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context of a multigroup model under the assumption that the scattering of 
neutrons is spherically symmetric in the L system. 

The critical radii for bare spheres, calculated by using the j N approximation 
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results are compared with those of the S4 approximation and experiment. 

It can be seen from these results that the j s approximation gives a com
parably accurate result to the S. calculation for all bare systems of interest. 
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Summary 

The j N approximation to the solution of neutron transport problems has 
emerged in the course of developing the multiple collision method, which is 
based on the random walk approach. By means of this new method, transport 
problems for a multiregion spherical reactor, where the total neutron cross-
sections are independent of the spatial region (position), are treated in the 
context of a multigroup model under the assumption that the scattering of 
neutrons is spherically symmetric in the L system. 

The critical radii for bare spheres, calculated by using the j s - approximation 
in combination with a one-group model, are compared with those obtained 
from the SN method and the exact values. In addition, by fixing the radius, 
the values of ke f f and the asymptotic time-constant (or the so-called Rossi-α) 
are calculated and the flux distributions corresponding to these two calcula
tions are compared with each other. For a subcriticai system, the flux obtained 
from the time-constant calculation decreases more slowly as the radial co
ordinate increases than that obtained from the k e f t calculation. In order to 
give a numerical illustration of the multigroup model, calculations are per
formed on two fast neutron critical assemblies, Godiva and Jezebel, and the 
results are compared with those of the S4 approximation and experiment. 

It can be seen from these results that the j : l approximation gives a com
parably accurate result to the S4 calculation for all bare systems of interest. 



1. Introduction 

By means of the multiple collision method developed by the author, neu
tron transport problems for a homogeneous slab have been solved with 
reasonable accuracy, the solution applying equally to large and small 
systems (Asaoka et al., 1964). This method is an analytical approach 
based on a viewpoint different from that of Boltzmann equation, namely, 
the life-cycle in contrast to the neutron-balance viewpoint. 

As was shown in the previous paper, the essential point of the method 
lies not only in the adoption of a viewpoint different from the usual 
transport equation, but also in the introduction of discontinuity fac
tors with which one can easily take into account the finiteness of the 
system and fix the point of measurement. As a result, problems for a 
finite system can be dealt with in a similar manner to those for an in
finite system. In addition, it has been shown that the application of 
the method is greatly simplified by the appropriate employment of ex
pansions in spherical Bessel functions. When this expansion is trunca
ted beyond the N-th order spherical Bessel function, j„, the resulting 

N 
approximation has been called "the j approximation". 

N 
It was shown in the previous paper that these mathematical techniques 
arising from the life-cycle approach can be used to solve problems 
based on the neutron-balance viewpoint more easily. 
The present work is concerned with a further development of the mul
tiple collision method. By applying the above-mentioned mathematical 
techniques directly to an equation governing the balance of neutrons, 
a theory valid for spherical systems is obtained. A part of this work, 
connected with the critical condition and flux distribution for a 
bare sphere (in the constant cross-section approximation), has already 
been presented in a EURATOM report (Asaoka et al», 1963). 

Manuscript received on November 51 19&5· 
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2. General Formulations 

We consider here, within the context of a multigroup {G energygroups) 

model, a multiregion (M regions) spherical reactor in which the neu

tron scattering is spherically symmetric in the L system. 

Let Y be the radial coordinate, Li the cosine of the angle between 

the neutron velocity and direction of y , Σ,α and V*. the macroscopic 

total crosssection and speed of the neutrons in the ?th energy 

group respectively and ^^J"^3)
 t n e

 mean number of secondary neu

trons produced in the Ηth group as a result of a collision in the 

? th group. 

The number of neutrons which, due to collisions in the J? th group, 

are born in the 'i th group with directions in the range CM, jA.JT(hi.) , 

positions in the spherical shell of volume 4:fC\,2~<X\f
 around f and 

at times in the interval (XX around "t—t is given by 

Assuming that ¿7« and Va are constant and independent of the spatial 

region, the probability that these neutrons travel for a time l with

out further collision is Jb$P\¿~2jTA"t" ) aXi^i
 the radial coordinate after 

this time is expressed by the relation: 

Hence, the number of neutrons in the 5· th group in the spherical shell 

■ή-TCY2-AY around Y at time X can be written as 

Tij ( r, t n*r^r=έ [ Ar'w* j OÄ^-SJ^ (-XjiyO 

Q . n (D 



where Kif and Js; are the inner radius and outer radius of the L th 

region, respectively, Q(1^j) stands for C(1^1) for this i th 

region and 5»=J ì'\iVA'f+ZX'vA'u 

Replacing M by ^a , rewriting % (^o^-X^) in the form of the Fourier 

representation : 

and performing the integration over jo from ΙΥ-Ί^Τ | to Y+TAt , 
we get : 

M , f ^ ή ^ . . , 
^^

(
^(5*

/+
)*0Jf¿r¿j

A Lzp 

-Ej "R,-i 'o 

* ^ 2 
Wqyfyffij / W z <} ψ] )Xff'nrk r, -t-t'i 

(2) 

where the definition of ï » ̂/ ̂  / has been extended to Y< 0 by put

ting 71%(

Y, t) = 7l« (V" ~t ") "

 Ef
l
ua
tion (2) can be written in the form: 

to 

'fa Λ' 
'0 

y|(j^+j^)^
T
áW^yV

T;tt/)
· 

-*i ψ (3) 

2jV,t 
Next, by taking the Laplace transform of ΊΛΤΪΑ ( Y,t)^ ' > we get; 

rl?(Y/i) = YJíttx^u7í1(u)^,v,t 

oO 

_ 'ik: 
ζπ) 2- ryt (4) 
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where 
rfr-i ,R, Μ {ή~χ ri \ ùtfr' 

' *j 'Ψ 

-EM 

Í ' i 

C5) 

It follows from equations (4) and (5) that the function ' ( J ^ / ^ J 

satisfies the following integral equation: 

where i (Χ) is the ΤΖ,th order spherical Bessel function. 

If Γ ($~*(f/̂ /4 / is now expanded in spherical Bessel functions: 

¡=I,2,-,H-1 orM, 

'TI'LÍY, ι) can be transformed into the following form derived from equa

tion (4): 

Y o j T u a t ) / ^ 

im ( 8 ) 

-°° p-ico 
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The asymptotic behaviour of 7Zj(r,t) as f>£>0 can thus be written: 

<9) 

where 

and ΛΖ,^Λ, is a pole of the quantity Bn(^,A)=^4m^h^) 

which has the largest real part and B¿(fl,J,)
 i s

 the residue at Λ=Ζ,ν)Λ, . 

As is easily seen from equation (9), only the terms with odd values of fit 

remain on the right hand.side because Yflj(r,t) is an odd function of \ . 

The explicit expression for the integral (on the right side of equation 

(9) ) with odd values of TfL is shown in the Appendix. 

According to equation (7), a relation between the coefficients 4^γΧ,-Α) 

with different values of i can be obtained in the form: 

-4Vru> (™
+1

 >f&Vr* * ) if*
 C7t

-
w)

, (10) 

where rOO 

Ia<*.m)=-^L*«t*W> 
-co 

HVJ

0J2: (%, Tizm atua 7M+7l= evert; 

= -< 

(V5)^%; jfecaw^+OlW-n/jtlV^J, 

* O, o the rwi se , 

■Í)W 

<X%£ Mj, ifí^n zni m+7l= even, 
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in which (XA and 0(¡ s t and fo r 2*\Kfc and 2|EV r e s p e c t i v e l y ( t h e 

funct ion Ιί&(7Μ/71) i s independent of 2Γ/ and when "Q=P(fe > t h a t 
i s , i-% > t he express ion reduces t o SCmrYLV^ffL+l ) ) . Now, by 
applying Gegenbauer*s a d d i t i o n theorem: 

j .(H)-^i)J r(pJ r0O 

to the kernel on the right side of equation (6) and using the ortho
gonality relation for spherical Bessel functions, the following in
finite set of linear equations satisfied by the B^Cf/X/líí;) c a n 

be derived 

WïT^1>
z
W.>ZoZ E¿j (γ->ρΦΐ,ΖΜΐ Cl l ) 

where 
. - / . ' ^ x f r M 

^^)=^^>%^^ΓΜΧ9+υ^^ν«ί)ί;ψρ 
' t f 

W^P^·^^ 

(12) 

in which 

*vp-%«nyW»^i, (13) 

»^^fi^^. 
(14) 
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τ / 
The explicit expressions for the -'Jjif'fr) with Ρ and %■£: 7 have 

been given in the appendix of a previous paper (Asaoka et al., 1964). 

Since j/:typ= LjQ,f) > it follows from equation (12) that Ewy'i^l) 

The condition that Β^(?, Zity-O should diverge beyond all bounds is 

thus 

α β ί | ( ^+ ΐ )Ε^(^ ) -^^ Λ | =ο^ lf=iJr,G iox7n,n=i/3,5/--? (is) 

which gives a relation between the physical properties of a reactor 
(as contained for example in the parameter C ), geometrical dimension 
|\ and asymptotic time-constant J,~i (see equation (9) ). 

For a critical reactor, ̂ ( must be equal to unity and equation (15) with 
-Λ(=ί therefore gives the critical condition, that is a relation bet
ween the physical properties and geometrical dimension of a critical re
actor. In order to obtain the value of the effective multiplication fac
tor -fidi for a given reactor, C^CÎ^fO i s divided into two parts; the 
scattering part ^&(ΐ^59=.^.£(?^?9/ΖΓ} aiíd

 the fission part
 c
fßC|»?9 

= 'Áv (VS)« /2»5 ' Using this separation the value of τ?Μ is obtained 

by solving equation (15) with J,=ƒ and 

The ratios between the Drøij/̂ T/Vj-i,)'S can now be determined by the use of 
equations (11) and (15) for any of the above-mentioned problems, that 
is, the evaluation of the time-constant, critical condition or the value 
of -jPftW . Having thus obtained the B ^ ?s, the flux distribution or 
neutron spectrum can be obtained from equation (9) for each problem. 
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3. Numerical Results for a Bare Sphere and Discussion 

For a bare sphere (M = 1), equations (9), (11) and (15) reduce to 

^tM^/í^%^A^tíi¿^L^^ C9f) 

Cu·) 

det | (m+Oc'(f+pj?V70-Snwho, M'=\.2r;Q for n,n=K3A'~. <15*> 

In a one-group model (G = 1), these equations reduce even further to the 
following results respectively: 

Mm(T.t)-/,'Wr'>tÍ,EUM.>¿Hftíii<a*i(zi4) 

j^BmízvA^Z/j'm,n)B%(zvA\ 

O") 

d i " ) 

det|(2W+!)C'J/(»l/7l)-^|=:0/ 111,71 = 1,3,5,-, C15") 

which for a critical system ( J,~J ) have already been derived in a pre
vious report (Asaoka et al., 1963), 
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3.1. Numerical results in a onegroup model 

The numerical values of C for critical bare spheres with various values 

of 2lR between 0.005 and 50 are given in Table 1. Even the results of the 

j approximation (containing just two terms on the right hand side of 

equation (9"))have shown that the difference between Carlson's result 

and ours is indistinguishable on a figure (Asaoka et al., 1963). By 

using a quadratic trial function in the singleiteration moments method, 

Carlson calculated the critical radius for various values of C between 

1.1 and 3.0 (Carlson, 1949). In Table 1 are also shown the values of 

the socalled extrapolation distance ci > the distance between the 

boundary and the point at which the asymptotic neutron flux expressed 

in the form MflijCY/iR+dyJi/Y would extrapolate to zero. These are 

calculated from the following equation (see Asaoka, 1961): 

x¿
7wr

ZR
·
 <16) 

In the j approximation, the asymptotic expressions for these quantities 
•5 

a r e 

iff05+^7)íX-^(i+j§^57)(X% tf«í, 

, _ι_, m? 

( f f U
J 1

^ / y i *—ã\ '
T
 ffS-75' 

~C~) . 7 . IT?? (17) 

zi r\y 

(18) 

where (X = Z R . For large (X , the corresponding expressions in the 

î  approximation are as follows: 
5 
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r y i Τ T T Õ T T T Í — 
« ■ 

íém¿ 

jç I1I-H45 (19) 

Table 2 shows the numerical values of the flux distribution in critical 

spheres with 2JR = 0.005, 0.5 and 10. For large 21R , the results ob

tained from elementary diffusion theory by using Hd. = 0.71 show good 

agreement with ours except in the region within about a mean free path 

from the boundary. The asymptotic expressions for the flux distribution 

in the j approximation are given by 

^gW 
(20) 

where ^ = 2Y and g is the EulerMascheroni constant. For large 0{ , 

the asymptotic expressions in the j approximation can be written in the 

forms : 

jy?v5)10 3¿o10-mii5 3l5J5^Or,. , . Λ 

J3JLJ7/5, Ι Η 5 Λ 1 v + g ± l ¿ 5 ^ t ^ j 
(21) 
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Furthermore, the extrapolated end-point, that is, the distance beyond 
the boundary of the medium at which the asymptotic flux (due to the 
pole 2 = O in equation (9") ) vanishes (see Appendix), takes the 
value (3+,/5)/7 = 0.7480 in the j approximation for infinite (X , this 
being measured in units of the total mean free path. 

As can be seen from the above-mentioned results, the infinite series 
on the right hand side of equation (9") converges faster for smaller 
2iR and hence the results obtained from the j approximation can be 
regarded as accurate for the smaller values of 2lR . On the other hand, 
for large 2lR , the infinite series does not converge very quickly but 
the j_ approximation will give a sufficiently accurate result for orac-5 
tical purposes. 

Additional test calculations with a one-group model were performed on 
several bare spheres and the results were compared with the exact ones 
and with those of the S calculations. In Table 3 are shown the results 

N 
for bare spheres with C equal to 1.02, 1.2 or 1.8. The exact critical 
radius 2TPC is given in the first column of the table and the critical 
radius obtained from the S approximation with various values of N is 
shown in the second column. The deviation from the exact result is shown 
in parenthesis. All these values are obtained from a paper by C.E. Lee 
(1962). In the third column are shown the critical radii obtained from 
the j approximation with several values of N, the deviation from the N 
exact result being given in parenthesis. It will be noted from these re
sults that the j approximation gives a reasonably accurate result while 

ύ the j approximation is exact for all systems of interest. In the fourth 5 
and fifth columns of Table 3 are shown respectively the values of the 
time-constant Af~\ «(see equation (9M > ) and rial for a fixed value oí 
the radius. These were calculated by means of the j approximation. 

The asymptotic expressions for the critical radius (XC = 21P are, in 

the j approximation, 

(Χ, I^S 

r i i ^ j  W f , ■ /,_J753J57 Ν lo5j5¿ 1 
35C VTV 20Ϊ7Ι5 '/53125c J, c>>í 

J 

7
^ ~ r , _ 3 5 7 i T r — τ ι , , _ , (22) Wí'-TOra, '-t«<, 
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and in the j approximation, 

^J
Ì0
~?Ì

S
U

JW
^

5Ì
^ ITT] i-*-«i <

23
> 

c
 V i-i/c I J^JO:^

 c h ' C
<<;1

. 

In addition, the asymptotic expressions in the j approximation for the 

timeconstant and ~£Μ of a sphere with a radius (X=£>(c(| + £ ) with |£| 

<^C 1 are 

f limili ( l+jfe57 )C£ = '· ^ 3 3 ¿ c £ , c>>í, 

- V M r , (24) 
[2Cc-oe[l~2£(i-^>^(c-J)(i-é£)+-fCc-/f] 

C-1«/, 

where (cOC/Cf can be rewritten in terms of ^^=VZf/2IÄ in the 

form: 

For small C~\ , the asymptotic expression for "T^Æ in the j approxima

tion is: 

J7Jtf0 i' c)o-%€)- ¿mono-id O^/t^^d-X)]^ 
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while the expression for -ά,~1 in the j_ approximation is the same 
5 

as the second of equations (24). 
From equations (24) and (25), the mean lifetime^ of neutrons can be 
obtained in the following form by using the relation Ρ=(-^Μ-Ι Vfo£V(A~OÌ * 

l |o5t5ér, I753J57 

Χ' i 

=o. frémis 
VX* 

J_\05Kb( 1753/57 Nf + F Ç L 10515É, |753ΜΜ+εΐ 
ZVCf ]53j25U ^o?7/5 A ' ^ ^ - l ^ ^ i ' - ^ Ä " ) c J 

^ί{ηε^-ο.ί45ο2η?ψ]; c » í , 

(27) 

t«i, 
and the expression for small \~ j/c in the j approximation i s given by 

·*- ZVCf/CL ^ IWlO-315''
 c V } ΙΊ24ΫΠ l ' cJV1 4 - ; J7-2ff0 

I 

+*ε%0-ϊ)] 

^ c ^ ) 0 - k > - a r ø ° 7 7 7 0 - ^ 

(28) 

The expressions for |- l/fc« Í show that, as expected, ji^ \/{^Z^) 

for an infinite system. 
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Tables 4 and 5 show the flux distributions in spheres calculated by 

means of the j and j approximations respectively. In each case, C 

takes on the values 1.02 and 1.8 and the flux is evaluated three 

times on the basis of criticality, timeconstant and -jzdl calcula

tions. An interesting feature to be seen from these tables is that 
calculation 

the flux obtained from the timeconstantAWith a negative value of 

_¿ -\ (subcriticai system) decreases more slowly as the radial 

coordinate increases than that obtained from the ~iiili calculation. 

This tendency can be demonstrated analytically for large 0i=2R 

by using equation (20) or (21). 

The flux distribution in the timeconstant calculation is given by 

equation (20) or (21) by replacing (X and ^ by DC=ÍX [|+(Λ,θ]
 a n d 

^
/=
50+(A~1)l » respectively, while that in the -$¿n calculation 

is given by the unmodified equation. Hence, in the timeconstant cal

culation the ratio of the flux value at the outer boundary of the 

sphere with a large radius « to that at the centre is given by 

c a fu—j ι 

η((χ) Î0K(I+<AI))l' Ítf(l+(AD)i, 

71(0) I 

fl3K(l+(4rl))l Μ 7 2 « Ο + 0 Γ » ) h 

in the j approximation, 

(29) 

in the j_ approximation. 
5 

This means that, for large « , the ratio in the timeconstant calcula

tion is obtained approximately by dividing that in the -j?M calculation 

by a factor of ] + (J,l) . On the other hand, for small « , the 

first term of the asymptotic expression for this ratio is a constant. 

(l+3>/"57)/64 = 0.3695234% in the j approximation (see equation (20) ) 

and hence the flux distribution stays nearly the same independently of 

whether the distribution is obtained from the timeconstant or ~$dl cal

culation. 
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3.2. Numerical examples in a multigroup model 

As numerical examples of a multigroup model, calculation*, were performed 
on two fast neutron critical assemblies, Godiva and Jezebel. The numeri
cal results are summarised in Table 6. For all these calculations, the 
18-group (10 MeV-thermal) set of cross-sections of LASL (Mills, 1959) is 
adopted in the transport approximation. A 10-group model has been con
structed by extracting just the higher 10 energy-groups out of the 18 
groups. Since the contribution of slow neutrons to the reactor behaviour 
can be neglected, it is better to reduce the number of energy-groups G 
by cutting out the lower energies so that the rounding error in the 
evaluation of a determinant of order (r(N+1)/2 can be reduced (see 
equation (15*) ), N being the order of j approximation. 

Since the radii of these assemblies are equivalent to 2-3 fast neutron 
mean free paths, the S approximation will overestimate Sdf slightly 
while the j approximation should give an accurate value with a very 
slight underestimation (see Table 3). Although this tendency cannot be 
seen clearly from the results shown in Table 6 because of the transport 
approximation and the rounding error in the j approximation (the trans
port approximation has resulted in an overestimate of the number of se-
conkry neutrons per collision ^(J-^O -* > a 1 1 t n e calculated values 
except those of the j approximation agree quite well with the experi
mental results (Hansen, 1958 and Jarvis et al„, 1960). The mean life
time of prompt neutrons in the j approximation was calculated by using 
the formula J= (.-%&-1 )/[Z,V¡{-¿r1 )] (see equation (9') ), while 
that in the S approximation is given by the total importance divided 
by the rate of destruction of importance (see Goertzel, 1955), 

In Table 7, our results for the number of leakage neutrons (the total 
number of fission neutrons produced in the reactor has been normalized 
to unity) are compared with those of the S calculation and with the 
experimental values (Stewart, 1960). The experimentally observed total 
number of leakage neutrons with energies between 3 and 0.4 MeV has been 
normalized to the value of the S calculation and the error shown is 



- 18 

estimated from the values given by Stewart as a result of counting 
statistics alone. The experimental values are approximately extra
polated to 10 MeV and to 0.1 MeV (for Godiva) by the author, though 
the observed upper limit was about 9 MeV and the lower limit was 
0.2 MeV (for Godiva). As is seen from this table, the j results 
coincide quite well with those of the S calculation for both the 
assemblies. In addition, they agree satisfactorily with the observed 
values in the case of Godiva, though the calculated values depend 
on the adopted nulcear cross-sections. For Jezebel, the calculated 
values for the highest energy-group are too small but the agreement 
is, on the whole, reasonably good (the j approximation has failed 
to give satisfactory values because of the rounding error arising 
in the course of calculating the flux distribution (see Table 8) ), 

Table 8 shows the calculated neutron spectra (the total number of 
fission neutrons produced being normalized to unity) at the centre 
of the assemblies ( Y/R = 0) and near the boundary ( Y/R - 0.95). 
It is seen here again that the 1 results coincide very well with 

N 
those obtained from the S calculation, if we exclude the j values 
for Jezebel as mentioned already. 

4. Conclusion 

The neutron transport problems for a spherical reactor dealt with in 
this report have been solveu satisfactorily by the j approximation 
(or the multiple collision method). In particular, it has been shown 
that the j approximation (keeping just first two terms of expansions 
in spherical Bessel functions) gives results (critical condition, "Fdt , 
mean lifetime of neutrons, neutron spectrum etc.) comparable in accu
racy to the S approximation of transport theory. 
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The computer code which has been used is designed to obtain the re
sults of an (up to) 18 energy-group model in (up to) the i_ approxi-

5 
mation for a bare sphere. As will be clear from the formalism pre
sented above, this code calculates, in contrast to the S code, first 

N 
the eigenvalue (that is the critical radius, SiU or time-constant) 
and then the flux distribution (or neutron spectrum) corresponding 
to this eigenvalue. A typical running time on the IBM-7090 is nearly 
15 min. to obtain all the three eigenvalues by the use of the j 
approximation and 18-group model. The -%sR and the corresponding 
flux calculations take about 10 min, 
A computer code for a two-region sphere is now under test running 
which seems to show that the infinite series in spherical Bessel 
functions converges rather slowly in this case. Later, it is hoped 
to extend the method to more general problems. 

Acknowledgments - The author wishes to thank Miss M,C. Dubujadoux 
of TCR, EURATOM-CCR, Ispra for writing the computer code for the 
present work. 
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Appendix 

Explicit expression for -^ 

DO 

Reforming the integration, we get: 

PO 

— € 5 0 

where 
' ,Μ.ίϊ Í2 ,„χ r£2 J (*)=l C£)x'M if?)/' 

(note that /"* (£)=[ (2)1 

and (I? (f(
2
))?=0 stands for the residue of f(2) at 2 = 0. 

Hence, the explicit expression can be obtained in the following form 

by introducing the abbreviation En.= E7l(o(|")En(o(+5), wkere Ε"Λ(Χ)= 

Jt 
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w = v J _ £ ( i 5 3 i 5 X , i n J 4 _ M l ^ _ 3 1 5 i/551f_3oo31í .2071 

2£>f* pp (Xe 25 2 5 3 «5 ? «a5 ¿ 5 + ^«35 t¿ 

■ 3ÜJ5p/. I35l35r/, )35!35Γ/Λ 

When CX is small, these expressions can be reduced to the following 

asymptotic formulae: 

m _ l ' ¿Oí PU/05 t' 5^;in.ft^ + ̂ ( ' 75«5) y C' øfOJ, 

771 ^ ' ¿ao(L32j u '^iîf^^1 Off ΛίΛ«--j + jf0«(» //3tr + 7j3^V 

M^FoT / m «a ΙΠ3 tf* /S73 Λ* j 
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Furthermore, the asymptotic expressions for small 5 are: 

, ^r+33of+7fl(Vof*-* w ι 
r
 /̂ £7CX

3 5
 J , 

¿«" I71" "^
+
20f

+
 "" f l*" /¿

l
 ?A(

i T
5ff* 'a* 

T
 /¿

 U
 3«V t f+ /έ> Λ ί + ^ ' rt « 3 « 3 OF tf* +

 Ä* ) i 

, 37o27+37o27(V+l Wittum fl3+37ftfe?fl5+ cxé -« w 

, 4 5 Q f 5 + ^ o f 5 0 ( 117325«3+3yfO «J-Hft7f l++ 3¡0(5-HXd ~K &. ] 
¡20^ X 5 i. 

m=3; 



Table ,1 M e a n number of secondaries oer collision and extrapolation distane© for critical spheres θί r&dius 

Radius 

ZR 

0.005 
0.05 
0.25 
0.5 
1 
2 
5 
10 
50 

Mean numb 

j approx. 

256.0795 
26.1915 
5.77735 
3.23740 
1.988696 
1.396344 
1.096470 
1.028710 
1.001342 

er of secondaries, C 

J5 approx. j approx. 

256.0748 256.0727 
26.1909 26,1907 
5.77764 5.77759 
3.23729 3.23728 
1.988413 1.988391 
1.395896 1.395876 
1.095779 1.095763 
1.028160 1.028150 
1.001279 1.001278 

Ext 

j approx. 

1.8124 
1.7995 
1.7446 
1.6818 
1.5724 
1.4045 
1.1149 
0.8572 
-0.4602 

rapolation dist 

j approx. 

1.8124 
1.7995 
1.7446 
1.6818 
1.5726 
1.4059 
1.1350 
0.9598 
0.7506 

ance, ¿*d. 

j approx. 

1.8124 
1.7995 
1.7446 
1.6818 
1.5726 
1.4059 
1.1355 
0.9616 
0.7607 

I 

1 



Table 2 Scalar flux distribution in critical spheres of radius^ R (normalized to unity at the centre, Τ = O) 

\ 

T/R 

0 

0 . 2 

0 . 4 

0 . 6 

0 . 8 

0 . 9 

0.96 

1 

Radius 

h 

1 

0.97282 

0.89270 

0.76379 
0.59244 

-

-

0.36879 

ZR = o. 

J 5 

1 

0.97211 

0.89032 

0.76000 
0.58892 

-

-

0.36722 

005 

J7 

1 

0.97127 
0.88795 

0.75732 

0.58743 
-

-

0.36611 

ZR = 0.5 

h 

1 

0.96962 

0.88323 

0.73651 

0.54740 
-

-

0.30810 

h 

1 

0.96843 

0.87872 

0.72990 

0.54144 
-

-

0.30579 

h 

1 

0.96787 
0.87713 

0.72815 

0.54052 
-

-

0.30515 

Dif f . 

1 

0.9436 

0.7859 

0.5581 

0.3042 

0.1821 
0.1136 

0.0705 

ZR 

J3 

1 

0.96142 

0.84572 
0.65315 

0.38588 

0.22857 

0.13120 
0.06528 

= 10 

h 

1 

0.94670 

0.79480 

0.56828 

0.30713 

0.18022 

0.10880 
0.05698 

h 

1 

0.94261 

0.78298 

0.55480 

0.30177 

0.17847 

0.10731 

0.05571 

Γυ Ui 
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Table 3 Critical radius, timeconstant and τ^Μ by the j approximation 

and the comparison with the S and exact results 

\ 

\ 

C= 1.02 

/ Q = 0 . 8 2 \ 

\Cf= 0.2 J 

ZRC=12 .0270 

C= 1.2 

/ Q = 0 . 8 \ 

VCt= 0.4 / 

ZRC = 3.1720 

C= 1.8 

fCA = 0 .5 \ 

V C¡ = 1.3 / 

Zi?c = 1.1833 

S approximation 
Ν 

Ν 

2 

4 

6 

8 

12 

16 

2 

4 

6 

8 

12 

16 

2 

4 

6 

8 

12 

16 

Cr i t i ca l radius 

Z R (% error ) 

11.9168(0 .916) 

12 .0203(0 .056) 

12.0310(+0.033) 

12.0334(+0.053) 

12.0345(+0.062) 

12.0346(+0.063) 

3 .0606(3 .512) 

3 .1426(0 .927) 

3 . 1 5 9 K  0 . 4 0 7 ) 

3 .1639(0 .255) 

3 .1679(0 .129) 

3 .1695(0 .079) 

1.1173(5.578) 

1.1622(1.783) 

1.1732(0.854) 

1 .1767(0.558) 

1.1796(0.313) 

1.1809(0.203) 

j approximation 
Ν 

Ν 

1 

3 

5 

7 

1 

3 

5 

7 

1 

3 

5 

7 

1 

3 

5 

7 

Cr i t i ca l radius 

Z R (% error ) 

38.2852(+218.3) 

12.1821(+1.290) 

12.0291(+0.017) 

12.0266(O.003) 

4.3831(+38.181) 

3.1783(+0.199) 

3.1722(+0.006) 

3 .1719(0 .003) 

1.33370(+12.710) 

1.18369(+0.033) 

1.18334(  ) 

1.18332(  ) 







Timeconst. 

4-1 

for Z R 

0.0326058 

0.0064922 

0.0068721 

0.0068786 

for ZR 

0.0807481 

O.0126375 

0.0133343 

0.0133546 

for 2xt\ 

O.177468 

0.038497 

0.038117 

0.038090 

for Z R 

0.237721 

0.101117 

0.100767 

0.100747 

h 

= 15.0 

0.86014 

1.03314 

1.03515 

1.03518 

= 3.3 

0.83841 

1.02909 

1.03071 

1.03076 

= 1.15 

0.89668 

0.97755 

0.97777 

0.97779 

= 1.10 

0.86668 

0.94352 

0.94372 

0.94374 



Table 4 Flux distributions obtained from three different j calculations 

(normalized to unity at the centre of the sphere, Y = 0) 

C 

Radius Zf( 

T/R 

0 

0.2 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.95 

1 

1.02 

12.1821 

Critical 

1 

0.96127 

0.84509 

0.75797 

0.65154 

0.52596 

0.38181 

0.22160 

0.13831 

0.05509 

15. 

Λγ\ =0.0064922 

1 

0.96110 

0.84441 

0.75689 

0.64994 

0.52361 

0.37821 

0.21548 

0.13016 

0.04559 

0 

·%Η=1.03314 

1 

0.96111 

0.84442 

0.75692 

0.64998 

0.52367 

0.37829 

0.21562 

0.13037 

0.04584 

1.18369 

Critical 

1 

0.96655 

0.86796 

0.79583 

0.70986 

0.61153 

0.50260 

0.38462 

0.32171 

0.24811 

1.8 

1.10 

¿,-1=-0.101117 

1 

0.96729 

0.87092 

0.80044 

0.71645 

0.62035 

0.51379 

0.39807 

0.33607 

0.26307 

^=0.94352 

1 

0.96684 

0.86912 

0.79763 

0.71245 

0.61501 

0.50704 

0.39000 

0.32749 

0.25418 

ru 
SJ 



Table 5 Flux distributions obtained from three different j calculations 
(normalized to unity at the centre of the sphere, Y = 0) 

C 

RadiusZR 

Ύ/R 

0 
0.2 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
1 

1.02 

12.0266 

Critical 

1 
0.94149 
0.77887 
0.66880 
0.54698 
0,41932 
0.29139 
0.16792 
0.10892 
0.04685 

15 

Ari =0.0068786 

1 
0.94049 
0.77506 
0.66312 
0.53933 
0.40989 
0.28071 
0.15690 
0.09829 
0.03772 

.0 

^=1.03518 

1 
0.93960 
0.77249 
0.66009 
0.53643 
0.40777 
0.27976 
0.15686 
0.09833 
0.03773 

1.8 

1.18332 

Critical 

1 
0.95990 
0.84768 
'0.77042 
0.68262 
0.58637 
0.48275 
0.37118 
0.31101 
0.23978 

1.10 

À~i=-0.100744 

1 
0.96304 
0.85754 
0.78327 
0.69744 
0.60209 
0.49878 
0.38782 
0.32819 
0.25706 

•^=0.?4374 

1 
0.96263 
0.85578 
0.78041 
0.69323 
0.59638 
0.49161 
0.37955 
0.31959 
0.24829 

co 



- 29 

Table 6 Numerical results obtained from the j approximation 
N 

and the comparison with S and experimental values 

Core 

Observed critical 
core for ideal 
homog. sphere 

Calculated -j&y 

Calculated time-
constant xJ,-i 

Mean lifetime of 
prompt neutrons 

—ft £̂(10 sec) 

Calculated crit
ical radius (cm) 

Composition 
3 

Density (g/cm ) 

Mass (kg) 
Radius (cm) 
Volume (^) 

18 18-group 
J3 

Jl 
10-group j 

J5 
18-group j 

Ji 
10-group j 

j5 

Experiment 

S4 18-group 
J3 

Ji 

10-group j 
j5 

S4 18-group 
J3 
Jl 

10-group j 
j5 

Godiva 

U(93.8% U-235) 
18.75 

52.04 U 
8.717 
2.774 

1.0046 
1.0037 

0.8490 
0.9934 
0.9933 

0.001000 

-0.03687 
-0.002071 
-0.001812 

0.60 

0.588 
0.632 

0.707 
0.547 
0.642 

8.669 
8.680 

11.014 
8.788 
8.770 

Jezebel 

Pu(4.5% Pu-240) 
15.66 

16.28+0.05 Pu 
6.284 
1.040 

0.9916 
0.9935 

0.8824 
0.9965 
0.9973 

-0.004198 

-0.04340 
-0.002135 
-0.002143 

0.298 

0.358 
0.324 

0.567 
0.342 
0.264 

6.346 
6.340 

7.406 
6.323 
6.320 



Table 7 Leakage spectra obtained from the j approximation and the comparison with S and experimental results 

N 4 

^ ^ ^ ^ 

Energy group 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

103 

31.4 

1.40.9 

0.90.4 

0.40.1 

10017 

173 

30.454 

45461.44 

61.44

MeV 

keV 

eV 

S
4 

18group 

0.07861 

0.14450 

0.09012 

0.14631 

0.09181 

0.01052 

0.0
4
7665 

0.0
6
2786 

0.0
9
4301 

0.0
12
3196 

G 

j
3 

10group 

0.07928 

0.14574 

0.09096 

0.14763 

0.09232 

0.01050 

0.0
4
7704 

0.0
6
2782 

0.0
9
4290 



o d i ν a 

J5 

10group 

0.07900 

0.14539 

0.09094 

0.14793 

0.09268 

0.01056 

0.0
4
7816 

0.0 2832 

0.0
9
4545 



Experiment 

0.0812+15% 

0.1391+ 8% 

0.0902+ 5% 

0.1516+ 4% 

0.1042+ 4% 





.





S
4 

18group 

| 0.11036 

0.19179 

¡ 0.10686 

¡ 0.13541 

0.08669 

{ 0.01198 

¡ 0.0
4
1472 

¡ 0.0
7
1726 

¡ 0.0
1X
4991 

¡ 0.0
14
3049 

J e ζ e 

J3 

10group 

0.11439 

0.19860 

0.11033 

0.13929 

0.08861 

0.01220 

0.0
4
1489 

0.0
7
1745 

0.0
12
3297 



b e l 

J
5 

10group 

_. 



















Experiment 

0.1455+17% 

0.1945+ 9% 

0.0987+ 7% 

0.1407+ 6% 











" 

O 
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Table 8 Neutron spectra at the core centre and near the core boundary 

obtained from the i and S, calculations 

N 4 

' 

Spectrum 

at the 

core 

centre 

(Y/R=O) 

Spectrum 

near "the core 

boundary 

CT/fe=o.?5) 

Energy 

group 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

2 

3 

4 

: 5 

6 

7 

8 

9 

10 

S
4 

18group 

0.0 6232 

0.0011713 

0.0
3
7377 

0.0012554 

0.0
3
9783 

0.0 1426 

0.0 1244 

0.0 5575 

0.0
1O
1135 

0.0
13
1130 

0.0 1708 

0.0 3178 

0.0
3
1996 

0,0
3
3323 

0.0 2315 

0.0
4
3059 

0.0 2390 

9 
0.0 9892 

O.O
i:L
1908 

14 
0.0 1846 

Godiva ¡j 

J
3 

10group 

0.0
3
6140 

0.0011520 

0.0
3
7239 

0.0012258 

0.0
3
9460 

0.0 1374 

0.0
5
1190 

0.0 5303 

0.0
1O
1078 



0.0 1685 

0.0
3
3134 

0.0
3
1965 

0.0
3
3261 

0.0
3
2272 

0.0 3000 

6 
0.0 2339 

9 
0.0 9633 

O.O
i:L
1839 



j
5 » 

10group ¡j 

0.0
3
5553 ¡j 

0.0010500 ¡! 

0.0
3
6705 ¡J 

0.0011625 ¡j 

0.0
3
9150 !| 

0.0
3
1322 || 

0.0
5
1182 || 

0.0
8
5340 1! 

0.0
1O
1084¡¡ 

II 

0.0
3
1695 || 

0.0
3
3156 || 

0.0 1982 || 

0.0
3
3294 || 

0.0
3
2297 || 

0.0
4
3042 || 

6 II 

0.0 2373 || 

0.0
9
9756 |¡ 

O.O
i:L
1889|| 

II 

S
4 

18group 

0.001278 

0.002257 

0.001280 

0.001718 

0.001292 

0.0 2130 

0.0 3096 

0.0 3946 

0.0
12
1636 

0.0
16
9648 

0.0
3
4154 

0.0 7271 

0.0
3
4086 

3 
0.0 5306 

0.0
3
3632 

0.0
4
5434 

0.0
7
7021 

0.0
1O
8352 

0.0
1
 3132 

0.0
16
1740 

Jezebel 

J
3 

10group 

0.001377 

0.002428 

0.001370 

0.001823 

0.001351 

0.0 2214 

0.0 3129 

0.0 3907 

0.0
12
2604 



0.0 4146 

0.0
3
7265 

0.0 4089 

0.0 5327 

0.0
3
3674 

0.0
4
5517 

0.0 7212 

0.0
1O
8594 



J
5 

10group 

0.001518 

0.002632 

0.001400 

0.001713 

0.001119 

0.0*1874 

0.0 1815 

0.0
9
1876 

0.0
12
2874 















0.0 4778 

0.
η
9405 
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To disseminate knowledge is to disseminate prosperity — I mean 

general prosperity and not individual riches — and with prosperity 

disappears the greater part of the evil which is our heritage from 

i darker times. 
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