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Introduction

A random funotion V{ ) is the input of a system which produces, following
a probability law f[v(ﬂ)]do, a sequence of impulaes in & linear multiplicative
medium, The output of this latter is a random function N(t). The problem is to
caloulate the relation between the statistical properties of V(6) and N(t).
We show that this problem is an extension of the so-oalled randoa functions

derived from Poisson processes.

Two stochastio processes are oconsidered in the sections II and III.
The general result is reduced to the calculation of a functional of V(@)

extensively studied by dif'ferent authors.

Pinally the partiocular case of the nuclear reactor, suprvested by
Dr. W. MATTHES (Department of Reactor Physics) is given as illustration

of this model.

I Mathematiocal model

A random function V(@) produces in the interval of time [0,0+d0]
with the probability f{V(0)]d0 + 0(d0) at least one impulse and oonsequently
sero impulse with the probability 1 - £{v(8))d6 + 0(d8). Let us call ax(e)

the stochastio number of impulses in this interval.

The impulse response of the multiplicative medium is a random
function G(6,t), if the impulse occurs at time 6 and we obtain in the output

at time ¢,
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The hypothesis of linearity leads to the classical equation:

t

1.1) N(t) = [ 6(e,t) ax(e).

In other terms, in the interval ( - e, t) we observe impulses at time
...91...01+1... The impulse §, produces at time t the effect G(Oi,t).
I.1) represents therefore the infinite sum of random variable G(Oi,t).
This sum must be almost surely finite (i.e. finite except in cases of probability
gero) if we make the necessary assumption of the physical realisability of the

system. I.1) is, in fact, the sum

N(t) = £ c(oi,t)
8

of independent random variables depending of the parameter t.

We remark that G{0,t) may be a impulse random function end consequently
also N(t).

Naturally, if the number of impulses grows to infinity such that ax(e)
becomes, by a suitable normalisation, the differential of a derivable
funotion it is easy to show that I.1) Decomes the classical stochastic integral

equation

t
N(t) 3[ G(6,t)x(8)ae.



ITI Stochastio process X(t) induced by V(t)

Between the functions X(t) and f[¥(t)] (where f(x) is always a deterministic
function) we make the following assumption:

If v(t) is a given value at time t, £{v(t)] the non-negative value
oorresponding to t, we have:

Probability that at least one impulse occocurs in the interval
(t, t+dt) = £fv(t)]at + o(dt).

Probability that any impulse occurs = 1-f[v(£)Jdt - o(at).

(0(at) tends to zero with at'*® a > 0).
With this hypothesis, if pn(t) is the probability to have n impulses in

[0,t) we have the equation:
II.1) p(t+dt) = p (t) D-rlv(t)at] + p_(t)eLv()]at + ofat).

Taking acoount of the fact that po(o) = 1, a classical recurrence

caloulation gives

t n
o L f f[v::l)]du] N [. Lt o du]

If V(t) is a non-random funotion, pn(t) is a Poisson distribution.

If V(t) is random, then pn(t) is a random variable and we have to take the

mean value:

t
p(t) = fProb {I(t) ‘f elv(t))at < 1(t) + u(t)}u.(.ﬂ]_ JsI(t)ax
°

ni

which is not, in general, a Poisson distribution.

Hence:s

Prob [ax(t)] = k = m‘-‘ﬂ- o-flv(t)]at plv(t) = dev; k=0,1,2...

veV ki



Suppose now n disjoint intervals. Because the n k1 values are independent

we have

E[dx(t1)....d.X(tn)]= T Prob [ax(t,) = k,...ax(t ) = knJ ky Kyeook
k1+...kn=0

= E dV ooodv P(V eeeV ) H k e
K +es ok <O L T

Xy
- [ n [ f[viJ at] v dat
1

Conslder then the sequence in m:

X
Urlvdatd 1 -rpvat
k e

= = i '
ky+oook =0 i=1 k, !

x
n o [r [(v,)at] i ~£[v,] at
= n I ki — []
1=1 K #ou.k =0

ki!

We have

[efvJas] ™ —f[v,]

£lv Jat -¢[v,]at

l£] < 1 T X, M o U aat”efv]euut]v ]
i=1 k1+...kn-0 ki|

(at)® [ AV, eeedv f[vJ...f[vn] p(v1...vn) <w , by application

of the Lebesgue theorem on the inversion of the signs of summation we have:

Efax(t,)...ax(t )] = E[f [r(t,)]...e0v(t ) D at™.

This expression shows that the independence of the V(ti) involves the
independence of the dx(ti), in particular when V(t) is a deterministie

funoction,



III Stochastic process induced by the integral transformation

We have seen that the random variable Nr(t) is defined by

t
III.1) "r(t) = L 6(t,0)ax(e) which must be considered as the sum:

Ny(t) = o2 5(t,8)

with G(t,8) =0 if 6 > t, Por all finite interval [T,t), each realisation
X(6) defines a sequence almost surely finite of points 01. If we make the
assumption, always verified in the applications, that G(t,8) is finite except
on a set of measure zero, hence almost surely this sum defines a random
variable. In addition, we are interested in the behaviour of N&(t) when T + - o

and for the further calculations, how we may deduce the ocharacteristio

funotion

o(u,t) = Efexp 1uN(t)] [N(t) = Tnm NT(t)]

> e g5

from the ocharaoteriastie function of
or(u,t) = Bloxp 1uN (t]].

The two following oonditions that we state without the proofs, which
may be found in olessiocal text books, are the anawer to our questions.

If the following condition is fulfilled

+ o

I11.2 f Efc(+,0)] B[ax(e)] = [ E[G(t,0)] B2 (v(6))]40 <

then N(t) = 1lim nr(t) defines almost surely a random variable which is

> - =
noted:
+ o

N(t) = &(t,0)ax(e).

If in addition, we have:



I11.3) /“' /“' E[c(t,0) . 6(t’,0*)] E[ax(6)ax(e’)] =

+ o

j dO[ ae’ B[c(t,0) &(t’0’)] rlv(9)) £lv(0’)] } <m

then N&(t) convorges also in quadratic mean towards the random varisble

N(t), 1.0,

us B [N(t) - N(8)|% = o

> -
In other terms, III.2) ensures that, except in cases theoretically
poasible, but of which the probability of realisation is zero, N(t) is
a finite random variable,

The condition III,3) onsures, in addition, that

1) E[N(t) N(t’)] = correlation function of N(t) is finite

i) . lim qr(u,t) = ¢(u,t)

- = o

Tho physical interpretation of III,2) and IIX.3) 15 obvious, but what
is loas evident, is that they are sufficient to involve the convergence of

the characteristio funotion, important result for the following.

Finally if £{v(t)) = v(t) and G(t,0) is stationary in the wide sense,

1.0, G{(%t,9) = G(t-9), by putting
Ev(t) v(¢°)] = o, (t-t°), B[6(t=0) G(t'- )] = 9, (t°-0" - t40)

E[N(t) N(¢*)] = v (t.¢)
It is well known that, by a suitable change of variables, III,2) is

equivalent to
+ o

*un(™) = [

v“( t) Ow( gdr)dt.



Consider now the K.L. random variables Gk(tl,e) which are, by definition,
the reasponses at time tl of one impulse at time 6 in an elementary volume

of the multiplicative medium indexed by K. Put
¥(8) = 51 iu, Gk(tl,O) ; Q{u.kl} = Elexp 1 ﬁl W, Nk(tl)J

"N{“u} = log o{uu} = log ELexp 1 il u, N(t)3

’G{nkl’e} =EBElexp i il Ya Gk(tl,e)] = Elexp ¥(0)]

It is olear that

’NT{ukl} = log Efexp 1 il ukll;. Gk(tl,e) ax(6)] = log E [exp j;~ ¥(e) ax(e)J

We investigate now the two most important ocases from the practical point

of view, i,e. the case whore V(6) is deterministioc and X(#) is a random
funotion with uncorrelated increments, and then the case V(6) random and
X(6) with correlated increments. We shall discuss also an example which will
show that the statistical properties of X(t) may be quite \diff‘erent from a

Poisson law,

A) Case non-random V(0) and X(8) is a process with uncorrelated increments

We follow here a procedure described by R. FORTET [1). Divide the
1ntorval['.[‘, ) (which 1s, in faot, the interval [T, max tlJ because
Gk(tl -0) =0 for 0> tl), in intervals d8, In each if‘ these dOJ interval
there are ax(oj) random variables X(OJ) depending on the same probability
law with parameter 8, of which the characteristio function ia %{ukl,o}_

Reoall us that these 46, are independent , then 1t follows that each dOJ

J
gives the contribution
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x1(0J) + 12(63) + seees a’dx(ej) (Oj) and the characteristic function

of this sum is

It follows that
¥x u'kl} = log E [ exp (2) X(OJ) dX(OJ)J = log Ef(g) exp ’(93) dx(OJ) ]

’NT{u'kl} = log (Ol;) Elexp X(OJ) dx(OJ)]= (93) log E [exp r(OJ)dx(OJ)J

By putting

(']
¢.T {uu,ﬂ} - g log B Cexp X(OJ) d.x(OJ)]

L Lok B[ exp ¥(0,) 4X(0,)]
,0+46( = log E ¥(e,) ax
¢NT {“k.l +d} ;.'.: og exp 3 j

we see that

wN'r {ukl,hda} - ¥y {ukl, 0} = d ¢y {“kl'o} = log Efexp ¥(0)ax(e)]

and

P (= [ iy [}

T

On the other part, by taking successively the mean values on ¥(8) and dX(6)

we have:
log E[ exp ¥(6) ax(8)] = 1og Eax hgx(o) {uu,o} ]

Sinoe
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[£lv(6)] ae1® -rLv(6))ae

Prob {dx(&) = k} = - e
we obtain
[dx(a){ }] ) éo (o f[vi:)]mk ‘-f[v(o)]do

= exp [(’G {ukl,ﬂ} -1) f[v(O)]dO:l .

Hence

¢N.r[ukl} = ]T.. I}G ["“1’6}'] rlv(e)]ae .

If now the two conditions III.2) and III.3) are verified, i.e.

[-:-' ,{L Gn(tl,e)] £[v(6)] a6 < w ,

+ oo + oo

j_“ a6 /_” a6’ ELki G, (t,,6) ki: Gk(tl,e’):l £lv(6)] £v(67)] <

we may pass to the limit and

1I1.5) x {ukl} = [:: I: v {ukl,e} - 1:' t[v(6)] ae

We note that if the Gk(tk,a) are non-random then
’G{ukl'o} = exp ¥(0)

and we may demonstrate that if the process is such that dX(6) becomes very
large (e.g. for high values of £[v(8) ), by a suitable normalization,
’t{ukl} tends towards the chareoteristic function of a geussianlaw, In this
case we meet again the classical transformation of a gaussian law to another

gaussian law by a linear system.
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B) Case V(6) random and 0) ocorrelated

In this case, the preceding method is not applicable until the end of the
oaloulation, and we must proceed in the following manner:

With the seme notation:

¢"r {“kl} = log B [oxp (3) ¥(0) d.x(O)}

= log By E, [exp (g) v(6) dx(o)}
sy [ @ O [u,]) ;

By dividing the interval [!', .] = [‘!, »aX t1] in n sub~intervals, the
conditions III,2) and III,3) give that

+ =
[ ¥(0)ax(0) exists with probability one, and is the limit in
- o

quadratio mean, £or T + - and B+ ¢+ e , the maximum module IOM1 -6 |+0

of the random variable

o B
A r(oj)dx(a
)

)
Ty d

Henoe, if p(v1 "2"'vn) is the joint frequency function and ki = ax( oi)

we haves
k [ A I A AN SRS ' 4
- n 1 1
Un = log [ 411...dvn P('1""n) I n e (9) s '(01) “1
v k, =0 j=1 ¢ 1 k!

oxp [-f '(.i) 401] = log [v dv,...dv p(v1...vn) jt exp [(96(01)-1)f[v(01)]d01]

We may caloulate explicitly Un and if the limit U = 1lim Un exists and is
N+ e

independent of the subdivision we define
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mo el oo o) Qoo

For the calculation of this expression we refer to D.,A., DARLING and

A.J.F. SIEGERT [2) who have extensively studied the most general form
t

I111.7) r(v°t°|v,t,A) =B l:oxp [-Juj O(V(G),O)da} V(to) =V, V(t) = v] .
t
°

P('otolv:t)
where p(vo,tolv,t)dv is the probability that V(t) is in the interval (v,v+dv),
if V(to) sV ; r(votolv,t,)\) is, oconsequently, the conditional characteristio

function of our formula.

We note that, in the work cited above, it 1s assured that V(t) is

markovian, r(votolv,t,A) is then the solution of two integral equations

III,8) {& - A &V,t) - 0—61? } r(vot°|v+A) = 0.

{&; - A &V,t) + 3:—} r(v°t°|v+A) =0,
o

in the case of practical interest where .p(votolv,t) is the solution of the

Fokker-Plank-Kolmogoroff operator {, - 3-:- and its gd.joint,c: + -:— ; I111.8)
[+]

may be, then resolved by a perturbation formalism,

Pellowing that V(6) is brownian [3] or markov [1] processes some
particular methods are suitable, and the partioular forms for £{v(6)]: v(6);
Vz( 0); |w( O)I; 1 4+ sign V(8)/2 bave been particularly investigated.
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Pinally we remark that from III.6) we may obtain the two firat moments

v [ o) e [ro]]

P [ een)a (e[ ] [ o[ w faen s
v e[}

and also the correlation forma if we introduce in the preceding expressions

the Gk(tl-a).
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IV Examples

We shall give here some examples with additional physical assumptions

to simplify the calculation.

A) We take V(6) as a WIENER-LEVY process (brownian motion, i.e. once

integrated white noise). On the interval of length T we calculate
T
Uy =[ v2(t)at with V(0) = 0
o

And these successive values are used as input of our system. It is known
that, by the theory of markov processes additive functionals, the characteristic

function of UT is

1

L (u) = sec (Ziu)2 T (sec = trigonometric function).
T

For one particular interval [rﬂh (n+1)ﬁ] we have

(met)T <
Prob [x('r) - f ax(t) = k | = Loy o T

nT k!

For the total interval (0,~), by the result of section II we obtain

0, (2) = E [e izk] ) kzo Lk /: e-UT _%zk a¥(0;)

where F(UT) is the distribution function of U.

We remark that

This sequence is absolutely bounded by the function 1 integrable for the
measure dF, and therefore we may reverse the two signs of summation, which

glves finally
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k
+ oo : (U )
oo -U ivk T
e, (v) =] I e le k- F(y)
o k=0
(-
iv
[ iv e -1
o exp UT(e -1) dF(UT) =9 1
o . T
1 /2
iv 2
= sec 2(e” - 1)°T which is not at all a Poisson
distribution,

B) We consider now a nuclear reactor of which the source is an accelerator
with an input fluctuating voltage V(6). The function f(v) is tuken as equal
to v. The set reactor and detector are supposed to be linear and the
charaoteristioe function of the impulse response is ¢G(u,9). Unfortunatly this
function is not known and its calculation is not easy, perhaps some
experimental data or some analytlical properties deduced from stochastio
Boltzmann equation may be used for further calculations. Nevertheless, for
laok of additional information on $; We may go on with some particular forms
for V(6). We suppose first, V(6) a gaussian stationary random function of
mean value m and correlation matrix Q. We know that

p(v1 v2...vn) = -———%—-— exp {— ék' g A, (v,-m) (v -m)}

- Jk M4 i
(27)2 VA 1,3=1

where
m = E[Vi]

Ay = [Q_1]jk = (J,k) element of the inverse matrix Q-1

(9] = Blvy vJ = [Q]J.k'



-17 =

We have:

n
v.2) (u) = 1im log[dv1...dv e L oxp - {-’— I Ay

y
K, N 8 2 24 3,kst

(2w)?

(vye) (r,m)]

ox'r.o.ifz| [9G(01)-1:| v, a0

Since the oharacteristio function of the n-dimensional gaussian variate is

Iv.3) .(“1ooo“n) = [ v, eeedv p(v1...vn) oxp 1(v1u1...vnun) -

= oxp in I “J - % Aik uu g where '\:Lk = E I:vivk:l - x(ai-ak)

n
b
J i,k=1

We pass from IV,3) to IV.2) noting that

0[3(—:122 as... :QSZ‘L)-i dO] jdv ceed¥ B(v,euuv )
*xP {151 [’G(ei)-{] " do"}

= oxp m z [,G(ak)q] a9 + 5 N h A ,G(oi)-i“_ G(akrf:l ae, ao,

- oxp [ . 21 [ve("k)-‘] ao} o3 1,£. R(0,-0.) [ c<°1)-1] [,G(og-f]

whers pc(O) replaces 9.‘(\1n »0) for simplification,
In a finite interval [T,t]) if n + @, 40 = 0, since ’G(.) 1s always

eontinuous, and alsc R(# J-ok) (stationarity of gaussian process) we have:
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e L [ [ oo

lim : R(6,~9,) 96(01)4][,(;(9]‘)-1:] a6, a0, =

R+ e ikst
= ][: R(6-9’) ,G(a)-{“}G(o')n] a9 ae’

We may pass to T = - @ by conditions III.2) and III.3) and putting

0-6" «a T , 0 = & we obtain

— —_ + oo 4+ o
1

Iv.l) vN(u,m) s exp l-m f: : _¢G(u,9)-1 ao . 5]_ . ae f_ 3} ar r(7).

r—O’G(u,e)d r¢c(u,0+r)-1i|

When the contribution of the V(6) < O becomes small as m increases, the error
oould be explicitly caloulated, this expression may be taken as a good
approximation for the case f [V( 9)] = |v(o)].

We see that for the most part of the correlation functions which have a
known analytical expression, e.g. gaussian markov prooess, brownian motion
with respectively B(r) = ¢~ , R(6,,0,) = Min (6,,6,) this forpula is not
easily computable, But for pure white noise with R(r) = 8(7) (of which the

use may be justified by distribution theory), we have immediately
+ =» + o 2
A 1
IV.b) pN(u,n) = OXp {-0-. [- . [’G(“’.)-1] aé 5[_ .[,G(u’o)-‘l] dO} o

Nevertheless, we note that in this simple case a direct procedure is

sultable, In fact we have to caloulate the integral:
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t t t
I =] v(8) [1-¢G(u(,9)] a6 = m (- 9.(u,6)] a6 +[ v(e)[1- ¢G(u,9)] ae.

We know that this kind of white noise may be represented by
v(0)ae = ax(e) = ¢ J a8

where X(0) is the random function of the brownian motion and § a laplacian

variate with mean value zero, standard deviation 1.

Now we sketoh the ocalculation., We have:

t
I, = j-- [1-9G(u,0)] v(6)d0 = |i:T 2.8. i 1 - QG(u,Oi)] dx(Oi)

But

2
2 1-¢G(u,01)] ax(s,) = e, /[1-¢G(u,ei)] a6,

- ¢ lf '1-¢G(u,0)|2 de

by application of the theorem on sum of Laplacian variates, and by passing to

the 1limit:

I, =¢ J[-E[1-¢G(u,9)]2 a6 .

Hence

p"(u,n) - {oxp m [-t.[pG(u,O)A] aé &, oxp{+ ¢ J[:["’c(“'°)]2 dO} ,

and using the diatribution function of ¢ we find again IV.S).
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