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SUMMARY

A detailed description of the dynamic behaviour of the reactivity-
pulsed research reactor SORA is presented, based on results of a simulation
on an analog computer. The periodically pulsed state is treated, as well as
disturbances from it. Temperature feedback is considered. A suitable
control is designed to keep the reactor stable though it becomes prompt-
supercritical fifty times per second. v

The simulation itself required new combined digital-analog techniques
which are equally described.
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Introduction

Since 1962, a fast research reactor has been under de-
sign by the Reactor Physics Department of the Joint Nuclear
Research Center of Ispra which - though able to operate also
under steady conditions ~ is foreseen to give periodically
repeated neutron pulses with very high intensity and short
duration,

The use of neutron choppers with the constant neutron
flux of a normal reactor means a waste of energy, since only
a small time fraction is utilized, with all associated pro-
blems of cooling. Another principle is to "chop'" not the
output of the reactor but already its input, i.e. some quan-
tity like its reactivity. In this case, the mean power of
the assembly can be kept relatively modest, while large
neutron pulses are prodﬁced.

The "“"SORA" reactor is of the second kind. Its name means
"sorgente rapida" (= fast source). The first reactor of
pulsed type is the Russian reactor IBR at the Dubna Center,
Its mean power is about 3 kW, whereas SORA is being designed
for 500 kW mean power. The dynamics and the safe operation
of SORA is a problem of central importance, due to lack of
experience with a reactor of this type operating at high
power,

It is not intended to give a full description of the
technical performance here; only those parts will be describ-
ed which affect the transient behaviour of the reactor in
periodically pulsed and disturbed states, We also do not
discuss the application or use of the pulsed flux, i.e. the
experimental aspects,

Manuscript received on August 13, 1965,



The aim of this paper 1s to give as completely as possi-
ble a picture of the fast transients including kinetics and
heat transfer without and, of course, with an appropriate
control, To get this information, suitable physical models
have been established to describe the different parts, The
mathematical equations have been treated on the three
PACE 231 R analog computers of our Computing Center CETIS
at Ispra. ' '



1.

Brief reactor description

In order to obtain pulses as short as possible it is
obvious that the neutron lifetime should also be very
short., The choice of a fast reactor is therefore impera-
tive,

SORA contains a 5 liter core, 24 cm high and of
slightly irregular hexagonal cross section. 107 circular
fuel rods form a bundle without spacers, Heat is removed
from the core by eutectic NaK flowing between the rods,
The rods themselves are made of highly enriched U 1),
alloyed with 10 % Mo, radius 7 mm. After a NaK-bond of
0,2 mm, a cladding cylinder follows, made of Incoloy,
0,5 mm thick,

Around the core a reflector for fast neutrons is pro-
vided (molybdenum and stainless steel), which is however
open at one side of the hexagon., This side is called the
"window",. The missing part of the reflector is replaced
by a block made of beryllium, placed at the end of a
propeller arm which rotates with a peripheral velocity
of 276 m/sec and a frequency of 50 Hz, Whenever the re-
flector pliece passes along the window, the assembly be~
comes slightly prompt supercritical, whereas otherwise
it 1s strongly subcritical.

In the reflector, on two sides opposite from the
window, two large hydrogeneous scatterers are placed in
order to slow down the incoming fast neutrons for experi-
ments with low energy neutrons. Although a boron barrier
is placed between the scatterers and the core to prevent
as far as possible the return of slow neutrons to the

The use of Pu0O, fuel is foreseen for later core loadings,
but is not considered in this paper.



core, the presence of the moderating material influences
somewhat the core neutron spectrum, This feature calls
for an energy dependent neutron kinetics as we shall see

in detail in paragraph 2.1.

The resctor heat is transferred through a secondary
NaK-loop to an open air loop. Transients outside the
core, however, need not be considered as a part of the
short-range core dynamics, if the nuclear control is pro-
perly designed. This will become cleear only at the end
of this report.



Kinetics

The neutron kinetics of a pulsed reactor is more com-
plicated than that of a normal one in which one considers
a steady state and then disturbances from it, For a pulsed
reactor, the strictly periodic behaviour, which we call
"pulsed critical state", corresponds to the stationary
state of the normal reactor, whereas the true steady state
serves only as the trivial initial condition, In the ter-
minology of normal reactors, the pulsed steady state
would correspond already to a special perturbed state,
for which, however, a periodicity condition holds which
is entirely independent from that for normal criticality.
Perturbations from the pulsed state, which are of main
interest here, are thus a third stage not encountered in

normal systems.

B

2.1. The basic kinetic equations

— e, > > ——— — . —— i f— T o o i . S ot S

The core neutron spectrum has been calculated by
Mr. ASAOKA [1] [2] for several configurations and na-
terial compositions in a steady state, taking into
account the H,O-scatterers. The whole energy range
(10 MeV - 0) has been subdivided into 6 groups and the
respective populations computed 1), It was found that
the lower groups with lifetimes larger than the expected
power pulse width (about 70 psec) have non-negligible
populations in any case. As a consequence, those neu-
trons cause fissions only when the flux should have
been fallen back to a very small level., A marked de-~
terioration of the output pulse shape has to be feared.

Attempts to consider the slow neutrons as fictitious

1) The numerical values used in this paper are not taken from

the mentioned reports but have kindly been computed by
Mr. ASAOKA on our personal request,
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delayed groups led to serious difficulties when defining
appropriate "decay constants" and "yields". Such a @
description proved to be inadequate. LT

A new foundation of a multigroup kinetics has there-
fore been undertaken by Mr. SCHWALM [3] by going back
to the BOLTZMANN equation. We refer here only the -
necessary excerpt for an understanding on what will be

used for the dynamics.

The neutron energy spectrum is split into an arbi-
trary number of groups to each of which certain group
parameters are attributed. The group angular fluxes fJ
are welghted with the adjoint fluxes f: pertaining to

the unperturbed steady state. The new variables

n (t) = <f}”, fJ.(t)> , (2,1.-1)

where the bracket means the scalar product (integra-
tion over angles and space), depend on time only, so
that in fact a multigroup one-point model is considered.

For J groups, Mr. SCHWALM's system reads

J ' J=1

. (1-)k, -1 (1op) n} n! I
n = ———-—n_ + -f3 + + A C
’ 1 : Z A ZIJ'J Z Lt
L jr=1 =1 i=1
(3'49) 7
j=1,..o,J (2.1._2)
s Bk, J n! |
Ly T TNGy Ty B z A, (2.1.-3)
J'J
J'=1
(j'%j) i=1’oo.’I.‘

j=1’.l0’J“



- 11 =

with
BL = effective (fission spectrum weighted) yield
of the i-th delayed group
I

i=1
XL = decay constant of the i-th group,
CL 5 = precursor density of the i-th delayed,

’

J-th energy group.

The meaning of the other coefficients is:

+
. - x; (£7,Pr; [£;]) (2.1.-1)
ooeTkg (L8 1)

+
1 vJ(fJ.,Kdli[fJ])

- = i ‘ (2010-5)
+
1 £ ,f -
J ( 3’ J)
+
1 - vj(fj’KLn+elyj'J [fJ']) (2 1 ..6)
1, (£50,2 ) o
JJ J J
1 x.v (£7,pr ,[f.,]1)
AN T Tl el It (2.1.-7)
Ay (t£t,r 1) o
JJ J J
with the operators:
— 1 —
Pri[f,]1 = v 3, (7,t) ¢ [= /fj(r,ﬂ,t)dﬂ (2.1.-8)

production operator



Kd,

J

(£,

s b
tn,j J

el,j'J

and

N

]

[£ ]

J

[£,1]

= 3
Ln,J'J
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-
Qegrad fj-rztot’j(r,t) fJ

- KLn,JJ[fJ] " Kop, 5515y (2.1.-9)

destruction operator

-

1 2> '
(r,) - EE./fJ'(r'n e (2.1.,-10)

inelastic scattering from group
j' to group J

- -
-/-Ze]_,‘]'_j(r’n'—’n’t) ¢ f‘jl(r’n'tit)dn' .
(2.1.,-11)

elastic scattering from group J'
to group J and from angle Q' to angle 01

integrated fission spectrum over energy domain j,

mean neutron velocity in group J,

neutrons released per fission in group jJ.

From these definitions, it can be seen that

is a multiplication factor indicating how many

neutrons are produced in group J by a neutron from

the same group j,

is the mean lifetime of a neutron in group J which

does not leave the group,

is the mean lifetime of a neutron from group j'

appearing finally in group J, or the slowing down
time from group Jj' to group j,
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A 4y 18 the mean generation time giving the mean time
elapsing for the production of a neutron in
group J caused by a death in group J'. Correspond-
ingly, AJJ = lJ_/kJ indicates the time for a neu-
tron to be produced by a neutron of the same group J.

All these coefficients can, in principle, be calcu-
lated by an Sp~code. Since the adjoint flux f+ is taken
for a reference stationary state, the system holds in
a "wicinity" of this stationary state only,

Though a 6-group stationary calculation by Mr.
ASAOKA ') was available from which the coefficients could
have been taken, the number of energy groups was re-
duced to J = 3 in view of the analog treatment, with
the following subdivision:

1. group: 10 MeV - 0,454 keV
2, group: O,L454 keV - 0,414 eV
3, group: O,414 eV - thermal

The odd figures come from the limits in the cross
section library. The advantage of the chosen subdivision
is that the first group contains the whole fission
spectrum. All neutrons are born in this group only
(xy =1, Xe2 = Xag = 0). Consequently, the multiplication
factors ks and ks are both zero; but ki will be less
than unity for a critical state because of the contri-
butions from the other groups. In addition, the inverse
generation times 1/AJ,J of the last two groups all vanish,

The third group contains the slow neutrons which
preferentially come from the H;O-scatterer,

1) see footnote on p. 9.
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It is further assumed that no direct scattering
from group 1 to group 3 exists (1/1,, = 0).

One observes that the equations for CL . and CL s
contain no source; therefore those precursérs imme~"
diately die out, and CLi can be called CL.

If we label A =1 /k , and A =A , A = A ,
1 i 1 2 21 3 31

for brevity, the system reads:

1 n, n, n, 6
n =|:1-B-k—:lx'+(1-6)|:A—+K-:l+Z7xC (241.-12)
t 1 1 2 8 11“ L -

. nz ni . ) .

1’12 = - i—- + T— o ) (2.1.—13)
2 12

N n n
3 2

n8 == r + T— - ‘ (2310-1)-'-)
3 23 ’

Q
I

ni n2 n8
o e e | e ] 6. (210m15)

For convenience, we define dimensionless variables

n, (t) R -
o (t) = ~— o (2.1.-16)
n : A
C ' '
and ¢ (t) = Lit) , (2.1.-17)

i.e. all variables are normalized to the initial value
of the first group flux.
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The reduced system looks exactly like (2.1.-12) to
(2.1.-15) when writing 9 instead of n and c, instead
of CL' but the initial conditions are

o o 12 0 12 13 )
= 1 = -— = o —
Cpi ’ 2 10 ’ Cpa 10
12 12 23

> (2.1.,-18)

3
B P
c® =—LZ—J— 1=1,2,3

if we start, as usual, from a steady state, This type

of start up is not the one really applied for the reactor,
as we shall see later on, but very convenient for ana-
log purposes,

Now we convert the ¢ into dimensionless powers
PJ by multiplying them with 1/A], respectively, a rela-
tion which can be derived from definition (2.1.-7).

In order to normalize the total power

3
P(t) = }iij(t) (2.1.-19)

J=1
to unity at the beginning (P° = 1), we find that

9, (t)

Pj(t) =4 e 3=1,2,3 , (2.1.-20)

J

where the normalization factor Z 1s

(2.1.-21)

Z =

1
3 1 1
Cp: — e o —m— f e—————— ¢ =
Z — A 1° A 1° 1 A,
=
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Of course, if some of the coefficients 1 or A
should be time-dependent, we must use their initial
values for (2.1.,-18) and (2.1.-21) (see expression
2.2.,-8).

The initial conditions for the CL(t) are

B
Q@ = - i-1,,..,6. (2.1,~22)
Y

group | decay constants | effective yields 1 BL

- el == -

i A [sec™] B, Lo N
1 0,013 0,00021Y 1, 342810100
P 0,032 0, 001325 3,3770,8+10°
3 0,12 0, 001223 8,31489¢10°
L 0, 32 0, 002650 6,7522810°
5 1,40 0,000815 b, 7493310"
6 3,90 0, 000173 3,62041°+10°

ZBL = B _
= 0,006

Table 1. Delayed neutron parameters

The system (2.1.-12) to (2.1.-15) or the equiva-
lent formulation with @j and cL is homogeneous, For
¢, = 0, 1t describes a steady state if the system de-

J

terminant vanishes (non~pulsed stationarity condition).

In order to generate non-trivial solutions, we must
disturb the system in some way. This is done by varying
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some or all of the cross-sections in the operators
Pr and K in time. Consequently, the coefficients k,

1, and A become functions of time,

The new, but not surprising situation is, in con-
trast with the usual kinetics equations, that more or
less all coefficients must be varied simultaneous-~
1y ).

At SORA, the modulation is performed by the perio-
dic motion of the reflector piece containing no fission-
able material (3p = const.). Thus, the production
operator Pr and the generation times A remain constant,

whereas the other quantities will vary.

Mr. ASACKA 2) has calculated the necessary coeffi-~
clents k and 1 for the two extreme cases

a) moving reflector absent,

b) moving reflector present,

with a two-dimensional Sn-code in Cartesian geometry,

His values are as follows a):

1) It may be emphasized that both modifications, periodic
wobbling and accidental disturbances, enter the system

at the same positions,

2) See footnote p. 9.

3) The assumed distance between moving reflector and fixed
fuel in the most active position is 10 mm,
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coefficient moving reflector ox
X absent present

%— 1,0L,0052 1,005925 0, 034127

i
%_ 0, 8851 0, 8014 0,0837

i
%—. 0, 006299 0,006116 0, 000183

2
%— 0,0002237 0,0002257 | -0,0000020

3

L 0,0001412 | 0,0001168 | 0,000024y || —
lip o

[8¢]
i 0 0 0 @
1is 0
e

%— 0, 0002593 0, 0002586 0, 0000007 || —

23

k

%— = 0,851015 0, 796680 0,054335

1 1

i—; 0,4657 0,475k -0,0097

%; 0, 006872 0,009917 | -0, 003045

Table 2, Basic values for the kinetics parameters

The first observation is that, in contrast with the
above statement, the é(ﬁr) are not zero, This effect is
possibly due to a violation of Mr, SCHWALM's assumption
of near-criticality (none of the two cases is a ceritical
state), in part also to geometrical simplifications in
the S,-code,

Whereas the relative variations &x/x are small for

1 and 1l y the absolute value of U is very small, The
Ay Ag As ,
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best way to proceed is to fit the AJ to common values
for reflector absent and present.

It seemed to be the best to determine first the
parameter values pertaining to the critical state lying
somewhere between the extrema. Since there is a unique
reason for the parameter changes, namely the wheel
motion, we assume a common variation law for all coeffi-
clents, though this is not fully proved.,

If we write

x(t) = x - oxor(t), (2.2,-1)

where f(t) is a normalized function between O and 1, then

o _ - . £O -

X0 = x_, - ox+f° , (2.2.-2)
and f° is the elgenvalue of the system for which it be-
comes steadily critical (i.e. with a certain wheel

angular position),

The contributions of the delayed neutrons cancel
when computing this eigenvalue, By setting B = O one
gets the following homogeneous system from (2.,1.,-12) to
(2.1.-15):

0

1}
1
—
!
|.L
- —
o)
o
6]
+
o
TN
N
~
H
o)
|
L]
|
.;>j
(=Y
- —
)
o
w
1
O
N
:>'—*
|.L
~—
=
L%
o]
B» O

(2.2.-4)
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(2.2,-5)

By equating the system determinant to Zero, r° comes

out from a fourth degree equation to be

° = 0,82693%518,

The corresponding critical coefficient values are:

coefficient | eritical value
XO
%— 1,0118312440
1
1 \
i 0, 81 5623
%; 0, 006148
%; 0, 000225%
112 0, 0001210 N
1 o
0
T , 0002587 8,
%; 0, 806085 -
.1
Kz— 0,L4737
1
v 0, 009390
A )

Table 3, Critical kinetics Parameter values

For consistency reasons with SCHWALM's model we
attribute the determined 1/A? values to both positions
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"reflector absent" and "reflector present'" so that the
6(1/AJ) become zero,

Due to the new extreme values for 1/A, = k;/1; and
because we will not change the 1/k1—va1ues, the new

extreme values

1 = 0,838370-10%sec”
1l1,abs
- L = 0,810816+10%sec™"
1,pres

rollow, and a(%—) is reduced to 0,027509+10%sec™!. But
1
this does not matter, since 1/1; does not explicitly

appear in the equations,

If we define, to compare with the usual kinetics

terminology

Ai 2 Ai 2 3
k =k |1 + — o po— e 2k e
eff 1[ A 1 A 1 1 ] N A
3

(2.2.-6)

=
=
-

we can verify that keff is of course unity. We note also

that, as already mentioned, k1 is always less than keff'

Apart from the "consistency modifications", we observe
that the relative variations for 1 - 1/k, are about 300 %,
for 1/14, about 21 %, whereas for 1/1,, 1/1;, and 1/1,,
they are as small as 3 %, 0,8 %, and 0,3 %, respectively.

In order to simplify the analog simulation (in parti-
cular to economize multipliers leading to procedure
errors), we have decided to reduce also 5(1/1z), 6(1/13),
znd o(1/1z5) to zero, and to take their corresponding
critical values as constant parameters, In this way, the
number of input places 1is reduced to only two, namely
for 1/ky and 1/1l4z.
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Besides, it was shown by Mr. SCHWALM's digital test com-
putations that with these 2 inputs the approximation to

the result with 5 input places is alreeady good.

The initial values for 1/ky and 1/145, built with

O are
1 1 1 0
. s} e0 = 1,011831240 (2.2.-7)
o] k .
ki 1,min 1
-1
12 12,mi,n 12

(2.2.-8)

They are of course equal to the critical values of
table 3.

Till now, we know somethingz about the absolute vari-
ations of the parameters, but still nothing about the

shape of the universal function f(t).

For this purpose, Mr, RIEF 1) performed a number of
Monte Carlo calculations for successive stationary
states when turning the wheel, giving keff as func tion
of' y, the position of the moving reflector midplane
against the window midplane. The geometrical window
width assumed is 11,3 cm. The distance from the moving
reflector to the fuel is here only 4 mm, in contrast
to Mr. ASAOKA's assumption. This discrepancy is some-
what disagreeable,

Since the reflector speed is fixed at 2,76.10%cm/sec,
1 em of the y-coordinate corresponds to 36,232 usec.

The given basic table is 2):

1) Personal communication.

2) These values were calculated for a reference reactor design.
Better values are expected from the critical experiment.



point no. yL t; keff

1 [cm] [sec] extra-
0 0 0 (0,9890) gg%ﬁged
1 -0,5|-0,18116+10"% | 0,9885

2 -1 -0,36232+10"%*| 0,9880

3 -2 -0,72464107% | 0,9862

L -3 -1,08696+10"%| 0,9837

5 ~4,5 |-1,6304310"% | 0,9798

6 -6 -2,17391107% | 0,9735

7 -10 -3,62%19107% | 0,9588

8 - - o 0, 9400

Table 4. The Monte Carlo calculated reactivity input
]
kepp(t')

The somewhat tedious conversion of these given data
to the desired function f(t) is described in appendix I,
in order to not interrupt too much the drift of the

paper.

The result is ’

0 if ) t ¢<-415,004 usec
f°+—g1t if -415,004 useec <t <+ 26,013 usec
f(t)::Jpo+p1t..p2t2 if + 26,013 usec <t <+269,379 usec
go-glt if +269,379 usec <t <+710,396 usec
0 if t > +710,396 usec .
(2.2.-9)

I

f(t), where
2+*10~ % sec

f(t) is periodic, f(t + T)
T

1

is the period length.
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The coefficients are:

f° = 0,826933518 D = 0, 821392546
g = 1,41553902 p, = 2,41856839¢10% sgec™?
o}
g = 1,992591+10%sec p = 8,18763-106 sec™®
1 2

Up to this point, the overall level of the pulsed
reactivity is arbitrary with respect to the "steadily
critical" level keff = 1, It is known from the theory
of differential equations with periodic coefficients
that the time average of the pulsed reactivity is by no
means unity but always lower, if the solution (the
system output) should be periodic, Methods for calculat-
ing the mean antireactivity to make the output periodic
if the input is an arbitrary periodic function are not
known in general. Of course, the periodicity condi-
tion is independent of any condition for '"steady
criticality".

In order to solve the problem semi-empirically we
introduce a "supplement" e (to be realized by a shim rod
in real performance) which we add simply to f(t)., This -
e must be adjusted by hand by comparing the amplitudes
of consecutive pulses of some output variable, The only
value € leading to the periodic solution shall be

called €, ¢¢ crit
on the unessential original position of the input pulses

Of course, the magnitude of ¢ depends

we had chosen,

Seeing that the top value of keff’ computed from
Mr, ASAOKA's data, remains still below prompt critica-
1ity 1 + B (ef. fig. 1), it is obvious that the entire
input must be shifted upwards to reach a periodic solu-
tion.
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The observation technique to determine Copit shall be
described later on., Here it is sufficient to know that
the starting point f° lies on the increasing straight
flank. Lifting the curve when this point stays where
it is means that the connection point of straight part
and parabola moves away from the start point and the

latter remains more than before on the straight part.

Simply shifting the input curve in the ordinate
direction would, however, disturb the originally con-
sistent set of initial values for the next run so that
a new reproducible start would become impossible, The
adjustment of f£(t) must obviously be performed in such
a way that £(0) = f° will be maintained whatever the
adjustment parameter e is,

If we shift the f(t) not vertically but along its
straight flank, each shifted curve intersects the
fO-level at the same point t = O. This means that we
must, when modifying the level of 1/k1,abs’ at the same
time shift the phase of f(t) by the suitable amount,

We introduce a shifted time variable

T =1 - -8_— (2030-1)
g

for use on f only 1). The representation given above for
£(t) (2.2.-9), and also the limits of straight line and
parabola domains may now be valid for the argument <.

1) This time shift means only a modification of the origin in
the DFG-unit (Diode Function Generator), and brings no com=-
plication into the simulation process. Of course, the pulse
peaks will then occur at different times according to ¢,
later on, but the absolute time counting, referred to
t = 0, is without interest,
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For any time dependent coefficient x(t) of the
kinetics system (2.1.-12) to (2.1.-15) holds (cf. 2,2,-2)

x(t) = x - ox+[f(T) + €] , (2.3.-2)

abs

and it can easily be seen that

x(0) = x S-GXo[f(m) + e] = X

S-—éx-fo (2.3.~3)
t=0 .

ab ab
is independent of e, since f(t) = f°-+g1.T in the region

in question.

A check calculation was performed with the aid of
the MIDAS digital program 1). It gave, always with the
same initial conditions, the height of the first pulse
as a function of e. As mentioned, for € = O the pulsed
system is highly subcritical so that the first power
pulse height is still much lower than the expected value
for the periodic solution (about 200 times the mean =
initial value), namely 6. Increasing € up to 5,5+107%
gave Pmax/P = 198. The value found subsequently on the
analog computer

—_ ') -2
€erit = 7 5,495°107%,
lay exactly on the interpolated MIDAS curve (see fig.2).

This agreement is one proof that the analog program
worked well,

1) MIDAS (Modified Integration Digital Analog Simulation) is
a_computer program direct outgrowth of DAS Digital Analog
S3imulator) for obtaining a digital solution on IBM 7090

or IBM 7094 for systems of ordinary differential equa-
tions.

Mr., 4'HOOP's collaboration for MIDAS programming is here
gratefully acknowledged.,
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The overall characteristics of the “stationary"
output pulses have been studied earlier by MISENTA (see
also [4]). From there we know that the ratio between
peak power (pulse top) and minimum power (between pulses)
can surely be made larger than 600, The delayed neutron
precursors are responsible for the background power,
for they behave essentially like a constant source;
their decay times are much larger than the SORA pulse
period.

On the other hand, STIEVENAERT [5] observed that in-
creasing the input reactivity span above 58 does not
much improve the output characteristics,

The power value at the end of each interval between
pulses is the initial condition of the power at the
beginning of the successive pulse, Wishing to read
with comparable accuracy both peak- and minimum-power
values on a PACE 231 R computer, whose reference voltage
is 100 V, two methods were investigated to overcome the
difficulties arising from uncertainty in reading voltages
below 1 V, namely

- the variable transform method,

- the scale factor change method,

The first method consists in considering the loga-
rithms of the strongly varying variables, For one kinetic
equation and I precursor equations, this leads to trans-

th order into a nonlinear

form our linear system of (I+1)
system of RICCATI's type of order I. Because of the cross-
products of all I+1 dependent variables, a lot of mul-

tipliers would be needed.
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The new kinetic system is closed. But, in order to
get the input to the system of thermal equations, one
needs the power in original and not in logarithmic 4
scale so that one comes back to the same dilemma as

;oon as the frame of pure kinetics is left,

In addition, for SCHWALM's system with more than one
kinetic equation, the same equivalence as between a
linear equation of second order and a first order RICCATI
equation no longer exists, as one can show mathema-
tically. Thus, the recourse to the scale factor change

method is imperative,

This method consists in changing the scale factor
automatically when crossing some fixed voltage of the

. . . 1
most sensitive wvariable ).

Since the reactivity pulse length covers only about
5,6 % of the whole SORA period T, and the behaviour of
the reactor is substantially different during those
5,6 % and the remaining 94,4 %, it is convenient to
examine this behaviour with two different scale factors,
This on one side allows the expansion of the reactivity
pulse length to cover a machine time which is enough
to visualize the excursions of the most interesting
variables; on the other side it keeps the machine time
length of the interval between pulses within an exten-
sion such that even after 4O - 50 pulses the operational
components' drift has no significant influence on the
results, For the fast time scale a factor of 10° has
been chosen and for the slow time scale a factor of

*)

It must be pointed out that with the new generation of

computers, such as, e.g. DES 1, the use of floating point

arithmetic eliminates the need for amplitudes scaling.
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0,5+10%, The whole system has then been split up into

two systems ¢f equations:
- 8; with reference to the reactivity pulse,

- S, with reference to the interval between pulses,

Details will be given in paragraph 5.1.
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Heat transfer

The heat transfer from fuel through the canning layer
to the coolant and out of the system is described in
order to take into account the thermal feedback on the
.ne reactivity or equivalent quantities via the temperature
coefficients,

Let us suppose that during the power pulse the
system is thermally insulated, or that the heat diffusion
from a fuel element 1is negligible. The mean power of the
reactor is 500 kW, Since about 80 % of the total energy
is generated during the pulses (results of MISENTA for a
reactivity change of 5 B) the pulse energy E° is in the
order of 1850 kW sec/m®., The fuel temperature rise is
ATg
fuel temperature remains almost constant, and still more

= EO/chF = 0,8 °C in each pulse, This means that the

the coolant temperature because of its large time constant
and the corresponding smoothing.

In other words, for the "non-disturbed" pulsed state,
the thermal equations describe a quasi-trivial behaviour
>nly. If not carefully scaled, no temperature oscillations
will be recorded. The temperature coefficients are anyhow
ve~y small (some 10_6 (°c)™!, see paragraph 3.5)so that
practically no feedback exists.

The knowledge of the applied reactivity ihput(magﬁitude
of f(t) times 6(%:))18 probably not better than + 1073,
whereas the amount of the temperature feedback-reactivity
is only about 10_6. The feedback provides thus only a
practically imperceptible modification of the input reac-

tivity pulse within e broad uncertainty band,

However, the conclusion that the thermal feedback is
completely inefficacious would be not right., Whatever the



input pulse shape may be, known or unknown, periodicity

is achieved with just one reactivity level, in particular
near the top. The output, the power pulse height, is extreme-
ly sensitive against modifications of this level. Any ad-
justment only by hand would be very difficult in the simu-
lation with its extended time scale and impossible in the
quickly pulsed true performance by a shim rod., The nega-

tive temperature feedback, however small it is, provides

just the automatic servo system for keeping the reactivity
on the right level,

The larger is the reactor power, the larger are the
periodic temperature variations, thus the stabler is the
reactor, If a prototype of small power can be governed,
this will be somewhat easier for a large performance 1).

Consider now perturbations from fhe periodic state,
Only here, temperature changes could reach large amounts,
In view of these excursions, the heat transfer equations
shall be established with care. But before, it cannot be
well decided, if all the expense for the thermal model is
justified 27,

3.1. Fuel heat balance

——— T i (. T T " V.

The heat balance of any volume is the equation of

FOURIER:
18T - ger s low (3.1.-1)
a o k
where
T = temperature
a = k/pc = thermal diffusivity
k = thermal conductivity
p = .density

1) Apart from the start-up procedure.
2) In fact, it is not, as we shall see later.
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¢ = specific heat
v? LAPIACE operator
w

heat source (per unit volume and unit time),

The coefficlients a and k are supposed to be temperature-
independent.

The input W is generally a function of space and
time. In our case (point reactor model) it should be a
function of time only.

In order to simplify the geometry we choose a simple
fuel rod, the properties and behaviour of which are
consldered as representative for the reactor. The heat
conduction in axial direction is neglected égainst the
one in radial direction.,

The only space coordinate occuring in v? is thus r.
Our equation becomes (the subscript F refers to gpel):

1 T (r,t) a*7r (r,t) 1 9T .(r,t) 1
S R ’ - F 2’ + __F_._:._.+ -—-W(t).
F at | or r or - kF

a

(3.1 0—2)
The boundary conditions are: |

aTp(r, t) |
s = 0 (finiteness in the axis)
ar r=0
(3-10—3)
8Tp(r,t)
~kp T = hpg ':TF(RF,t) - Ts(t):| (outflow).
r:RF

(3.1.=4)

The second condition, which gilves the heat flux at
the fuel surface (radius r = RF), is a boundary condition
of third kind, hFS is a heat transfer coefficient to be
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defined below, and TS(t) is the steel cladding tem-
perature, ‘ ’

The specific difficulty is that both inputs W(t)
and TS(t) are time dependent, either in a given manner
or as other variables of the complete set of differential
equations.

To prepare the problem for an analog computer
treatment the space derivatives must be eliminated in
some way, In fact, the whole space distribution of tem-
perature is not interesting, but only some local tem-
peratures, say, in the axis, at the surface, and a mean

temperature,

The solution has been given by Mr. PALINSKI [6]. The
essential steps of his derivation are reproduced in
appendix II,

Here we give directly the result:

a _ aF o ) S _
; ATF = g [W P(t) WL(t)] ‘ (3'1' 5)
with .
8k =
= —F AT (t)- t) + T -T2 —E r (t) |
WL(t). (1+p)R§, {:[ATF(t) ATS( )+ F S:l n=1an n( | :}
(301u-6)'

The symbols should be read in appendix II,

The cladding layer is thin enough that we may con-
sider a unique temperature TS(t). The respective heat

balance has the well known form:
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2 M (v)
-— AT (t) =
at o
25 (P (h) - (t) = AT, (t) + 10 - T
= 2 T W (t) = ——— ho AT (t) = AT (t) + T2 - .
k { 2 2 L 2 2 SC[: S C S C]}
s \r? - R R® RE B _,

(3.2.-1)'

Tc(t) is the (radially) averaged coolant temperature,
Because WO is a specific power per unit volume of fuel,
some geometrical correction factors occur in the above
equation. RL is the inner radius of coolant ring, equal
to the outer cladding radius,

The only difficulty is that hSC’ the "heat transfer
coefficient between cladding and coolant" has no signi-
ficance for liquid metal cooling if interpreted in the
usual sense, This willl be discussed at once.

Coolant heat balance

The coolant of SORA is eutectic NaK., The molecular
heat conductivity kC of such a coolant is very high,
compared with that of water, e.g.. In fact, the heat
transport by conduction is much more important than that
by turbulent motion of the liquid,

Consequently, the derivation of an. appropriate
coolant heat balance equation calls for some rigour
though we will - with a trick - obtain an equation which
is formally equal to known balance equations. Details
are given in appendix III, '

Here we give directly the result:
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total
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d _ a 2R
— AT (1) = 2 —L
_ne
at ko RZ R
2w —~
- — | AT (1)
. L ¢
with Kk
h.o. = ==
SC T R

a

core heat output

number of active fuel rods
fuel radius

rod length

fuel volume

power density per fuel
volume unit

fuel thermal diffusivity
fuel thermal conductivity

bond. thickness

bond thermal conductivity NaK

cladding thickness
cladding thermal
diffusivity

cladding thermal
conductivity J

heat transfer coefficient
fuel - cladding

51,222023 .,

\ (Incoloy)

= hgg | AT7g(t) - AT, (1) + T2 - Tg]

2 - Tgn] » (3.3.-1)

(3.3.-2)

500 kW

107

7°10"% m

0,24 m |
3,9531¢10% m®

1,261,82+10% xW/m®

5,68-10-6 m?/sec

0,0138 kW/m °C
2¢10"8 m
0,0253 kW/m °C

261073 nm

Li,92-10"6 m?/sec
0,0183 kW/m °C

42,72 kW/m2 °C



P PALINSKI's parameter 0,18459

PALLINSKI's coefficients:
—
n 1 2 ) L 5 7 8 9
pn|kL,92718,083(11,173114,249(17,324| 20,404 (23,488 26,579] 29,674
&nl2,81417,574 |14,472|23,53634,791|48,257]63,952| 81, 887|102, 074
o | 0,479 0,407 0,408] 0,366| 0,324] 0,286] 0,251 0,220| 0,194

R, inner coolant channel radius 7,54107% m

_ 2N 3 "outer" coolant a4 =3
Rg (‘ P RL> channel radius 7,87564107% m
Fao fictive heat transfer surface 1,14301072 p?
between cladding and coolant
(per channel)

ag coolant thermal diffusivity 3,4310"5 m?/gec *)

k, coolant thermal conductivity - 0,0253 kW/m °C )

hg, heat transfer coefficient 164,55 kW/m® ©C

cladding-coolant
w coolant velocity 6,00 m/sec
Tin . t oC
c ,coolant inlet temperature 200

Tgut mean coolant outlet temperature 250 °C

‘1) properties refer to 230 °C
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Initial wvalues:

TS 298,11 ©°C
T3 231,61 °C

To o
3 . 229,10 °C

Other interesting values:

Vcore active core volume 5,004¢10"3 pB

volume fractions:

fuel 0, 79001
NaK (eutectic), total 0,13889
NuK, coolant only 0,09310
Incoloy 0,07110
power density, average 10t%2 MW/m® (of core
volume)
average heat flux through
cladding surface _ 41,32 W/cm?
coolant flow rate through

active zone 9,5281 kg/sec

The coefficients of SCHWALM's kinetics system are all
more or less temperature dependent, Let once more x be
one of these coefficients, then

x(t) = £[AT, (t)] (3.5.-1)

where, in our case, the AT, are the temperature deviations
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of fuel, cladding, and coolant, respectively, from their

initial levels,

Let us develop £(AT,) into a TAYLOR series about the

origin:
X(ATL)ZFX +Z 'a_z‘%— ’ .ATL+ ss e
AT =0 L AT; =0 S
* R (3-50-2)
X is the value pertaining to the start temperature
distribution.

We may stop the development after the first order
terms if x depends linearly or almost linearly on the tem-
peratures which is generally assumed for simplicity.

The first-order partial derivatives with respect to
the temperatures, divided by the quantity itself, are
called the temperature coefficients YL of the quantity
in questioni '

T x T | o . (3.5.-3)
%

Since the temperature propagation is rather sluggish
compared to the power variations in our pulsed reactor,
a marked safety or dangerous effect can only come from -
the most prompt temperature reactions on power, i,e,
from the fuel zone, . ' '

The calculation or estimation of the numérical #alﬁes
of the coefficients concerns mainly neutron physics,
Mr, RANDILIS has kindly furnished the data asked by us 1).
Here we give only some physical considerations,

1) Personal communication,
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© The fuel temperature effect consists of a material
expansion and the known DOPPLER effect, the uranium re- -
sonance broadening when heating up the neutrons.

The radial dilatation is allowed by the NaK bond,
thus giving no modification of the average fuel density
in the core, On the other hand, the axial expansion truly
lengthens the rods, which leads to a negative contribution
to the fuel temperature coefficient,

The DOPPLER contribution has been found to be slightly
positive, about 6 times smaller than the former one.

Now, the positive DOPPLKR coefficient is, without any
delay, coupled with the fuel temperature. The expansion,
however, comes a bit later, for it can propagate only with
the velocity of sound.

Mr. RANDLES has solved the wave equation for the rod
applying a temperature step at the beginning. The time
required for the rod to reach again its natural length is
about 120 ps for one end fixed, and about 60 pus with both
ends free, hence in the order of the power pulse width,
in both cases, One can estimate that for, say, 10 or 20 us
the overall fuel temperature feedback is slightly positive,
after the temperature has undergone the step, Later on,
the negative expansion effect becomes dominant.

Apart from the fact that the temperature rises only
according to the power release, the possible positive
reactivity contribution is at best +O,5°10- for a normal
pulse, This means a modification of the applied reactivity
pulse shape by a very small amount, nothing else. To reach
larger contributions, larger temperature steps, and con-
sequently larger pulse powers, would be needed. For
instance, for only +1 pcm DOPFLER reactivity, the power
pulse should be the 20 fold of the normal one, and this
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from one pulse to the next, since meanwhile the expansion
effect has destroyed the positive contribution,

Such events are by far outside the rangevwe intend
to master with an automatic control, since one would
need several hundreds of pcm to call them forth, whereas
200 pcm already cause melting., Of course, in those cases,
if at all possible, an emergency shut down finishes at

once the process. \

The conclusion is that, for normal transients, we can
safely add the two fuel coefficients together so that the
sum is negative.

Possibly, the bowing of the rods could provide a
further negative (stabilizing) feedback, Since all tempe-
rature coefficients play the part of parameters, a further
small modification of the anyhow negative fuel coefficient
cannot much change the transient response so that it has
been omitted,

Mr, RANDLES' temperature coefficients are all calcu-
lated for the reactivity keff of a one group model, Since
the rdle of Mr. SCHWALM's fast group multiplication
factor k, is so dominant (because of the difference 1- %:),
the above temperature coefficient can be applied also
to k;y with a very good approximation,

Let vy, be one of RANDLES' temperature coefficients,
defined by (3.5.-3), then

13 (1 -
T/k; 3T, (E:) = =YL . o (3.5.-4)

All temperature coefficients to épply for 1/k1 have
the same values as given originally, but with inverse
sign.
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The next question is, how is the feedback influence
on the other coefficients of the kinetics equation system.
As already indicated in paragraph 2.2.,, the relative
changes of these coefficlients are very small with respect
to 1 - %: . It is therefore justified to neglect the feed-
back on them, and no effort has been made to calculate
the corresponding temperature coefficients,

Let F(t) be the feedback contribution to 1/ki, then
F(t) = vpaTu(t) + vgaTg(t) + voaTg(t),  (3.5.-5)

and expression (2.3.-2), written for 1/k;, is completed
to be

k12§> = - 5(%‘)'[%(1) + 6] + F(t). (3.5.-6)

1,a8bs 1
The numerical values of the temperature coefficients are

= -5,51+1076 (°c)~*
Tg = —6,90-10’6 (°c)-t
Yo = =2,70+107° (°0)"t

but must be applied with positive sign for our inverse
quantities,
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4. Control

It is obvious that reactivity corrections for SORA
must be performed by means of an automatic control rod. Due
to the extreme sensitivity of the system, it can be expected
that the reactivity worth of this rod may be rather small,
Its movement may neither be too slow so0 as to compensate a
moderate run-away of the power nor too fast in order to
avold permanent convulsions due to noise,

; The first task when attacking this problem is to

study from a technical point of view which quantities
could serve as input for the control system. Mathematical-
ly, this is at first sight the power P(t), but, after
careful examination, it revealed that there is no con-
venient measuring apparatus for such a rapidly varying
guantity.

After all, the gquantity to be maintained on a de-
sired level is not P(t) but its time average over a period:

P(t) =:; /P(t)dt. (Lo1e-1)

Only deviations from P(t) should excite the control. -

When integrating P(t) e.g. in a measuring chamber,
formula (4.1.-1) demands to clear continuously the same
time span at the lower limit as is added at the upper
limit. Such a measuring device is practically not feasible.

These previous considerations call for the period
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energy as control input 1). We suppose to integrate the
power from the discrete time t, after the (m-1)th pulse
till the same time after the m-th pulse, distant by the
period length T, By multiplying the integral with W° we
obtain the energy

€m+-T
Ep = W° / P(t)at (4o1,-2)

tm

of the m—-th period.

En is a sampled quantity. Consecutive E's are equal
as long as the power P(t) is periodic but change if there
is a disturbance, At each point %, the counter is reset
to zero in order to be ready for the integration over the
next period.,

Let

EO = WOT ‘_ (4-10-3)
be the known reference energy of a period, then the de-

viation
8Ep = Ep - E° (’-l»o“,-"’-l»)

is zero for periodic operation.

The figure 6E, is stored during the (m+1)th period,
where it is a convenient control input. It is to be
noticed that this signal inevitably enters the control
only one period length later than it was generated.

It is obvious that the points t should 1ie somewhere

1) Mr. EDER has suggested using a peak-reading voltmeter and
controlling on the maximum of P%t). This alternative is
possible on account of the near—proportionallty of P and

Prex (see fig.10).
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between the pulses where the reactor is unsensitive in
order to get time for the counter switchings, A similar
recommandation holds for the simulator. In fact, we
choose just the points where the time scale factor pad

to be changed, and when the.system was anyhow stopped for
about one second of machine time, |

1

If we deal with such fast processes as it 1s the
case for SORA, we must carefully describe how the input
signal 6Ey 1is belng transduced into a control reactivity.
Introducing a factor to convert the dimension and possibly
a (pure) time delay would be by far insufficient,

Several 1deas about the most sultable driving mecha-
nism had been studied which we will not all discuss in
detail °

The application of a stepping motor, performing a de-
finite number of steps (1 to L4) between consecutive periods,
according to the magnitude of 6E;, had been considered.
However, a motor with the desired characteristics is not
feasible,

A dead-band, 1.e., a strip around &8Ey = O where the
control device should remain insensitive, was long in
discussion, in order to avoid rod convulsions due to noise,
This question could be answered by the simulation itself:
the dead-band is not necessary 1if the time-constants are
suitably chosen (see paragraph 5.4.). 4

- In fact, we take now the guantity OEp, amplify it
sultably by a factor x» and feed it to the excitation

windings of a DC motor. The equation of this motor is
assumed to be:
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aK(t) d?K(t)  aK(t)

AB — + B ———— + = %8k L,2,~1
. at3 at2 at m ( beco )

Here, K(t) means the rotor angular position so that
dK(t)/dt is the rotational speed. Obviously, if the exci-
tation is zero, the motor is at rest, but at an arbitrary
position K, since K does not appear itself and its initial
condition is not defined. This kind of control is called
"velocity control", It is necessary in order to let return
the reactor to the same power it had before it was disturb-
ed 1).

B i1s the elctromechanical motor time constant, namely
its total inertia (of rotor + 1oad) about the rotation
axis, divided by the friction factor.

The other time constant A is that of the armature
circuit, namely its selfinductivity, divided by its ohmic
resistance. For a good performance, the selfinductivity
is so small that A can be kept below 0,1 msec which is
negligible against B.

Consequently, the first term of (4.2.-1) can be can-
celled, The equation is only of first order with respect

to K(t) and has no possibility of resonance frequencies.

There remain two degrees of freedom, namely the quan-

tities x and B, which can be optimized.

The desired behaviour of K(t) is a smoothed but not
too slowly declining oscillation as response to any dis-
continuous change of the input 6E;, with as small as

possible overshoots.

1) In the language of transfer functions: A pole in the
s-origin is necessary.
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In order to translate the angular position K(t) into
a reactivity we choose a rotatory rod 1) where a certain
sector or segment is made by reflecting material whereas
the other part is empty or neutron absorbing. This is not
difficult because the reactivity worth must anyhow be
only small (10 pem, as we shall see). With a proper geo-
metry, the charucteristic can be made linear, i.e. the
reactivity proportional to the angular position within
an angle of 180°, |

The rod is, by a shaft and without gearing box,
directly coupled with the rotor. In this way the load is
minimized, because no weight must be moved by the motor,
The common axis is vertical, and the position of the
automatic rod can be somewhere in a hole of the fixed

reflector,

The load (shaft + control rod) inertia should be
small against the rotor inertia, as we shall see later

on,

If the rod contains no fissionable material, its
action on the kilnetics system 1s just like that of the
wheel reflector, i.e. mainly on 1/k; and 1/1l:5. A8
already mentioned for the temperature feedback, it is
not worth considering the small contribution to 1/1ia,
compared with the large one from the wheel reflector,
Therefore a new modification of (3.5.-6) '

i . 2 - 5<%:> [?(T) + e] + F(t) + K(t) + D(t)

ki(t) ki,abs

(4.2,-2)

1) Proposal of Mr., LARRIMORE
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is sufficient.

K(t) is the above control contribution, and D(t)
may be an intentional disturbance, the true input for
the runs describing perturbations from the periodic
state.
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5. Computational aspects and results

With reference to paragraph 2.4, two systems of equa-

tions are taken into consideration:

- 8; which describes SORA behaviour during the
reactivity pulse length,

- S5 which describes SCRA behaviour from each
reactivity pulse end to the beginning of the

successive pulse.

S, end conditions are S; initisl ones and vice versa for

successive pulses,
Furthermore, S; includes three subsystems or '"groups':

- the first one (00) refers to lower values of all
variables exceeding sometimes a certain given

reference level,

- the second one (01) refers to upper values of all
variables exceedling sometimes a certain given
reference level,

- the third one (02) refers to other variables,

Sz 1is only one "group" (03%),

Hence, it appears that the treatment of SCRA squa-
tions on an analog computer can only be performed if one
disposes of both analog and digital computing facilities.
Actually, this is a typical case of analog computation
under digital control [8],
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At CETIS-CANA electronic leboratory, a SIOUX t) unit
has been constructed [9]; through pulse instructions it
allows the following '"modes" of operation for integra-
tors:

Initial Conditions (IC)

Operate (op)

Hold ' (H) .

An integrator, controlled through SIOUX 2), can only
be put in IC, for instance, when the relative pulse gets
to its IC coil; hence, the definition of '"group" becomes
evident 1n as much as it defines components operating

in the same sequential '"mode",

CETIS has contributed the report [10] in the defini-
tion of a special language for drawing computing block
diagrams; according to the above concepts, they will from
now on include both analog and numerical components ° .

Fig. 3 a) and b) represent:

- a) the "group" or snalog element of the hybrid
block diagram; it is a vector, Through IC, OP, H

instructions can be given to the "group";

- b) the "command program" or numerical element of the
hybrid block diagram, which possibly includes

1)

2)

Sequential Iterative Operation Unit X groups. Version 2 of
SIOUX has been set up so that it could easily be inserted
on a PACE 231R console and patched with normal patch-cords.

SIOUX is suitable to control problems such as: a? automatic
scale factor change, b) boundary conditions, c) iterative
processes in general,

In the writers' opinion this is the best definition of the
notion of "hybrid".
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manual commands (MAC).

In Fig. 3 a) and b), the instructions are represented
with dotted lines, starting from the command and getting
to IC, OP, H. Such instructions can be delayed through
delay units (CD).

The sequence of SORA '"modes" of operation is shown
in fig. 4. The first period starts manually by putting
groups 00 and 02 in OP, while groups 01 and 03 stay in
IC; 01 tracks the variables of 00, A comparator of group
00 marks the crossing of a certain reference level, puts
the 00 and 02 in H, and, after some delay for the time
constants of the R-C initial condition network, O1 and
02 in OP; 03 remains in IC etc., according to fig.lh.
After the end of the first period the process starts
again automatically through CD4i.

Fig. 5 gives the hybrid block diagram which refers
to the sequence in fig. 4.

APACHE [11] *) ana saTamas [12] *) have been used
for programming the classical part of the dynamic system.
All variables, excepted fluxes and powers, have been
treated as perturbations and recorded, excepted for a
limited number of cases, on 8-channel recorders, because
of the unusuel length of the runs.

In addition, the particular feature of the SORA
control loop (definite integrals to be stored) requested
special external circuilts 2); for these, manual programming
techniques have been adopted. Such circuits were prepared
in close collaboration with CETIS-CANA electronic labora-
tory.

1) Analog Programming And CHEcking
Semi AuTomatic ANAlog Setting

2) for whose set-up Mr. Van WAUWE's valuable collaboration is
here gratefully acknowledged.



As already mentioned in section 2, we must first
reach the periodic, non-perturbed state as the initial
state for the disturbances. Though the characteristics
of the periodic pulses were approximately known by
digital computations of Mr., MISENTA and of Mr. SCHVALM,
this part of the work consumed more time than the sub-

sequent disturhance runs,
The following variables have been recorded 1):

- the input £(t)
- the output P(t)
2
- the output P( )(t) (upper part of P(t) only)

- the integrated power [ P(t)dt (definite integrals
over one period)

- the precursor density ca(t) - cg

- the fuel temperature ATF(t).

All dependent variables become periodic with period T,
as repeatedly said, for one and only one value of e
(= ecrit)’ which we can therefore call the pulsed criti-
cality parameter., It is independent of any criticality

parameter (e.g. kw) for steady state.

When checking the periodicity of all recorded variables,
it turned out that the most sensitive reading was that of
ca(t) - cg because the precursor density changes from
their initial values are anyhow small and can be represent-

ed by the whole available ordinate,

1) The recording precision has not been embellished., Slight
disecrepancies must be seen in this light.
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The critical value found in this manner was
- ® -_2
acrit - +5’Ll-95 10 [
The input, shifted by just this value, is also re-

presented in fig. 1 (so0lid curve).

The critical values for periodicity pertaining to

Scr‘it are.

o), oo () [ 7 ense
= -8&(==\Ye11 + ¢ = 1,00’4050
<k1,max k1,min K, crit -

crit

k = 0,995966,
< 1’max>crit

Note that the maximum k1 is below unity, as it must
be, because of the contribution from the other energy
groups.

With € = 0, the not corrected maximum was

k, = 0,994110 so that the applied e-shift corres-
ymax

ponds to a Ak, = +0,001856,

The minimum values are:

1 1 1
f—— = =08} O0 + ¢ = 1,038177
(ki,min> k1,min <k1> [ crit] ’

crit

<k11m1n> = 0,963227.
crit

For the critical extrema of 112, we got

1 1 <1>[ :l o4
—_— = -5 ‘11 + 6 w 1,158¢10° se0
(119,max> 11z,min 112 crit '

crit
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1 > 1 < 1 > .
= ...o — ) 0 O + = 1 o 4. '_1
1 1 € 399+10 .
< 12,min erit 12,min 112 [ crit} ’ sec

For K_pp» defined by (2.2,-6), we found

(keff,max> = 1 ,007212
crit

<keff,min> = 0,976401 .,
crit

The overshoot over 1 + 8 = 1,0064 (prompt criticality)
is thus 0,000812 or 81,2 pcm,

The Akeff between maximum and minimum is 0,030811 or
about 4,8 B,

All these values can be seen on fig, 1, where the solid
curve 1is the input pertaining to pulsed criticality.

The period averaged value of keff is as low as 0,977118,

thus not much different from the background level,

The resulting output P(t), as it came out with scale
factor changes, is represented in fig.6. In fig.7 the
same output is plotted in a logarithmic scale,

These graphs confirmed Mr, SCHNVALM's previous cal-
culation to such an extent that it was not necessary to
record also the group powers Pj(t), or group fluxes nj(t).
Their recording would have been somewhat expensive due
to the scale factor changes also for these variables.

From the figures one reads the following characteri-

stics:
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- the power maximum is 194 times as high as the
mean power,

- the power pulse width at half its height is 68 usec,
- the pulse decrease is steeper than its increase,

- the power maximum occurs 55 pusec after the reacti-
vity maximum, just when the reactivity falls again
below 1 + B,

- 80 % of the period energy is released in the pulse
itself,

When looking at fig. 8, we must consider that the first
power pulse 1s always incomplete, because the start of the
run is on the upper part of the increasing straight flank
of the reactivity pulse. The corresponding peak values of
the variables may thus not be considered when checking
the periodicity of the solution, nor may the power inteQ
gral be taken for the control input,

Nevertheless, it turned out that the set of initial
values lies so well on the desired particular integral
that practically no transients could be observed, The
second pulse is already representative,

———— —— o - o ot 1 e B e e . S e T P SED T Ve B S D st Bt St

A step of D(t), corresponding to A(%:) = -4,3 pcm or
Akeff = +4,0 pecm was applied at the beginning of a reac-
tivity pulse (strictly speaking, where the P scale factor
is being reset, because there an artificial break is intro-
duced), when every control loop was still switched off,

The resulting powerdivergence is plotted on fig. 9.



One observes the known "prompt jump" immediately
after the disturbance and then a slower increase due to
the asymptotic reactor period when comparing consucutive

maxima,

The first steep increase is unavoidable because it
takes place mainly in the first pulse itself., It is quite
clear that there is no control which would be able to
counteract such a process, at least since its information
must first be got from the whole preceding period.

But the "plateau" after the prompt jump suggests that
one would win some time, and the control time constant
should not in any case be extremely small., It will be
shown that this reasoning is only partly valid.

e v e i e o Ken s e e o T s e e G B = At > o e T T S ————— " —— T o1t o o

The control system equation adopted is (4.2.-1) where

the circuit time constant A is zero,

For the motor time constant B, which is explained in
paragraph 4.2., we took first B = 33 ms 1). With that B

a number of runs has been recorded,

First we consider a reactivity step of Akeff = +16 pem
at the beginning of a pulse (always when P(t) is switched
from P(1)(t) to P 2)(t)). The step height is certainly
exaggerated with respect to true events and, moreover,
the reactivity rate also can never be infinitely large.
Nevertheless, this worst case gives a good insight into

the reactor behaviour with control,

The amplification x was optimized so as to get minimum

duration of transients. With too large a x, the system

1) The feasibility of this figure is discussed in paragraph 5.8.
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tends to oscillate with wesak damping. If »x is too small
the restoring force is too small and the power will not
return to the desired value in a reasonable time,

Fig., 10 t) shows the behaviour with the already op-

timlized x., For this optimum gain, we found

= 42,7501070 —I° _ ?),

kWsec2

Xopt

It must be pointed out that this value pertains to

B = 335 ms only. Furthermore, x must be inversely pro-

opt
portional to the specific power W° which is assumed.

This can be seen as follows:

We have
Em-fT
Em = wO / P(t)dt (5-30—1)
J?'m
and E® = WOT , . (5.3.-2)
‘ %m+-T .
thus 8E, = Wo[: /. P(t)dt - %] . (5.3.~3)
t

m

1) For reproduction reasons the curves cannot be plotted here
in their original size as recorded. The pulses' shape being
already given in other figures, we schematize P, and En by
simple lines with proper amplitude. The control output K(t)
has first been modified to be understood in terms of keff
(instead of 1/k;) before having been plotted., The
periodic fuel temperatur oscillations have been subtracted
for the represented curve ATp(t) so that only a line connect-
ing equivalent points of the periods is shown.,

6

2) The first estimated value was +10 ° m®/kWsec?.
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Since the control input proper is the bracket square, we
can only optimize ¥ WO, Thus, the larger is WO, the smaller
should be xopt’ and vice versa, for having the same opti-
mum transient behaviour. This is obvious from the dimension

of xn.

With the mentioned xopt’ the transient period of the
control device is as low as about LO periods 1), or roughly
0,8 sec after the very exaggerated disturbance., At the
end, the antireactivity introduced by the automatic fine
control rod compensates approximately the applied pertur-

bation step.

. From fig. 10, we sece further that about three oscilla-
tions occur before the system comes practically to rest.,
Consequently, the monotonic approach to the final control
rod position is superposed by a wave-like behaviour. The
maximum rod velocity (see the dotted tangent) is some-
thing like 88 pem/sec during 0,05 sec.

Nevertheless, this high value was not adopted for the
control specifications. A rate of 20 pcm/sec should be
sufficient, because the applied +16 pcm-step greatly
exceeds the specified reactivity worth +5 pcm of the fast
control rod., Step perturbations of more than 4 or 5 pcm
must therefore provoke an emergency shut down. Indeed,
non-accidental reactivity fluctuations of this order are
very unlikely. On the other hand, a controllable pertur-
bation cannot occur as a step but with a maximum rate of
+4 pem/period, say. As a whole, every event to be con-

" sidered is at best 4 or 5 times less severe than the exa-
mined case. It is not desirable to increase the rod worth
over 10 pem for a good sensitivity against small fluctua-

1) It should be mentioned that 4O periods take more than
1 hour of machine time, ‘
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tions (10 pem = 180° angle), nor do we like to increase
the insertion rate too much for safety. Thus, the 20
pcm/sec was chosen,

After LO periods, the fuel temperature has not yet
reached its starting level (see fig. 10), but contributes
still about -1,8 pcm to the reactivity balance. The heat
discharge being slow, the process can obviously not have
finished before the corresponding energy is carried away
by the coolant. This indicates that a certain remainder
of the transient cannot be accelerated by control means
since it comes from the temperature feedback. But fortu-
nately this contribution is in the order of only one
tenth of the artificially steered reactivity so that it

can be neglected.

Considering different reactivity step heights (results
not worthwhile to be represented graphically in detail),
one observes that the absolute maximum always occurs in
the second pulse after perturbation. The first and second
pulse heights for various steps are (fair reading pre-

cision):
"steady" pulse | 18t pulse | 2nd pulse
+16 pecm 194 262 278
AR pp = 4+ 8 pem 194 250 262
+ 4 pem 194 225 234

The first pulse is not yet influenced by control where-
as the second is., But also the first pulse overshoot is
not well proportional to the applied reactivity step,
but tends to diminish relatively for larger disturbances,
This shows that not even during the prompt jump the
-"transfer function" for the mean power is approximately
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constant, nor exists a unique sensitivity. The latter
falls from about L4 %/pem for a L pem step over 3,6 %/pcm
for an 8 pcm step to about 2,4 %/pem for the 16 pem step
(always up to the first pulse only). A linearized theory
is thus not applicable, not even for small perturbations
of a few pcm,

In another run, a 16 pcm reasctivity step was applied
not during the increasing pulse flank but somewhere be-
tween pulses. As expected - the reactor is quite insensi-
tive between pulses - no difference could be observed
compered to the former case; pulse 1 is always the one
following the disturbance, whereever that was applied,

D s o G — T — —— —— i —— O - — - — T — — Y ———— - — ——— - 2 ;= S T gt —

The response to nolse is an interesting problem be-
cause such nolse can possibly not well be diminished or

avoided,

Due to the fact that the reactor is only pointwise
sensitive, it suffices to consider the discrete reactivity

levels due to the noise, which exists in these points.

For the noise, the following assumptions have been

made:

- the probability of deviations from zero level is
GAUSSian-distributed,

- the variance (e.g. 99 % of the events lie between

+ 2 pem) is a variable parameter.

In order to generate a sequence of reactivity values
obeying this law, several sequences of equally distributed
2-figure random numbers r; have been taken from a statisti-
cal table. If 99 % of the events shall be included be-
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tween +a, pcm, the abscissa a, of the GAUSS curve is
+2,58, Now we subdivide the abscissa into 5 parts:

u € -0,75 a,
-0,75 a, < u < -0,25 a,
-0,25 a, <u< +0,25 4
+0,25 a5 < u < +0,75 g,
+0,75 a5, € u

and read the corresponding GAUSS ordinates of the limit
points,

We check the random numbers r; according to whether
they fall into one or another of the Jjust found ranges of
the total interval OO0 to 99 and attribute them the dis-
crete values

+x for 99 21r = 97

+ % for 9 2 rg » 85

O for 84 2 pr 2 15

- % for 14 2 ry » 03

and - x for 02 2 r, 2 00,

where x can mean 1, 2, or more pcm, at choilce,

Some random sequences of reactivity levels 0, * % ,
+ X pcm have been fabricated in this manner and give a
recipe how to vary D(t) artificially at the beginning of
each pulse, Of course, O is the most frequent event which
means to do nothing, For the other values, one keeps
enough time to make the prescribed steps by hand, for one
has a switching break when the SIOUX unit changes the mode
(in order to eliminate switching time errors).

X was increased up to 2 pcm. No interesting effect
could be observed. The power peaks obviouely fluctuated a
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bit but showed in no case any self-amplifying effect,
Thls was expected because the system is stable and a
sequence of reactivity steps can never be worse than
when one applies all steps at once. So the former experi-
ment with the single 16 pcm step was by far harder for
the system. It i1s proved that the chosen control system
can also master reactivity noise in the range of +2 pcm,
even more, without oscillation danger. A dead-band about
the zero level, where the control is insensitive, was

not simulated, but proved to be not necessary.

Shut_down behaviour
Shut down simulation means the introduction of nega-
tive reactivity ramps with appropriate slope,

It is clear that, with sufficiently steep ramps, the
power pulses must rapidly break down. The question is
what the temperatures do in order to see if the thermal
stresses will be tolerable,

The calculation of the stresses themselves falling be-
yond the scope of this investigation, we simply discuss
the respective temperature transients.

The result 1is that, for -60 pcm/period, the power
peaks fall below 1 % of their steady height in the third
pulse after the ramp beginning, whereas for =120 pem/period
(both slopes are design reference values), the 1 % is
passed under already in the second pulse.

Such a power shutdown is practically instantaneous as.
concerns the heat transfer from the fuel so that the tem-
perature decrease is determined by the coolant heat trans-
port only, assuming a step of the source from full power
to zero, It does really not matter whether we apply
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-60 or -120 pem/period,

During the first four periods the fuel temperature
falls by 2 °C, that of the canning by 0,2 °C, and that of
the coolant by 0,2 °C alse, for the -60 pem/period ramp.
For the steeper ramp the fuel temperature falls by 3 °C,
whereas the other temperatures behave as above,

The subsequent temperature behaviour has not been re-
corded, because it can be computed simply by hand (analy-
tic solution of FOURIER's equation after negative source

step).

This experiment shows that SORA 1s particularly easy
to scram due to its extreme sensitivity. A small amount
of antireactivity (e.g. -4L0OO pcm, where the wheel remains
at constant speed) suffices to let break down the power
completely, It is thus allowed to introduce the large
remainder of the shutdown reactivity with considerable
leisure, This will facilitate the design of the safety

devices appreciably.

It is quite obvious that one must investigate whether
a motor time constant of B = 33 ms can really be achieved.,
Before answering this question in the next paragraph, we
will study what happens if B is considerably larger,

First, runs have been performed with B = 100 ms, The
control amplification ® must once more be optimized, It
turned out that, with respect to the former runs, x now
was by far too large (as expected).

5 |
6 _m — (comparable to the old value),

With = +3¢10 = ———
% kWsec

'too large oscillations of P(t) were recorded., The step
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MK pp = +16 pcm lead to the known power peak overshoot

for the first two pulses, but then a rather complete bresk-
down of the power (only about 1 % of the "stationary"

peak power in the sixth pulse after perturbation) appears.
The run was stopped there,

Consequently the control counterforces have been

6

weakened by diminishing x successively over 2o10—6; 10 73

—_ —- - 3
0,510 6; 0,2510 ® down to 0,125¢10 6 _m?
kWsec®?

The result was quite unsatisfactory., With medium
x-values, the very small amplitudes could not be avoided,
but occurred now later, gay in the 12th pulse after pertur-
bation, for x = 10 =y . For still smaller amplifi-
cations %, thg min%mum pulse locus migrates away, With
x = 0,125°10° EW%EEE y the behaviour is such that the con-
trol can just hinder the power divergence (as would occur
without control), but shows also no reasonable restoring
force. Once the high power peak is reached (at the second
pulse), the peak level remains practically constant up to
the 40th pulse where the run had to be stopped. Of course,
the efficiency of the control had been reduced to nearly
zero. It is hopeless to achieve a reasonable solution in

this way.

Nevertheless, the reactor behaviour is easy to under-
stand. The time constant B = 33 ms was still in the order
of the period length (20 ms), whereas the new one is not.
With B = 100 ms the control is a priori unable to follow
the evolution of the power in the reactor-own time scale,

it comes always too late,

For curiosity, similar runs have been performed with
B = 200 ms. The phenomena were only accentuated without

possibility of a solution, of course.
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A rather obvious idea would be to improve the traﬁ—
sient behaviour by introducing a phase-lead through an
additional differential control term, It is to be noted
that this method is not feasible for SORA, The control
input 6Ey 1is a discontinuous quantity, whose derivative
is normally zero and makes only occasional delta Jjumps.,
The derivative 1s therefore unsuitable for a supplemen-

tary control input,

On the other hand, due to the DC-motor equation,
K(t) is indeed continuous and has a reasonable derivative,
but is the output of the control. It is already the rotor
angular position itself and not any electrical quantity
to which one could add some other term,

In simple words, it is in gdéneral possible to shift
the phase of an input quantity, but never that of the de-
sired output. From a logical point of view, an output
phase~-lead would need some knowledge of the future, what

is of course meaningless,

Feasibilitv of small control time constants

This paragraph is not a result of the analog simula-
tion but a necessary additional consideration 1).

In order to check 1f a time constant B in the order
of 33 ms is feasible we consider two DC-motors:

1) This work has been performed by Mr. MARCILLAT of the
ISPRA center,



- 65 -

1 .
type power ) rotor inertia *) motor time constant *)
[Watt] [g cm?®] [ms]
SERVALCO
T™ 910 50 4500 20
DIEHL 10 17 1"

The SERVALCO motor has a printed rotor (without insu-
lation material) and requires relatively strong armature
currents, |

Since the force for moving the rotatory fast control
rod is obviously very small, the weak DIEHL motor seems
to be sufficient on first sight.

However, when calculating the inertia of the shaft
between motor and active part of the control rod, one finds
as much as 335 g em?, if it is made by aluminium, is 2 m
long, and has a diameter of 1,5 cm., The inertia of an
equally sized iron shaft is even 2,9 times as high. Thus,
with the aluminium shaft, the total time constent of the
SERVALCO system rises to

L500 + 335
20 = 21,5 ms
4500

and with the iron shaft to

LH00 + 972
4,500

20 = 24,3 ms,

whereas the corresponding values for the DIEHL system are

1) from maker's specifications
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17 + 335
17

i

(aluminium) 11 - 228 ms

17 + 972
17

640 ms,

—

—
o

fl

(iron)

The latter values are by far lnacceptable for SORA,
A gear box with speed reduction ratios of x : 1 would re-
duce the system inertia to the (1/x2)-fold of its former
value (e.g. x = 5).

The preclsion of static position of the last toothed
wheel may be 30'. However, the angular position itself of
the control rod is more or less irrelevant since we need
a velocity control system only. This imprecision is thus
not dangerous, but unpredictable vibrations and twists of
the rod due to the reactivity noise are to be feared,
With the incessant forth and back movement of the rod, a
considerable wearing of the gearings is unavoidable. This
soon leads to a non-negligible play with resonance danger
for certain plays. ‘

The conclusion is that we must avoid every trans-
mission gearing between motor and rod. Consequently, the
rotor inertia must be much higher than that of the load,
and the motor becomes apparently rather strong with re-
spect to the small mass to move,

Moreover, with the strong SERVALCO motor, one is ra-
ther independent from engineering modifications of the
shaf't, whereas this is not the case with the weask DIEHL
motor (see total time constants above).

Another advantage of the SERVALCO motor is the lack
of insulation material, It could thus be placed, if



desired, into the radiation field, and consequently the
shaf't length be reduced.,
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A regular operation at low power means that

- the control set point is well adjusted to
this power,

- the coolant flow rate corresponds to the power,

This could be the case for instance during the start-
ing period of the reactor,

For such a power the core temperature distribution is
different. The modified ratios of the mean material tempe-
ratures enter the equations by the initial conditions but
pertain also to an equilibrium,

The feedback on the reactivity is based only on the
deviation from the initial values, and these are roughly
proportional to the power. The extreme case we can con-
sider is that the temperature feedback vanishes completely.

We saw already that this feedback is almost negligible
also for full power. Nevertheless, we have removed the
feedback F(t) completely for one run., No significant
difference in pulse evolution after a reactivity step could

be observed against the former case.

The dynamic behaviour for low and high power is thus
practically equal. The different optimization of the
control gain x must, however, be regarded (see paragraph
5.3.). For low power, the chance of relative power peak
fluctuations due to neutronic noise in the background be-
tween pulses is increased and must be overcome by a stronger

control (larger x).
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6. Conclusions

We compile the principal results from the dynamic

studies,.

First of all, the SORA reactor is controllable, if‘the
control input is the difference between the energy of the
preceding period and the reference period energy. A peak
power control input is also allowed. The decision may be

made from pure instrumentation point of view,

A DC-motor, working without gear box through a single
shaft on a rotatory fast control rod, is the most promising
solution for a fast acting regulating rod.

The rotor inertia should be much higher than the shaft
inertia about their common axis,

The total (rotor + load) time constant should in no
case be larger than 50 ms (better 20 - 30 ms).

The maximum reactivity insertion rate of the fast auto-
matic control rod should be 20 pem/sec (= 60 rpm, if
10 pecm £ 180° angle).

The decline period of the optimized control is about
0,8 second at maximum, ' ’

A reactivity noise with amplitudes up to + 2 pem (99 %
of ceses) gives no trouble. Even somewhat higher fluctua-
tions are probably allowed. A dead-band is not necessary.

The power shutdown in emergency cases can be considered
as being instantaneous for heat transfer purposes. A fast
insertion of +4OO pem with 60 pem/period rate is suffi-
cient. The remainder of the antireactivity (compensation
.of the moving reflector block) can be introduced slowly.



The wheel may never be stopped or brusguely braked during
scram, but only afterwards,

The low power transient behaviour resembles the one
at full power if the control amplification is properly
adjusted.

For perturbations of inlet temperature or of flow rate,
the controlled reactor behaves like a constant heat source,
because the reactivity decline period is much shorter than
the accumulation time of feedback-reactivities due to such
perturbations, For long time investigations, the model of
the controlled reactor is thus simplified to the relation

TA = TE + const,

(outlet temperature = inlet temperature + constant source
term).

They can therefore be performed with known classical

means without treating the core dynamics again in detail.
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When considering table 4 (p. 23), the first remark is
that the keff
Mr., ASAOKA. However, for consistency reasons with the other

-span is perceptibly larger than that of

parameters, we are obliged to keep those values so that we
must compress the above span., We shall anyhow utilize only
the shape for our function £(t), but we must emphasize that,
due to the broadened pulse, all further results will be
based on ASAOKA's values and not on RIEF's ones, A decision
between these data cannot be made here. Whereas the out-
coming output pulse characteristics will depend on them,

the essential results on the control performance will fortu-
nately be rather unaffected,

The precision of the keff—values may be in the order of
+1073, a statement which is, however, very problematia,

We assume that the shape of 1/keff(t') represents the
common input function shape f(t). The difference of the
extreme values of 1/k_p. is 6(1/keff) = 0,052707, This
span is expanded to unity, and the value for t' = =
set equal to zero, giving the "Monte Carlo input funation
f(t')" as follows:
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: '
pgé?t [gec] (')
0 0 1 eXxtrapolated value
1 1-0,18116+10"% | 0,99030 onty
2 |-0,36232:10"% | 0,98058
3 |-0,7246L10% | 0,94553
4 ]-1,08696°10"* | 0, 89664
5 |-1,63043+10"% | 0,81987
6 |-2,17391°10"% { 0,69456
7 |-3,62319+107% | 0,39576
8 - o 0

Table 5: The normalized Monte Carlo input function

For a reason which will at once become clear, it is de-
sirable to represent this curve by an analytic expression,
Since it must be symmetric about t' = 0, its TAYLOR expan-
sion has no odd terms. If we neglect terms from the fourth
order, the curve has obviously a parabolic vertex, A visual
inspection of the given curve 1/keff(t'), surrounded by the
mentioned imprecision band, shows, however, that a parabolic
continuation till F = O would be very bad. A straight flank
continuation is by far better. Also this curve does still
not represent the tails towards t' — + «., But since the
system is strongly subcritical in these regions and the
corresponding reactivity level does not influence the out-
put characteristics it is well justified to produce the
straight lines down to ¥ = O, i.e. neglect the tails.

Let be
a + bt' the straight part

1l

g(t')
p(t')

] (AI-1)

c - dt'? the parabolic part -.
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The absolute term ¢ is not necessarily unity because the
top value of f(t') is only an extrapolated value which
should not be considered.

A look on a graph of F(t') shows that the parabola
should meet as well as possible the points 1, 2, 3, and 4
of table 5, whereas the other ones pertain to the straight
part,

A least square demand

L

"~ "~ 2
EZ:[?(ti) - f{] = minimum as function of ¢ and 4
1=1 (AI-2)

41eads to

6

p(t') = 0,991212 ~ 8,11568¢10° t'? (t' in seconds).

(AI-3)

This parabola does not yet hit unity for t' = O, Divid-
ing through by 0,991212 gives the new parabola:

p(t') =1 - 8,18763~106 12 (t' in seconds).

(AI-L).

Of course, F(t') should be divided by the same figure
to see which values are to be approximated, excepted the
one for t' = O which we keep at unity, leading to a
"corrected" f(t'). Then, a back-computation shows that a
better extrapolation value for keff(o) would have been
0,988547 instead of 0,9890, at least if one assumes that
the shape in its vicinity is a pure parabola.,:

If we demand the connection conditions
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dp dg
] — ] i
p(t)) = &(ty) and do== (AI-5)
at'l,, at'i,,
t t
a a

for an abscissa té to determine, and that the straight
line goes through the (corrected) point 7 of table 5, we
have just three equations for the three unknowns a, b, and
tl.

a

One finds for the increasing flank

g(t') = 1,12123221 + 1,992591.10°% t! *) (t' in seconds),
(AI-6)

and at the connection point té = ~1,21683¢10"% gec the
common value of g(t') and p(t') is 0,87877.

Fig. 1 shows that the analytical approximation of
Mr. RIEF's normalized data is perfect 2).

As already mentioned at the initial conditions (2.1.-18),
we assume that the reactor is steadily critical before be-
ginning to wobble 1ts reactivity. Thus, the first pulse must
start from the height f° and is "incomplete' compared with
the following pulses. Any other type of starting procedure
would be irreproducible, because the steps "operate" and
"pulsation beginning" do not coincide in the analog computer
and the variables would run away in an uncontrollable
manner if not all derivatives first vanish.

1) One calculates always with an exaggerated number of decimals
in order to avoid rounding errors and inconsistencies in the
analog machine setting, where initial errors would integrate

with time.

2) The absolute level of the curve or, respectively, the shift
from the dotted curve to the solid one will be discussed
later on.
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We shift the somewhat arbitrary time base start to the
value t} = 1,47696+107* sec, pertaining to f°, by intro-
ducing the new time variable

t=t' -t} - (AI-7)

The beginning of a run is now at t = O where t is the
independent variable of all system equations,

Having done this, we find the representation of f£(t)
given at the end of paragraph 2.2.
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APPENDIX II

Following PALINSKI [6], equation (3.1,-2) is LAPLACE-
transformed with respect to time., The result is an ordinary
differential equation with respect to r, containing the
complex quantity s as a parameter, This equation can easily
be solved, taking into account the transformed boundary
conditions (3.1.-3) and (3.1.-4).

Now the solution is averaged over r (integral mean
value), giving the mean transformed temperature %F(s) as a
function of s only. Due to the permutability of the linear
processes of LAPLACE transformation and integral averaging,
this function is just the LAPLACE transform %f(s) of the
mean temperature Tf(t) of the original domain, but with
algebraic dependency of both inputs W(t)Nand TS(t). Since
these two quantities are not specified, Tf(s) cannot be
transformed back in general terms,

For this reason, the solution in the complex domain
is put into the form (the snake means always the LAPLACE-

transformed variables):
o~ ap ~ o
STF(S) = E; W(s) - o(s) ( TF(S) - TS(S)] , (AII-1)

where ¢(s) is a transfer function replacing the simple
time-independent heat transfer coefficient hpge o(s) it-
self should be independent of both W(t) and TS(t).

st
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The universal function ¢(s) can thus be transformed

back, giving a function

G(t) =£-1 {:(P(S)} | (AII-2$

which is called the GREEN's function of the problem., Equa-
tion (AII-1) becomes in the original domain

—— - ) - o) l:TF(t) : Ts(t):] . (AII-3)

This 1s Just the desired ordinary differential equation
for the mean fuel temperature. G(t) replaces the usually
applied heat transfer coefficient'hFS which is valid for
stationary processes only., The symbol % means the convolution
integral operator so that in fact the whole past is taken
into account.

(AII-3) is an integro-differential equation which would
not be very useful if the convolution integral could not be
prepared in a suitable way for analog treatment.

The usual way to transform ¢(s) back is to determine

the poles s, of ¢(s), to develop ¢(s) in a partial fraction
series

o(s) = a, + Z _n__ , (AII-L)

where the & are the residues in the poles 8, and then to
retransform term by term,

For our problem with boundary condition (3.1.-3), o(s)
is a meromorphic function so that the inverse transformation
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is possible. G(t) is found as an infinite series of expo-
nentials. After an integration by parts and exchanging sum
and integral, one gets the following expression for (AII-3)
where we have, for precision reasons, introduced the de-

viation ATf(t) = Tf(t) - T% as new dependent variable:

a
%E AT, = EE [W°P(t) - WL(t)] . (AII-5)

WOP(t) = W(t) is introduced in order to find again our nor-
malized power function P(t) from the kinetics part; W° is

the reference specific power per unit volume,

WL(t), the leaking power, is found to be

WL(t) {(AT (t) - AT (t) + T - T°] Xi‘a r (t)}
(1+p ’25‘“’—
n—1
(AII-6)
with
1 +p
1
oL = = n=1,oo-,°°- (AII—7)
no 2 4 4po (ﬁ)gpﬁ
p is the dimensionless guantity
Lk
p = — ¥ ’ (AII-8)
hpsRp

which corresponds to 4/Nu in usual notation (Nu = NUSSELT's
number). The heat transfer coefficient hFS between fuel and
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cladding is for cylindrical geometry:

FS = . (AII"9)

’f‘Ul-L

1 RF + 5G 1 RF + 5G + 68
1—{—-1n —_“'—R +l-{—1n B+ 5
G 1) S O G

F

The model for this is a sequence of concentric layers of
fuel, of a gap, filled with some material, and of a gteel-
cladding, with respective heat conductivities k and thick-

nesses 6,

The p are the roots of the transcendental equation
n .
P
pJo(p) - 201 -ge*)a(p) =0, (AI1-10)

numbered in ascendent order, All P, are positive, The BESSEL
functions come from the assumption of cylinder geometry;
similar transcendental equations could be found for other
geometries, Since p is a known parameter of the system, the
roots pn are also known quantities, They have in fact been
digitally calculated in advance for a large number of
p-values,

The auxiliary functions Pn(t) (dimension: temperature)
are

Pn(t) = e ~8nt /} %; [ Tf(x) - Ts(x)] e 3n¥ax N = 1,600y
0

(AII-11)

where the sn are just the poles of ¢(s), occuring in (AII’M)'
which are related with the Pn bY
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P n=71..,00, (AII-12)

The expressions (AII-11) represent the remainder of the
convolution integral of (AII-3), which, at first sight,
would much trouble the analog computability of Tf(t). For-

tunately, the Pn(t) can easily be generated by solving the
equations

ar,(t)

d
+sI‘(t)=—'f(t)—T(t):| D= 1, eeny00 .
at nen at | F S S

(AII-13)

This can be done by the computer itself. The righthand
inhomogenous parts are furnished from the main system, where
the temperature derivatives are anyhow on hand.

(AII-11) shows that the initial conditions should be
Pn(O) = 0, As long as both temperatures Tf(t) and Ts(t) do
not change with time (steady state), all rn(t) are identi-
cally zero,

Since 1im s = «, the auxiliary functions vanish iden-
n .
tically for very large index n:

1im T (t) = O , (AII-14)

n-—tco

if the inhomogeneous parts are bounded, as it is the case
for a significant physical system, The sum in equation
(AII-6) converges, since the parameter p is always in the
order of unity, or less. Of course, the larger are the
temperature derivatives, the worse 1s the convergence of the
process, It should be mentioned that in (AII-6) the term in
square brackets can be called the "statlonary part" of the
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heat transfer, whereas the infinite sum gives the "non-
stationary supplement'", The notation is a bit different

from the usual one also for the stationary case, because

we set the heat transfer term proportionasl to the difference
of mean fuel temperature and TS’ and not to that between
surface temperature and TS'

Numerical values of all coefficients are compiled in
paragraph 3.4.
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APPENDIX III

Whereas for "normel" liquids the PRANDTL number Pr = vC/aC
(v = kinematic viscosity) is in the order of unity, it is _
only about 1072 for liquid metals. This means that the geo-
metrical similarity between velocity profile and temperature
profile in a tube is disturbed., The former shows a sharp
jump near the wall to a nearly constant value inside the tur-
bulent flow. The temperature, however, is practically not
influenced by turbulent mixture and shows thus the same pro-
file as in a solid body which, e.g., is parabolic for a cir-
cular cylinder. For other geometries one finds another
shape so that the concept of equivalent diameters (of diffe-
rently shaped tubes) breaks down. Moreover, no REYNOLDS
number can be found in default of a generally valid cha-
racteristic length, and thus no universal heat transfer coef-
ficient exists. Only, for a well-defined specific geometry,
some replacing non-transferable value can be calculated
from the known stationary temperature distribution.

For this case, the so-called "slug flow model" has been
conceived [7]. The radial heat transport in the coolant is
assumed to be performed by the conductivity kC only, like
in a metallic slug which is, however, moving along its
axis with constant velocity. The velocity profile is con-
sideréd to be entirely flat which is not too bad an assump-
tion for turbulent flow. Axial heat conduction is again
neglected,

The SORA core is composed by a number of parallel circu-
lar-cylindrical fuel rods, touching mutually and forming a
bundle of hexagonal pattern. The interspaces between the
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rods are the coolant channels, The neutral fibres of the
coolant spandrels form just the circumscribing hexagonal
cylinder of each rod.

In order to simpllify the geometry, we reduce the
difference space between hexagon and circle to a circular
ring of equal area. The channel "thickness" is averaged in
this way and any azlimuthal dependency is eliminated. For
the same power output the necessary mean coolant velocity
is conserved. This procedure is somewhat criticizable,
especially in the light of what we have said above 1). There
is, however, no other way in practice to overcome the
mathematical difficulties,

We assume that the heat leaking to the reflector (or
blanket) is negligible against the one carried away by the
coolant. Then the balance for the annular coolant volume
is:

1 DTC(r,t) azTC(r,t) 1 aTC(r,t)

+—

. (AIII-1)
ag Dt - ar? r ar

TC is the temperature of the coolant and ag = kc/pccC
is its thermal diffusivity. An internal (volumetric) source

does not exist,

Let us label the inner and outer radii of the coolant
annulus RL and Ra’ respectively. The boundary conditions
are

aTC(r,t)

=0 insulation at - (AITII-2)
or the neutral fibre

1) Seeing later on that the coolant temperature feedback is
anyhow very small one may be composed,
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aTC(r,t)
kg * ——
or

= hgq rTS(t) - Tc(t):l heat inflow,
r:RL -

(AIII-3)

This condition can also be written as

K / div grad TC(r,t)dV = 27R; Lhg, I‘_Ts(t) - -T-C(t)]
Ve
(AIII-4)

which is a convenient form for later on, The identity of
conditions (AIII-3) and (AIII-4) can easily be seen when
transforming the volume integral in a surface integral and
integrating, taking into account the insulation condition
(AIII-2). L means the active coolant channel length. Further-
more, we identify the reference temperature Tb(t) of the pre-
ceding paragraph with the mean coolant temperature

Ra
T (t) = —E— /Tc(r,t) r dr . (AIII-5)
R? - R? :
a l R
L

The total or "substantial' differential operator D/Dt

means

9=+ (V - grad). (AIII-6)

Urj
t

In the SORA case, the velocity vector ? has only a
z-component w along the channel direction so that we have

T r oT (7, t
DTC(Pyt) _ aTC(I‘yt) ‘W C(r ) ) (AIII—?)

Dt ot 0z
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Strictly spoken, TC is of course alsco a function of z,

since the coolant must be heated up in the presence of a
source, We assume, however, but only at this point, the
temperature increase to be linear so that aTC/az is a constant,
or more precisely, a pure time function, also practically
independent of r. At the same time azTC/az2 = 0, and the re-
spective term in the LAPLACE operator (already omitted in
(AIII-1)) vanishes truly. The linear increase is correct

only if the heat generation along the axial direction is
uniform, thus with z-independent neutron flux. This assump-
tion is not very bad for a small core with a relatively large
reflector; all this in accordance with our point reactor

model assumption,

We disregard any hydraulic inlet distance which has

little importance in our case of pure heat conduction,

The velocity w is produced by the pressure head from the
coolant pump. Only forced convection is considered, since
otherwise, with natural convection, w would itself be a
system variable, reinfluenced by the coolant temperature
distribution of the whole circuit. Then the perturbation
variable should be outside of this circuit, say a secondary
or tertiary mass flow. We should then describe and simulate
also the heat exchanger. Due to its large time constants,
such a control is by far too sluggish for the very sensitive
SORA dynamics so that a previously discussed idea of natural
convection can, without doubt, be rejected already by these

qualitative considerations.

Now, the velocity w is fixed by the condition that the
mean power ﬂR%IJWO of a fuel element should just be carried
away. Let OT% be the wanted heating span from inlet to
outlet, then
ko

ﬂ(RZ - Rff) w EE 6T = nRZ L WO, (AII1-8)
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hence

C

2 _ p= o]
Ra RL kchC

RLL a Wwo 1)

W= . (AIII-9)

w can be a perturbation variable., However, with respect to
the fast reactivity pulsation, all possible w-changes are
slow, also in an emergency case, Thus, for the simulation,

simple steps on w are forbidden.

The time function aTC(;,t)/az is, for a linear z-increase
of temperature,

t in = in
aT .(7,t)  ToUU(¢) - T T (t) - T
C = £ c _ ¢ C (AIII-10)

oz L L/2

where the bar means always the average in r-direction, To
eliminate the outlet temperature, the difference gquotient
can also be taken between mean coolant temperature, which
appears Jjust at half the channel length, and the constant
inlet temperature.

The inlet temperature, too, can be considered as a per-

turbation quantity like w, and with similar restrictions,

Introducing all these expressions into (AIII-1), we

get:

1 9T,(r,t) 0°Tn(r,t) 1 oTs(r,t) 2w _ in
— = + - Tc(t) - TC .
ag ot or® r or asL

(AIII-11)

1) This expression is of course consistent with (AIII-3)
and can replace it in steady state.



- 86 -

Now, we average this equation over the volume, term by term:

L{E@ﬂi Tc(t)_Tin]}z r /(ficii:i’.ﬁ Eil‘c(_“] av,

a at L c \'s ar® r dr
C CV
C

(AIII-12)
The integrand of the right hand side is just div grad
TC(r,t) so that, by applying the boundary condition (AIII-4),

results
24T ¢ 24 (t) - oT.(t) + T - T
— AT (t) == ———nh [AT t) - AT.(t) + TY - ] -
at C kc R - R2 SC S C S C
a i :
2w _ in
- = [oT(e) + 7 - g ] . (AIII-13)

In this manner we have found an'ordinary differential
equation for the mean coolant temperature Tb(t) ), our system
of thermal equations 1is thus closed.

Nevertheless, we must not forget that this is only owing
to the fact of having introduced just fb(t) as the reference
temperature in the cladding equation, and no other one, We
have to purchase this ease with the assumption of a "heat

transfer coefficient" hS in the boundary condition (AIII-3),

C

It must be established that in this way any time con-
stant between surface and mean temperature of the coolant is
neglected., However, we have done this also for the gap and
cladding layers, The neglection is also in accordance with
the other necessary assumption made, namely that the axial

1) This equation is well-known for normal convectional heat
-transfer. The exlstence of an equation of the same type
must, however, be proved here,
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temperature slope aTC/az is independent of r for each t.

In the case of SORA, these approximations are perhaps
not always very good. Nevertheless, for dynamic purposes,
we need only a sufficiently good picture of the mean tem-
peratures with their time behaviour. On account of our
geometrical deformation of the coolant channel the true
spatial distribution of temperature can anyhow not be cal-
culated, It can be taken for granted that the uncertainty
in the mean coolant temperature is by far lower than the
uncertainty in the corresponding temperature coefficients
so that any further expenditure is not worth the effort.

Thus we take the heat transfer coefficient hSC from the
steady temperature distribution, applying again the slug
flow model, It should have such a value that it provides
just the difference between surface and mean coolant tem-

peratures in the steady reference state,

The idea is to calculate the difference between the
coolant temperature at the inner ("heat inflow") surface
and the mean coolant temperature in steady conditions. Then
hSC is obtained from a relation like

w"-vF
hge = y (ATII-1Y4)
FSC[TC(RL) - Tc]

where WOV

F
SC
radial temperature drop in the coolant is thought to be

P is the total heat production in a fuel rod and

is a properly chosen exchange surface., In this way, the

produced by a stagnant layer of NaK, but with a certain
correction coefficient, as we shall see,.

Equation (AIII-11) reads in steady state
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a*T.(r) 1 dT~(r) 2w _
C + - _C _ (T, - Tén) = 0, (AIII-15)
dr? r dr acL
or by using (AIII-9)
a*T.(r) 1 4aT.(r) R2 wo
_C e - E - —=o, (AIII-16)
2 -
dr r dr Ra RL kC
If we abbreviate
R2
£ =g (AIII-17)
R® - R® o

and apply the two boundary conditions (AIII-2) and (AIII-3)
for the steady state, where

R
0 _ O _ _F_ 0
heo (TS TC] = = we, (AIII-18)
- i
the solution is
£ W° r° r 1)
TC(r) = - — <—— - R2 1n —) . (AIII-19)
2 k. \2 a R
C a ‘

RL r e

R~ ¢ FT T X . (AIII-20)

a ) . a . ) .
Then EW X2

T (r) = — — R2 ( — - 1n x) ' AITII-21

C

1) An arbitrary additive constant,. determining the absolute
temperature level, is omitted, h
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TC(RL) = E ;— R; <E_ - 1n q> , (AI1I-22)
C
Ra
- 2 E WO 1 +q° 1 q®
Tg = = /&C(r) rdr = - — RZ < + =+ ln q>,
RZ - Ry 2 kg L 2 1-q
Ry
(AIII-23)
— E WO a°*-3 1n q
TC(RL) - Tg==—R: ( - ) . (AIII-24)
2 k I 1-g?

Let us now determine the "mean radius" R, where the

mean temperature fc = Tc(ﬁ) is just reached.

If we label

mFm
]
=3

, (AIII-25)
N 4

we have simply from (AIII-21)

2

_ n
R? < i 1n n) . (AIII-26)

- g We
To(R) = = —
2 kg

By equating (AIII-26) and (AIII-23) we get

2 2 | 2
Y 1 +q q
— -1lnm=——4+ -4+ —— 1n q. (AIII-27)
2 L 2 1 - g°
This transcendental equation cannot be solved for m in
general terms of q. Fortunately, we know the exact value

of q, which is
q = / x/2 N3 = 0,9523128065.,



The right hand side of (AIII-27) is +0,5007575577 so
that m can be determined by trial:

T] = O’ 97260263-

The appropriate expression of FSC for a hollow cylinder

is:
R - R, n-aq
= 2, ————— = 2xLR, ——— , (AIII-28)

F -
SC 1n (R/Ri) 2 1n n/q

By inserting n = ﬁ/Ra, it follows:

Fgg = 2rLR, « 0,96241496, (AIII-29)

Finally, with Vg = 7R%L, and by introducing (AIII-17),
(AIII-24), and (AII1-29) into (AIII-14), we get

Ko (1 - q®) 1n n/q K
hge = R =5 In g = 7= + 51,222023,
a (n-aq) . a _
L I}

(AI11-30)

Note that, with the slug flow model, the "heat transfer
coefficient" hSC is independent of the velocity w,

Once more, it should be emphasized that neither the
method nor the value given here is transferable to other
geometries of the coolant channel,
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