

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

ENVIRONMENTAL RADIOACTIVITY

ISPRA 1965

by

M. de BORTOLI, P. GAGLIONE and A. MALVICINI

1966

Joint Nuclear Research Center Ispra Establishment - Italy Protection

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM).

Neither the EURATOM Commission, its contractors nor any person acting on their behalf :

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4.

at the price of FF 10,-	FB 100,	DM 8	Lit. 1250,-	Fl. 7.25	猘
-------------------------	---------	------	-------------	----------	---

When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by Smeets Brussels, May 1966

This document was reproduced on the basis of the best available copy.

EUR 2965.e

ENVIRONMENTAL RADIOACTIVITY - ISPRA 1965 by M. de BORTOLI, P. GAGLIONE and A. MALVICINI

European Atomic Energy Community - EURATOM Joint Nuclear Research Center - Ispra Establishment (Italy) Protection Brussels, May 1966 - 70 Pages - 13 Figures - FB 100

In this report are briefly described the measurements of environmental radioactivity performed during 1965 by the site survey group of the Protection Service.

Data are given on the concentrations of strontium-90, cesium-157 and other radionuclides in fallout, air, soil, waters, herbage, animal bones and foods.

EUR 2965.e

ENVIRONMENTAL RADIOACTIVITY - ISPRA 1965 by M. de BORTOLI, P. GAGLIONE and A. MALVICINI

European Atomic Energy Community - EURATOM Joint Nuclear Research Center - Ispra Establishment (Italy) Protection

Brussels, May 1966 - 70 Pages - 13 Figures - FB 100

In this report are briefly described the measurements of environmental radioactivity performed during 1965 by the site survey group of the Protection Service.

Data are given on the concentrations of strontium-90, cesium-137 and other radionuclides in fallout, air, soil, waters, herbage, animal bones and foods.

EUR 2965.e

ENVIRONMENTAL RADIOACTIVITY - ISPRA 1965 by M. de BORTOLI, P. GAGLIONE and A. MALVICINI

European Atomic Energy Community - EURATOM Joint Nuclear Research Center - Ispra Establishment (Italy) Protection

Brussels, May 1966 - 70 Pages - 15 Figures - FB 100

In this report are briefly described the measurements of environmental radioactivity performed during 1965 by the site survey group of the Protection Service.

Data are given on the concentrations of strontium-90, cesium-137 and other radionuclides in fallout, air, soil, waters, herbage, animal bones and foods.

EUR 2965.e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

ENVIRONMENTAL RADIOACTIVITY

ISPRA 1965

by

M. de BORTOLI, P. GAGLIONE and A. MALVICINI

1966

Joint Nuclear Research Center Ispra Establishment – Italy

Protection

SUMMARY

In this report are briefly described the measurements of environmental radioactivity performed during 1965 by the site survey group of the Protection Service.

Data are given on the concentrations of strontium-90, cesium-137 and other radionuclides in fallout, air, soil, waters, herbage, animal bones and foods.

CONTENTS

.

.

			PAGE					
	INT	RODUCTION	8					
1.	AIR	RADIOACTIVITY	10					
2.	RAI ANI	RADIOACTIVITY OF ATMOSPHERIC PRECIPITATION AND DEPOSITION						
3.	RAI	RADIOACTIVITY OF WATERS						
4.	SOII	SOIL RADIOACTIVITY						
5.	HER	HERBAGE RADIOACTIVITY						
6.	STR	STRONTIUM-90 AND CESIUM-137 IN MILK						
7.	STR	ONTIUM-90 AND CESIUM-137 IN FISHES	14					
8.	OTH	IER ACTIVITIES	15					
	a)	Strontium-90 in calf-bones						
	ъ)	Strontium-90 and cesium-137 in vegetables						
	c)	Strontium-90 and cesium-137 in total diet						
	d)	Control of liquid effluents						
	REF	`ERENCES	18					

•

LIST OF TABLES

Table	1	Concentrations of gross beta radioactivity in air at Ispra January.
Table	2	Concentrations of gross beta radioactivity in air at Ispra February.
Table	3	Concentrations of gross beta radioactivity in air at Ispra March.
Table	4	Concentrations of gross beta radioactivity in air at Ispra April.
Table	5	Concentrations of gross beta radioactivity in air at Ispra May.
Table	6	Concentrations of gross beta radioactivity in air at Ispra June.
Table	7	Concentrations of gross beta radioactivity in air at Ispra July.
Table	8	Concentrations of gross beta radioactivity in air at Ispra August.
Table	9	Concentrations of gross beta radioactivity in air at Ispra September.
Table	10	Concentrations of gross beta radioactivity in air at Ispra October.
Table	11	Concentrations of gross beta radioactivity in air at Ispra November.
Table	12	Concentrations of gross beta radioactivity in air at Ispra December.
Table	13	Monthly concentrations of radionuclides in air.
Table	14	Gross beta radioactivity, strontium-90 and cesium-137 in fallout.
Table	15	Radionuclides in fallout.

•

Table	16	Geographic coordinates of water sampling points.
Table	17	Beta radioactivity subtracted potassium-40 in the water of the lake "Maggiore".
Table	18	Beta radioactivity subtracted potassium-40 in la- kes, streams and wells near to the Ispra Esta- blishment.
Table	19	Strontium-90 and cesium-137 in lake waters.
Table	20	Concentrations of radionuclides in lake waters.
Table	21	Strontium-90 and cesium-137 in soils.
Table	22	Natural radioactivity and stable elements in soils.
Table	23	Strontium-90 and cesium-137 in herbage April-May.
Table	24	Strontium-90 and cesium-137 in herbage June-July.
Table	2 5	Strontium-90 and cesium-137 in herbage August- September-October.
Table	26	Strontium-90 and cesium-137 in milk - Barza.
Table	27	Strontium-90 and cesium-137 in milk - Brebbia.
Table	28	Strontium-90 and cesium-137 in milk - Ispra.
Table	29	Strontium-90 and cesium-137 in milk - M ilano.
Table	30	Strontium-90 and cesium-137 in milk - Osmate.
Table	31	Strontium-90 and cesium-137 in milk - Varese.
Table	32	Strontium-90 and cesium-137 in lake fishes - lake "Comabbio".
Table	33	Strontium-90 and cesium-137 in lake fishes - lake "Maggiore".
Table	34	Strontium-90 and cesium-137 in lake fishes - lake "Monate".
Table	3 5	Strontium-90 and cesium-137 in lake fishes - lake "Varese".

5

Table	36	Distribution of radioactivity and stable elements
		within the body of the fish "Perca fluviatilis" -
		lake Maggiore.
Table	37	Distribution of radioactivity and stable elements

- Table 37 Distribution of radioactivity and stable elements within the body of the fish "Perca fluviatilis" lake Varese.
- Table 38 Strontium-90 in calf bones January through May.
- Table 39 Strontium-90 in calf bones June through November.
- Table 40 Strontium-90 and cesium-137 in vegetables.

LIST OF FIGURES

Figure	1	Central ratemeters and recorders assembly of the telemetering network.
Figure	2	Daily average concentration of gross beta in air (January - June 1965).
Figure	3	Daily average concentration of gross beta in air (July - December 1965).
Figure	4	Strontium-90, cesium-137 and plutonium-239 in air.
Figure	5	Ionisation chambers and multichannel analysers for alpha spectrometry.
Figure	6	Gross beta radioactivity monthly deposition.
Figure	7	Strontium-90 monthly deposition.
Figure	8	Cesium-137 monthly deposition.
Figure	9	Vertical profile of radioactivity in soil.
Figure	10	Strontium-90 in milk.
Figure	11	Sodium-22 and cesium-137 in milk.
Figure	12	Map of the Joint Nuclear Research Center.
Figure	13	Geographical area surrounding Ispra.

INTRODUCTION (°)

In this report are summarized the results of the measurements of environmental radioactivity performed by the site survey group of the Protection Service. The personnel of this group, which is supervised by Prof. A. Malvicini, chief of the Protection Service, is the following:

responsible for Site and Meteorology Section: P. Gaglione
responsible for the chemical laboratory: M. de Bortoli
radioactivity measurements: O. Malgarini, E. Lovati
chemical laboratory: E. Pecchio, L. Tortora, O. Cadario
air monitoring stations: M. Tramontana
sampling: G. Brughera, L. Pasqualini
secretary: A. Schieppati

The work is carried out in a chemical laboratory and in a radioactivity measurements laboratory, equipped for gamma and alpha spectrometry and low-level beta counting.

The following reports on the same subject have already been published:

CNI	-	43	Misure di radioattività ambientale, Ispra 1958 - 59
CNI	-	9 5	Misure di radioattività ambientale, Ispra 1960
EUR	-	22 3i	Misure di radioattività ambientale, Ispra 1961
EUR	-	481i	Misure di radioattività ambientale, Ispra 1962
EUR	-	22 13e	Environmental radioactivity, Ispra 1963
EUR	-	2509 e	Environmental radioactivity, Ispra 1964

Main object of the measurements performed is the constant knowledge of the radioactivity levels in the environment of the Euratom Ispra Establishment, in order to identify and evaluate radioactive contaminations caused by the Establishment itself.

(°) Manuscript received on April 12, 1966

8

The results obtained from the surveillance program indicate that, also for the calendar year 1965, the environmental radiation exposure for the persons living in the neighbourhood of the Establishment was due, almost exclusively, to natural sources and world-wide fallout.

During 1965 improvement of the radiological monitoring program has materialized in the following realisations:

- i) completion of the telemetering network for air radioactivi ty;
- adaptation and equipment of a vehicle as "mobile station". This unit, in radio communication with the central laboratory, is foreseen to begin its activity early in 1966. The equipment is conceived for measurements of the gamma radiation field, the artificial contamination of atmospheric dust and the wind speed and direction. Moreover, a lead shielding allows beta counting and gamma spectrometry with a relatively low background;

iii) installation of column collectors in six of the area survey stations.

The first and the last topic are discussed more extensively in the two following paragraphs.

The symbol Ci has been adopted in this report, for the unity of activity (Curie), in the place of the symbol c, used up to now.

9 -

AIR RADIOACTIVITY

Three new stations became operational during 1965 (see map in Figure 12): one of these, placed on the torrent Novellino, near the fence, will be equipped for the radioactivity control of the water wasted from the Establishment, as this torrent is by far the main stream leaving the Center. The station, however, is equally used for air radioactivity control.

All the stations are actually connected, via telephonic cables, to the building N. 51, where the group works.

At the end of 1965 only five stations, however, were equipped with instruments for the measurement (and transmission) of the gamma radiation field.

During the year in three stations instruments have been placed for the instantaneous measurement of the alpha and beta activity collected on continuously moving paper filter. The detector of these instruments consists of a double scintillator (ZnS + plastic phosphor) coupled to a photomultiplier tube and alpha - beta pulses discrimination is made electronically. Because of the fairly constant ratio between the alpha and beta activity due to the decay products of the naturally radioactive gases in air, the instruments can detect relatively small artificial contaminations, which cause a change of the ratio. Also these data are transmitted to the central room, where recording is provided for all the signals converging from the stations, including wind speed and direction from station N. 1, on the roof of the building (see Figure 1).

In Tables 1 to 12 are given the daily values of gross beta radioactivity concentrations in each station and the daily average values. The latter are represented also in the histograms of Figures 2 and 3.

Radiochemical determinations of strontium-90, cesium-137, plutonium-239 and gamma spectrometry measurements are performed on the pooled monthly samples (6 to 8 thousands cubic meters of air). The results of these measurements are reported in Table 13 and in the graphs of Figure 4.

Concerning plutonium-239, the measurements, started in 1964, were continued during the last year. The samples are obtained by radiochemical separation and electrodeposition and are measured by alpha spectrometry in a Frish grid ionisation chamber (see Figure 5).

Monthly air concentrations down to mid 1961 and technique details may be found elsewhere (1).

10

The exposition dose, essentially due to the argon-41 discharged from the stack of the Ispra-1 reactor and measured at the survey stations, attained the maximum value of about 1 mR integrated over the whole year.

2. RADIOACTIVITY OF ATMOSPHERIC PRECIPITATION AND DEPOSITION

Monthly samples of total (dry and wet) deposition are collected by stainless steel pots with a total area of 4 m^2 . Gross beta counting and gamma spectrometry measurements, as well as radiochemical determinations of strontium-90 and cesium-137, are performed on the dry residue obtained after evaporation.

Gross beta radioactivity, strontium-90 and cesium-137 deposited in the last year are given in Table 14, whereas the same from 1958 are represented in the histograms of Figures 6 to 8. The values for other measured radionuclides are reported in Table 15.

Column collectors were placed, during 1965, in six of the eight stations for the control of air radioactivity. They consist of a plastic pot (0.23 m² collecting area), connected to a filter and then to an ionexchange column (cationic and anionic resin). A wood housing, heated during winter months, contains the column and the filter to prevent freezing. The exhausted rain water is controlled by gross beta measurements and the resin and filters are processed separately to get information about the fraction of strontium-90 and cesium-137 retained by each of them. The data for the first months seem to indicate that a large fraction of both radionuclides may remain in the filter and that the activity obtained by the whole column collector is equal or slightly lower than that collected by the pots. Much more data are needed, however, before drawing conclusions.

The fallout samples from May to August showed evidence for the presence of fresh fission products from the Chinese burst (May 1965).

3. RADIOACTIVITY OF WATERS

Water samples are taken monthly in twenty-three stations including lakes, streams, wells and tapwater. In two stations of the lake Maggiore water is collected also at 25 and 50 m depths, by means of a Nansen bottle. Five liter samples are evaporated and beta counted. Flame photometric measurements of potassium are made on each sample to allow subtraction of beta radioactivity due to potassium-40. In Tables 16 to 18 are given the geographic coordinates of the stations and the values of beta radioactivity for the lake Maggiore and for the other waters.

Large samples (400 - 500 liters) are collected quarterly in the four lakes near to the Establishment and the concentrations of individual radionuclides determined by gamma spectrometry and radiochemical procedures.

The data obtained are reported in Tables 19 and 20.

A control of sewer waters within the Establishment is carried out through the collection of twenty-nine 100 ml samples, which are evaporated and counted for gross alpha and gross beta activity.

4. SOIL RADIOACTIVITY

The control of soil radioactivity around the Establishment is performed yearly by collection of samples in fourteen stations (see Figure 13) and analysis for specific radionuclides. Each sample is made up of ten cores, 10 cm in diameter and 10 cm deep, with a total area of 780 cm². After mixing and sieving, the sample are submitted to gamma spectrometry and processed for strontium-90 and cesium-137 determinations. The 1965 samples were, moreover, analysed for their natural radioactivity content: i.e. radium-226 and thorium-232, besides potassium-40, which was already determined routinely.

Natural radioactivity shows no large variations among the different sites and the average concentrations found are as follows: radium-226 0.72 pCi/g, thorium-232 10.8 p.p.m. and potassium 17.4 mg/g. The average values of the strontium-90 and cesium-137 contamination were 91 and 135 mCi/Km², respectively. The data are given in Tables 21 and 22.

During 1965 the vertical profile of the contamination was studied in two stations, collecting 5 cm layers down to 20 cm. The results of this measurements are shown in Figure 9. It may be seen that there is a certain difference in the profile between the two sites; however on the average, the first 10 cm layer accounts for about 80% of the strontium-90 and about 85% of cesium-137 found in the first 20 cm layer. The natural radioactivity shows, as expected, no variations with depth.

Further details on the radioactivity of the soil at Ispra may be found elsewhere (2).

HERBAGE RADIOACTIVITY

5.

Herbage is controlled in six stations outside the Establishment and in five stations within it (see maps in Figures 12 and 13). The former, which are also soil sampling stations, are located near the following villages: Barza, Brebbia, Ispra, Monvalle, Osmate and Taino. Samples of 2 Kg fresh weight are collected monthly during the growing season (April to October), by random cutting of several sub-samples in different fields at each site, in order to improve representativity. The samples are dried and submitted to gamma spectrometry; radiochemical separation for strontium-90 and cesium-137 are performed on ashed aliquots. Besides calcium and potassium concentrations, determined on each sample, stable strontium also is measured by flame photometry on few pooled samples.

The data on herbage content of strontium-90, cesium-137, calcium and potassium are reported in Tables 23 to 25.

The presence of fresh fission products, due to the Chinese burst, was evident in all the herbage samples collected in the months of May, June and July.

6. STRONTIUM-90 AND CESIUM-137 IN MILK

Milk is sampled in the dairies of four villages (Barza, Brebbia, Ispra and Osmate) and, moreover, for comparison purposes, in the milk supply stations of Varese and Milano at the rate of one liter twice a week. Gamma spectrometry and radiochemical separations are performed on the pooled monthly samples. In Tables 26 to 31 are given the data of strontium-90, cesium-137, calcium and potassium concentrations.

A plot of strontium-90 in the milk of the zone of Ispra (average of the four sites mentioned above) and in that of Milano from 1960 through 1965 is given in Figure 10.

In Figure 11 are plotted the values of sodium-22 and cesium-137 concentration in the milk of the zone of Ispra. The trend for 1965 confirms, for the passage of the two radionuclides from fallout to milk, the pattern found during 1963 and 1964 (3).

7. STRONTIUM-90 AND CESIUM-137 IN FISHES

Three biological species from the four lakes Maggiore, Monate, Comabbio and Varese have been analysed for strontium-90 and cesium-137 and the data are reported in Tables 32 to 35. The samples are supplied, on a quarterly basis, directly by the fishers of the lakes and submitted to the same procedure adopted for milk samples. As in the preceding years, some samples were not available, particularly in winter, owing to fishing difficulties.

<u>Remark</u> In this report the name "Gobio gobio" has been replaced by that of "Eupomotis gibbosus". This does not mean that the specimens of another biological species have been sampled, but merely that, after careful study, it appeared that the correct name of the species being sampled is "Eupomotis gibbosus". Therefore, the data of "Gobio gobio" referred to in the pre-

ceding annual reports, are dealing with the species "Eupomo-

tis gibbosus".

With the last quarterly collection, two additional samples of "Perca fluviatilis" have been taken, one from the lake Maggiore and one from the lake Varese. These fishes have been divided into five parts (skin, head, bones, muscle and intestine) and each analysed as routine samples. The data obtained are reported in Tables 36 and 37. It may be noticed that for this species, which, among those sampled, is the most important from a dietary point of view, the edible part, namely muscle, contains about 2% of the total strontium-90 and about 60% of the total cesium-137.

The distribution of the two radionuclides within the body of the species considered is practically the same, despite the difference of a factor about two in the calcium and strontium concentrations of the lakes.

More of these measurements are planned in order to have reliable estimates of the strontium-90 and cesium-137 intake by fishery products.

8. <u>OTHER ACTIVITIES</u>

a) <u>Strontium-90 in calf-bones</u>

Bone (femour) samples of calves, about two months old and milk fed, have been collected during 1965 and measured for strontium-90 content.

Strontium-90 concentrations are given in Tables 38 and 39. Data are in pCi/g ash, instead of pCi/g fresh weight, as in the previous reports, because it appears that the data on specific activity of ashes are more reliable than those of fresh matter. Moreover, as the calcium concentration in ashes has been found nearly constant during 1964 and 1965 (standard deviation of the mean about 5.5% on eighty samples), averaging 370 mg/g, it has been decided to assume this value for the calculation of the strontium-90 activity relative to calcium concentration and to perform no more measurements of calcium in bones.

Strontium-90 and cesium-137 in vegetables

Samples of some of the vegetable species available to the city of Milano are taken fortnighthly and submitted to gamma spectrometry measurements. At the end of the year, aliquots of the individual samples are pooled together to give an yearly average for each species. Such pooled samples are processed for strontium-90 and cesium-137 determinations.

The results of the measurements are reported in Table 40.

Strontium-90 and cesium-137 in total diet

Between the 10th of December 1964 and the 11th of January 1965, a composite sample of total diet was collected at the canteen of the Establishment, in order to prepare an intercomparison sample for distribution to other laboratories. The wet fresh weight of the meals sampled was about 135 Kg (31 Kg dry matter) and the analyses were performed in quintuplicate on 500 g aliquots, which fortuitously represented approximately the average daily intake of an individual.

The average concentrations in the dry matter, found in this laboratory, were:

К	Cs ¹³⁷	Ca	Sr ⁹⁰
mg/g	pCi/Kg	mg/g	pCi/Kg
6.78	394	1.98	76.5

16

Ъ)

c)

d) <u>Control of liquid effluents</u>

During the last year thirty-three samples of processed liquid wastes from the decontamination plant were analysed before discharge in the Novellino torrent. Each sample is controlled by gross alpha, gross beta and gamma spectrometry measurements. On yearly pooled samples and, if necessary, also on particular samples, analyses for specific radionuclides are performed. The results indicate that, during 1965 the activity of the discharged wastes was due almost exclusively to cobalt-60.

In order to study the retention of radionuclides by the bottom sediments of the Novellino torrent, samples of sand and silt have been taken in some points of the water-course during 1965. Gamma spectrometry measurements performed on these samples have shown the presence of a small activity of cobalt-60.

17

<u>REFERENCES</u>

- "RADIOATTIVITA' DEL SUOLO AD ISPRA: MISURA E
 RISULTATI" by M. de Bortoli, P. Gaglione, A. Mal vicini and E. Van der Stricht "Giornale di Fisica
 Sanitaria e Radioprotezione" In press.
- (2) "PLUTONIUM-239 AND 238, STRONTIUM-90 AND CE-SIUM-137 IN SURFACE AIR FROM MID 1961 THROUGH 1965" by M. de Bortoli, P. Gaglione, A. Malvicini and E. Van der Stricht - In preparation.
- (3) "SOME DATA AND COMMENTS ON SODIUM-22 IN FOOD CHAINS" by M. de Bortoli, P. Gaglione and A. Malvicini - Health Physics, 12, N° 3, March 1966.

ACKNOWLEDGMENTS

Thanks are due to Mr. G. Bollini of the Meteorology group for the drawings contained in this report.

•

IN AIR AT ISPRA

JANUARY 1965

Dav	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-
Duy	pCi/m ³	tation mm					
1	0.35	0.39	0.39	0.38	0.38	0.38	0.8
2	0.32	0.27	0.25	0.25	0.25	0.27	0.4
3	0.19	0.16	0.17	0.13	0.17	0.16	1 1 2
4	0.26	0.24	0.27	0.24	0.28	0.26	1 5 7
5	0.42	0.40	0.38	0.35	0.37	0.38	
6	0.38	0.32	0.39	0.36	0.39	0.39	
7	0.42	0.42	0.35	0.33	0.32	0.37	
8	0.34	0.30	0.35	0.32	0.33	0,33	
9	0.30	0.30	0.35	0.26	0.31	0.30	
10	0.29	0.28	0.31	0.31	0.29	0.30	
11	0.19	0.20	0.19	0.19	0.20	0.19	
12	0.24	0.26	0.24	0.23	0.26	0.25	
13	0.30	0.32	0.26	0.25	0.30	0.29	
14	0.37	0.40	0.38	0.32	0.38	0.37	
15	0.33	0.28	0.30	0.26	0.29	0.29	
16	0.28	0.30	0.29	0.26	0.28	0.28	
17	0.42	0.37	0.42	0.40	0.43	0.41	0.2
18	0.39	0.44	0.36	0.39	0.40	0.40	0.2
19	0.27	0.28	0.26	0.26	0.27	0.27	4.0
20	0.30	0.27	0.30	0.30	0.30	0.29	
21	0.30	0.33	0.30	0.30	0.32	0.31	
22	0.27	0.19	0.26	0.24	0.28	0.25	
23	0.19	0.21	0.17	0.19	0.18	0.19	
24	0.16	0.18	0.20	0.18	0.18	0.18	
25	0.31	0.22	0.29	0.25	0.27	0.27	
26	0.26	0.29	0.30	0.24	0.30	0.28	
27	0.26	0.23	0.26	0.29	0.24	0.26	3.0
28	0.03	0.04	0.03	0.04	0.02	0.03	36.6
29	0.02	0.03	0.04	0.04	0.03	0.03	8.2
30	0.04	0.04	0.05	0.04	0.04	0.04	12.6
31	0. 05	0.03	0.04	0.03	0.04	0.04	7.8
Av. value	0.27	0.26	0.26	0.25	0.26	0.26	
Min. value	e 0.02	0.03	0.03	0.03	0.02	0.03	
Total pre	cipit.	0,44	0.42	0,40	0,43	0.41	73.8

•

..

CONCENTRATIONS OF GROSS BETA RADIOACTIVITY

IN AIR AT ISPRA

.

FEBRUARY 1965

· · · · ·	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-
Day	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	tation mm
1	0.36	0.35	0.36	0.32	0.34	0.35	0.4
2	0.67	0.68	0.64	0.66	0.68	0.67	l 1 1
3	0.31	0.31	0.32	0.31	0.34	0.32	t 1 3
4	0.40	0.40	0.37	0.33	0.35	0.37	7 f E
5	0.48	0.47	0.48	0.48	0.46	0,47	8 1 1
6	0.43	0.44	0.43	0.34	0.40	0,41	5 7 7
7	0,27	0.28	0.27	0.26	0.29	0.27	
8	0.29	0.28	0.26	0.26	0.27	0.27	
9	0.30	0.28	0.30	0.35	0.34	0.31	
10	0.24	0.23	0.22	0.22	0.24	0.23	
11	0.23	0.24	0.27	0.33	0.28	0.27	
12	0.26	0.21	0.22	0,24	0.28	0.24	
13	0,28	0.27	0.24	0.26	0.27	0.26	
14	0.20	0.22	0.20	0.22	0.24	0.22	
15	0.22	0.21	0.20	0.18	0.20	0.20	
16	0.42	0.38	0.35	0.38	0.40	0.39	
17	0.22	0.22	0.18	0.20	0.21	0.21	
18	0.28	0.32	0.25	0.25	0.25	0.27	
19	0.24	0.28	0.28	0.32	0.34	0.29	
20	0.18	0.18	0.17	0.18	0.17	0.18	0.2
21	0.19	0.19	0.17	0.16	0.20	0.18	1.0
22	0.34	0.32	0.35	0.30	0.32	0.33	
23	0.40	0.35	0.35	0.29	0.31	0.34	
24	0.28	0.28	0.28	0.18	0.31	0.27	
25	0.54	0.60	0.53	0.50	0.51	0.54	
26	0.50	0.51	0.46	0.44	0.48	0.48	
27	1.38	1.38	1.36	-	1.36	1.37	
28	0.86	0.84	0.78	-	0.74	0.80	
Av. value Min.value Max.value Total prec	0.38 0.18 e 1.38 cipit.	0.38 0.18 1.38	0.37 0.17 1.36	0.31 0.16 0.66	0.38 0.17 1.36	0.38 0.18 1.37	1.6

- = Measurement not performed.

٩

IN AIR AT ISPRA

MARCH 1965

	Station 1	Station 2	S tation 3	Station 4	Station 5	Average	Precipi-
Day	pCi/m ³	mm					
1	0.36	0.27	0.29	0.30	0.30	0.30	20.4
2	0.05	0. 08	0.06	0.06	0.06	0.06	25.4
3	0.32	0.28	0.32	0.28	0.28	0.30	1 1 1
4	0.36	0.36	0.36	0.30	0.33	0.34	1 1 1
5	0.33	0.46	0 .3 4	0.29	0.35	0.35	4.2
6	0.28	0.29	0.28	0.26	0.32	0.29	1 1 1
7	0.28	0.25	0.24	0.24	0.27	0.26	1 1 1
8	0.29	0.30	0.27	0.24	0.24	0.27] [[
9	0.30	0.31	0.28	0.28	0.30	0.29	6 1 1 1
10	0.30	0.32	0.31	0.30	0.29	0.30	1
11	0.44	0.44	0.43	0.43	0.48	0.44	I]]
12	0.55	0.56	0.51	0.51	0.51	0.53	1 1
13	0.56	0.57	0.53	0.53	0.54	0.55	1 ? T
14	0.53	0.60	0.47	0.52	0.58	0.54	1.2
15	0.34	0.39	0.36	0.34	0.35	0.36	1.8
16	0.23	0.20	0.20	0.20	0.23	0.21	, 1 1
17	0.15	0.14	-	0.12	0.14	0.14	0.2
18	0.18	0.22	0.21	0.19	0.17	0.19	2.0
19	0.20	0.22	0.20	0.20	0.24	0.21	0.8
20	0.25	0.26	0.24	0.26	0.21	0.24	1 1
21	0.28	0.28	0,28	0.29	0.29	0.28	
22	0.26	0.28	0.25	0.28	0.25	0.26	1.0
23	0.02	0.02	0.03	0.03	0.02	0.02	88.0
24	0.19	0.17	0.18	0.15	0.16	0.17	0.4
25	0.36	0.42	0.33	0.34	0.36	0.36	- -
26	0.31	0.30	0.28	0.25	0.26	0.28	
27	0.20	0.20	0.26	0.18	0 .1 9	0.21	
28	0.26	0.26	0.20	0.22	0.22	0.23	
29	0.26	0.26	0.26	0.22	0.26	0.25	
30	0.29	0.31	0.31	0.28	0.27	0.29	
31	0.39	0.36	0.33	0.33	0.36	0.35	
Av. value Min.value Max.value	0.29 0.02 0.56	0.30 0.02 0.60	0.29 0.03 0.53	0.27 0.03 0.53	0.28 0.02 0.58	0.29 0.02 0.55	

Total precipit.

-= Measurement not performed.

145.4

Чг -

IN AIR AT ISPRA

APRIL 1965

	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-
Day	pCi/m ³	tation mm					
1	0.64	0.62	0.62	0.54	0.62	0.61	
2	0.58	0.58	0.52	0.47	0.56	0.54	1 1 1
3	0.58	0.59	0.60	0.54	0.60	0.58	9 5 1
4	0.45	0.44	0.41	0.44	0.43	0.43	1 1 1
5	0.42	0.44	0.46	0.43	0.45	0.44	0.2
6	0.58	0.58	0.60	0.49	0.55	0.56	1.0
7	0.60	0.60	0.62	0.51	0.54	0.57	
8	0.40	0.35	0.39	0.31	0.34	0.36	6.0
9	0.20	0.22	0.18	0.18	0.23	0.20	0.2
10	0.32	0.34	0.33	0.29	0.34	0.32	
11	0.46	0.48	0.44	0.48	0.46	0.46	-
12	0.58	0.74	0.76	1.02	1.10	0.84	
13	0.76	0.68	0.78	0.98	1.28	0.90	
14	0.53	0.59	0.49	0.48	0.63	0.54	
15	0.44	0.44	0.42	0.41	0.42	0.43	
16	0.34	0.34	0.32	0.34	0.34	0.34	
17	0.74	0.70	0.76	0.68	0.70	0.72	
18	0.26	0.27	0.28	0.26	0.26	0.27	r r
19	0.35	0.36	0.33	0.28	0.34	0.33	8.4
20	0.26	0.26	0.24	0.22	0.24	0.24	5.8
21	0.13	0.10	0.14	0.12	0.12	0.12	1 1 7
22	0.12	0.12	0.12	0.12	0.10	0.12	i I
23	0.14	0.14	0.14	0.16	0.16	0.15	
24	0.13	0.15	0.14	0.14	0.14	0.14	5 5 8
25	0.15	0.15	0.14	0.15	0.16	0.15	3.0
26	0.22	0.24	0.24	0.20	0.25	0.23	0.2
27	0.44	0.44	0. 46	0.42	0.44	0.44	
28	0.38	0.46	0.43	0.37	0.40	0.41	
29	0.39	0.40	0.34	0.38	0.40	0.38	0.2
30	0.30	0.33	0.31	0.32	0.34	0.32	
Av. value	0.40	0.40	0.40	0.39	0.43	0.40	
Min. value Max. value	0.12	0.10 0.74	0.12	0.12	0.10	0.12	
Total preci	pit.	- u · A			1.20	.,,,	25.0

IN AIR AT ISPRA

MAY 1965

Dav	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-
	pCi/m ³	mm					
1	0.42	0.44	0.43	0.39	0.42	0.42	
2	0.34	0.36	0.29	0.30	0.33	0.32	6.8
3	0.35	0.36	0.35	0.27	0.28	0.32	
4	0.25	0.24	0.27	0.28	0.25	0.26	10.2
5	0.13	0.16	0.12	0.13	0.16	0,14	0.2
6	0.40	0.42	0.44	0.44	0.42	0.42	
7	0.52	0.50	0.50	0.50	0.48	0.50	
8	0.40	0.43	0.44	0.40	0.39	0.41	
9	0.34	0.36	0.34	0.32	0.32	0.34	
10	0.96	0.92	0.94	0.87	0.86	0.91	
11	0.88	0.85	0.86	0.84	0.88	0.86	
12	1.06	0.80	0.74	0.71	-	0.83	
13	0.44	0.44	0.48	0.40	0.44	0.44	
14	0.50	0.48	0.44	0.43	0.45	0.46	
15	-	0.58	0.54	0.52	0.54	0.54	
16	0.56	0.56	0.58	0.54	0.54	0.56	
17	0.60	0.60	0.56	0.58	0.62	0.59	1.6 15.8
18	0.53	0,58	0.54	0.54	0.54	0.55	
19	0.19	0.19	0.18	0.18	0.18	0.18	1.0
20	0.26	0.26	0.26	0.25	0.27	0.26	11.4
21	0.22	0.22	0.21	0.21	0.21	0.21	0.2
22	0.15	0.16	0.15	0.15	0.17	0.16	
23	0.28	0.33	0.28	0.26	0.32	0.29	
24	0.33	2.55	0.32	0.30	0.25	0.75	1.8
25	0.40	0.36	0.60	0.42	0.37	0.43	28.0
26	0.44	0.38	0.43	0.31	0.62	0.44	18.0
27	0.31	0.42	0.30	0.28	0.45	0.35	0.4
28	0.19	0.22	0.20	0,18	0.18	0.19	
29	0.68	0.80	0.72	0,20	0.24	0.53	0.2
30	0.42	0.46	0.54	0.42	0.46	0.46	13.6
31	0.30	0.22	0.25	0.25	0.31	0.27	21.2
Av. value	0.43	0.50	0.43	0.38	0.40	0.43	
Max. value	1.06	2.55	0.94	0.87	0.88	0.91	120 4

Total precipit.

- = Measurement not performed.

130,4

IN AIR AT ISPRA

JUNE 1965

	Station 1 Station 2		Station 3 Station 4		Station 5	Average	Precipi-
Day	pCi/m ³	value 3 pCi/m	tation mm				
1	0,38	0.33	0.40	0.40	0.36	0.37	0.8
2	0.60	0.46	0.56	0.56	0.56 0.50		4.2
3	0.13	0.12	0.12	0. 10	0.11	0.12	16.8
4	0.14	0.09	0.13	0.10	0.18	0.13	2.6
5	0.28	0.26	0.24	0.27	0,28	0.27	3.6
6	1.04	0.49	0.46	0.40	0.38	0.55	3.4
7	0.39	0.41	0.50	0.38	0,50	0.44	23.0
8	0.46	0.35	0,51	0.30	0,35	0.39	20.0
9	0.29	0.27	0.23	0.56	0.28	0.33	
10	0.83	0,50	0.52	0.52	0.62	0.60	
11	1.02	1.02	0.90	0.92	1.00	0.97	
12	0.92	0.94	1.05	0.90	0.92	0.95	
13	0.70	0.72	0.76	0.60	0.56	0.67	0.4
14	1.34	1.10	1.00	1.00	1.08	1.10	0.2
15	1.22	0,92	0,80	0.80	1.00	0.95	3.8
16	0.80	0.77	0.74	0.78	0.90	0.80	2.2
17	1.40	1.37	1.27	1.16	1.27	1.29	1.2
18	1.74	1.60	1.60	1.46	1.53	1.59	
19	1.70	1.54	1.46	1.40	1.40	1,50	1 1 1
20	1.30	1.24	1.40	1.20	1.30	1.29	0.2
21	1.48	1.42	1.47	1.30	1.42	1.42	1 1
22	1.68	1.56	1.66	1.58	1.64	1.62	
23	1.62	1.64	1.70	1.60	1.64	1.64	1 T
24	1.60	1.64	1.46	1.40	1.34	1.49	0.2
25	1.20	1.26	1.20	1.10	1,26	1,20	I 1 1
26	0.85	0.80	0.88	0.84	0.92	0.86	1 1 1
27	0.64	0.62	0.60	0.62	0.56	0.63	i 1 1
28	0.62	0.59	0.53	0.56	0.58	0.58	1 1 1
29	0.95	0.93	0.94	0.85	0.93	0.92	1 T T
30	0.86	0.80	0.86	0,80	0,80	0.82	1 9 1
Av. value Min.value Max.value	0.94 0.13 1.74	0.87 0.09 1.64	0.87 0.12 1.70	0.82 0.10 1.60	0.86 0.11 1.64	0.87 0.12 1.64	02 (
rotar prec	ipit.						82.0

IN AIR AT ISPRA

JULY 1965

•

	Station 1		Station 3	Station 4	Station 5	Average	Precipi-
Day	pCi/m ³	tation mm					
1	0.36	0.30	0.30	0.26	0.32	0.31	17.0
2	0.42	0.37	0.39	0.40	0.39	0.39	0.4
3	0.49	0.55	0.47	0.46	0.46	0.49	1.4
· 4	0.35	0.32	0,36	0.38	0.38	0.36	3.4
5	1.10	1.02	0.98	0.90	0.88	0.98	0.2
6	0.91	0.90	0.88	0.76	0.78	0.85	
7	0.80	0.71	0.70	0.70	0.72	0.73	
8	0.32	0.34	0.32	0.29	0.33	0.32	3.4
9	0.52	0.50	0.46	0.44	0.52	0.49	
10	0.63	0.57	0.64	0.64	0.65	0.63	
11	0.57	0.53	0.53	0.51	0.54	0.54	
12	0.56	0.56	0.58	0.54	0.50	0.55	
13	0.62	0.62	0.64	0.60	0.66	0.63	0.2
14	0.64	0.60	0.60	0.60	0.67	0.62	
15	0.68	0.66	0.62	0.63	0.66	0.65	
16	0.39	0.38	0.42	0.40	0.40	0.40	0.2
17	0.26	0.27	0.26	0.24	0.24	0.25	0.2
18	0.36	0.34	0.34	0.30	0.31	0.33	
19	0.39	0.34	0.32	0.35	0.38	0.36	
20	0.24	0.24	0.26	0.26	0.22	0.24	48.8
21	0.27	0.25	0.23	0.21	0.22	0.24	1.0
22	0.15	0.14	0.14	0.14	0.15	0.14	23.6
23	0.09	0.07	0.08	0.06	0.08	0.08	
24	0.12	0.12	0.12	0.10	0.12	0.12	
25	0.12	0.10	0.10	0.12	0.11	0.11	26.8
26	0.40	0.42	0.42	0.34	0.38	0.39	
27	0.31	0.36	0.26	0.30	0.26	0.30	
28	0.32	0.30	0.30	0.27	0.32	0.30	
29	0.34	0.36	0.33	0.28	0.34	0.33	
30	0.34	0.36	0.34	- !	0.31	0.34	
31	0.34	0.28	0.31	0.34	0.33	0.32	
Av. value Min. value Max. value	0.43 0.09 1.10	0.41 0.07 1.02	0.41 0.08 0.98	0.39 0.06 0.90	0.41 0.08 0.88	0.41 0.08 0.98	
Total prec	ipit.				-	- ,	126.6

- = Measurement not performed.

Table 8

CONCENTRATIONS OF GROSS BETA RADIOACTIVITY

IN AIR AT ISPRA

AUGUST 1965

······································	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-
Day	pCi/m ³	value 3 pCi/m	tation mm				
1	0.19	0.16	0.19	0.16	0.18	0.18	5.4
2	0.14	0.15	0.11	0.15	0.15	0.14	
3	0.17	0.15	0.15	0.15	0.14	0.15	
4	0.24	0.25	0.21	0.21	0.19	0.22	
5	0.24	0.23	0.21	0.12	0.22	0.20	0.2
6	0.23	0.21	0.24	0.21	0.25	0.23	0.2
7	0.26	0.27	0.23	0.21	0.25	0.24	
8	0.29	0.28	0.29	0.28	0.28	0.28	
9	0.32	0.31	0.31	0.28	0.29	0.30	0.4
10	0.22	0.21	0.21	0.21	0.25	0.22	
11	0.22	0.20	0.20	0.19	0.22	0.21	
12	0.24	0.21	0.20	0.23	0.22	0.22	
13	0.19	0.17	0.18	0.19	0.20	0.19	
14	0.17	0.16	0.17	0.15	0.13	0.16	15.8
15	0.14	0.16	0.16	0.16	0.12	0.15	0.2
16	0.16	0,18	0.19	0.15	0.16	0.17	8.0
17	0.14	0.14	0.13	0.15	0.14	0.14	3.2
18	0.10	0.14	0.13	0.14	0.14	0.13	10.0
19	0.18	0.17	0.16	0.15	0.14	0.16	
20	0.19	0.17	0.16	0.19	0.18	0.18	0.4
21	0.17	0.16	0.16	0.18	0.20	0,17	14.4
22	0.18	0.16	0.13	0.15	0.14	0.15	46.4
· 23	0.12	0.12	0.12	0.15	0.10	0.12	7.2
24	0.14	0.14	0.17	0.22	0.15	0.16	
25	0.19	0.19	0.16	0.15	0.18	0.17	
26	0.25	0.20	0.20	0.18	0.20	0.21	
27	0.18	0.17	0.18	0.14	0.13	0.16	0.2
28	0.16	0.17	0.16	0.14	0.16	0.16	0.2
29	0.16	0.16	0.16	0.14	0.16	0.16	
30	0.13	0.16	0.13	0.13	0.16	0.14	1.0
31	0.10	0.08	0.08	0.08	0.08	0.08	19.6
Av. value	0.19	0.18	0.18	0.17	0.18	0.18	
Min, value	0.10	0.08	0.08	0.08	0.08	0.08	
Total prec	ipit.	~ 1	ve y⊥		v /	0.00	132.8

IN AIR AT ISPRA

SEPTEMBER 1965

•

	· · · · · · · · · · · · · · · · · · ·						
D	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-
Day	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	mm
1	0.04	0.07	0.04	0.04	0.04	0.05	25.0
2	0.10	0.06	0.06	0.07	i –	0.07	47.8
3	0.04	0.04	0.03	0.05	0.04	0.04	1.0
4	0.06	0.05	0.05	0.05	0.08	0.06	
5	0.03	0.03	0.05	0.03	0.02	0.03	21.2
6	0.09	0.08	0.06	0.08	0.08	0.08	0.2
7	0.16	0.13	0.12	0.12	0.12	0.13	
8	0.12	0.11	0.14	0.10	0.10	0.11	0.2
9	0.10	0.10	0,10	0.09	0.09	0.10	47.6
10	0.05	0.07	0.08	0.04	0.06	0.06	4.6
11	0.05	0.05	0.06	0.07	0.06	0.06	0.2
12	0.04	0.04	0.04	0.04	0.04	0.04	21.0
13	0.06	0.06	0.05	0.06	0.07	0,06	0.2
14	0.07	0.08	0.10	0.08	0.08	0.08	
15	0.09	0.09	0.05	0.06	0.09	0.08	0.2
16	0.09	0.10	0.09	0.07	0.09	0.09	0.2
17	0.10	0.11	0.09	0.11	0.09	0.10	0.2
18	0.13	0.12	0.10	0.13	0.13	0.12	1.6
19	0.14	0.14	0.16	0.14	0.14	0.14	2.8
20	0.19	0.15	0.15	0.15	0.16	0.16	
21	0.23	0.23	0.20	0.20	0.18	0.21	0.2
22	0.20	0.19	0.20	0.19	0.17	0.19	0.2
23	0.20	0.19	0.19	0.14	0.20	0.18	
24	0.16	0.19	0.17	0.15	0.15	0.16	0.2
25	0.16	0.17	0.15	0.15	0.17	0.16	1.4
26	0.14	0.12	0.15	0.16	0.16	0.15	51.2
27	0.06	0.06	0.06	0.07	0.06	0.06	27.2
28	0.01	0.05	0.04	0.05	0.03	0.04	21.4
29	0.07	0.08	0.05	0.04	0.04	0.06	20.8
30	0.04	0.03	0.01	0.02	0.02	0.02	71.2
Av. value	0.10	0.10	0.09	0.09	0.10	0.10	
Max. value	0.23	0.23	0.20	0.20	0.20	0.21	_
Total precip	oit.						367.8

- = Measurement not performed.

IN AIR AT ISPRA

OCTOBER 1965

	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-	
Day	pCi/m ³	value 3 pCi/m	tation mm					
1	0.01	0.03	0.02	0.03	0.01	0.02	71.6	
2	0.07	0.05	0.07	0.06	0.09	0.07		
3	0.15	0.13	0.14	0.12	0.17	0.14		
4	0.22	0.16	0.17	0.19	0.20	0.19	0.2	
5	0.23	0.20	0.24	0.18	0.19	0.21	0.2	
6	0.17	0.17	0.17	0.12	0.17	0.16	0,2	
7	0.15	0.18	0.19	0.13	0.11	0.15	0.2	
8	0.17	0.19	0.18	0.13	0.17	0.17	0,2	
9	0.17	0.15	0.15	0.16	0.14	0.15	0.2	
10	0.15	0.17	0.15	0.16	0.16	0.16	1.6	
11	0.15	0.12	0.15	0.09	0.14	0.13		
12	0.17	0.14	0.14	0.12	0.11	0.14		
13	0.15	0.13	0.13	0.10	0.12	0.13	0.2	
14	0.12	0.08	0.09	0.10	0.11	0.10	0.4	
15	0.14	0.13	0.14	0.12	0.12	0.13	0.2	
16	0.17	0.18	0.18	0.16	0.18	0.17	0.2	
17	0.18	0.18	0.18	0.16	0.14	0.17		
18	0.12	0.14	0.10	0.12	0.12	0.12		
19	0.18	0.15	0.18	0.13	0.12	0.15	0,2	
20	0.13	0.19	0.19	0.14	0.17	0.16	0.2	
21	0.15	0.16	0.11	0.14	0.12	0.14		
22	0.08	0.07	0.09	0.08	0.10	0.08		
23	0,10	0.08	0.09	0.06	0.13	0.09		
24	0.16	0.17	0.15	0.15	0.16	0.16	0.4	
25	0.16	0.18	0.18	0.20	0.20	0.18		
26	0.25	0.31	0.29	0.38	0.42	0.33	0.2	
27	0.12	0.14	0.13	0.12	0.16	0.13		
28	0.14	0.14	0.16	0.11	0.14	0.14	0.2	
29	0.11	0.15	0.14	0.13	0.14	0.13		
30	0.14	0.12	0.12	0.14	0.14	0.13	0.4	
31	0.12	0.12	0.12	0.14	0.14	0.13	0.2	
Av. value	0,14	0,15	0.15	0,13	0.15	0.14		
Max. value	0.25	0.31	0.29	0.38	0,42	0,33		
Total preci	pit.						77.2	

IN AIR AT ISPRA

NOVEMBER 1965

<u> </u>					1		
Dav	i Station l	Station 2	Station 3	Station 4	Station 5	Average value	Precipi-
	pCi/m ³	mm					
1	0.12	0.14	0.15	0.12	0.12	0.13	0.2
2	0.13	0.12	0.10	0.11	0.12	0.12	0.2
3	0.11	0.10	0.08	0.08	0.10	0.09	1.0
4	0.06	0.07	0.07	0.07	0.07	0.07	11.6
5	0.03	0.05	0.03	0.04	0.03	0.04	8.2
6	0.03	0.05	0.05	0.04	0.03	0.04	0.2
7	0.06	0.05	0.04	0.06	0.04	0,05	
8	0.08	0.08	0.07	0.08	0.08	0.08	
9	0.09	0.09	0.10	0.07	0.07	0,08	1.0
- 10	0.06	. 0, 03	0.03	0.05	0.06	0.05	28.2
11	0.06	0.06	0.04	0.04	0.05	0.05	0.2
12	0.03	0.05	0.03	0.03	0.04	0.04	14.8
13	0.04	0.05	0.04	0.06	0.04	0.05	0.2
14	0.12	0.12	0,10	0.14	0.12	0.12	1
15	0.10	0.11	0.11	0.12	0.11	0.11	
16	0.10	0,12	0.10	0.10	0.10	0.10	0.2
17	0.08	0,08	0.08	0.08	0.07	0.08	11.0
18	0.04	0.07	0.06	0.07	0.06	0.06	
19	0.07	0.04	0.06	0.04	0.04	0.05	5.0
20	0.06	0.06	0.04	0.06	0.06	0.06	10.2
21	0.04	0.04	0.03	0.04	0.03	0.04	11.6
22	0.04	0.06	0.06	0.05	0.03	0.05	
23	0.09	0.07	0.07	0.08	0.10	0.08	
24	0.12	0.08	0.06	0.06	0.06	0.08	
25	0.11	0,10	0.13	0.10	0.10	0.11	
26	0.11	0.14	0.10	0.14	0.12	0.12	
27	0.07	0.09	0.07	0.07	0.09	0.08	1.2
28	0.10	0.10	0.10	0.08	0.08	0.09	
29	0.06	0.05	0.07	0.06	0.05	0.06	4.2
30	0.08	0.08	0.08	0.07	0.10	0.08	
Av. value	0.08	0.08	0.07	0.07	0.07	0.08	
Min. value	0.03	0.03	0.03	0.03	0.03	0.04	
Total preci	pit.	0.11	0.15	0.11	0,12	0.10	109.2

IN AIR AT ISPRA

DECEMBER 1965

	Station 1	Station 2	Station 3	Station 4	Station 5	Average	Precipi-
Day	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	pCi/m ³	tation mm
1	0.05	0.07	0.08	0.06	0.10	0.07	
2	0.08	0.12	0.12	0.11	0.12	0.11	
3	0.10	0.15	0.11 0.12		0.14	0.12	
4	0.09	0.12	0.11	0.11	0.10	0.11	
5	0.09	0.08	0.10	0.08	0.10	0.09	
6	0.09	0.08	0,10	0.10	0.12	0.10	
7	0.08	0.09	0.09	0.11	0.09	0.09	0.6
8	0.08	0.05	0.05	0.06	0.04	0.06	1.2
9	0.10	0.10	0.11	0.12	0.13	0.11	
10	0.13	0.14	0.13	0.12	0.10	0.12	0.2
11	0.06	0.06	0.05	0.06	0.06	0.06	
12	0.12	0.13	0.12	0.10	0.12	0.12	
13	0.14	0.12	0.11	0.08	0.08	0.11	
14	0.13	0.15	0.13	0.11	0.12	0.13	
15	0.17	0.17	0.16	0.16	0.18	0.17	
16	0.17	0.18	0.18	0.20	0.16	0.18	
17	0.17	0.22	0.19	0.23	0.16	0.19	
18	0.18	0.16	0.16	0.16	0.15	0.16	
19	0.16	0.15	0.17	0.18	0.18	0.17	
20	0.18	0.17	0.20	0.16	0.24	0.19	3.2
21	0.10	0.11	0.10	0.12	0.12	0.11	2.2
22	0.16	0.14	0.15	0.14	0.14	0,15	
23	0.12	0.19	0.16	0.16	0.18	0.16	0.2
24	0.16	0.14	0.14	0.14	0.16	0.15	0.6
25	0.12	0.07	0.08	0.10	0.11	0.10	0.4
26	0.08	0.10	0.08	0.09	0.08	0.09	
27	0.07	0.06	0.08	0.06	0.06	0.07	11.2
28	0.08	0.04	0.04	0.05	0.03	0.05	
29	0.05	0.04	0.08	0.04	0.06	0.05	
30	0.07	0.12	0.08	0.10	0,10	0.09	
31	0.14	0.12	0.12	0,25	0.22	0.17	
Av. value Min. value Max. value Total prec	0.11 0.05 0.18 ipit.	0.12 0.04 0.22	0.12 0.04 0.20	0.12 0.04 0.23	0.12 0.03 0.24	0.12 0.05 0.19	19.8

•

MONTHLY CONCENTRATIONS OF RADIONUCLIDES IN AIR (pCi/m³)

Month	Gross beta	Sr ⁹⁰	Cs ¹³⁷	Pu ²³⁹
January	0.26	0.009	0.014	2.1×10^{-4}
February	0.38	0.016	0.023	3.1×10^{-4}
March	0.29	0.012	0.020	2.6×10^{-4}
April	0.40	0.019	0.028	4.0×10^{-4}
May	0.43	0.018	0.029	5.5 x 10^{-4}
June	0.87	0.018	0.028	3.5×10^{-4}
July	0.41	0.017	0.024	2.8×10^{-4}
August	0.18	0.009	0.013	1.9×10^{-4}
September	0.10	0.005	0.008	0.93×10^{-4}
October	0.14	0 .00 6	0.009	1.3×10^{-4}
November	0.08	0.003	0.004	0.55×10^{-4}
December	0.12	0.004	0.005	0.73×10^{-4}

1	9	6	5	

GROSS BETA RADIOACTIVITY, STRONTIUM-90 AND CESIUM-137 IN FALLOUT

<u>1965</u>

	Gross beta	Gross beta K ⁴⁰ equivalent			Strontium-90		Cesium -13 7		Day with
Month	mCi/Km ^{2(±)}	mCi/Km ^{2(±*)}	pCi/1 ^(*)	mCi/Km ²	pCi/l	mCi/Km ²	pCi/l	mm	precipitation
January	7.3	7.1	99	0.59	8.0	0.89	12.1	73.8	10
February	1.5	1.4	940	0. 09	56 .3	0.15	93.8	1.6	3
March	10.5	9.8	72	0.78	5.4	1.3	8.9	145.4	9
April	5.3	5.2	210	0.43	17.2	0.70	28.0	25.0	7
May	29.0	24.0	220	1.4	10.7	2.0	15.3	130.4	15
June	16.0	14.0	190	0. 85	10.3	1.2	14.5	82.6	13
July	9.2	8.6	73	0.90	7.1	1.3	10.3	126.6	11
August	5.9	5.6	44	0.69	5,2	1.1	8.3	132.8	12
September	9.1	8.9	25	1.1	3.0	1.7	4.6	367.8	16
October	2.4	2.3	31	0.21	2.7	0.35	4.5	77.2	3
November	1.9	1.8	17	0.17	1.6	0.25	2.3	109.2	14
December	0.79	0.78	40	0. 08	4.0	0.13	6.6	19.8	9
Total	1 1 1 1	t J I		17.29		11.07		1292.2	

 (\pm) = Values in this column are extrapolated to last day of collection month.

(**) = Values in this column are extrapolated to midpoint of next month.
RADIONUCLIDES IN FALLOUT

$(mCi/Km^2)^{*}$

Month	Ru ¹⁰⁶	Mn^{54}	Sb^{125}	Ce ¹⁴⁴
January	0.94	0.27	0.40	3.6
February	0.23	0.04	0.05	0. 68
March	1.3	0.32	0.40	4.1
April	0.88	0.20	0.29	2.5
May	2.4	0.56	0.87	7.0
June	1.8	0.31	0.54	3.7
July	1.2	0.31	0.64	4.2
\mathbf{A} ugust	1.1	0. 18	0.38	2,2
September	1.7	0.29	0.78	2.8
October	0.29	0.0 6	0.15	0.80
November	0.20	0.0 5	0.12	0.47
December	0.10	0.02	0.05	0.27

<u>1965</u>

***** = Values are extrapolated to last day of collection month.

GEOGRAPHIC COORDINATES OF WATER SAMPLING POINTS

.

•

		Name of site	Latitude N	Longitude E (Greenwich)	Altitude a.s.l.(m
		Lakes			? . 1 1 1
Р	1	Maggiore Center of the Lake	45° 54' 26''	8* 34' 31''	193
Р	2	Maggiore Zenna	46 06' 00"	8• 44' 10"	193
Р	3	Maggiore Sasso Galletto	45* 55' 40"	8* 37* 53"	193
Р	4	Maggiore Laveno	45° 54' 26''	8* 37' 00"	193
Р	5	Maggiore Ispra	45° 48' 50''	8* 361 25"	193
Р	6	Maggiore Sesto Calende	45* 43' 22"	8* 37' 36"	193
Р	7	Maggiore Acque Nere Mouth	45° 49' 33''	8• 37' 23"	193
Ρ	8	Maggiore Ranco	45° 48' 06''	8* 33' 08''	193
Ρ	9	Maggiore Baveno	45° 54' 30''	8* 30' 30''	193
P	10	Monate	45° 48' 07''	8* 38' 55"	266
Ρ	11	Varese	45° 49' 00''	8* 43' 08"	238
Ρ	12	Comabbio	45° 46' 48''	8* 41' 38''	243
		Rivers			
P	13	Acque Nere I	45* 49' 30''	8* 37! 23"	194
Ρ	14	Acque Nere II	45° 48' 50"	8* 381 2811	207
P	15	Tresa	45° 59' 40''	8* 441 00"	200
Ρ	16	Boesio	45* 54! 20"	8* 37' 30"	200
P	17	Toce	45* 55' 58''	8* 29' 39''	433
Ρ	18	Novellino	45° 49' 00''	8* 37! 25"	200
		Drinkable Waters			
P	19	Farm Vicina	45• 48' 35''	8• 371 13"	213
Ρ	20	Farm Casello	45* 48' 40''	8* 37* 10"	213
Ρ	21	Farm Gabriella	45* 48' 10"	8* 36' 30"	216
Ρ	22	Fontanone	45• 48' 06"	8* 37! 40"	230
P	23	Roccolo	45* 48' 11"	8 * 37 * 36 **	247

.

BETA RADIOACTIVITY SUBTRACTED POTASSIUM-40 IN THE WATER OF THE LAKE "MAGGIORE"

pCi/l

1965

	Sampling point	1	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Yearly
Pł	Center of the lake (s	surface)	3.7	2.2	3.0	3.2	2.9	3.5	3.7	3.4	5.5	2.7	2.7	3.4	3.32
Pl	Center of the lake	m 25	2.7	2.6	4.2	3.2	3.3	3.1	3.0	2.7	4.5	2.7	6.4	3.5	3.49
Pl	Cente ${f r}$ of the lake	m 50	3.4	2.5	4.3	3.7	- (*)	3.2	3.0	1.7	3.6	1.7	3.0	3.3	3.03
P2	Zenna (s	surface)	1.9	1.3	3.3	2.9	3.2	2.9	3.7	3.1	4.4	-(± ±)	4.3	3.0	3.09
P3	Sasso Galletto	11	3.2	2.3	2.2	2.4	2.8	3.4	4.2	3.1	3.9	4.0	4.0	3.1	3.21
P4	Laveno	11 1	3.5	2.1	2.2	2.7	3.2	3.4	3.6	3.5	20	4.5	3.9	2.2	4.56
P5	Porto Ispra	1 11	2.5	1.9	3.7	3.5	2.0	3.9	3.8	3.1	3.2	4.1	4.1	2.7	3.20
P6	Sesto Calende	11 1	3.9	2.6	4.6	3.7	4.1	3.9	3.3	3.8	6.4	5.3	5.1	3.5	4.18
P7	Acque Nere Mouth	11 1	3.0	3.0	3.5	3.7	33	4.1	4.1	4.8	7.1	4.3	3.6	2.6	6.40
P8	Ranco (s	surface)	2.9	2.9	3.8	2.5	4.0	3.9	3.9	2.7	4.2	3.3	7.9	3.5	3.79
P 8	Ranco	m 25	3.9	2.6	4.0	2.9	2.6	2.7	2.9	2.5	2.9	2.3	2.9	2.7	2.90
P 8	Ranco	m 50	3.5	3.4	3.6	3.7	3.2	3.1	2.9	2.9	3.9	2.9	3.2	3.7	3.33
P9	Baveno (s	surface)	3.4	2.4	3.9	3.4	3.5	4.3	3.6	4.5	5.1	3.7	1.9	4.1	3. 65
	Average value	1	3.19	2.44	3.56	3.19	5.65	3.49	3.51	3.21	5.74	3.45	4.07	3.10	

(**±**) = Sample lost.

(**) = Sample not collected.

•

BETA RADIOACTIVITY SUBTRACTED POTASSIUM-40 IN LAKES, STREAMS AND WELLS

NEAR TO THE ISPRA ESTABLISHMENT pCi/l

1965

	Sampling point	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Yearly average
	Lakes	1			1 1 1									
P10	Monate	15	12	12	11	12	15	15	16	15	13	13	12	13.4
P11	Varese	10	9.1	9.2	11	10	12	7.4	9.5	13	9.2	9.2	7.8	9.78
P12	Çomabbio	18	17	19	16	16	15	. 14	12	18	15	15	15	15.8
	Rivers	1												
P13	Acque Nere I	2.5	2.4	3.9	4.3 [.]	5.6	5.4	3.5	3.2	6.6	8.0	4.6	2.4	4.36
P14	Acque Nere II	3.5	3.1	4.2	5.1	3.7	5.7	3.7	3.7	7.6	4.5	6.0	5.0	4.65
P15	Tresa	4.1	3.7	4.6	4.4	3.7	4.8	4.9	3.2	4.5	4.3	5.1	4.2	4.29
P16	Boesio	< 0.5	ر0.5	0.9	1.4	ر 0.5	0.6	1.5	1.1	3.2	4.3	3.9	1.8	1.68
P17	Toce	1.5	2.6	3.3	2.2	2.3	3.7	15	5.7	3.6	1.6	3.4	2.3	3.93
P18	Novellino	3.5	2.1	4.4	8.9	4.1	8.5	3.7	3.1	14	8.2	7.6	5.2	6.10
	Drinkable Waters	1 1					1			1				
P19	Farm Vicina	¢0.5	1,0	< 0 . 5	<0.5	8.2	∢0.5	< 0.5	<0.5	1.1	८ 0.5	2.5	1.0	1.44
P20	Farm Casello	< 0.5	1.5	2.2	1.6	1.9	1.6	1.6	1.7	4.2	<i>ζ</i> 0.5	9.3	1.9	2.37
P21	Farm Gabriella	< 0.5	0.7	0.7	0.7	0.9	1.4	1.1	0.9	1.9	3.1	2.6	1.7	1.35
P22	Fontanone	<0 . 5	< 0 . 5	1.4	1.3	1.5	1.2	1.4	1.4	3.4	1.8	6.0	3.9	2.02
P23	Roccolo	3.1	2.0	3.7	3.1	2.8	2,4	2.7	2.4	5.3	3.3	7.6	3.0	3.45

1965

Name of the lake	Sampling date	Sr ⁹⁰ pCi/1	Ca mg/l	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/1	K mg/l	Cs ¹³⁷ pCi/g K
"Maggiore"	15-3	0.65	20	33	0.52	1.8	290
11	9-6	0.88	21	42	0.57	2.1	270
11	13-9	1.1	21	52	0.46	1.7	270
11	8-12	0.81	19	43	0.30	1.8	170
"Monate"	10-3	4.8	9.8	490	1.5	1.0	1 500
11	9-6	4.6	10	460	1.5	1.1	1 400
11	12- 9	4.6	10	460	1.5	1.1	1 400
TT	8-12	4.6	10	460	1.1	1.0	1 100
"Comabbio"	9-3	8.0	28	290	1.2	1.8	670
11	9-6	6.9	27	260	1.3	1.9	680
11	12-9	7.2	28	260	1.3	1.8	720
11	8-12	6.7	27	250	1.0	2.0	500
"Varese"	11- 3	4.5	38	120	1.2	2.3	520
11	9- 6	3.5	24	150	1.1	2.6	420
11	13- 9	3.1	26	120	0.88	2.2	400
11	11-12	3.5	30	120	0.70	2.7	260

CONCENTRATIONS OF RADIONUCLIDES IN LAKE WATERS

1965

pCi/l

Name of the lake	Sampling date	Ru ¹⁰⁶	Sb ¹²⁵	Mn ⁵⁴
"Maggiore"	15- 3	0.66	0.29	u.
11	9- 6	1.00	0.33	u.
11	13- 9	0.74	0.37	u.
11	8-12	0.60	0.25	u.
"Monate"	10- 3	2.8	1.3	0.09
11	9-6	3.2	1.4	0.14
11	12- 9	1.7	1.4	0.10
11	8-12	1.5	1.2	u.
"Comabbio"	9-3	2.6	1.1	0.11
11	9-6	3.0	0.72	0.70
11	12- 9	1.8	0.88	0.28
11	8-12	1.3	0.42	u.
"Varese"	11- 3	2.4	0.63	0.17
11	9-6	3.3	0.83	0.27
11	13- 9	1.6	0.63	0.07
11	11-12	1.1	0.25	0.05

u. = Undetectable.

STRONTIUM-90 AND CESIUM-137 IN SOILS

MARCH 1965

Sampling	Strontiur	n-90	Cesiun	n-137
site	pCi/g 🍂	mCi/Km ²	pCi/g (±)	mCi/Km ²
Angera	0.94	81	1.6	138
Barza	1.5	104	1.8	125
Brebbia	1.6	133	1.8	150
Diga Miorina	1.4	103	2.1	154
Ispra	1.3	96	2.1	154 .
Malgesso	1.1	56	1.9	96
Monvalle	0.90	61	1.3	89
Osmate	1.1	77	2,3	162
Pallanza	2.3	129	2.7	153
Parruzzaro	1.9	103	2.8	152
Solcio	1.3	106	1.9	156
Taino	1.3	83	1.9	121
Travedona	1.1	63	2.1	120
Varano Borghi	1.5	80	2.2	118

(±) = These data have been rounded off to two digits, whereas the mCi/Km² values are given as obtained by multiplication.

~

NATURAL RADIOACTIVITY AND STABLE ELEMENTS IN SOILS

MARCH 1965

S ampling	Th ²³²	Ra 226	K	Ca
site	p.p.m.	g/g	mg/g	mg/g
Angera	8.3	0.53	16.0	5.3
Barza	9.4	0.56	14.7	4.3
Brebbia	8.6	0.75	14.3	4.9
Diga Miorina	13.2	0.83	19.1	5.8
Ispra	8.6	0.60	17.0	3.4
Malgesso	10.5	0.71	17.3	6.2
Monvalle	11.7	0.83	17.4	5.5
Osmate	12.3	0.75	18.0	6.3
Pallanza	10.0	0.72	14.4	7.3
Parruzzaro	13.0	0.78	23.8	4.3
Solcio	12.3	0.78	24.0	2.5
Taino	12.6	0.86	16.0	6.1
Travedona	10.7	0.67	16.1	6.1
Varano Borghi	10.1	0.67	15.1	4.4

STRONTIUM-90 AND CESIUM-137 IN HERBAGE (*)

1965

Sampling site	Samı d	oling ate		Sr ⁹⁰ pCi/g	Ca mg/g	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/g	K mg/g	Cs ¹³⁷ pCi/g K
Barza	April	24	5.00	2.8	10.8	260	2.8	15.5	180
Brebbia	11 12	t I	4.85	2.8	6.8	410	1.2	33.1	36
Ispra	11	11	4.88	2.5	9.2	270	2.0	12.4	160
Monvalle	11	11	5.97	2.0	10.8	190	0.90	22.0	41
Osmate	11	11	6.56	7.9	10.8	730	1.4	36.2	39
Taino	tt	11	5.26	1.7	9.2	180	1.1	35.2	31
Barza	May	26	6.56	4.5	21.2	210	4.6	10.8	430
Brebbia	11	11	5.97	3.6	14.4	250	1.7	24.6	69
Isp r a	11	11	5,42	4.3	8.4	510	2.0	19.2	100
Monvalle	11	11	9.09	1.5	14.8	100	1.0	39.5	25
Osmate	11	11	8.00	2.9	12.4	230	1.2	30.0	40
Taino	11	11	5.41	3.2	14.0	230	1.7	19.3	88

(*) = Values are given per weight unity of dry matter.

(**) = Weight ratio of the fresh matter at the collection to the dry matter.

STRONTIUM-90 AND CESIUM-137 IN HERBAGE^(*)

<u>1965</u>

Sampling site	Samp dat	ling te	_R (**)	Sr ⁹⁰ pCi/g	Ca mg/g	90 Sr ⁹⁰ pCi/g Ca	Cs^{137} pCi/g	K mg/g	Cs ¹³⁷ pCi/g K
Barza	June	23	4.17	3.2	13.6	240	2.8	9. 8	290
Brebbia	1 1 - 11 1	11	5.00	2.1	8.3	250	0.60	31.3	19
Ispra	1 1 11 1	11	5.88	2.1	10.0	210	1.1	21.4	51
Monvalle	1 1 11 1	11	5.52	3.5	17.6	200	1.1	14.7	75
Osmate	1 1 -11 1	11	5.33	8.2	10.9	750	0.80	3 0. 6	26
Taino	1 1 11 1 1	11	6.06	3.2	14.8	220	2.2	7.4	300
Barza	July	16	7.35	3.2	10.4	310	3.5	14.1	250
Brebbia	T T TT T	11	4.30	1.8	10.0	180	0.5	2 0. 7	24
Ispra	1 T 11 I	11	5.60	2.6	12.0	180	1.2	20.4	59
M onvalle	1 1 11 1	11	5.15	1.1	12.4	89	0. 6	20.0	30
Osmate	T 1 11 T	11	5 .9 7	2.3	11.6	200	0.7	28.1	25
Taino	T I TT T	11	6.62	2.5	17.6	140	1.2	21.6	56

(*) = Values are given per weight unity of dry matter.

(**) = Weight ratio of the fresh matter at the collection to the dry matter.

STRONTIUM-90 AND CESIUM-137 IN HERBAGE^(±)

<u> 1965</u>

Sampling site	Sampling date		_R (★★)	90 pCi/g	Ca mg/g	<mark>Sr⁹⁰</mark> pCi/g Ca	Cs ¹³⁷ pCi/g	K mg/g	Cs ¹³⁷ pCi/g K
Barza Brebbia Ispra Monvalle Osmate Taino	August "' "' "' "'	17 11 11 11 11 11	4.55 4.88 8.00 8.00 5.56 4.94	2.5 2.1 2.9 1.7 2.3 2.4	13.6 16.0 13.6 13.6 13.6 13.6 14.8	180 130 210 130 170 160	3.0 0.9 1.7 1.0 0.9 1.0	11.0 13.0 32.3 31.9 20.1 17.5	270 69 53 31 45 57
Barza Brebbia Ispra Monvalle Osmate Taino	September 11 11 11 11 11 11	14 11 11 11 11	3.70 4.55 4.38 5.97 6.06 4.65	4.4 3.4 3.1 2.0 3.9 3.9	14.0 9.2 10.4 10.0 14.8 14.0	310 370 300 200 260 280	5.1 1.3 2.1 1.1 1.0 1.4	12.5 29.5 12.0 25.8 19.3 17.4	410 44 170 43 52 80
Barza Brebbia Ispra Monvalle Osmate Taino	October " " " " "	1 1 11 11 11 11	4.76 4.49 6.06 6.06 6.67 4.18	3.3 2.1 1.4 1.9 2.4 3.4	14.6 12.8 8.5 17.6 8.6 11.1	230 160 170 110 280 310	1.9 0.9 1.0 1.2 1.0 2.3	17.7 30.5 42.0 25.7 31.0 9.9	110 29 24 47 32 230

(*) = Values are given per weight unity of dry matter.

(**) = Weight ratio of the fresh matter at the collection to the dry matter.

BARZA

_1	9	6	5
		_	_

Month	Sr ⁹⁰ pCi/1	Ca g/l	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/1	K g/l	Cs ¹³⁷ pCi/g K	<u>Sr⁹⁰ pCi/g Ca</u> Cs ¹³⁷ pCi/g K
January	98	1.07	92	220	1.85	120	0.77
February	95	1.20	79	270	1.80	150	0.53
March	83	1.08	77	270	1.74	160	0.48
April	91	1.01	90	200	1.78	110	0.82
May	69	1.10	63	130	1.82	71	0. 89
June	54	1.13	48	110	1.84	60	0.80
July	45	1.17	38	85	1.71	5 0	0. 74
August	51	1.15	44	91	1.72	53	0.83
September	61	1.20	51	69	1.73	40	1.3
October	61	1.15	53	110	1.65	69	0.77
November	53	1.22	43	100	1.75	57	0. 75
December	49	1.12	44	150	1.65	91	0.48

BREBBIA

|--|

Month	Sr ⁹⁰ pCi/l	Ca g/l	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/1	K g/l	Cs ¹³⁷ pCi/g K	<u>Sr⁹⁰ pCi/g Ca</u> Cs ¹³⁷ pCi/g K
January	73	1.30	56	430	1.75	250	0.22
February	77	1.27	61	470	1.75	270	0.23
March	91	1.22	. 75	440	1.68	260	0.29
April	83	1.14	73	440	1.65	270	0.27
May	69	1.25	55	340	1.60	210	0.26
June	73	1.27	57	330	1.50	220	0.26
July	57	1.20	47	240	1.53	160	0.29
August	57	1.23	46	250	1.60	160	0.29
September	48	1.22	39	160	1.54	100	0.39
October	55	1.22	45	170	1.55	110	0.41
November	57	1.07	53	140	1.65	85	0.62
December	56	1.30	43	220	1.60	140	0.31

STRONTIUM-90 AND CESIUM-137 IN MILK

ISPRA

1965	
------	--

Month	Sr ⁹⁰ pCi/l	Ca g/1	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/1	K g/l	Cs ¹³⁷ pCi/g K	<u>Sr⁹⁰ pCi/g Ca</u> Cs ¹³⁷ pCi/g K
January	65	1.13	58	440	1.65	270	0.22
February	66	1.23	54	430	1.73	250	0. 22
March	62	1.25	50	430	1.63	260	0.19
April	64	1.08	59	40 0	1.66	240	0.25
May	54	1.20	45	290	1.68	170	0. 26
June	45	1.04	43	260	1.67	160	0.27
July	39	1.17	33	190	1.55	120	0.28
August	37	1.12	33	200	1.61	120	0.28
September	40	1.17	34	170	1.54	110	0.31
October	40	1.15	35	170	1.50	110	0.32
November	36	1.13	32	150	1.50	100	0.32
December	40	1.17	34	170	1.50	110	0.31

STRONTIUM-90 AND CESIUM-137 IN MILK

MILANO

<u>1965</u>

Month	Sr ⁹⁰ pCi/1	Ca g/l	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/1	K g/l	Cs ¹³⁷ pCi/g K	Sr ⁹⁰ pCi/g Ca Cs ¹³⁷ pCi/g K
January	26	1.23	21	110	1.69	65	0.32
February	23	1.17	· 20	110	1.68	66	0.30
March	23	1.23	19	110	1.67	66	0.29
April	18	1.22	15	67	1.65	41	0.37
May	18	1.29	14	60	1.65	36	0.39
June	20	1.20	17	70	1.60	44	0.39
'July	17	1.13	15	69	1.70	41	0.37
August	13	1.08	12	55	1.62	34	0.35
September	16	1.17	14	45	1.63	28	0.50
October	15	1.20	13	45	1.55	29	0.45
November	16	1.20	13	39	1.65	24	0.54
December	13	1.12	12	41	1.60	25	0.48

OSMATE

1965

Month	Sr ⁹⁰ pCi/1	Ca g/l	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/1	K g/l	Cs ¹³⁷ pCi/g K	<u>Sr⁹⁰ pCi/g Ca</u> Cs ¹³⁷ pCi/g K
January	62	1.12	55	270	1.72	160	0.34
February	56	1.23	46	290	1.69	170	0. 27
March	71	1.15	62	280	1.65	170	0.37
April	76	1.13	67	350	1.64	210	0.32
May	52	1.30	40	200	1.68	120	0.33
June	62	1.09	57	230	1.57	150	0.38
July	52	1.17	44	190	1.54	120	0.37
August	52	1.27	41	170	1.49	110	0.37
September	44	1.20	37	140	1.45	97	0.38
October	55	1.18	47	190	1.50	130	0.36
November	54	1.15	47	160	1.60	100	0.47
December	48	1.25	38	170	1.58	110	0.35

STRONTIUM-90 AND CESIUM-137 IN MILK

.

VARESE

1965

Month	Sr ⁹⁰ pCi/1	Ca g/1	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/1	K g/l	Cs ¹³⁷ pCi/g K	<u>Sr⁹⁰ pCi/g Ca</u> Cs ¹³⁷ pCi/g K
January	53	1.20	44	30 0	1.73	170	0. 26
February	59	1.25	47	310	1.65	190	0. 25
March	51	1.25	41	300	1.52	200	0.21
April	48	1.29	37	28 0	1.63	170	0.22
May	44	1.05	42	170	1.52	110	0.38
June	48	1.25	38	170	1.61	110	0.35
July	35	1,15	30	120	1.51	79	0. 38
August	32	1.19	27	110	1.55	71	0. 38
September	37	1.22	30	100	1.56	64	0.47
October	39	1.25	31	12 0	1,59	76	0.41
November	42	1.03	41	120	1.59	75	0. 55
December	34	1.32	26	120	1.51	8 0	0.33

.

LAKE "COMABBIO"

1965

Biological specie s	Sampling date	Sr ⁹⁰ pCi/g	Ca mg/g	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/g	K mg/g	Cs ¹³⁷ pCi/g K
	March	I I I			1 1 1		
Perca fluviatilis Scardinius erith. Eupomotis gibbosus	30 30 30	2.3 1.3 1.6	17.1 15.8 16.5	130 82 97	6.5 1.3 1.2	2.96 2.82 3.00	2 200 460 400
· .	June				I I I	2 2 2	
Perca fluviatilis Scardinius erith. Eupomotis gibbosus	16 16 16	1.2 1.4 1.1	10.5 15.0 11.7	110 93 94	3.0 1.4 0.56	3.00 3.10 3.12	1 000 450 180
	September	1 1 1			1 f 1	1 [[1 1 1
Perca fluviatilis Scardinius erith. Eupomotis gibbosus	14 14 14	1.7 1.7 1.0	19.4 17.3 13.7	88 98 73	1.9 0.82 0.76	3.06 2.71 3.10	620 300 250
	December		1 1 7	1 1 1 1	I	, 1 7	, 1 1 2
Perca fluviatilis Scardinius erith. Eupomotis gibbo s us	- 6 16	2.0 1.6	- 16.6 11.8	- 120 140	0. 79 0. 48	2.86 2.39	- 280 200

.

- = Sample not available.

LAKE "MAGGIORE"

<u> 1965</u>

Biological	Sampling	Sr ⁹⁰	Ca	Sr ⁹⁰	Cs ¹³⁷	K	Cs ¹³⁷
species	date	pCi/g	mg/g	pCi/g Ca	pCi/g	mg/g	pCi/g K
	March				1	1 1 1 1	
Perca fluviatilis	26	0.35	13.0	27	2.4	3.08	780
Scardinius erith.	26	0.45	16.3	28	0.95	3.04	310
Eupomotis gibbosus	-	-	-	-	-	-	-
Perca fluviatilis Scardinius erith. Eupomotis gibbosus	June 9 9 9	0.34 0.43 0.36	13.9 15.6 11.6	24 28 31	1.7 0.97 0.47	3.49 3.04 3.16	490 320 150
	September			1 1 1		T T T	2 7 2 2
Perca fluviatilis	16	0.27	11.1	24	1.7	3.15	540
Scardinius erith.	16	0.51	12.6	40	0.80	2.84	280
Eupomotis gibbosus	16	0.29	13.5	22	0.42	2.95	140
	December					1 1 1	
Perca fluviatilis	6	0.17	15.2	11	4.4	2.95	1 500
Scardinius erith.	17	0.38	14.6	26	0.61	2.76	220
Eupomotis gibbosus	-	-	-	-	-	-	-

.

- = Sample not available.

LAKE "MONATE"

<u>1965</u>

Biological species	Sampling date	Sr ⁹⁰ pCi/g	Ca mg/g	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/g	K mg/g	Cs ¹³⁷ pCi/g K
	March	1	1 5 5 2		1 2 1	1 1 1 1	
Perca fluviatilis	30	2.2	13.8	160	8.5	3.05	2 800
Scardinius erith.	30	3.8	16.7	230	4.1	3,17	1 300
Eupomotis gibbosus	30	3.2	19.1	170	7.6	3.08	2 500
	June	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	2 1 1
Perca fluviatilis	16	1.3	17.0	76	6.5	3.47	1 900
Scardinius erifh.	16	4.8	14.1	340	3.4	3.29	1 000
Eupomotis gibbosus	16	2.7	13.2	200	11.4	3.47	3 300
	i September	1 1 · · · · · · · · · · · · · · · · · ·	1 1 1		1 1 1	1 1 1	1 . 1
Perca fluviatilis	8	2.1	17.4	120	9.4	3.25	2 900
Scardinius erith.	8	3.1	14.9	210	1.7	2.56	660
Eupomotis gibbosus	8	2.6	15.3	170	12.5	3.38	3 700
	December	1 1 1	1 1 1		; ; ;	1 1 1	; ; ;
Perca fluviatilis	1 1 1 1	;	, _	-	-	-	
Scardinius erith.	17	3.5	14.8	240	0.98	2.66	370
Eupomotis gibbosus	-	1 - 1	-	-	-	-	-

- = Sample not available.

LAKE "VARESE"

			1905				
Biological species	Sampling date	Sr ⁹⁰ pCi/g	Ca mg/g	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/g	K mg/g	Cs ¹³⁷ pCi/g K
	March	1 1 1 1	7 7 7 8				
Perca fluviatilis	1 I	-	i i _		-	! _ !	_
Scardinius erith. Eupomotis gibbosus	29 30	1.7 0.97	16.4 18.3	103 53	1.5 0.78	3.02 2.84	5 00 270
	June	1					
Perca fluviatilis Scardinius erith.	9	0.63	13.6 15.4	46 71	1.9 1.5	3.28 3.18	580 470
Eupomotis gibbosus	у 1 1	V. 5.(11.0	40	0.48	2.90	170
· · · · · · · · · · · · · · · · · · ·	September		1				
Perca fluviatilis Scardinius erith. Eupomotis gibbosus	7 7 7	0.71 1.1 0.53	16.0 17.3 16.0	44 64 33	0.85 1.2 0.27	3.18 3.15 3.00	270 380 90
	December	1 1	1 1 1				
Perca fluviatilis	6	0.66	13.1	50	0. 76	3.00	250
Scardinius erith.	6	1.2	16.9	71	1.0	3.02	330
Eupomotis gibbosus	i 6	0.61	14.3	43	0.25	2.80	90

1965

- = Sample not available.

Eupomotis gibbosus

DISTRIBUTION OF RADIOACTIVITY AND STABLE ELEMENTS WITHIN THE BODY OF THE FISH "PERCA FLUVIATILIS" *

LAKE MAGGIORE

DECEMBER 1965

Part	Skin	Head	Bones	Muscle	Intestine
% fresh weight	8.8	25.9	13.0	40.1	12.2
Sr ⁹⁰ pCi/g	0.57	0.21	0.23	0.006	0.013
Sr^{90} % of the total	36.2	39.5	21.5	1.7	1.1
Ca mg/g	63.0	19 . 5	22.0	0.40	1.53
Sr ⁹⁰ pCi/g Ca	9.0	11	10	14	8.5
Cs ¹³⁷ pCi/g	1.3	1.3	2.5	3.4	2.1
Cs^{137} % of the total	4.7	14.1	14.6	56.0	10.6
K mg/g	1.63	1.65	3.06	3.69	1.12
Cs ¹³⁷ pCi/g K	800	790	820	920	1 900

± = About 30 individuals, 2.620 Kg.

DISTRIBUTION OF RADIOACTIVITY AND STABLE ELEMENTS WITHIN THE BODY OF THE FISH "PERCA FLUVIATILIS" ±

LAKE VARESE

DECEMBER 1965

Part	Skin	Head	Bones	Muscle	Intestine	
% fresh weight	8.7	23.1	10.3	46.7	11.2	
Sr ⁹⁰ pCi/g	1.8	0.62	1.2	0.017	0.056	
Sr^{90} % of the total	35.8	32.8	28.2	1.8	1.4	
Ca mg/g	52.4	17.8	36.0	0.64	1.29	
Sr ⁹⁰ pCi/g Ca	34	35	33	27	43	
 Cs ¹³⁷ pCi/g	0.30	0.30	0.90	0.96	0.97	
${\tt Cs}^{137}$ % of the total	3.5	9.3	12.5	60.0	14.7	
K mg/g	1.64	1.79	3.60	3.57	2.67	
Cs ¹³⁷ pCi/g K	180	170	250	27 0	360	

± = About 30 individuals, 2.420 Kg.

.

STRONTIUM-90 IN CALF BONES

Sampling site	Sampling date	Sr ⁹⁰ pCi/g ash	Sr ⁹⁰ ★ pCi∕g Ca
	January		
Angera Brebbia Cadrezzate Osmate Taino	21 15 21 21 21 21	18 28 24 18 17	49 76 65 49 46
	February		
Brebbia Capronno Ispra Osmate Taino	16 16 16 16 16	10 20 22 10 22	27 54 59 27 59
	March		
Angera Barza Brebbia Cadrezzate Osmate	13 10 13 13 13	18 20 28 20 22	49 54 76 54 59
	April		
Angera Barza Brebbia Cadrezzate Capronno Capronno Ispra Osmate	20 20 20 20 20 20 20 20 20 20	19 24 11 38 18 38 19 22	51 65 30 103 49 103 51 59
	May		
Angera Angera Cadrezzate Ispra Malgesso Monvalle Taino Travedona	14 14 14 14 14 14 14 14	23 30 23 10 25 22 35 32	62 81 62 27 67 59 94 86

1965

•

 \pm = Calcium concentration in bone ash has been assumed constant as 37.0%.

STRONTIUM-90 IN CALF BONES

...

÷

. •

1.1.1

S ampling site	Sampling date	Sr⁹⁰ pCi/g ash	Sr⁹⁰ ± pCi/g Ca
	June		
Angera Cadrezzate Osmate Taino Travedona Travedona	21 21 21 21 21 21 21 21	16 39 38 24 28 29	43 105 103 65 76 78
	September		<i>i</i>
Angera Barzola Cadrezzate Capronno Ispra Osmate Taino	8 8 8 8 8 8 8 8 8	21 20 38 24 20 19 19	57 54 103 65 54 51 51
	October		
Angera Cadrezzate Comabbio Ispra Osmate Taino	12 12 12 12 12 12 12 12	40 23 35 30 26 23	108 62 94 81 70 62
	November		
Angera Barza Brebbia Capronno Comabbio Ispra Travedona	18 18 18 18 18 18 18 18 18	17 25 18 22 26 25 24	46 67 49 59 70 67 65

1965

 \pm = Calcium concentration in bone ash has been assumed constant as 37.0%.

, .

.

STRONTIUM-90 AND CESIUM-137 IN VEGETABLES (*)

1965

Species	Sr ⁹⁰ pCi/Kg	Ca g/ K g	Sr ⁹⁰ pCi/g Ca	Cs ¹³⁷ pCi/g Ca	K g/Kg	Cs ¹³⁷ pCi/g K
Spinach - "Spinacia Oleracea"	58	1.39	40	34	6.1	5.6
Tall Chard - "Beta Vulgaris"	53	0. 87	48	29	3.5	8.3
Small Chard - "Beta Vulgaris"	73	1,02	59	38	3.4	11
Turnip Tops - "Brassica Oleracea Botrytis" D.C.	90	1.42	58	40	3.9	10
Chicory - "Cichorium Intybus"	31	0.33	57	16	2.7	5.9
Bitter Chicory - "Cichorium Intybus"	30	0.60	35	19	3.9	4.9
Lettuce - "Lactuca Scariola"	19	0,29	32	11	2,1	5.2
Lettuce - "Lactuca Sativa"	32	0.44	38	21	2.8	7.5

(*) = Concentration values are referred to fresh matter and are obtained from pooled samples made up for each species, with about 20 samples collected during the year.

Figure 1 Central ratemeters and recorders assembly of the telemetering network.

C.C.R.N. EURATOM ISPRA - SERV. PROTEZIONE Sez. Silo e Meteorologia - dl**<u>a</u>.GBollini 9.3.66

Figure 5

Ionisation chambers and multichannel analysers for alpha spectrometry.

. . .

REPORT EUR 2965.e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

ENVIRONMENTAL RADIOACTIVITY

ISPRA 1965

Ъу

M. de Eortoli, P. Gaglione and A. Malvicini

ERRATUM

Table 14

The value of total strontium-30 deposition is 7.29 mCi/Km² instead of 17.29 mCi/Km², as erroneously reported.

. .

. . .

NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year: US 15, £ 5.7) or free specimen copies please write to:

Handelsblatt GmbH "Euratom Information" Postfach 1102 D-4 Düsseldorf (Germany)

or

Office central de vente des publications des Communautés européennes 2, Place de Metz Luxembourg

To disseminate knowledge is to disseminate prosperity — I mean general prosperity and not individual riches — and with prosperity disappears the greater part of the evil which is our heritage from darker times.

Alfred Nobel

SALES OFFICES

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

PRESSES ACADEMIQUES EUROPEENNES

98, Chaussée de Charleroi, Bruxelles 6

Banque de la Société Générale - Bruxelles compte Nº 964.558,
Banque Belgo Congolaise - Bruxelles compte Nº 2444.141,
Compte chèque postal - Bruxelles - Nº 167.37,
Belgian American Bank and Trust Company - New York compte No. 22.186,
Lloyds Bank (Europe) Ltd. - 10 Moorgate, London E.C.2,
Postcheckkonto - Köln - Nr. 160.861.

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES

2, place de Metz, Luxembourg (Compte chèque postal Nº 191-90)

BELGIQUE — BELGIË MONITEUR BELGE 40-42, rue de Louvain - Bruxelles BELGISCH STAATSBLAD Leuvenseweg 40-42 - Brussel

DEUTSCHLAND BUNDESANZEIGER Postfach - Köln 1

FRANCE

SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 26, rue Desaix - Paris 15°

ITALIA

LIBRERIA DELLO STATO Piazza G. Verdi, 10 - Roma LUXEMBOURG

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 9, rue Goethe - Luxembourg

NEDERLAND STAATSDRUKKERIJ Christoffel Plantijnstraat - Den Haag

UNITED KINGDOM H. M. STATIONARY OFFICE P. O. Box 569 - London S.E.1

> EURATOM — C.I.D. 51-53, rue Belliard Bruxelles (Belgique)

CDNA02965ENC