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SUMMARY 

This report describes a stochastic non-linear system, a particular 
case of which is a nuclear reactor. We derive a functional equation 
between the statistical properties of the input, the output and the 
characteristic function of the unit impulse response, from which it is 
possible to obtain a general method of calculation of correlations. 



Introduction 

A random f unotion V(j9 ) ie th· input of a sys tea which produce», following 

s probability law f[v(v)3d0, a sequence of impulses in a linear multiplicative 

medium, Ihe output of this latter is a randos function N(t). The problea is to 

calculate the relation between the statistical properties of V(0) and N(t). 

We show that this problem is an extension of the so-called randos functions 

derived from Poisson processes. 

Two stochastic processes are considered in the sections II and III. 

The general result is reduced to the calculation of a functional of V(0) 

extensively studied by different authors. 

Finally the partioular case of the nuclear reactor, su/^ested by 

Dr. W. 1IATTHES (Department of Reactor Physics) is piven as illustrntion 

of this model. 

I Mathematical model 

A random function V(0) produoes in the interval of time [0,0+døJ 

with the probability f£v(0)Jd0 + O(d0) at least one impulse and consequently 

tero impulse with the probability 1 - f[v(0)}d0 ♦ O(d0). Let us call dX(0) 

the stochastic number of impulses in this interval. 

The impulse response of the multiplicative medium is a random 

funotion G(0,t), if the impulse occurs at time 0 and we obtain in the output 

at time t. 

Manuscript received on July 6, 1966. 
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The hypothesis of linearity leads to the classical equation: 

t 

1.1) N(t) = I G(e,t) dx(e). 
J — » 

In other terms, in the interval ( - «,, t) we observe impulsei at time 

.••¿¿.•.Ø^ .,··· The impulse 0 produoea at time t the effeot &(0.,t). 

1.1) represents therefore the infinite sum of random variable G(i ,t). 

This sum must be almost surely finite (i.e. finite except in cases of probability 

xero) if we make the necessary assumption of the physical realisability of the 

system. 1.1) is, in fact, the sum 

N(t) = Σ G(e.,t) 

*i 

of independent random variables depending of the parameter t. 

We remark that G(0,t) may be a impulse random function and consequently 

also N(t). 

Naturally, if the number of impulses grows to infinity suoh that dX( 0) 

becomes, by a suitable normalisation, the differential of a derivable 

funotion it is easy to show that 1.1 ) becomes the classical stochastic integral 

equation 

N(t) »f ( 
J— «o 

t 

G(e,t)x(ø)dø. 
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II Stochastic process X(t) induced by V(t) 

Between the functions X(t) and f[V(t)3 ("here f(x) is always a deterministic 

function) we make the following assumption: 

If v(t) is a given value at time t, f[v(t)J the non-negative value 

corresponding to t, we have: 

Probability that at least one impulse occurs in the interval 

(t, t+dt) > f[v(t)]dt + 0(dt). 

Probability that any impulse occurs » 1-f£v(t)}dt - 0(dt). 

(0(dt) tends to sero with dt
1 + e
 α > 0). 

With this hypothesis, if ρ (t) is the probability to have η impulses in 

£0,t) we have the equation: 

II.1) pn(t+dt) = pn(t) [l-f[v(t)]dt] + p^ítjftvít^dt + 0(dt). 

Taking acoount of the fact that ρ (θ) = 1, a classical recurrence 

calculation gives 

t η 

P.(t) = 

ƒ f[v(u)]duj 
n! 

t 
exp - / ffv(u)]du 

If V(t) is a non-random function, ρ (t) is a Poisson distribution. 
If V(t) is random, then ρ (t) is a random variable and we have to take the 
mean value: 

t 
Pn(t) - ƒ Prob fl(t) « ƒ f [v(t)Jdt < I(t) + dl(t)i Ü Ü Í L .-K*)« 

which is not, in general, a Poisson distribution. 

Hence : 

k 

Prob CdX(t)3 « k - f W*(t)at. e-f[v(t)3dt p[y(t) „ y j d y | γ^.Λ,Ζ. 

Jv«V kl 
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Suppose now n disjoint intervals. Beoause the n k values ars independent 

ws havs 

«o 
E[dX(t1)....dX(tn)3= Σ Prob [dX^) *» ̂ ...dX^) = k̂ J kj ^ 2 · . . * η 

k1+...kn=o 

κ. 
η [ f [ v . 3 d t 3 - fCvJd t eo ι» η 

Σ / dv . . . . dv p ( v . . . . ν ) Π k. 
k , + . . . k =0 J i=1 k. ! 

i n l 

Consider then the sequence in m: 

k. 
m n t f C O d O x - f £ v } d t 

f = Σ Π k ~ e 1 

m k 1 + . . . k n =o i=1 1 k±l 

n m [ f t ( v )3dt3 l - f C O « 
. Π Σ k i e 

i=1 k . + . . . k »0 k . ! 
i n ι 

We have 
k 

f < Π Σ k 
i»1 k . + . . . k - 0 * k, l 

i n i 

[f[v3dt] * -f[v ]dt ρ , -
ι — h — -dt fW—fkJ 

If 

.n (dt)Q / dv1..#dvn f[y1"l...f[vn} p(v1#..vn) < » , by application 

of the Lebesgue theorem on the inversion of the signs of summation we have: 

E[dX(t1)...dX(tn)3 s E[f [v(t1)3...f[v(tn)3]dtn. 

This expression shows that the independence of the V(t ) involves the 

independence of the dX(t.), in particular when V(t) is a deterministic 

funotion. 
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III Stochastic process induced by the integral transformation 

We have seen that the random variable N_(t) is defined by 

t 

III.1) N (t) m i &(t,0)dX(0) which must be considered as the sum: 

IL(t) - Σ frit,«.) 

with G(t,0) . 0 if 0 > t. For all finite interval [T,t), eaoh realisation 

X(0) defines a sequence almost surely finite of points 0 . If we make the 

assumption, always verified in the applications, that G(t,0) is finite exoept 

on a set of measure zero, hence almost surely this sum defines a random 

variable. In addition, we are interested in the behaviour of N_(t) when Τ ■* -

and for the further calculations, how we may deduce the characteristic 

funotion 

•<u,t) = E[exp iuN(t)] [N(t) = lim NT(t)3 

Τ ·* » m 

from the characteristic function of 

1»T(u,t) « E[exp iuNT(tQ. 

The two following conditions that we state without the proofs, whioh 

may be found in classical text books, are the answer to our questions. 

If the following condition is fulfilled 

+ · ♦ m 

III.2 ƒ Etfr(t,.)3 E[dX(*)3 . ƒ E[G(t,w)3 ΕθΤ(τ(β))3« < -

then N(t) ■ lim N_(t) defines almost surely a randoa variable which is 

Τ -► - · T 

noted: 
♦ m 

N(t) - f fr(t,e)dX(w). L« 
If in addition, we have: 
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IH.3) Γ Γ "E[fr(t,w) . &(t',0')] E[dX(0)dX(e')3 -
J"· e· i " m 
+ m + « 
ƒ dø ƒ dø' E[fr(t,0) fr(t'0')] « f f M · » '[V(Ø')3 1 < -

then N (t) eonvorges also in quadra ti o mean towards the random variable 
N(t), i.e. 

lim E |N(t) -H-(t)| 2 - 0. 
T - - · x 

In other terms, III.2) ensures that, except in cases theoretically 
possible, but of which the probability of realisation is zero, N(t) is 
a finite random variable. 
The oondition III.3) ensures, in addition, that 

i) B[N(t) H(t')]» correlation function of N(t) is finite 

ii) lim ftjXu.t) = *(u,t) 
T ·* ■» m 

Tho physical interpretation of III.2) and III.3) i s obvious, but what 

i s less evident, i s that they are sufficient to involve the convergence of 

the characteristic function, important result for the following. 

Finally i f f j j ( t )3 « v(t) and fr(t,0) i s stationary in the wide sense, 

i . e . fr(t,0) » fr(t-0), by putting 

E[v(t) V(t ' )3 - » ^ ( t - f ) . E[fr(t-0) fr(t'- 0 ' ) ] - » „ ( * ' - · · - *♦·) 

E[N(t) N(t')3 » »nni*.*') 

It la well known that, by a suitable change of variables, III.2) is 

equivalent to 

+ «» 

tan(T> "ƒ-. V * * %v<t-T)dt-
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Consider now the K.L. random variables G (t1#0) which are, by definition, 

the responses at time t of one impulse at time θ in an elementary volume 

of the multiplicative medium indexed by K. Put 

r<#) - j^ iUkl Gk(tr0) ; ̂ j = E Cexp i ̂  u^ N ^ D 

*J¡\L¡ ' log *[\l] * log ELex
P * ̂  \l W

3 

"friV'*] = E[exp i Σ u ^ G^^.øJJ = E[exp JT(0)J 

It is elear that 

VÍvl " log E[exp i Σ \J ~ &k(ti'e) "W3 a log E Cexp ƒ " '(·) " O 3 

Wo investigate now the two most important oases from the praotical point 
of view, i.e. the case whore V(0) is deterministic and x(0) is a random 
funotion with unoorrelated increments, and then the oase V(0) random and 
X(0) with oorrelated increments. We shall discuss also an example which will 
show that the statistical properties of X(t) may be quite different from a 
Poisson law, 

A) Case non-random V(fl) and X(fl) is a process with unoorrelated increments 

We follow here a procedure desoribed by R. FORTET Û 3 · Divide the 
interval C T, «J (whioh is, in faot, the interval [T, max t.,3 because 

1 X 
&k(t. - Φ) β 0 for 0 > t.), in intervals d0. In each of these d0. interval 

there are dX(0.) random variables *(0.) depending on the same probability 

law with parameter 0, of which the oharaetexistio function is φΔ V i ' 0
 · 

Resali us that those d0. are independent , then it follows that each dø 

gives the contribution 
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jr.|(0.) + * 2 (0 . ) + *dX(0 ) (
θ
 0

 a n d t h e
 «'"«'aoteristic function 

J 

of this sum i s 

dx(ø ) 

'G M 
It follows that 

'N-TVL! " log E^ β χ Ρ Σ r<V «('jíJ β l o « E C Π βχΡ *(V " ( V J 

*Ν [«irli "
 1 ο

«
 π

 E[exp r(0 ) dX(ø.)]= Σ logECexp r(0 )dX(0 )3 
W

TL * 0 (ØJ
 J J

 (ØJ
 J J 

(•j)
 J J

 (Øj) 

By putting 

log ï Cexp r(øj) άχ(«ρ3 s M - i 
u ^ ^ + d ø j . Σ log KCexp ir(øj) dX(øj)J 

Ø+dø 

we see that 

\ [\ΐ'θ+άθ] * N̂ [ \ l ' β] β d Ν̂ [\ΐ'β] β l0g E t βΧρ y(9)«(e)J 
and 

On the other part, by taking successively the mean values on ϊ(θ) and dX(0) 

we have: 

log E [ exp r(0) dX(0)3 = log E ^ [ » f ^ ["kl ' ' ] 3 

Sinoe 
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Prob fdx(Ø) = kJ 
• k [ f [v(0)] dØ]K -fCv(0)JdØ 

k! 

we obtain 

- [tV Ί > ( · ) ] * 0 -f[T(0)]dØ 

Γ(^[ν
β
] -

1) f
w

e
)>

e
1 ■ exp 

Hence 

\ [ > ι ] ■ JT"[> ["kl··]"] fWe»dw . 

If now the two conditions III.2) and III.3) are verified, i.e. 

+ a» 

ƒ Ε|~Σ sn( t1 .e)"lf[v(e)3 de < » , 

+ on + .x> _ 

( d0 f d i ' s i Σ G k ( t r e ) Σ G (t ,0 ' ) f[v(0)3 fCv(0')] 
J - o e J - o e L k l kl J 

< co 

we may pass to the l i m i t and 

III.5) *N [u^J = J*~ [ ,G [ V i ] - ï ] f[v(0)] d0 

We note that if the &Λ\»
6
) are non-random then 

•/"kl'*] - ·*Ρ *(*) 

and we may demonstrate that if the prooess is such that dX(0) beoomes very 

large (e.g. for high values of f[v(0) 3, by a suitable normalization, 

•Ü Uj- tends towards the charaoteristio function of a gauasianlaw. In this 

case we meet again the classical transformation of a gaussian law to another 

gauasian law by a linear system. 
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Β) Cass V(0) random and dX(0) correlated 

In this oase, the preceding method is not applicable until the end of the 
calculation, and we must proceed in the following manner: 

With the same notation: 

\ ί\ι] " log E
 Í

e x p Σ r(9)
 "θ] 

• log E ^ E r jexp Σ r(0) dX(0) j 

$y dividing the interval [ï, »3 * L
T
» ·** *Ί3 in n aub-intervals, the 

conditions III.2) and III.3) give that 

/ r(ø)dX(ø) exists with probability one, and is the limit in 

J·» M 

quadrati« asan, for Τ -» - « and η -» + · , the maximum module j# . - θ j -♦ o 

of the random variable 

» η 

Τ J.1
 J J 

Henos, if P(
T
i»

v
2'

#,V
n^

 ie
 *

he
 J

oint
 frequency function and k m dX( 0 ) 

ws havet 

\ 
m lOf ( dr....dr P Í V . . T ) Î Π .

 4
(· )

 f T ( a
t

) d g
1 , 

ir k± · 0 J=1
 e i

 k±! 

•xp[-f r(êt) d0±3- log £ dV..dvn ρ(ν..τη) £ .^[(^(^HflX^adwJ 

We may oaloulat* explicitly U and if the limit U « lim U exists and is 
*· Il 

independent of the subdivision we define 

η 
η ■* m 
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+ m 
111.6) ü = * N [u^J = log E £exp ƒ_ ̂  [^ j ^ , «] - ï] f [v(0)] døj 

For the calculation of this expression we refer to D.A. DARLING and 

A.J.F. SIEGERT £23 who have extensively studied the most general form 

t 
111.7) r(vetJv,t,A) . Β Γοχρ Γ^λ ƒ «(V(0),0)døj V(tQ) - vg, V(t) - vi . 

o 

ρ(ν.ΐτ»*) 
where p(v ,t jv,t)dv is the probability that V(t) is in the interval (v,v+dv), 

if V(t ) a V ; r(v t |v,t,A) is, consequently, the conditional characteristic 

function of our formula. 

We note that, in the work cited above, it is assured that V"(t) is 

markovian, r(v t |v,t,A) is then the solution of two integral equations 

III.8) ffi - λ w(V,t) - £ "j r(votJv+X) = 0. 

[*0 - λ *(V,t) + jf-j r(votJv+A) = 0 . 

in ths ease of practioal interest where p(v t |v,t) is the solution of the 

Fokker-Plank-Kolmogoroff operator £ - -¿- and its adjoint^* + ^|- ; III.8) 
o 

may be, then resolved by a perturbation formalism· 

Following that V(0) is brownian [33 o r markov C O processes some 

particular methods ars suitable, and the particular forms for f£v( 9)~] : V(0); 

» (·); |V(*)|; 1 + sign V(0)/2 have been particularly investigated. 
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Finally we remark that from III.6) we may obtain the two first moments 

R - ƒ d0 Ef fr(t-e)J EÍf Γν(β)Ί J 

+ «· + · » + · » 
S 2 . ! EJ"fr2(t-0)l E ff Γν(0)Ί Ί + ƒ dø ƒ dø' Effr(t-Ô) fr(t-0')l 

if^v(ø)]f[v(ø^J 
and also the correlation forms if we introduce in the preceding expressions 

the frk(Ve). 
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IV Examples 

We shall give here some examples with additional physical assumptions 

to simplify the calculation. 

A) We take V(0) as a WIENER-LEVY process (brownian motion, i.e. once 

integrated white noise). On the interval of length Τ we calculate 

Τ „,. Ι Λ t)dt with V(0) « 0 

And these successive values are used as input of our system. It is known 

that, by the theory of markov processes additive functionals, the characteristic 

function of IL, is 
ι 
o 

φ (u) = sec (2iu) Τ (sec = trigonometric function). 
Τ 

For one par t i cu la r in te rva l fnT, (η+ΐ)τ) we have 

r , , f(n*,)T , , I CV -u, 
Prob X(T) = dX(t) = k = —*— e 

L JnT J k! 
For the total interval (0,»), by the result of section II we obtain 

. k ( . ) . i [ . H . ï ."■ƒ-.■"· ^¿
k
*Kv 

K L J
 k=0 Jo kl

 L 

where F(U_) is the distribution function of U_. 

We remark that 

n i v k -U (U )
k 

n
 O k! 

This sequenoe is absolutely bounded by the function 1 integrable for the 

measure dF, and therefore we may reverse the two signs of summation, which 

gives finally 
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K
 J o k=0 

iv 

ì 1/2 

= sec I 2(e - 1) Ti which is not at all a Poisson 

distribution. 

B) We consider now a nuclear reactor of which the source is an accelerator 

with an input fluctuating voltage V(0). The function f(v) is taken as equal 

to v. The set reactor and detector are supposed to be linear and the 

charaoteriatio function of the impulse response is <p„(u,0). Unfortunatly this 

function is not known and its calculation is not easy, perhaps some 

experimental data or some analytical properties deduced from stoohastio 

Boltzmann equation may be used for further calculations. Nevertheless, for 

lack of additional information on φ we may go on with some particular forms 

for V(0). We suppose first, V(0) a gaussian stationary random function of 

mean value m and correlation matrix Q. We know that 

1 Γ 1
 n

 ") 
ρ(τ

1
 ν
2*··

ν
η
) s
 S

 eXp
 - 2Λ

 Σ
 V ^¿^ (V") 

{2v)¿ U 

where 

' m « E [v±] 

Γ i 

^ik
 =
 L^ 3 ík

 =
 O'^) element of the inverse matrix Q" 

CM
 B E

 l>± V> - co · 
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We have: 

IV.2) ψν (u) m l im log ¡ d v . . . . d v Γ ~ Z
 β χ

Ρ " i
 Σ Λ

«ν 
*r η ^ - J

1 η
 § U Ι 2Α J,k=1

 J k 

(2ν)
2 

( v y ) ( v k - ) j 

Since the eharaoteristie function of the n-dimensional gauasian variate i s 

IV.3) #(u 1 . . ,un ) . ƒ d v r . . d v n ?(▼.,·.·▼,) exp i ( ^ V V n * " 

- exp ia Σ U j - \ ^ A^ u^j where A^ . Β [ y j . »(w^) 

We pass from IV.3) to IV.2) noting that 

* -*—! d ø . . . -S_-Q d · - / d v r . . d v P ( v r . . v n ) 

•^^[w-^i^i] 

*
 #XP

 " Ji [^V-
1
]

 de +
 1 i f L

 x
ik [•g(

#
i)-

1
][w=

T
]
 4#

i
 w

k 

' *"· { ■ Ji ['Λ*"
1
] "]

 +
 ï lâL *

(
 W [^*i)-

1
][^V-

f
] -

where ψ (β) replaces »·(««#·) for simplification. 

In s finite interval [T,t3 if η ·· ·, dff ·» 0, »inoe » (0) is always 

continuous, and also k(0.-0. ) (stationarity of gauasian process) we have: 
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.^.¿['Λ
)
-

,
]

4
»-/Ι[^"-

1
]

4
· 

."i". ι .Ι ι
1 (

'
Λ ) [*»(·ιΗ][··(ν-1]4Ί d*j ■ 

t 

- ƒƒ R(Ø-Ø') Γ· ς( · )- ΐ1Π· ςΙ· ·ΗΊ dØ dø' 

We may pass to Τ » - » by conditions III.2) and III.3) and putting 

0-0' - τ , 0 s f we obtain 

+ ·» + O O + 0 O 

*▼·*■) »N(u,m) a exp m ƒ UG(u,0)-in d0 + if d0 ƒ dr R(r). 

r*»c(u,0)-l"|r»G(u,0+r)-1 

When the contribution of the V(0) < 0 becomes email as m increases, the error 

oould be explicitly calculated, this expression may be taken as a good 

approximation for the case f [ V(Θ)] = |v(0)|. 

We see that for the most part of the correlation functions which have a 

known analytical expression, e.g. gausaian markov prooess, brownian motion 

with respectively B(r) » e"T , R(ø.,,02) » Min (0.,,02) this formula is not 

easily eomputabls. But for pure white noise with R(r) » Ι(τ) (of which the 

use may be justified by distribution theory), we have immediately 

IV.» «.N(u,m) - exp f+m ƒ r»&(u,0)-l1 dø + \ ƒ [·ς(ιι,·)-ΐ] døj . 

Nevertheless, we note that in this simple case a direct procedure is 

suitable. In faot we have to calculate the integral: 
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I - f V(0) [l-eiß(u,eXl dø = m f [i- 9>G(u,0)3 dØ + f v(0)[l- 9>&(u,0)3 d0. 
J — o. J — oo j — oo 

We know that this kind of white noise may be represented by 

v(0)dø = dX(0) = ξ J"d0 

where Χ(β) is the random function of the brownian motion and ξ a laplacian 

variate with mean value zero, standard deviation 1. 

Now we sketch the calculation. We have: 

*9 - f r
i
-*r(

u
'
e
)l

 τ
(®)

α
* -

 1±m
 Ρ·

8
·
 Σ

 Γ
1
 ** »&(

u
'*lJ] "('i) 

2
 J - .

 L C J
 |d0| - 0 i

 L 6 1 J 1 

But 

Σ [lH»ft(u,0i)] ÍX(0i) = Σ ξ± ^-Ψ^,\)] dØ± 

7 Σ |l-?»G(u,ø)| 
2 

dø 

by application of the theorem on sum of Laplacian variâtes, and by passing to 

the limit: 

h
m

* J/_[W
U

»·!]
2
*· · 

Hence 

•N(u,m) - f exp a ƒ Jl»G(u,0)-l] ά«\ξ expí+ ξ ¡j [l-*G(u,0)] dØ~j , 

and using the distribution function of ξ we find again IV.5). 
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