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SUMMARY

With the aim of investigating the kind of representation needed in the
kinetics calculation of a reactor made up of three quite different regions,
like the ESSor reactor, three approachs were used : a point model
method, a nodal method subdividing the reactor in three spatial regions,
a direct numerical solution of the time dependent diffusion equations.
The results lead to the conclusions that, for a large category of tran-
sients, the point model is a good representation of the ESSor reactor.



Introduction

The neutron kinetics behaviour of the thermal reactors is often inve-
stigated by a point-model representation. This representation implies
that the neutron flux distribution during the iransient is not appre-
ciably changed due to the absorber movement which is initiating the
excursion, or to the resulting dynamic effects (faster accumulation

of neutrons in some regions than in others).

The Essor reactor has in this respect some particular features. Three
quite different regions may be distinguished in it, they are: the cen-
tral cylindrical region which contains the Orgel test channels, natural
Uranium or slightly enriched fuel elements, organic cooled and heavy
water moderated; the annular feeding zone containing fully enriched,
plate type fuel elements, heavy water cooled and moderated; the peri-
pheric region which is the radial heavy water reflector in the innermost

part of which control, shim and safety rods are operating (see table page 8).

Such unusual strong heterogeneity of the Essor reactor may introduce
the suspect that the conventional point-model representation might be
a poor one.

The investigation of this possibility is the purpose of the present

report.

Two violent power excursions of the Essor rescior have been taken in
consideration, the first corresponding to a reactivity step of 700 p.c.m.
and the second to a reactivity step of 1500 p.c.m.. The problem has been
solved at three different levels of exactitude:
1) by the usual point-model method.
Here the power distribution is assumed to be unchanged while the power
level varies with the time.
2) by a three-regions nodal method.
Here the reactor is subdivided in three spatial regions and the ave-
rage flux in each of them is tracked during the transient, unrespec-
tive of the changes in flux shape inside each individual region.

3) by a direct numerical solution of the time dependent diffusion equation.

From the numerical results it will be seen that the point-model method

is sufficiently exact for most of the transients foreseen for the Essor
reactor and only for the very large reactivity step of 1500 p.c.m. the
difference between the point-model and the more sophisticated calculation

may be of some relevance.

Manuscript received on Mzrch 8, 1966.



l., The point-model method

The equations to be solved are:
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(i = 1,...6, index of groups of delayed neutrons)

9 and e (reactivity and mean life) have been determined by the

perturbation method with the formulae
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based on static calculations of the fluxes in two groups.
For simplicity sake we have considered only perturbations on the Z,& .

For the static calculations we have used the code Equipoise 3 which

gives the fluxes and adjoint fluxes in two groups.

Of course the imprecision introduced by the perturbation theory is

no more negligible when the considered perturbation is too great. In

the case of a perturbation introduced as a step this imprecision can

be avoided by determining directly the proper value k-eff (from which
Y; J%#zli ) with a static calculation made with the absorption

cross-section :Z¢~ already perturbed.

2. The nodal method

The cylindrical reactor ESSBOR can be subdivided into 3 regions. The

two inner regions consist of multiplying media and the outer region

is a reflector.

Without considering the terms containing the delayed neutrons precursor
the introduction of which is trivial, the kinetics of the three regions

can be expressed by a system of differential equations
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where Ny, My Mo are the neutron densities in each region.

This system has a tridiagonal matrix of coefficients, because

we sumppose that only the adjacent regions are coupled through

the neutron currents. A system with a complete coupling between

all the regions, with a full matrix of coefficients, was given only

for multiplying media by Avery Geneva Conf. (1958)

The determination of the coefficients is the most difficult part

of this problem, and can be done with different methods

a) Average diffusion coefficients

The neutron current between adjacent regions is supposed to be pro-
portional to the difference of the average fluxes in the two regions,
the diffusion coefficient depends on the geometry and on the physical

characteristics of the two media

LK =/1.'K (mi = ny)

(For the determination of /4;K gsee Kelber NSE II 285 (1961))

The system can be written in the following forms
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Vi are the volumes nf the regions and the term with A34 represents
the external leakage. This method however, when applied to regions
of great volume, is imprecise due to the non exact determination o»f
the neutron currents. In the original repnrt nf Kelber only cases of
sufficiently small reginns were considered. Because of this, with
the physical constants which render the reactor critical, there is

no conditinn of equilibrium for the system of egquations. The condi-
tion nf equilibrium may be farced by changing +the multiplication
factors in nrder to make equal to zero the determinant of the system.
The way fnllnwed by GAAA (), in the study ~f the dynamics of ESSOR,
is to take the correct value nf n1/n2 (first equatinn) as it should be
at criticality and to determine K1 and K2 by putting the determinant
equal zern. The value nf n3 determined by the system nf equatinns in

equilibrium conditinrn is considerably different from the value nbtained

with a static calculation.

This dnes noi produce remarkable alterations in the dynamic evnlution.
The value of K1 and Kzare however fictitious and depend strongly on
the static distribution nf fluxes corresponding te the criticality
condition chnsen as reference. These values have tn be kept constant
during the transient and this is nnt correct, considering that the
physical conditinns change. As K1 and K2 have nn real physical mea-
ning, it is impossible to perturdb directly these magnitudes. The

GK1 or 8K2 corresponding to a given reactivity p must be determined

by a perturbation methed based on independent static calculatinns.

b) Determination nf the coefficients with static calculatinns

As in the methnd »f Kelber, we assume that the neutrnn-currents are
proportional to the difference of the average fluxes in the regions.
The system of equations is always as in (2). (K1—1)§:a1v and
(K2—1)2182V have now their real physical value. The time derivati-
ves are put egual to zern. The coupling coefficients must satisfy

10 Moo n3 have the values given by a static cal-
culation. The system nf eguatinns obtained in this way, gives the

the system when n

correct ratios of fluxes in the case of equilibrium cheosen as re-

ference.

(*) In the frame of the design studies of the E3SSOR reactor.



By this method the coefficients of the diagonal terms have their real
physical meaning and the perturbations may be introduced directly. The
values of coefficients are strongly dependent on the distribution of
fluxes corresponding to the criticality condition chosen as reference.
It has been verified that the ratios of fluxes n1/n3 ’ n2/n3 obtgined
with the system of equations, using the same coupling coefficients

and introducing compensating perturbations in different regions (without
altering the equilibrium) are remarkably different from the values of
ratios obtained with a corresponding static calculation with compen-
sating perturbations. With perturbations of the order of 300 pcm we

obtained differences of about 20 % on the variation of the flux ratios.

c) Determination of the coefficients with static calculations of fluxes

and adjoint fluxes

It is possible to determine the coefficients of the system (1) using
static calculations of fluxes and adjoint fluxes, without considering
the neutron currents.

In the system (1) let us consider nys N,y Ny as the total number of
neutrons in the corresponding regions and not as before as the neutron

density.
The system can be written in matrix form

d N
| AN = I
with A=A + JA
where Ao is the matrix of the coefficients at equilibrium, and §a

is a perturbation matrix which we will assume to be diagonal,

Once No is determined, in an equilibrium case of reference, by means

of a static calculation, it will be

Ao No =0
If the regions are n (in our example of ESSOR n = 3). This systemiwill
give n equations for the 3n-2 coefficients Aik of the tridiagonal system
(capital letters are here used to indicate that the system refers to the

integrated fluxes in the regions as said before).



Let us consider now the adjoint flux N: defined by the equation

*
ATNO = 0
where AT is the transposed of A,
It will then be

d %
NXAN = No SAN - Tr (No N)

The scalar product N§ N represents the total imp.ortance of all the

neutrons of the system, and its temporal evolution is determined by

d. N X fA d(r) d
—= (NIN) = b, d4 F(+) dv

neaclon

the equation

Using the perturbation theory, neglecting terms of the second order,
we can make the substitution 4(1') = ¢'a (x). T(+)

¢;;nd 40 may be determined with a static calculation(also with more

than one group). qg,* and %o have to be considered as vectors,

If we localize the perturbation in one of the three regions, we can

*
determine the h/aL

et us consider for instance a perturbation on the ziq in
thermal

a two groups model. It will be

| X
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and from this at the time € =0
2 Now = _lé!‘ J;¢f¢2 A v

The nermalization of the fluxes in the static calculation is of no
significance because we are only interested in the ratios of the

importances hh( in the different regions.

*
The importance N in (3) assume a different expression according
to the type of perturbation considered.

It is also possible in particular cases to calculate the integrals using
the fluxes corresponding to the initial distribution and the adjoint

fluxes corresponding to an asymptotic distritution characteristic of the



perturbation introduced. It is possible to obtain in this way a greater
vrecision of the perturbation method. But for this it is impossible to
give vrecise rules, one should decide in each case according to the

physics of the problem to be treated.

"
The determination of the adjoint fluxes Ne: gives n-1 new equations

for the determination of the coefficients Aik' These equations in matrix

T /% . .
form are A, ¢ = 0 (only n-1 of the n equations are independent,
because the relation det AS = 0 was already implicit in the n

equations A N = 0).
As the coefficients are 3n-2 we still need n-1 relations to have the

system completely defined.

This relations can be obtained defining the physical constants of the
multiplying regions. Let us suppose for instance to have 2 multiplying
regions and a reflector as third region, it will be

i
',411-* A’Li N z.ag Vi (Ki-i)

{
Aav+Asy + A - (Ke-t)

ZaVi

(Ki may be corrected for axial leakage introducing a transverse buckling).

This method has the advantage over other methods to utilize completely
all the informations which can be deduced from detailed static calcu-

lations also with many groups.



3) The direct numerical solution of the time dependent diffusion

equations

The system of the two groups diffusion equatiomeis

A A8y vt - 2o T%.(“/‘)Za‘fz +Z A
_i.d% DV e - za%w = £y

cQC.
K/S 2a ‘-fQ -NCy
This system is solved numerically by the finite difference method, in
cylindrical geometry, one dimension R, by means of the code COSTANZA-CIL,

which will be described in an other report.

4) Numerical results

The Reactor ESSOR consists of a central region, of the Orgel type, with

fuel rods of natural UC, with organic coolant and D20 as moderatorj; of

an outer region with fuel elements made of an alloy of aluminium and U

enriched in 235 at 20 %, the coolant and the moderator are both D20.

This core is surrounded by a reflector of D20. The control rods are
located in the reflector in the vicinity of the core. We have considered
four regions the physical constants of which are reported in the following

table:

Region 2. J i ot P Za' K/p
Orgel .34 0.812 17.3  0.873 (.00353 1.1877
(Radius = 52 cm)

Driver 1.32  0.504 140.0 1.0 0.008755 1.751
(R = 64 cm)

Control 1.21 2.35 121.36 1.9 0.C00171 0
(R = 79 cm)

Reflector 1.21  0.85 121.35 1.0 0.674 10°% ©

(R = 119 cm)



Six groups of delayed neutrons (including photo neutrons) have been

considered. They have the following constants.

: Group B A
1 0.264 107> 3.003
2 0.73 1073 1.13
3 0.25 1072 0.301
4 0.276 10~ 0.278
5 0.124 1072 0.111
6 0.176 1072 0.03

The transverse buckling was supposed to be the same for all the regions.

The rods were simulated by an equivalent diffused poison to be intro-
duced in the third region.
Its criticality value has been determined by a static calculation in

two groups and two dimensions R, Z made with the code Equipoise 3.

The transverse buckling was determined by a criticality search made
with the code Wanda in radial geometry with the same physical constants
as for Egquipoise.

For the spatial dynamic calculation, the critical poisen in region 3
was furtherly corrected using a subroeutine incorporated in the code
COSTANZA which makes an automatic search of criticality. This was do-
ne in nrder to compensate for small differences due to the different
point mesh. In fact in Costanza, to reduce the machine time, we adopted

a mesh of only 21 points.

Fig. 1 contains the evolution nf the flux, averaged on the whole reactor,
caused by a step variation of the absorptinn cross section in the Orgel
region.

This corresponds to a step of reactivity of P = 1500 pcm. Curve 1 is
obtained with the spatial dynamic. Curve 2 with the nodal method in

three pnints (for this we used the code SAHYB made by Mr. D'Hoop and

Mr. Monterosso - CETIS).
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Curve 3 a was obtained with the point model method (code Airek),

using a reactivity value obtained from the variation 42 . :0.0001394 cm”
in Orgel by means of perturbation formulae based on the flux distri-
bution of Fquipoise at criticality. Curve 3 b was obtained, always

with the poirtt model (Airek) using a reactivity obtained directly,

as proper value of the already perturbed system, by means of code Wanda.
Fig, 2 contains the evolution of the average flux caused by a step

in Crgel ccrresponding to 700 pcm.

Curve 1 is made with the spatial method, curve 2 with the point methcd.
Fig. 3 contains the evolution of the average flux caused by a step of
1500 pem followed by scram, The scram signal takes place when the average
flux has reached the 130 ¢ of its nominal value, the scram itself begins
0,2 cec later. A maximum negative value of -3C00 pcm will be reached.

The negative rcactivity is introduced gradually according to the curve
(given by GAAA) in which the 65 % of the max. value is reached 0.3 sec
after the beginning of the scram.

Curve 1 is obtained with the spatial method, the negative reactivity

is introduced as an equivalent poison in region 3. Curve 2 is obtained

with the point method.

Tig. 4 represents the evolution due to the same rerturbation as in Fig.2

followed by a scram as in Fig. 3.

Fig. 5 contains the spatial distribution of the flux, with the spatial
method and with the nodal method in 3 points, at successive instants of

the transient caused by a perturbation as in Fig.l.

Calculations made for vperturbations up to 300 pem show that, up to that
level of perturbation the differences between the three methods are of

nc vractical interest.

1





















