289913E-00 | 0.176608E-00 | $0.200052 E 03$ | 0.108.772E O? |
| REGION | RELATIV= FLIMX | CAPTURE FRACTIDN | | | | |
| 1 | 0.100000 F 01 | $0.971654 E 00$ | | | | |
| 2 | 0.157931501 | 0.565822E-02 | | | | |
| 3 | 0.1733h7E 01 | $0.957571 F-02$ | | | | |
| 4 | 0. | 0. | | | | |
| 5 | 0.172960501 | 0. $24320 E-02$ | | | | |
| 6 | 0.241412 F 01 | $0.4228635-02$ | | | | |
| SECOND | LIGHT CORRECTION= | 0. cantu | O TO FUEL PLUX | $10=1.0731+$ | | |

PRINCIOAL PHYSICAL RESIUTS

| FAST FISSION FACTOF． | 0.07976 | THER：AL UTILISATION FACTOR | 0.25417 |
| :---: | :---: | :---: | :---: |
| SLOwINS DOWM APEA | 11t．579 | ［IFFUSIUN AREA | 77.742 |
| SLOWIVG DOUN CROSS－SECTION | 0.17505 | THER：AL ABS．CROSS－SECTIOV | 0.01074 .34 |
| FAST OIFFUSION EQEFFICIENT | 1．27051 | TIERYAL CIFFIJSION SORFFICIENT | $0.25,595$ |
| IVFINITE NULT FACTOF | 1．08．712 | TIER＊AL FISSION：FACTOR | 1．3035 |
| CRITICAL RUCKLIV | 4.329067 | NEO．VATERIAL RUこKLIGO | －215．475 |
| TAU MODERATOR | 117.076 | YODESATOF S．I．AREA RES．EN． | 67.076 |
| EFFESTIVF SURFACE | 44.26073 | EPITH．FLUX FRACTIOV | 0.12075 |
| RESOVATE P POOBARILITY | 0.98975 | CELL S．C．AREA RFS．EN． | t．t．0．t3 12 |
| LETHAB：Y Rasiof | 16．116 | FAST SCOURCE（HU S．FI | 0.017400 |
| FAST APS．CFOSS－SECTIOV | 0.00122 ？ | FAST FEMOVAL SROSS－SECTIGJ | 0.007677 |

| XO（TH－232） | $=0.109743$ | $x 1(1: 1-232)$ | $=0.003730$ | JAMいA（TH－232） | $=0.782567$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 0$（U－230） | $=-0$ ． | $\times 1(1-239)$ | $=-0$ ． | GAMMA（U－23E） | $=-C$ ． |
| XO（PU－240） | $=-0$ ． | Y， $1\left(P_{1} 1-2 t: 0\right)$ | $=0$. | GAM：＾A（Pl－240） | $=0$ 。 |
| XO（TOTAL） | $=0.107948$ | X1（TOTAL） | $=0.003730$ | GAMMA（TOTAL） | $=0.7835 月 7$ |
| $W(4 \mathrm{~V} / \mathrm{S})$ | $=2.711122$ | V | $=0.607730$ | K | $=0.00 \% 277$ |
| 2 | $=0.30748$ | Ftio | $=0.971654$ | CHORO LENSTH | $=2.711122$ |
| RES．INT．（TH－232） | $=0.275531$ | PEs．IVT．（U | $=0$. | RES．INT．（DIJ－2 | $=0$. |
| RES．PROR．（Til－ 3 ？ | $=0.307830$ | \because SS．TrOE． 11 | $=1.000000$ | PFS．PROH．（PリJ | $=1.00000 \mathrm{C}$ |
| ．．．fXtrapolation in calculatich of．．．． | | | | | |
| BSH／ORGANIC | | | | | |
| RLT？／OPGANIC | | | | | |

INTEPMEDIATE RESULTS

「2055-S:CTIONS
FUEL

$\begin{array}{ll}\text { S.AT }=0.83004 E-02 & S . S T=0.756075-0 \\ S . T F & =0.10662 E-00 \\ S . S 2 F=0.19074 F-00 & \text { S.IF }\end{array}$
COOLANT
$S: A T=0.077075-07$
$X S O S E=0.0977500$
$S . T 2 F=0.26575 E-00$
OUTER-COOL ANT
$S . A T=0.74133 E-02$
$X S O S E=0.67757 E 00$
$S .2 F=0.2575 E-00$
$S \cdot S T=0.14557 E 01$
$S \cdot T F=0.1449 E-00$
$S . S F F=0.24575-00$
S.TQT $=0.90300 \mathrm{E}=00$
$S . E F=0.601 .3 \mathrm{E}-0$
$S . S F=0$.
$\begin{array}{ll}S . S T & =0 \\ S: T F & =0 \\ S . S F & =0 .\end{array}$
SRT $=0$.
S.EF $=0$.
$S: E F=0$.
S.TRT $=0.10200 E-00$
$S . E T=0.740 G E E-01$
S.TRT $=0$.
SOE $=0$.
$S . C F=0$.
$\begin{aligned} S \cdot T E T & =0.10200 E-00 \\ S & =0.34008 E-01\end{aligned}$
$\begin{aligned} S O T O T & =0.38091 E-00 \\ \text { TAUF } & =0.11111 E 03\end{aligned}$
$X S_{0} S=0.75760=-02$
$S_{0} \cdot \mathrm{~F}=0$.
S.TRT $=0.90934500$ S.EF $=0.12150 \mathrm{~F}-00$
S.S?F $=0.28752 \mathrm{E}-00$
$S \cdot S E=0.47022 E-00$
$S: I F=0.57744 F-01$
$S . C 2 F=0.35542 E-02$
$S . T R E=5.22907 E-01$
$S . T 2 F=0.19024 E-00$
$\begin{aligned} S: T R E & =0.40+73[-00 \\ S: C F & =0 .\end{aligned}$
$\begin{array}{lll}S . S[& =0.86223 E-00 & S \cdot T R= \\ S . I F & =0.56940 E-01 & S: C F\end{array}$
S.SE $=0.8+223 E 00$
S.IF $=0.55240 \mathrm{~F}-01$
S.SF $=0$
$\begin{aligned} X S . S E & =0.7576 .0 E-02 \\ S & =0 .\end{aligned}$
$\begin{aligned} \text { SOTRE } & =0.25545 E-00 \\ \text { STR } & =0.4753 E 0\end{aligned}$

S.TCE $=0.72707 E-01$
$S . T 2 F=0: 17024 E-00$
$S \cdot T R E=0$.
$S . C F=0:$

XS.SE = S. 176t.1E-00

```
PLUTHARCO - JOR ORGEL-19-TH/235/2.N/15
```


ORGEL-19-TH/235/2.0/10

- . 00377766. 10994832.120952142 .7111222 .60778762 .00287723 .38074770
.95418929 .97165423116 .5700577 .941671 .0271228577 .07319 .700000264 .00000
0110.98000000.
.02000000 .
。
- • •

1431 LINES OUTPUT THIS JOR.

1. C.H. Vestcott, K.H. Walter and T,K. Alexander: Effective cross sections and Cd-ratios for neutron spectra in thermal reactors, Proc.Gen-Paper 1958, 16 Paper 202, p.70, CRR 8960 (1960)
2. Syret, Campbell, Gen-Paper 10, 1958, Book 16, pag. 233
3. Westcott, Gen.Paper (+ appendix) 202, 1958, Book 16, pag. 70
4. Spinrad, Gen. Conf. 16, 1958 pag. 194
5. Childners, Turner and Bigham: Neutron Temperatures in a CANDU type power reactor, N.Sc.Engn. 16, 39-67 (1963)
6. TERMIDOR, An IBM 7090 FORTRAN code to evaluate the thermal neutron spectrum in an ORGEL type fuel element, Internal Report (not available)
7. J.R.Fleischmann, H.Soodak: Methods and cross sections of calculating the fast effect, N.Sc.Eng. 7, 217-227 (196))
8. ANL 5800, Reactor physics constants, Section 7.1.2. Multigroup Constants
9. E. Hellstrand: Heasurements of the effective resonance integral in U metal and oxide in different geometries, J.Appl. Phys., Vol.28, 12, Dez. 1957
10. G.B. Zorzoliz On the calculation of the effective resonance surface, Energia Nucleare, Vol.9, Nr.8, 1962, pag. 462
11. W. De Haan: Correlation of the analytical theory to the results of Nordheim's numerical resonance integral calculation method, , Internal Report (not available)
12. A. Amouyal, P. Benoistg Nouvelle methode de determination du facteur d'utilisation thermique d'une cellule, CEA 571, J. Kucl.Eng. 1957, Vol.6, pag.79-98
13. A. Amouyal, P. Benoist, C. Guionnet, CEA 1957, Calcul du facteur d'utilisation thermique dans une cellule formee d'un nombre quelconque de milieux concentriques
14. Reactor Handbook, Physics, pag. 240 III ${ }^{\text {A }}$
15. ANL 5800 II Reactor physics constants, pag. 148
```
Ref.16 G.Casini, M.Paillon, S.Stramaccia: Première interprètation
    des expériences EYPO sur des réseaus ORGEL à carbure d'uranium,
    Rapport Interne( pas disponible )
Ref.17 R.Bonalumi, G.B.Zorzoli, Heavy water lattice buckling measure-
    ments, EUR 25.e (1962)
Ref.l8 R.Bonaluni, G.B.Zorzoli: "Cocco-Eill", A critical calculation
    code", CISE, Rep. 94, 1963
Ref.19 T.J.Hurley Jr.: Measured Lattice parameters for natural uranium
    metal rod lattices in D2O, DP }77
Ref.20 H. Märkl: Calculation of lattice parameters for 7 element UO}
    clusters using results of experimental measurements,
    R.P.I. 93, 1963
Ref. 21 Lattice measurements with 7 element UO 2 clusters in ZED 2,
    GA Beer, DW Hone, AECL 1505 (1962)
Ref.22 Lattice parameters in ZED 2 , R.E.Green, C.B.Bigham,
    AECL 1814 (1963)
Ref.23 R.E.Green et al. : Highlights of Chalk River work on the
    Physics of heavy water lattices since the 1959 IAEA panel
    AECL 1684 (1962), see also Heavy Water Lattices Panel,
    Report Vienna 1963
Ref.24 D2O lattice data, European American committee on reactor
    physics, EACRP-L-42
Ref.25 L. Amyot et al.: PINOCCHIO, a new calculation method
    for ORGEL type lattices, to be published.
Ref.26 G. Casini, !!.De Haan et al.: CAROLINE I, A Calculation Method for non-irradiated organic liquid heavy water Lattices, EUR 134.e (1962)
Ref. 27 G. Blässer et al.: Variation de la réactivite a long terme pour differents types de circulation du combustible, EUR 129 f(1962)
```


NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year; US\$ 15, \& 5.7) or free specimen copies please write to

Handelsblatt GmbH

"Euratom Information"

Postfach 1102

D-4 Düsseldorf (Germany)

Office central de vente des publications

 des Communautés européennes2, Place de Metz

Luxembourg

To disseminate knowledge is to disseminate prosperity - I mean general prosperity and not individual riches - and with prosperity disappears the greater part of the evil which is our heritage from darker times.

SALES OFFICES

All Euratom reports are on sale at the offices listed below; at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

PRESSES ACADEMIQUES EUROPEENNES

98 , Chaussée de Charleroí, Bruxelles 6

Banque de la Société Générale - Bruxelles compte ${ }^{\circ} 0964.558$,
Banque Belgo Congolaise - Bruxelles compte No 2444.141,
Compte chèque postal - Bruxelles - No 167.37,
Belgian American Bank and Trust Company - New York compte No. 22.186,
Lloyds Bank (Europe) Ltd, - 10 Moorgate, London E.C. 2,
Postscheckkonto - Köln - Nr. 160.861.

OFFIGE CENTRAL DE VENTE DES PUBLICATIONS DES GOMMUNAUTES EUROPEENNES

2, place de Metz, Luxembourg (Compte chèque postal No 191-90)

BELGIQUE BELGIE

MONITEUR BELGE 40-42, rue de Louvain - Bruxelles BELGISCH STAATSBLAD Leuvenseweg $40-42-$ Brussel

DEUTSCHLAND

BUNDESANZEIGER
Postfach - Köln 1

FRANCE

SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
26, rue Desaix - Paris 15°

ITALIA

LIBRERIA DELLO STATO
Piazza G. Verdi, 10 - Roma

LUXEMBOURG

OFFICE CENTRAL DE VENTE
DES PUBLICATIONS DES
COMMUNAUTES EUROPEENNES
9. rue Goethe - Luxembourg

NEDERLAND

STAATSDRUKKERIJ
Christoffel Plantijnstraat - Den Haag

UNITED KINGDOM

H. M. STATIONERY OFFICE
P. O. Box 569 - London S.E.I

[^0]: (*) Manuscript reseived on August 25,

[^1]: *alues in parantheses are from flus mapping experiments

[^2]: * See note table 8

[^3]: ${ }^{x}$ see note table 8

[^4]: ${ }^{I}$ In the last version heterogeneous constants were also calculated and printed

