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SUMMARY

A new method of calculation is presented for directional probabilities
of interaction in pin clusters and rod lattices. The theory, in principle
rigorous from a geometrical point of view, has been programmed for the
IBM 7090 as the computer code PROCOPE. Calculation results for
Dancoff correction factors and collision probabilities are compared with
values obtained with other methods. The validity of the technique is also
checked by evaluating the fine structure of the thermal flux distribu-
tions in various gas-cooled clusters upon which measurements have been
made at Saclay. As a practical illustration, a series of curves describe
the behaviour of the various independent fuel-to-fuel collision probabili-
ties in 19 (or 7) pin gas-cooled clusters. Finally, approximate formul=z
are given for the pin-to-pin collision probability at both the white and
the black limits.



1, Introduction

The probabilities of interaction hetween the various media composing
a fuel element or = rod lattice have been the object of several
studies in the recent past. In particular, 2 rigorous method of
evaluating directional first collision probabilities in a cell
mz2de up of any number of concentric cylindrical annuli has been
developed by Di Pasquantonio (1). The purpose of the present
paper is the calculation of the directional probabilities of
interaction in pin clusters and rod lattices, starting from the
formalism presented in an earlier publication by one of the au-
thors (2, annex I), without any approximation. Similar problems
have been treated by other authors: Fukai (3) has given exact
ervpressions for the first-flight collision probabilities in a
regular lattice of cylindrical rodsj; and interactions in a geo-
metry consisting of an array of circular rods surrounded by a
number of concentric cylindrical annuli have been treated by
Carlvik (4). However, both these authors have restricted them-

selves to the evaluation of ordinary prohabilities.

2. Position of the problem and applications

The system considered is an array of homogeneous cylinders, infinite
in height, plunged in a2 homogeneous medium within a cylindrical
channel, The number and geometrical configuration of the rods are
quite arbitrary, radius and physical composition are allowed to

vary from rod to rod and the neutron mean free path in the surroun-
ding medium may be finite or not, Both directional and ordinary
first collision probabilities between the different media of the

system are calculated,

The directional probabilities appear in the theory of the diffusion
coefficient (2) and are closely related to the ordinary probabili-
ties. Their knowledge allows the immediate calculation of radial
and axial coefficients., This is of particular interest in the
treatment of cells containing voided regions: in such assemblies,

the effects of diffusion anisotropy are often important.
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In addition, the ordinary probabilities allow the determination
of the factors € , £ and p in a cluster-fueled cell. In the

case of f, the uniform and isotropic scattering densiiy approxi-
mation may be assumed, either in the whole fuel element, or only
in each individual pin, the first method often being sufficient.
The second method requires not only the use of the global first
collision probability PFF in the fuel, but also the use of

individual interaction from pin to pin.

Knowing these interactions it is easy to determine the pin-to-pin
flux ratioj curves given in the present paper (Fig.3.7) allow the
immediate calculation of these ratios in some classical types of

clusters.

If the coolant in which the fuel pins are immersed ia a liquid,
a drawback of the model appears, since this medium is treated
as = single regions the flat scattering density assumption in
it may them lead in some cases to serious errors, particularly

if the coolant is a hydrogeneous material (5).

The cladding regions mey »ot be taken discreetly into account
in the present formalism, but a simple method of correcting for

their effect has recently been suggested by Bal Raj Sehzal (18).

A different type of problem which can be approached by the same
formalism is the treatment of an infinite regular lattice of rods
immersed in a moderator. The purpose here is to find the interaction
between rods belonging to different cells, in the case of closely
spaced (v.g. light water) lattices. The knowledge of the first
collision probability PFF allows the calculation of & , f, p
(in a2 multigroup scheme) and diffusion coefficientsj; however it
seems that the diffusion anisotropy in light water lattices is
very small (2, annex VIII), As far as the calculation of T is
concerned, the flat scattering density assumptions both in fuel
and moderator (which are generally good in light water lattices)
lead to a formula where only P, enters (see Newmarch, 17).

The great advantage of this metﬁgd is to avoid the cylindrical
cell approximation, which m2y lead to important errors in closely

gspaced lattices.



3. Relations between directional probabilities

Let P..
ij,k

for axial and k = r for radial) for a neutron born uniformly in

the probability relative to the direction k (k = z

the medium 1 to suffer its first collision in the medium j .
We will use a general formalism, assigning the index k = o to the
ordinary probabilities

Plio ¢ 4R,
P, =P = 21
u).o .3 3

The conservation and reciprocity theorems which exist between
ordinary probabilities are still wvalid without chhnge for direc-
tional probabilities., The only modification concerns the equality:

Ps

v, %,
AI,k.,f._‘_l P:‘k
y* g,

where Vj is the volume of a medium J 1in the channel, Zi its
totz] cross section, 3 the outer surface of the channel, Pjs, K
the probabhility for a neutron born ir J to escape without collision
from the channel and P . the probability for a neutron entering
trhe channel to suffer its first collision in j 3 in this last pro-
bebility, the reutron is supposed to enter the channel with a parti-
cular angular density (isotropic for k = o, equal toﬁ?&f; g

for k % o, where Ilk is the projection of the direction considered
on the axis k); the parzmeter k depends of the shape of the outer

surface of the channelj here it is assumed cylindrical and we have

iz: i— ,a‘::% and éd = 1

Jith the help of these different relations, it will thus be sufficient

to calculate directly the irdependent probabilities Pij Kk (where i
’

and  j fer + e ins ) and the abili hat

and J vrefer to fuel pins), Pis,k ind the probability Pss,k that

a neutron entering the channel will leave it without having suffered

a collision,



4, Method of calculation

] ati ..
(1) Calculation of PlJ,k

Consider the situation illustrated in fig. 1, where, in general, any

nunber of rods n may lie between a given pair i, J.
e may write 2 2. 4; taf
R S b % i
% ) a0 eV
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where dij is the center-to-center distance between pins i and j;o;,i;
ai, Ii are the radius and total cross section of pins 1 and j

respectively and the path length through the surrounding medium ¢

is given by
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The angle e, is related to & and ¢ through the relationship
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In terms of the Bickley functions
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-
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the ordinary collision probability Pij and its radial component Pi'

Js T
may be written as
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where

$“1 = ZGR‘_-!"‘\-% 2”\0.”‘6009”

Wpoj = iy * "5‘5 o, @b

A_ o=k
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The axial component Pij is then

2
P.1,3

In practical problems, the need will be felt for criteria that will

. 0.
=3 W -2

permit the automatic exclusion of all rods n which cannot posszibly
lie on any neutron path going from i to J . This is done most

-

simply by imposing the following conditions™:

(1) In order to be considered in equation (1), the position of a rod n
must be such that the geometrical projection of the center-to-center
distance din on the neutron path (8 , ¢ ) is positive and shorter

than the projection on the same axis of the center-to-center distance Wij’

i.e.

0 44, V¥, Ati-.‘\d\- (%i&e-‘gfim (r)‘

where

con,, = e w«-md - (B0 T pet) a1 1) K;‘?{..;e % anp]

2) The distance from the center of rod n to the neutron naih

(2)
(8, # ) must be shorter than the radius of rod n, i,e.

| Simpin ¥+ 0 m Q| £ Om

where
. . . PR . - Py ) K% . _o..' .
wob « pn e - (8- T eh) o) | 006 7 w0t
X
In the problem of the calculation of P, . in & cell composed of a

3
number of concentric media, such conditidfis became very simple., A code
using this procedure is now being established at Saclay.
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(2) Calculation of P, is .k

The probabilities Pi are determined in analogous fashion, We have

s,k
oF . g.i;GiMP

Py R?z—?j;*““*j jwm |- ~ ]

-

\

ot =

Z.Re 22,05‘(”0‘ Y
e

where the total path length through ¢ along (w,P) is given by

R, = \Jc"_ [ #ian o)y, wnlw rplro sind]™ o wp anloed)-g; wnlweg) -2 Z o, n,,

and the angle 9, is releted to W and q through the relationship
d; i (Fmmd-9) s a‘/mam Y

The symbol ¢ represents the radius of the channel in which the
system is contained, The summation over n extends over all rods
which are crossed by the neutron path (o , ¢ ).

In terms of Bickley functions, the ordinary collision probability Pis

and its radial component Pis p may be expressed as
H
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The axizl component PiS " is then
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The rods n 1lying across a neutron path (tﬂ y Q ) all satisfy

the following conditions:
&‘Uﬂ o Q'rn‘w_&) >0

| dim aw (Y p-0-p) raibm b | L0

(3) Calculation of Pﬁa 1
OO,

Let & be the azimuth of the point where a given neutron leaves
the channel; £ , the angle between the neutron path and the
chennel radius at the same point. For thevparticular entering
angular density defined in section 3, we may write

zﬂa}i v
P zg*\j da‘j du(’)mﬁj AP AP, & e 3k

P

where

A recap - 2 v

and Y., the path length in rod n is given by
l 2 k)
Y‘A: a‘l&‘ HM

o | % 0 0 (0D) <y oo -canfs |

In terms of Bickley functions, the ordinary collision probability Py

and its radial component Pssfr may be expressed as
H

[

Po%el, MSE&W@.K&M)

S%

-y
-

P 2 S a,uj ”%A@mp Wigly)

where

\s: Z 210.?:; +i°z¢_
M



The axial component PSS 7 is given by
]

P -QP”—:.P

smg 25.Y

(4) Other probabilities

The probability that a neutron born in fuel rod i suffers its
next collision in medium c¢ 1is easily found by making use of

the conservation law

p‘c,i‘ e 2 P‘txk Ths
3

(%

Inversely, the probability that a neutron born in medium ¢ suffers

its next collision in rod 1 1is
;V&
P p3

cL,‘hz &_,_Vo ~Pi.¢.k

The probability that a neutron born in medium ¢ escapes from

the channel without having suffered a collision is

P _.S& [.P  _T axVi P X
sk 42\/0[‘ so 2:'—5_21— ok

where 3 is the external surface area of the channel and the

summation indicated extends over all rods in the systen.

Iinally, the probability that a neutron born in medium c¢ suffers

its next collision in medium ¢ 1is

-
Pct‘..’* 2 \- \Csch i z Pc;,k
P
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5. The code PRCCCPEL

The above systen of equations has Teen programmed in FORTRAN for,
C

e
the IBM-700C as the computer code PEQOCOPE., Tae code will yield

1 ~

directional =znd ordinary probabilities for any geometrizal con-
figuration of c¢ylindrical rods, Towsver, in most clusters and

th

pattern is fairly srmaetricel.

©

A large reduction in nmachine-time can usuzlly be obtained by de-
the various groups of symmetry into w he interactions
ney be distributed, To take =dvantage of this situation, provision

~

has been nzde, in PROCCPE, to supply as input a matrix of symmetry.
Fo» many designs in frequent use, namely the 4, 7, 12, 15, 31,

u)
"i

37 pin clu a3 well as rectangular and hexegonal infinite
lattices, this nmzatrix of symmetiry has been incorporated in the
code,

Tnteractions in the infinite lattice are obtained by drawing

circles centred on =z reference »od and tangent to all

he rods Dbelenging to a2 given group of symmetry, The cumulztive
fuel-to-fusl collision probabilities are thus deternined for

systems of increasing radii until the added contributions become

negligible,

6. Comparison with existing theories

A direct test of the theory was provided by comparing the values
of calculated escape provabilities and Dancoff coefficients in

lattices and clusters with the results derived from other methods.

The fuel escape probability for an N-rod bundle is simply (\--22 )
Fukai (3) has derived an alternaie and alsc exact expression for

this quantity which he has applied to 2 number of infinite rectan-
gular lattices. These calculations were repeated with the present
formalism, using 20 integration points for e-ch of the variables®

and # . The results are presented in tab2el . The numerical nature
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of both Fukal's and the present formulation seems to be a
sufficient ewplanation of the slight discrepancies., The reader
is referred to Fukai's paper for a comparison with and detailed
discussion of various approximate techniques, such as Nordheim's

(7), Wigner's (8), Roe's (9) and Takahashi (10).

Table 1.- Escape Probability in Rectangular lattices: -

(Radius of fuel rod = 0,183 in, Moderator-to-fuel volume ratio = 1

. . -1
Moderator cross seciion = 1,4916 cm )

S0 | Fonal | Equ2)
0.1 0.8074 0.8059
0.3 0.5799 0.5769
0.5 0.4474 0.4449
0.8 0.3297 0.3272
1 0.2792 0.2766
2 0.1549 0.1523
4 0.0804 0.,0784
10 0.0326 0.0316

In a sequel (11) to this work on infinite lattices, Fukai has also
evaluated, again using exact expressions, the escape probability
and the Dancoff correction for several clusters, including a hexa-
gonal 19-pin cluster of the type shown in Fig, 2., The cross sectioni,
and the radius o¢ did not vary from pin to pin. Near perfect agree-
ment was found between the values obtained from equ, (2) and Fukai's
results. The Dancoff correction for an N-rod cluster is here defined
as suggested by Pennington (12)

ces b te (-5 3IR) 8

P 20

Both sets of results are listed in table 2.
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Table 2. - LEscape Probability and Dancoff Correction Factor (1—0)

a
in a Hexagonal 19-pin Cluster { ae = 2.6935)

Z, % X 0505 Z.oes 0 E.0ar2.0

W . ) - (D)) -
Fuka tﬁu.(‘a),(l\ FUwal K‘T“L’),m FuRAL L"r‘(é\)

Escape | 0,1 | .8214 | .8214 8541 | .8541 .8752 | .8751
Proba— | 0.25] .6434 | .6434 6977 | L6977 7348 | 7348
bility | 0.5 | .4659 | .4659 .5278 | .5278 5727 | .5727
1.0 .2923 .2923 .3448 .3448 .3653 .3853
2,0 | .1617 | .1618 1952 | L1952 .2218 | .2219
5.0 | 0669 | .0669 .0814 | .0814 .0930 | .0929

Dancoff
Correct.

tad 6732 | 6729 .8196 .8193 . 9367 . 9366

Finally, Dancoff corrections for an infinite square lattice were

computed with the help of equ. ( 3 ) and compared with the values

obtained by Carlvik (2) (see table 3 ). Both here and in table 2,
Zeoa. was taken as equal to 100, The number of integration

points over each variable © , ¢ was 20,

Table3 , = Dancoff Correction (1-C) in Square Lattices (d=lattice pitch)

S d "a*‘:-o.zs’ “5 0.5
Carlvik (2) Bqu.( 3 ) Carlvik(Z) Equ.( 3 )

0,25 .063 .060

0.5 .534 650 .118 .116

1.0 733 71 .208 .207

2.0 .891 .896 .336 .335

4'0 0975 '974

b'd
These discrepancies remained even with Z:a,= 1000 and 30 points

of integration over @, $ ; they are still unexplained.
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7, Comparison with Experiments

The validity of the technique outlined above has also been tested
by calculating the fine structure of the thermal flux distributions
in various gas-cooled clusters upon which measurements have been
made at Saclay. Modified diffusion theory was assumed to apply in
the moderator (6) while the fuel element was treated by considering

the following collision balance equation:

N
- . N . Va,
'2,‘V1' ?11 %‘ (i‘;vé?", ’G\)(ijf —P—t.P;‘) fQ# ﬁ (4)
where
ps‘ z‘."tﬁ
2.V
P‘&‘ ¥ S P.,

and Cl; is the total source in region 1 .

Three cases were investigated:

(1) A 19-rod cluster within a channel of 5.3 cm internal radius (15)
where the pins were symmetrically distributed in three concentric
layers: a central pin, an inner ring of & pins at a radius of 1.9 cm,
and an outer ring of 12 pins at a radius of 3.7 cm. All pins had a
radius of 0,6 cm and were sheathed in two concentric layers of alu-
minium cladding with the following internal and external diameters:
12.3, 12.5 mmy 13,15 mm., The cross sections and sources were as

follows:
'i& 2'. Eia

Fuel (U02) L1697 .3298 ,0119
Cladding (4a1) ,1228 0747 .00554

(2) A 19-rod cluster within a channel of 3,9 cm internal radius (16 )
where the pins were symmetrically distributed in four concentric
layers: a central pin, an inner ring of 6 pins at a radius of 1.55 cm,

an intermediate ring of 6 pins at a radius of 2.9 cm, an outer ring
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of 6 pins at a radius of 3,025 cm. All pins had a radius of 0.55 cm
and were sheathed in a stainless steel cladding with the following
internal and external diameters: 11.07, 11,87 mm, The cross sections

and sources were as follows:

2., zh E iﬁ
Fuel (Uo2 1.35 % enriched) .236 330 .0119
Cladding (SS) .2255 .8270 .0292

(3) A 19-rod cluster with exactly the same geometry as in Case (2)

but where the fuel was natural uranium oxide as in Case (1) ( 16 ).

As stated previously, the theory, in its present state, will not
take into account in an exact manner the presence of a cladding
material around the fuel pins. Some approxzimate treatment must
therefore be resorted to, In Case (1), the aluminium was assumed
to be completely transparent to thermzl neutrons and consequently
the fuel pins were considered as unclad, In Sases (2) and (3),
because of the high absorption and scattering cross sections of
stainless steel, it was thought preferable to homogenize, by
straightforward volume-weighting, the cladding =nd fuel regions
in the volume of the clad pins. The results for all three cases
are given in table 4, The central pin is taken as ring 1 and the ring

number increases as we move outwards.

Table 4, Fine Flux Distribution

in 19<Pin Clusters

Ring No, Case (1) Case (2) Case (3)
4t Qup(1h)| Py, Qup (L1°4)] b, P (21H)
1.000 [1.000 [1.000 |1,000 |1.000 |1.000
1,029 [1.024 | 1,061 |1.064 | 1.041 |1.043
1.120 {1.114 |1.253 {1.248 |1.173 |1.171
1,280 f[1,271 | 1.191 |1.201

D~ W -




8. Practicsl calculation

In

most practical designs, 211 pins in a given fuel element are
identical, The flux is then exactly the same in all pins located
in symmetrical positions with respect to the center of the cluster
provided the configuration is geoﬁetrically regular., The number

of linear equations of the type ( 4 ) which must be used in the

+

calculation of the fine flux distribution 1s thus considerably

reduced with a2 consequent saving in machine-time.

In Figs.(3-7), a series of curves illustrate the behaviour of the
various independent fuel-to-fuel collision probabilities in

19 (or 7) pin ges-cooled-clusters. Through the reciprocity theorem
and the law of conservation of probabilities, all probabilities
not shown here are easily derived,

N

The curves shown in fig. 3 are of quite general interest, They re-
present the first collision probability bLetween pins not mutually
shadowed by intermediate fu:l pencils and may be used for instance
to descrive the interastions between the central pin in the rod

cluster shown in fig.2 and the pins lying in ring a.

The probability P, schown in Fig.4 is the =verage fuel-to-fuel
collision probability in a 19-rod cluster, assuming that the source
is uniformly distributed throughout the bundle.

Thig is simply given by

Peg = %i:é 2;‘1&

™

e fuel escape probability is immediately deduced.

In many problems, e.,g. in the calculation of the thermal flux
hyperfine structure, it will be desirable to obtain separately

the fluxes in the fuelpins belonging to successive concentric
rings. In Fig. 2, three fuel regions, 2, b, ¢ are thus defined,

for ench of which a balance equation of %type ( 4 ) may be written,
If the surrounding medium is void, it will be sufficient to eva-

P . These are shown

luate the interzction probabilities P P
p < bbb’ “be’? “cc



in Figs.(5—7). The probability Paa is given by the classical
formulae for an isolated cylinder, while Pab is easily obtained
with the help of Fig. 3, Finally, Plc may be derived from a

- ‘ P
knowledge of Pope

9, Approximate Formulae

Bonalumi (13) has shown that integrals of the type

I .Jf‘ jEa ki e

are remarkably well approximated by
Ix F WK, () (5)

wnere

Fe jf{u\ 4t
It j: AWz Ut

Applying this recipe to the evaluation of the pin-to-pin collision

nrobability Pj._,| as given by equ. (2 ) i

L
L

is readily found thrt,

4.7

in the abserce of intermediate pencils,
Ve s LY
P.. ‘l “Ff’ K“A v(.? zﬂ "\Q’:\Zc“'k—"” e Fa'\“("s\zcc“&? bt
23"

where

\:‘Mm- ty (g enenn 2 )

As shown in table 5 end fig. 8, equ.( > ) is quite accurate for
large values of 2f“; but less and less successful as the white
1

imit is approached,

For small values of Ze¢%¢ it is preferable to use an alternate

formulation (14) of Pij , clso exact in the case of identical
pins 1. and jJ:
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Using again the approximate formule ( 5 ), it is found that, in

the absence of intermediate pensils,

Pys 12,0 ALY }lu;,u) RO NCY (7)
\
WiiGre
£ t.0a906 LT:-Te o v N zc%
E(o‘-‘ “1 \ \ Y F(L) [‘1 \ \ WL “
. il SN X (s . ANV
A ) K\L{ x.“‘,“-‘vﬁ*\c\l. K.“( ’\K)l \\‘.‘ 5 e K‘(l\ﬁl )\

VASER A
F(K), L(K) are the complete elliptic integrals of the first and

second kind.

Very good at the white limit, equ.( 7 ) feils badly towards the
black limit., A look at Table 5 and T'ig. S shows that Pij is

nlways underestimated by equ.( 7 ) and overcstimated by equ.( 6 ).
Near the mzvimum of the function Pii a simple arithmetic
o

avercge of approximation (6 ) and ( 7 ) would yield acceptable

results in most practical coses.

-



Table

[
~

Comparison of Exact and Approximate Expressions of Pi'

J

Zodig | Zeoe “i,\ P Comedt) | Py Cpn) P lyee)
0.C 0.1 0.1 005464 .005480
0.2 011077 .011047
0.3 ,016856 016804
C.4 .023010 022917
0.5 .029938 .02975¢
0.2 0,1 .008504 .008456
0,2 .017148 .017045
0.3 .026108 .025930
0.4 .035655 .035361
0.5 046456 045921
0.5 0.1 011557 .011248 .012198
0.2 .023315 .022669 .024656
0.3 .035525 .034461 .037708
0.4 .048590 .046881 .051948
0.5 063537 .060340 .069394
1.0 c.1 .010816 .008599 ,011360
0.2 021419 015345 022962
0.3 .032571 .025434 .035118
0.4 .044710 .04014¢C .048380
0.5 058754 .052126 .064627
2.0 0.1 .007144 007545
0.2 014431 .015251
0.3 .02203¢9 .023325
0.4 .030276 032133
0.5 .040051 .042%24
10.0 0.1 .001592 .001557
0.2 ,003218 003227
0.3 .004¢21 .004836
0.4 006778 .006801
0.5 .009C50 .009084
100.0 0.1 ,000160 .000160
0.2 .000323 .000323
0.3 .0004%4 .00045%4
0.4 .000680 .000680
0.5 .000908

.000908
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