
EUR 3262. 

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM 

m li*â 

R NEUTRON 

Nuclear Research Center 
Ispra Establishment - Italy 

Scientific Data Processing Center - CETIS 

I 
m f? 



m 
xv 

• i l * · ' 

mi 

m 

±ìM m 

"»ft; 

t i m muz- Λ Χ Λ ™ J „ 4-U„ „ „„ 

r 
NOTICE 

¡lili 

mmm 
Φ' Neither the EURATOM Commission, its contractors nor any 

n;títryIiM;.ta,MJí*'person acting on their behalf : 

»ejiy ^ « v f l p - i r J J ^ * X J 4 Ï ' y B i " H y l ^ I 1 J H Í . « X ^ JiTt iT*?'*!*^ Μ : ι ϊ τ Γ * ¿ É ^ J n O é í V iflPi» E^lît» 

Make any warranty or representation, express or implied, with 
respect to the accuracy, completeness, or usefulness of the 
information contained in this document, or that the use of any 
information, apparatus, method, or process disclosed in this 
document may not infringe privately owned rights ; or 

resulting from the use of any information, apparatus, method 

document !W£ÍÍ¿;:H®^11K! < This documen 
Commission c 
(EURATOM). 

''mât 

at was prepared under the sponsorship of the 
of the European Atomic Energy Community 

fesira 

or process disclosed in this document 

This report is on sale at the addresses listed on cover page 4 
k MÊ ÊÊ^Ê^Ê^Ê^Ê^Ê^Êm * *y\ÆJ Α Α τι l i ' l«f τ κ faë^ ií . v i i ί Π ΐ ί ' ^ . Γ ^ ' * . Ε «*# . Λ. S . « ι i * f ur f l l í f í ni Γ mpm 

I l l ÍiÍiESalP*if 
> Ξι at the price of FF 7 — FB 70 DM 5.60 l i t . 870 Fl. 5.10 

" cWtU-

When ordering, please quote the EUR number and the title, 
which are indicated on the cover of each report. 

1 

Printed by Vanmelle 

Brussels, Januar 1 9 6 7 ' Ι 

WNSPr^T mm 
This document was reproduced on the hasis of the best available copy. [able copy. 

« f e 

Biì l i i l i iW^^^^ÊaÊÊmmÊa llÉiA; lIlKIiMl*' Ile Άί·ι wåæBmm¡ lu · e l l ■· hi« 



EUR 3262.e 
SOME NUMERICAL SCHEMES FOR NEUTRON DIFFUSION 
PROBLEMS by J.P. ROOS 
European Atomic Energy Community — EURATOM 
Joint Nuclear Research Center — Ispra Establishment (Italy) 
Scientific Data Processing Center — CETIS 
Brussels, January 1967 — 50 Pages — FB 70 

In order to solve general elliptic equations we compare with respect 
to the convergence and accuracy three finite difference schemes, the 
five-point, the nine-point, and the mixed type formulas. 

The mixed type scheme, suggested by FRIEDRICHS, seems very 
efficient in particular since it can easily deal with general interfaces. 

EUR 3262.e 
SOME NUMERICAL SCHEMES FOR NEUTRON DIFFUSION 
PROBLEMS by J.P. ROOS 
European Atomic Energy Community — EURATOM 
Joint Nuclear Research Center — Ispra Establishment (Italy) 
Scientific Data Processing Center — CETIS 
Brussels, January 1967 — 50 Pages — FB 70 

In order to solve general elliptic equations we compare with respect 
to the convergence and accuracy three finite difference schemes, the 
five-point, the nine-point, and the mixed type formulas. 

The mixed type scheme, suggested by FRIEDRICHS, seems very 
efficient in particular since it can easily deal with general interfaces. 





EUR 3262.e 

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM 

SOME NUMERICAL SCHEMES FOR NEUTRON 
DIFFUSION PROBLEMS 

by 

J. P. ROOS 

1967 

Joint Nuclear Research Center 
Ispra Establishment - Italy 

Scientific Data Processing Center - CETIS 



SUMMARY 

In order to solve general elliptic equations we compare with respect 
to the convergence and accuracy three finite difference schemes, the 
five-point, the nine-point, and the mixed type formulas. 

The mixed type scheme, suggested by FRIEDRICHS, seems very 
efficient in particular since it can easily deal with general interfaces. 
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Introduction C) 
In this study we solve numerically general elliptic partial 

differential equations. In order to solve them three types of 
finite difference formulas are derivedsystematically, using a 
variational principle established for these elliptic equations. 

In particular, we derive 

(i) the well known five-point formulas, 
(ii) the nine-point formulas, as suggested by Nohel and 

Timlake [7], 
(iii) the formulas of 'mixed' type. 

As regards the formulas of mixed type, they have been 
suggested by Friedrichs [3] who used themf however, to prove 
the existence of the solution of the Neumann problem. In 
comparison with the scheme (ii) this type of formula has two 
advantages » 

Firstly, it can be dealt with by the decomposition method, 
see [1], [8], [9]· This, decomposition method gives a reduction 
of a factor two (roughly) in the number of meshpoints where 
the solution must be obtained iteratively. 

Secondly, the mixed formulas can treat general interfaces. 

In Chapter III some sufficient conditions are established 
in order that the coefficient matrices of these three difference 
schemes are M-matrices. 

In Chapter IV we compare some of the numerical aspects of 
the three schemes. The conclusion of this research is that the 
scheme (lii) can efficiently be applied to the numerical 
solution of general elliptic operators. 

{*) Manuscïpt received on November 21, I966 
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I. Statement of the Problem 

1. The Differential Equations 

In the diffusion approximation of the reactor calculation 
the following problem is typical. 

Let D, A, and F be gxg matrices (D be a diagonal matrix), 
Φ be a g-dimensional vector and λ be a constant. R is a region 
with boundary Γ s Γ. + ru, η denotes the external normal on the 
boundary. 

- V DV* + A Φ = ̂ Ρ Φ i n R , 

Φ = 0 οηΓ 1 ( (1.1.1) 

3Φ a? ' ° οη Γ 2 ' 
with the adjoint problem 

- 7 Dv-Φ* + Α* Φ* = \ F* Φ* in R , 

Φ* = 0 ο η ^ , (1.1.2) 

|Ρ - 0 on Γ2. 
(* means the adjoint, t means the transposed). 

The dominant eigenvalue and the corresponding eigenfunction 
are the most important quantities in this problem. 

Under some conditions, to be imposed upon D, A, F, Φ, R and Γ 
(iki» [5]) this problem possesses a dominant, positive, simple 
eigenvalue with a corresponding non-negative eigenfunction Φ 
and a corresponding positive adjoint eigenfunction Φ*. 

For the sake of clarity we make some simplifying assumptions. 
We consider only a rectangular region R. About more general 
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boundaries and interfaces see [2] and [3]. 

The interfaces are approximated by broken straight lines. 

We choose the axes along the sides (and the origin of the 

coordinate system in one of the angles). 

Furthermore, we distinguish two classes of problems, 

(i) problems with interfaces parallel to the axes, 

(ii) problems with interfaces anyhow. 

For the first class of problems the five- and nine-point 

formulas will be derived, while for the second class the mixed 

formulas will be derived. The derivation is sketched in 

chapter II. 

2. The Variational Principle 

For the functions Φ in a certain class Φ we wish to 

render a functional J stationary under condition Η = constant 

(e.g., = 1 ), with 

and 

See 

J m 

H = 

Lkì. 

J J 

R 

/ / 
j j 

R 

(7Φ* ϋ7Φ + 

Φ* F Φ dR 

Φ* 

ι 

A Φ)<3Η, 

(1.2.1) 

The solutions of this variational principle (if they exist) 
can be proved to be solutions of the problem (1.1 .1 ) and (1.1.2). 
As is well known, we need to consider I = J - ■£ Η · 

In order to discretizise the problem a net must be set 

over the region R. The interfaces are assumed to be mesh 

links and the coefficients D, A and F are assumed to be constant 
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in each cell of the net. 

We consider two geometries: 

(i) x-y-geometry (cartesian coordinates, Φ is independent of z), 
(ii) r-z-geometry (cylindrical coordinates, Φ is independent of 

the polar angle θ). 

Then, the element of area dR satisfies 

dR » x5 dxdy , 

with ρ = 0 in case (i) , 

= 1 in case (ii) . 
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II. Sketch of the Derivation of the Difference Equations for a 

Rectangular Region 

1. The five- and nine-point formulas 

A rectangular net will be set over the rectangular region R 

with mesh links parallel to the axes (sides of R). See figure 1. 

d(y) 

J+1 

d+1 

d 

¡3-1 

1 

0 

'ij+1 

l
id 

R 
i+13+1 

p_ 

i+1j 

The functional I (see 1.2) can be 

considered as the sum of functionals 

Ι Λ J belonging to a cell Rjj· 

I = Σ I 

id 
id 

(summation over all the cells R̂ -i)» 

id 
Λ d id 

1 i-1 i 

Figure 1 

i+1 1+1 i(x) 
R 
id 

(7Φ* D1
«! νφ + φ* ¿iJ φ ) ^ 

(2.1.1) 

In each cell D, A and F are assumed to be constant; in 

cell H j , they are D **, A *· and F
 3
 resp. Moreover, we have ^ they are D **, A ° 

η A
1
"
3
 for A

i;)
 - 4 F

i á 
written Α ° for A 

We have 

g g J
id =

 Σ
„ »η i l VÍ

S
 7Φ

η «
 + \ * Ì Ì li

 Φ
η \ « <2·1··2> 

η=1 J J n,m=1 J J 

R
id

 R
id 

(products of vectors are to be understood as scalar products). 

Now we approximate I. . in a certain way such that I = Σ 1^. 

is a linear function of Φ*(Ρ) and Φ(Ρ) in all the interior nodes 

Ρ » (id)· In order that I is rendered stationary, it is necessary 

that 
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gl n 3Φ*(Ρ) 3 ° » η 
(2.1.3) 

and 31 
3Φ τψτ = 0 , for η » 1,·..,g and all Ρ (2.1.4) 

We consider only (2.1.3) that gives us the difference 
equations for Φ(Ρ), while (2.1.4) gives us those for Φ*(Ρ). 
In this approximation I.. depends on Φ*(Ρ) if and only if Ρ 
is an angle of R^j» Ρ = (id) or 

-dWOTJ = 3Φ*(ΐ3) [xid + Ii+id + Xid+1 + Ji+id+i j s ° · ( 2 · 1 β 5 ) 

η = 1,···,g · 

The derivation of these formulae is given in more detail 
in the appendix A1. It may be remarked that the interfaces have 
to be meshlinks (parallel to the axes). 

2. The mixed formulas 

(See [3], [8] ) 

In order to derive the mixed formulas we extend the 
rectangular net by adding in each cell one diagonal in the 
following way. We divide the nodes (interior and boundary) 
in two classes, (i) i+d is even and (ii) i+d is odd. 

The points of one class are 
connected by cell diagonals 
(we choose the class i+d odd), 
see fig. 2. 
In this way an extended net is 
generated. 

i 

Now we consider all the continuous functions which are 
linear in each triangle of this extended net. The variational 
principle will be applied to this class of functions. The 
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interfaces are assumed to be mesh links of this extended 
net (either cell diagonals or mesh links of the first 
rectangular net). 

Clearly, we have two kinds of mesh points (i) with a 
star Σ5 (called "five-points") and (ii) with a star Σς 

(called "nine-points"), 
figure 3· The points with a 
star Σ,- give rise to five-point 
formulas and those with Σς to 
nine-point formulas. 
The coefficients D, A and F 
are assumed to be constant in 
each triangle. Quite similarly 

Figure 3 to 1., we now derive 

\ 2 

3\ 
4/ 

1 / 
Te 
\7 
6 \ 

for Σ,.: 31 y "3^PJ = "ããnTp7kf1 *k = ° » 
and (2.2.1) 

8 
for

 V 3Φ*(ρ) = 3Φ*(ρ)
 2 \ = ° » for

 n=1,...,g. 

^
 = Λ *" // V

*n
 V
*n
 Œ +

 n ! - ̂  ƒƒ Ç n=1 JJ n,m=1 ii 
Φ dR m 

(2.2.2) 
where Tk is any triangle. 

The mixed formulas and their derivation are given in 
the appendix A2. 

Remark The scheme described in II.2 is particularly efficient 
also for operators with the mixed derivatives (apart from the 
advantage of being able to treat arbitrary interfaces). 



- 11 -

III. Treatment of the difference equations 

1· Structure of the Equations 

In the appendix A the equations have been derived. The 
Lary conditions (u or u eqi 

deal with. See the appendix A3. 
boundary conditions (u or u equal zero) are very simple to 

(i) The five-point formulas 

See appendix A.l(i) and figure 4· 
The (interior) nodes are ordered 
in the ordinary way, i.e., 
11,21·.., 11, 12...,I2,...1J,...,IJ. 
Say N*I . J. It is clear that the 
five-point formulas can be written 
as 

H (5) Φ = ̂ F(5) Φ , (3.1.1) 
Figure i+ 

where Η/^Λ is a NxN blocked, five-diagonal matrix (the entries 
are the coefficients in the formulas, each entry is a 
gxg matrix). A partitioning by lines gives H/r\ the 
block-tridiagonal structure, 
F/v is a NxN block-diagonal matrix , 

and the transposed flux vector Φ is 

Φ « (φ^ »..·#ΦΙ1# Φ-|2»··· φΐ2'*' ,,φυ'··· φ υ ' ' 

φ., is a g-vector (φ^Ι ,...,Φ^? )» for all i=1,...,I and 
dei » * · · 9** · 

(ii) The nine-point formulas 

In a way similar to (i), we can write (see appendix A.l(ii)) 
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H (9) 
Φ

= Ι
Ρ

( 9 )
 Φ

 ' 
( 3 . 1 . 2 ) 

where H/q \ and F/Q^ now are NxN block nine-diagonal matrices 

(by the par 

s t r u c t u r e ) . 

(9) a i l u r ( 9 ) 
(by the p a r t i t i o n i n g by l i n e s , they gain the b lock- t r id iagona l 

( i i i ) The mixed formulas 

d 4 

Figure 5 

See appendix A.2 and figure 5 

The total number of nodes be 

N=I J. The (interior) nodes are 

separated in two classes. The 

points in the class with i+d 

even are called the five-points, 

or points with star Σ , the 

other points are called nine-points 

φ The five-points are numbered from 1 

i to Ν = ^|1 f the nine-points 

from Ν +1 to N, both in the 

ordinary way. N. = N-N . 

In this ordering : Φ = (Φ , Φ_) 

Φ 
Î =

 (φ1ΐ·Φ31,Φ5ΐ····,φ22,φ42,Φ62—·,Φ13·Φ33,··) 

Φ2 - (921'%1'φ6ΐ'·"'φ<\2*φ32'φ52''"'φ23'\3'"ί 

Then we can write 

H(59) * = ÍP
(59) * * 

where Η (59) 

H
11

 H
12 

H
21

 H
22 

(3.1.3) 

(3.1.4) 
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and F (59) 
11 12 

F, 
(3.1.5) 

'21 "22 H., and F„Λ are N xN block-diagonal matrices , 11 11 o o * 
H.0 and F._ are N xN, (i.e. N rows and N. columns) blocked, 12 12 o 1 o 1 

four-diagonal matrices) , 

H 2. and F_. are N.xN blocked, four-diagonal matrices , 

Η and F_2 are N.xN. blocked, five-diagonal matrices , 

The equation H ^ ΦΛ + ΗήΖ Φ2 « ̂  ( F ^ ΦΙ + P I 2 *2^ r e P r e s e n t s 

the formulas for the five-points. The other equation in (3·1·3) 
similarly for the nine-points. 

2. Iterative Methods 

a) The five- and nine-point formulas 

The equation to be solved is 

ΗΦ = ~ ΡΦ . 

Write Η = D+L+U, where D i s the diagonal pa r t of Η ( in t h i s 
p a r t i t i o n i n g with respect to the gxg mat r i ces ) , L i s the lower 
t r i angu la r pa r t and U the upper p a r t . 

( i ) The power method 

S ta r t values Φ̂  ' and xS ' are assumed to be given. 
Outer i t e r a t i o n : ΗΦ^η+1 ' = 4 F&n\ η = 0 , 1 , . . . , (3 .2 .1 ) 

L(n+1) λ(η) tW11*1
 Ì λ(0) IW

n
+

l )
ll / , 2 2) ¿ - »

 J
 i nrd = λ̂  | | ΐ ιφ(ο)|| »(3.2.2) 

u n t i l 

| |ΡφΠΓΓΒ 

< e ( 3 . 2 . 3 ) 

Inner i t e r a t i o n ( to solve (3 .2 .2 ) ) : 
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1 >(n) b
 = -tïïT

 ρφ
 · 

y 
(O) = φ(η) 

Solve 

until 

(D+L)y
(m)

 =-Uy(
m
-
l )
+b m=1,2,... , 

y< 
max 
i 

r(m) _ (m-1) 
i
 y

i 
"3mT < η (3.2.1+) 

the m for which the inner iteration stops be M, 

then φ*>
η+
1 ) _ y^M' (being the last computed one). 

(ii) The method equipoise 

This method is similar to (i). 

Here M=1 (only one inner iteration). 

,(n) 

n = 0,1,... (3.2.5) 

Moreover λ
ν
 ' is estimated by 

,(n) IW
n
)|l 

The proper method equipoise consists in taking J|x|je = **
e
 =

 2 x^ 

where e is the vector with each entry equal to the unity. 

b) The mixed formulas 

Here the decomposition method has been used 

ΗΦ = 

Η * 

i** 
Η 
11 

Η 
12 

Η 
21 

Η 
22 

with a block diagonal matrix Η (see [1] , [8], [9]) . 

If Β = ΡΦ , and in this partitioning B* = (B1, B 2 ) , 

and G 
T-1 

= H 2 2 - H 2 1 H ^ H 1 2 (see formulas A.2.3), 
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then Φ1 = - n~\ H12 Φ2 + ̂  H~] B1 , (3.2»6) 

G*2=I(B2-H21 »U V 
(i) The power method 

Given the guesses Φ̂  ' and λ̂  ' the iterative procedure is as 
follows. 

Outer iteration: B^n' = F4Pn' , η = 0,1,..., 

< 4 η + 1 ) = ^ 7 < 4 η ) - » 2 ΐ Η ; ΐ Β $ η ) > · ^ · 2 · 7 ) 

(η+1 ) (η) Jlp«Ì21l2Jl χ(0) ΙΙρφ("
+
^ΙΙ 

||ΡΦ(η)|| ||F*
t0,

|| 

with the criterion (3.2.3). 

In the inner iteration, (3.2.7) is solved as follows. As usual, 

G is written as the sum of the diagonal, the lower and upper 

tridiagonal parts, G = D+L+U. 

b
= ^ n 7 ^

n )
- H 2 1

H
; Î B l

( n )
) · 

(D+L)y
(m)
 = -Uy

( n M )
 + b , m = 1,2,... , 

with the criterion (3*2.4) » 

Φ(η+1) _ y(M) ̂ the last compUted one). 

(ii) The method equipoise 

As in a) (Li) this method means M=1 and the application of the 

eigenvalue estimation (3*2.5)· 
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3· Some Matrix Properties 

Whether the coefficient matrices are monotone [1], or not, 

is still an unsolved problem. In this section we shall establish 

some sufficient conditions in order that the matrices Η (for the 

five- and nine-point formulas, see III.2a) and G (for the mixed 

formulas, see III.2b) are M-matrices. But under these conditions 

H for the mixed point formulae is certainly not an M-matrix. 

We introduce some definitions. 

Definition 1 : The matrix A = (a,.,) is said to have the M-structure 

if 

and 

»iA > 0 for all i , 

a.ji < 0 for all i and d» d ¿ i · 

Remark 1 : Collatz calls this concept the 'sign distribution' 

[1, page 45]· 

Definition 2 : The matrix A = (a,..) is said to be strongly 

diagonally dominant if 

a
ii 

> Σ 

d/i 
a
id 

with strict inequality for at least one i. 

Remark 2 : This concept is sometimes called the 'weak row-sum 

criterion' [1, page 46]. In [2, page 181 J this property is 

simply called 'diagonal dominance'. 

Remark 3 : An M-matrix may be defined as a monotone matrix [1 ] 

satisfying definition 1. If A is irreducible and satisfies 

definition 2, A is irreducibly diagonally dominant. If, moreover, 

A satisfies definition 1, A is an M-matrix [10]. 
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Remark 4 : In the equation ΗΦ = ̂  ΡΦ (see 3*1*1 , 3*1.2), H is 

irreducible by construction (R is a 'connected' region with a 

'connected' mesh) and F is non-negative with positive diagonal 
—1 

entries. If we establish conditions such that H is positive, 
-1 -1 

H F is positive and irreducible. Then, H F has a positive, 

simple eigenvalue (equal to its spectralradius) with a corresponding 

positive eigenvector [10]. Moreover, if H is strongly diagonally 

dominant and irreducible, the Gauss-Seidel method applied in the 

inner iteration ΗΦ = b converges [1 ], [2 ]. 

(a) The five-point formulas 

The five-point formulas are given in formula (A1.1). Since 

ind b
 J
 are non-negative diagonal matri 

the M-8trueture, H has the M-strueture too. 

a
 J
 and b

 J
 are non-negative diagonal matrices and since c

 J
 has 

Theorem 1 : If A is strongly diagonally dominant, H is strongly 

diagonally dominant (by virtue of the introductory remarks H is 

then an M-matrix). 

Proof : Let 

f. = ! fc,
1
? - a,

1
? - b,

1
? - bír

1
 - a

i+1;) 

k = 1;1 ^
c
kl * "kl *

 D
kl "

 D
kl "

 a
kl 

= Ι ίΥγί? + ¿J
+i

V: + fYit
1á

 + tí;
1
*

+ i
\¿ri. 

LX\Ì +
 Ykï /d

 + [?*1 + Y
kl /M 

g
 11 

Since Σ γ, r > 0 , with strict inequality for at least one k, 
1=1

 K 1 

Η is strongly diagonally dominant. 

(b) The nine-point formulas 

These formulas are given in formula (A1.3)· 

Theorem 2 : Let 

p
i 

H =
 < - , 
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v
id =

 ffiin
 (

3k
d -

 h
l> ¿

 h
i -

 k
d) ' 

«
 12 V

iJ 

If 
μ. h 

"Τ
 <
 k
 <
 ̂  ' (3.3.1) 

J
 d 

and D*j > m± . A*J , for all i and d » 

H has the M-structure. 

If, moreover, A ̂  is strongly diagonally dominent, H is 

strongly diagonally dominant too. 

Proof : The matrices a ■*, b , and c * have non-negative 

off-diagonal entries. 

If L = 1 (or, the left boundary condition is 4* β 0, see 

the appendix A3), p. = 0 and we need not impose any condition. 

The conditions (3·3·1) are equivalent to 

4Í
 +
 4i - Λί > ° ' 

3 « ^ - ή* - YÎÎ > 0 , 

3ßi£ o¡ - (4î
 +
 vîî)Pi > ° ' 

3(3
ÍÍ °i-i " ̂ "îî

 + Y
îi)

p
i

 >
 ° »

 for a11 i and J
· 

Hence a , b , and c ** are non-negative matrices. Since e
 3 

has the M-structure, H has the M-structure too. 

As regards the diagonal dominance, 

f ! fe1* - β}* - b i J
 - b

i d + 1
 - a

i+1d
 - c

13
 - c

l+1
J + 

f
k - * (

e
kl **!

 D
kl

 D
kl

 a
kl

 c
kl

 c
kl

 + 1=1 

+ 1 i+1d+1\ . 
c

k l j " 

g 

= \Í [(^♦^♦(^^'^ 
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or f, > û , with strict inequality for at least one k. Η is 

strongly diagonally dominant. 

(c) The mixed formulas 

See the formulas in appendix A2. 

In theorem 3 we drop the cumbersome indices i,d (of the 

meshpoints and the squares), and +, - (of the triangles). 

Since α, β and γ have the M-structure (a and β are diagonal 

matrices), the matrices d, d, and e have the M-structure too. 

Theorem 3 : If in each triangle (of the extended net) 

°ii
 > μ

ι
 Y
ll ' 

(3*3*2) 
and βχ1 > μ2 γχ1, for 1=1,..., g, 

the matrices a, b, and c are non-negative. It is sufficient 

to take 

μ1 = 1.08 , 

and μ_ = 1.8 , 

but see appendix A3» remark. 

Proof : The off-diagonal en t r i e s of a, b , and c are non-negative. 

By v i r t u e of (3*3*2) e.^ and c-j, are non-negative. In f a c t , 

°il p" > τ ι ισ~ ' 

and oçLl p+ > γ χ 1 σ+ , 

are s a t i s f i e d in the whole region since 

_+ \ 

\P Ρ / 
max 

\ p " p
T
V 
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Similarly, b,, is non-negative. 

Remark : (3·3·2) ie equivalent to 

m s -fe max (μ1 h
2
, Ug k

2
) . 

D
ll

 > m A
ll ·

 1
 * "·»···»* · 

in each: triangle. 

Theorem 4 : If 

(i) (3*3*2) is satisfied, 

(ii) AV* is strongly diagonally dominant for all i,d» 

(iii) P
iá
, Q

1 3
, R

13
, S

1
«
1
 > 0, 

G has the M-structure, and is strongly diagonally dominant 

(and hence an M-matrix). 

Remark : Unfortunately we did not find eufficient conditions 

in order to satisfy (iii). 

Proof : Since d ^ is non-singular and has the M-structure, the 

i1 11 i1 

inverse δ ** of d J is non-negative. By virtue of theorem 3 Κ , 

L , M , and Ν ** are non-negative too. 

Moreover T£_ < 0 for m ¿¿ 1. 

As in the theorems 1 and 2 condition (ii) implies the 

strong diagonal dominance of the five- and nine-point formulas 

(here, in the mixed type). Hence, 

c
ím < j ^

 d
în ·

 X
 »

 1
· · — « ' 

id "Id
 (3,3#3) 

or c
 J
 < d

iJ
. Ε , 

if E is the matrix with every entry equal to the unity. 

a
1
** and b

1
^ can be estimated dust as c

1
^ in (3·3·3). Then 
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1d\ > 
A l 

+ b i d + i 6 i d + i b i d + i + a i + i d 6 i + i d a i + 

s« - , i - i 3 v i d Vid+1 e i+id > d-^r - [ e* ' " + b ~ " + b~ )-L > o , 

since the nine-point formulas are strongly diagonally dominant. 
By virtue of (iii) this means that Τ and hence G have the 
M-structure. 

Let J. be the vector with every entry equal to the unity; 
we consider now 

T i d # 1 - Γ ΐ « + L13 + M« + N« + Q iJ + Rid + S i 3 ] . 1 = 

= - c1"13
 ô

1
"

13
 [ a

1
- ^ + b

1
"

1 3
 + b

1
"

1 3
*

1
 + ο

1
"

1 3
] . 1 

- b
1 3

 δ
13

"
1
 [ a

1 3
'

1
 + b

1 3
"

1
 + b

i 3
 + c

i 3
"

1
] . 1 + 

- b
i3+1

 δ
1 3 + 1

 [~a
i3+1

 + b
l 3 + 1

 + b
1 3 + 2

 + c
i 3 + 1

l . 1 + 

- ai+id ôi+id r a i + 1 J + b i + 1 3 + b i + l 3 + 1
 + c i + 1 3 ] . 1 H 

+ | V 3 + β13 + e± 3 + 1 + e i + l 3 + 1 - - i + 1 3 
+ e 1 > 

Γ. 0 i - i í - b « - bid+i . a i+i 3
 + d

13
 + e

i3
 + e

i3+1
 + 

+ e
i + 1 3 + 1

 + e
i + 1 3 

1 > o 

with at least one strict inequality. 

Hence G is strongly diagonally dominant. 
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IV Numerical Experiments 

In order to compare the finite difference schemes (derived 
in chapter II and appendix A) programs were written and five 
examples, VAR1 through 5# were tested (these examples are 
described in appendix B). 

In the Iterative schemes (ill.2) we have chosen e = 5·10~" , 
η = 10 , and the maximum of inner iteration (if present) 10. 

Before applying the criterion (3*2.3) ten iterations were 
carried out (otherwise, one might find quite a wrong eigenvalue 
estimate ). 

In the iterative schemes a norm must be chosen. Let 
χ = (χ.,.,.^χ ) an arbitrary vector, then 

X 2 
% -.1/2 <*·1·Ό 

-(¿1*0 ' 
= max χ. 

° Kltt I * 

We call these norms the equipoise norm EQ, the absolute sum norm 

AB, the Euclidean norm EU, and the maximum element norm MA, 

respectively. These four norms are used in the equipoise method, 

while only the last three (AB, EU, and MA) are used in the power 

method. 

As numerical estimates of the convergence rate and the 

truncation error, respectively, we introduce σ, the 'mean 

improvement factor' or the 'mean convergence rate', and a, 

the relative deviation between the eigenvalue estimate found 

and the 'exact' eigenvalue. 

The sequences of the eigenvalue estimates here have 

generally a monotone character. We consider now that part of 
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the sequence that is both monotone and 'rather accurate' (i.e. 
within a certain accuracy; we choose the first significant 
figure correct). Let this part of the sequence start with 
eigenvalue estimate λ , and end with the eigenvalue λ, and 
have the lenght m (either outer iterations only or outer and 
inner), then we define 

- J 
m'T 

T: if λ > λ Λ o 

m λ 
-τ0· if λ < λ 

The second number α is defined by 
λ-λ 

α .e λ e 

(4.1.2) 
* Ι λ i f λ < xo . 

In table C2 we give τ, related to σ 

τ = (O-I)10 3 > 0 . (4.1*3) 

(4.1*4) 

where λ = eigenvalue fond , 
λ = 'exact' eigenvalue, given in [4]· β 

The results are given in the tables C 1,2,3» and 4* 
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V Conclusions 

We study the various influences in the convergence. 

1. Influence of the finite difference formulas 

The application of the nine-point and mixed formulas can 

be recommended. 

(i) About the convergence (here, the important criterion), we 

may conclude from table C2 that the mixed formulas have the 

best convergence rate σ while the five-point formulas have the 

worst rate o. 

(ii) About the truncation error, the truncation error is in the 

mixed formulas less than in the nine-point formulae but larger 

than in the five-point formulas. But a better insight in the 

truncation error will be obtained from a big number of 

meshpoints. 

2. Influence of the norm choice 

In some problems a certain norm is good (less iterations) 

and in another problem it is worse. But generally speaking, 

the norm AB is not to be recommended, while EQ and EU are good 

on the whole. 

3. Influence of the inner iterations and the iterative method 

From table C4 it is clear that the use of inner iterations 

has a very small influence in the power method. 

Moreover we may conclude that the equipoise method seems 

very well suited to this class of problems· 
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Appendix A 

1. Derivation of the Five- and Nine-Point Formulas for a Rectangle 

As we already stated in II.1 the only contributions to the 
difference equations in Ρ arise from the neighbouring cells 
(the cells which have Ρ as an angle). Hence we consider figure 6. 
For the present we drop many cumbersome indices. To obtain the 
three other neighbouring cells h and k may have negative values. 

We need to approximate the next 
integrals 

-II 

y* 2 
h 
2 

T2 = 'ii 
Figure 6 

T3 - II 

» · * * < » 

*. «ydR 

Φ* Φ dR 

where dR = xP dx dy (p=0 for the x-y-geometry and = 1 for the 
r-z-geometry). We always take Φ and Φ* in the same class, i.e. 
every assumption about Φ is valid for Φ* too, and conversely. 

We intend to derive with the variational approach the 
same formulas as have been derived by Varga's method (using 
Green'β theorem)· 

(i) The five-point formulas 

We shall use for the x-y-geometry the approximations which 
have been given in [2]· For the r-z-geometry we split each 
square in two halves by DE (see figure 6). 

The approximations we shall use are the next ones. 
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Τ, « -¿ψ (χο
 + | ) [ [Φ*(Η) - Φ*(Ρ)1 Γφ(Η) - Φ(Ρ)1 + 

+ U*(Q) - Φ*(ν)ί [«(Q) - Φ(ν)1 Ί , 

τ2 - -kfL [ [φ*(ν) - Φ*(Ρ)1 |·(ν) - Φ(Ρ) J (χο + g J + 

+ jV(Q) - Φ*(Η)] [φ(ς) - Φ(H)J (χο + Λ ƒ J 

Τ3 " ~ψ~ [ [Φ*(Ρ) Φ(Ρ) + **(V) Φ ( Υ )] (Χο + kJ + 

+ Γφ*(ς) Φ((ί) + Φ*(Η) «(H)J (xQ + i f ƒ ] · 

Proceeding in a way as has been given in [2 ] the next 
f i ve -po in t formulas a re derived. 

- a 1 3 Φ1"1 3 - b 1 3 ί 1 3 " 1 - b i 3 + 1 * 1 3 + 1 - a l + 1 3 * 1 + 1 3 + o 1 3 * 1 3 -

„ 1 d id t i 3 ( ( A 1 - 1 ) 

a i3 - (V3
 + ai3+1 j Pl , 

b i 3 = β13 , ¡ + » 1 + 1 3 «J , 

o
1 3
 - a

1 3
 + b

1 3
 + b

l 3 + 1
 + a

i + 1 3
 + ( T

l 3
+ Y

i 3 + 1
) ^ + ( T

l + 1 3
+ Y

i + 1 3 + 1
) < . 

a
1 3

 = ( 6
1 3

+ O
i 3 + 1

) T ¡ + ( s
l + 1 3

+ 6
l + 1 3 + 1

) · « ; , 

aid . i i Di3 , ¿W . i i Di3 , 
n i K3 

^■i\v13 . »^iVj?11 
» 
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p i = ^ ) p . (Ί-

ρ β o for x-y-geometry , 
1 for r-z-geometry · 

Remark : The formulas (A1.1) fully agree with those, which are 
derived by Varga's method. For the x-y-geometry they are given 
in [2] and [11], for the r-z-geometry in [6]. 

(ii) The nine-point formulas 
V (2) _a 

k 
2 

k 
2 

laus 
(4) (5) (6) 

ω_- _ 
p(x0,y0)fD f 

Β 

Following an assumption in [2]. 
let Φ,. and Φ* be : 
Then we may write 

Ti " T ( A o T 2; [/x1 ~x1 

let Φ snd Φ* be independent of x. 

χ + ìk\ Γφ* φ . + 

Η 
+ 2 Φ*-, Φ -, + Φ*„ 

x3 x3 χ2 x2j 

- ♦ χ 

Figure 7 

Moreover 

where Φ . = Φ along PH , 
xl 

Φ > = Φ along AB etc. (see fig.) 

φ at -L ( φ +Φ ) 

χ3 2 ^ χ1
 γ

°
; χ2 

φ c* 

χ1 

φ C* 

Χ2 

•(H) - Φ(Ρ) 
h 

•(Q.) = Φ(ν) 

In this way we derive formula (A1.2
a
). For T2 we assume Φ 

and Φ* to be independent of y. Then, 
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τ . jb&L [ > * · . Φ + 2Íx + § f 
2 4 _ ο y4 y4 \ ο 2y 

Φ* Φ .. + 
y5 y5 

(
χ
ο
 +

 f % V] · 

*75 "2
 (

V
+
 V ' 

φ „ Φ(ν) - Φ(Ρ) 
y4 k » 

φ „ «(g) - Φ(Η) 
y6 k 

The r e s u l t i s formula (A1.2 ) . T, i s d e a l t wi th as f o l l ows , 

T3 « hk (xQ + ! ) Φ*(ο) Φ(ο) , 

Φ(ο) - ¿ Φ(Ρ) + *(V) + *(Q) + Φ(Η) 

The approximat ions a r e 

m Qf 

1 

Jhk! 

4h 
2 l

X
o

 +
 l 

Ρ 
Γ Γ*·(Η) Φ*(Ρ) Φ(Η) - Φ(Ρ) 

L 

| f«*(H)-«*(P)+«*(Q)-»*(v)ì [φ(Η)-Φ(Ρ)+Φ(ς)-Φ(ν)1 + 

(A1.2 a ) 

m OÍ 

2 2 
¿
 4k 

+ ΓΦ-U) - Φ·(ν)1 U ( Q ) - *(V)1 Ί , 

^ [x£j>(v) - Φ*(Ρ)] j^(V) - *(P)J + \ (xQ + | ƒ κ 

ί Γφ*(ν) - Φ*(Ρ) + Φ* )̂ - Φ*(Η)"ί Γφ(ν)-Φ(Ρ)+Φ(ς)-Φ(Η)1 

+ (χο + h)P (>((ί)-Φ*(Η)ί (Φ(ς)-Φ(Η)] Ί (A1o2b) 
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x « Ji|L ^ + h\ Γ«·(ρ) + »»(ν) + *·(Η) + *·(ί)1 χ 

χ Γ»(Ρ) + «(V) + «(H) + *(Q)1 . (Α1.20) 

The next nine-point formulae are derived 

- o 1 3 i 1 - 1 3 - 1 - o l 3 + 1 * 1 - 1 3 + 1 - c l + 1 3 * 1 + 1 3 _ 1 - ο 1* 1 3* 1 * 1 + 1 3 + 1 + 

- a « *i—Id . „13 t i3 -1 . „U-H »13+1 , a i+13 »1+13 + .13 «13 . 

-{(ι13 β 1 - 1 3 " 1 + a l 3 + 1 t1"1 3*1 + a l + 1 d β1*13"1 + ,1 + 1 3 + W + 13+1 + 

♦ ι·
1 3 ί1"1 3 + a1 3 Φ13-1

 + e l 3 + 1 : » 1 3 + 1 + r l + 1 3
 Í

1
*

1 3
 + t

1 3
 *

1 3
) . 

(Al .3 ) 

a
1 3

 . 3 ( o
i 3

 ♦ a
l 3 + 1

) P i . - ( β
1 3

 ♦ P
l 3 + 1

) P i - (γ
1 3

 + Y
i 3 + 1

) P l . 

b
i 3

 = - a
1 3

P i - o
l + 1 3

P l + 1 + 3 O
i 3

0 ¡ ♦ ß
l + 1 3

< ) - Y
l d

P l - Y
l + 1 d

P l + 1 

e
1 3

 . 3 («
1 3

 + a
1 3

*
1
) ^ ♦ 3 ( a

l + 1 3
 + a

1
*

13
*

1
 )f»l+1 + 

+ 3(P
Í3

 + ß
l 3 + 1

)»I + 3 (ß
i + 1 3

 ♦ ß
l + 1 3 + 1

) < + 

♦ ( γ
1 3

* Y
i 3 + 1

) P l + (Y
l + 1 d

 + Y
i + 1 3 + 1

) P l + 1 . 

a
13

 - 6
13

 Pt . 

r
1 3

 = 4
1 3

 + ,
1 3 + 1

 , 

e
1 3

 = a.
13

 ♦ 4
i + 1 3

 , 

t
1 3

 = a
1 3

 ♦ a
l 3 + 1

 + 4
l + 1 J

 ♦ g.
l+13+1

 . 
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¿* 3 D « , β« = £i D« , 
n i Kd 

r
i 3 . 1 V / 3 , e« . 1 ν / ΐ 3 , 

pi - (xi - i / · 

»¡■(« i - i
1
; · °i = (*i

 +
 ¥; . 

ρ = 0 for x-y-geometry, 

1 for r-z-geometry. 

Remark ; Again these formulas fully agree with those which can 

be derived by Varga's method. For the x-y-geometry these formulas 

have been published in [7]· 



- 31 -

2. Derivation of the Mixed Formulas 

From the observations we made in II.2 it is clear that we 
need to consider only those triangles which have Ρ as an angle< 

(i) Star Σ,-» fig* 8 , h and k may assume negative values. We 
introduce a coordinate transformation 

χ » χ + ξη , 

p(xo-V * 
Figure 8 

Η 

(0,0) (1,0) ξ 

Figure 9 

y = y o + T k , 0 < 4 , η < ΐ . 

The triangle PHV is then mapped onto 
the unit triangle E (fig. 9 ). 
In this triangle PHV the general 
admissible function (continuous and 
linear in each triangle) is 

Φ=Φ(ρ)+ξΓφ(Η)-Φ(ρ) 1+ηΓφ(ν)-Φ(Ρ) Ί . 

For the computations the next 
formula is useful 

ƒƒ ί * «*> ■ Ä T ! 
E 

(m and n are natural numbers). 

Formula (A2.1) can be derived now. 

(ii) Star 2g . The procedure here is quite similar 

to above. We may introduce in 

triangle 1 (fig. 10 ) 

χ = x o + Çh , 

y = y 0 + ( i - n ) k , o < ξ, η < ι , 

φ=φ(ν)+ξί Φ(ς)-Φ(ν) ί+η φ(ρ)-φ(ν) , 

F i g u r e 10 
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and in triangle 2 

χ = X Q + (ΐ-ξ)ίι , 

y = y0 + -ík , 0 < ξ, η ^ 1 , 

Φ = Φ(Η) + ξΓφ(Ρ) - Φ(Η)ί + ηΓφ(ς) - Φ(Η)ί 

The computations finally lead to (A2.2). 

3+1 

'3+1 

3-i 

/ 2 

Ν . 3 

1 N. 

4 / 

i-1 h i 1 

N. 2 

3 \ 

4 y 
/ 5 

1 > / ^ 

X . 7 
6 X . 

h i + 1 i+1 i-1 

3 + 1 

'3+1 

k 

3-1 
i+1 

5 Figure 11 y 

In each triangle the coefficients D, A and F are supposed 
to be constant. V/e now define D*J (D*3) as the coefficient D in 
the right (left, respectively) triangle of square R.... with the 
diagonal anyhow. A+ and F+ are defined in a similar way. 

E.g., in Σ , fig. 11 , D + 
i+1 3+1 D8 , D ± + W =D 1 , 

D « + 1 = D2 , D^ + 1 = D3 . 

ij i U3 flid Ìli ̂ 13 vi3 _L h ν Ai3 
And, as usual, α+ = jp D+° , β+ = £- D + , γ± = γ£ ^ k^ A + 

ι j · 
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"5 * 

- a1 3 Φ1"13 - b i d Φ13"1 - b i 3 + 1 Φ1;)+1 - c1* Φ1+±ί + d i d Φ13 . 

- 1 Γβ1* Φ1"13 + t i á Φ13"1 + t i d + 1 Φ1;)+1 + u1* Φ1+1^ + ν 1 3 Φ1 ; )] 

(Α2.1) 

Σ9 : 

- c 1 - ^ Φ 1 ' ^ - b i d Φ ί ; Μ - b i d + 1 Φ13+1 - a i + 1 ; ) Φ1+13 + d1 3 Φ1;) + 

+ e i á Φ 1 " 1 ^ 1 + e i d + 1 Φ 1 ' 1 ^ 1 + e i + 1 J Φ1 + 1 3"1 + e i + 1 J + i Φ1+1 d + 1 -

- ì l ' u 1 - ^ Φ 1 ^ + t l d Φ 1 ; Μ + t i 3 + 1 Φ13+1 + s i + 1 J t i + 1 ; ) + v i d Φ13 + 

+ w i3 φΐ-13-1 + wi3+1 φ1-13+1 + wi+13 .1+13-1 + wi+13+1 φ1+13+ΐΊ , 

(A2.2) 

a ^ = ( « ^ + 1 + a ^ ) p ¡ - ( γ ^ + 1 + Y ^ ) o ¡ , 

h
i á

 = β^ P¡+ ¿
+13

 ρ+- YÍ
d · ς - ¿

+U
 < . 

c i 3 = (α1+ΐ3+1 + a i+13 ) p+ _ ( r i+13+l + γ1+13 )σ+ , 

di3 = (¿+1Í+1 + β ^ ^ + c¿ + 1 á + ß5 + i d )p l + 

+ ( α ^ + 1 + β^ + 1 + ^ + P ^ ) p ¡ + 

+ 2 ( γ1+13+1 + γ^)^ + 2 ( γ ^ + 1 + γ ^ Κ , 

ã i 3 = ( ß i+ i3+i + ß i+ i3 ) p + + ( ß i3+i + ß i 3 ) p - + 

+ (α* + 1 ^ + c ^ ) p - + 1 + ( ^ + 1 + ¿ V - 1 + 

+2(Υ1+13+1 + γ ΐ+ΐ3 ) τ+ + 2 ( γ ΐ 3 + ι + γ ΐ 3 ) τ - + 

+2(YÍ+1á+1 + ¿?U)o\ + 2(YÍd+1 + Y^)0¡ , 
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V = ¿* σ^ + γ« o¡ , 

7 
5î = ( x i - 3 h i ) ' ρί = (xi + 3 h i+l) ' 

Ρ 
°i = ^ x i - 5 h i ; · °i = ^ x i + 5 h i + v ' 

τ ϊ - ( x i - 5 h i ) P » *i = ( X i + 5 h i + l ) P ' 

ρ = 0 for x-y-geometry, and = 1 for r-z-geometry. 

The right-hand side coefficients s1'', t1^, u1^, ν1**, ν1*', 
and w1^ are obtained directly from - a1«5, - b1*5, - ciJ, d1J, d1^, 

11 ii 
and e , respectively, by replacing D ° with the null matrix and 
AiJ with Fi;). 

In the iterative procedure (ill.2b) the right-hand sides 
of (A2.1) and (A2.2) are considered as known terms; we denote 

11 H them by V(-J and V»0, respectively. 

Since d " is non-singular we can eliminate the fluxes Φ in 
the five-points from the left-hand side of (A2.2). Then we get 
a left-hand side merely consisting of nine-points, corresponding 
to the matrix G in III.2b and the formulas (3.2.6). 

We obtain 

_ Ki3 φΐ-23 _ L13 φΐ3+2 _ Mi3 $i+23 _ Ni3 φΐ3-2 + Ti3 φ!3 + 

_ pi3 φΐ-13-1 _ Qi3 φΐ-13+1 _ Ri3 φΐ+13+1 _ si3 Φι+13-1 = 

0 
+ a i + i 3 ô i + i 3 ν ι + ΐ 3 Ί t ( A 2 # 3 ) 

ô « = ( d ^ ) " 1 , 

X1* = c i - 1 ; 3 ô1"*13 a 1 " ^ , 

i Γν1 3 + c 1 ' 1 ^ ô 1 " ^ V1""^ + b1 ;3 ô i ; M V13"1 + b i á + 1 ô l d + 1 V Í d + 1 

λ 9 5 5 5 
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L i 3 m b i3+1 6i3+1 b i 3+2 

Mi3 B a i+13 6 i+13 c i+13 

N i 3 = b i 3 ô i3 -1 b i J - 1 t 

^ = e 1 - 1 3 Ô1"13 b 1 " 1 3 + b 1 3 ô1*"1 a 1 3 ' 1 - e i á , 

Q1* = o 1 " 1 3 ó 1 ' 1 3 b 1 " 1 ^ 1 + b 1 ^ 1 ô i 3 + 1 a i J + 1 - e i á + 1 , 

R i 3 = b i 3 + l Ôi3+1 c i3+1 + a i + l 3 Ôi+13 b i+ ld+ i . e i + l 3 + i f 

si3 s b i 3 Ô i3-1 C i3 -1 + a i + i 3 Ôi+13 b i + l 3 _ e i+13 f 

T i d = d l á - o 1 " 1 3 ó 1 " 1 3 o 1 ' 1 3 - b l á ó1*"1 b i á - b l á + 1 ô ^ + 1 b i 3 + 1 -

- a i + i 3 Ôi+13 a i + i 3 . 
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3· Treatment of the elementary boundary conditions 

In the examples VAR 1/5(see appendix B) we always have 
3Φ 

either Φ = 0 θ Γ - ^ - = 0 ο η α side of R. Therefore we consider 

the side along the positive y-axis (see figure 1). 

(i) Φ = 0. We set Φ
0
«
3
 = 0 for 3 = 0,1,...,J+1. Moreover, 

the coefficients of Φ ̂  in the finite difference formulas are 

set equal to zero (by definition). This left boundary condition 

is characterized by L = 0. 

(Ü) 
3Φ 

3n 

9Φ 
= 0 . See figure 12 . AO = OE = h . The condition -g- = 0 

3n 
is approximated by 

F 

3=1 

A 

1=0 

EPJ - *ii 

h' = AE = 2h . 

0,1,...,J+1, 

h E 

1=1 

The coefficients of (1.1.1) in AOGD 

+ are assumed to be equal to those in 

Β x(i)0EFG. This case is characterized by 

L = 1 . 

Figure 12 

Anyhow, in an expression like a$ ** + b Φ (in the finite 

difference formulas) b remains unchanged in case (i) and is 

changed in b+a in case (ii), while a is set equal to zero in 

both cases. 

Remark : In theorem 3 we evaluate 

max 
i 

τϊ τ1 — , — J and max ( - f , - f ) · We have 
\ AJ i v pi PÎ 

and 

h . 

h 

<í 1 f o r a l l 1 = 2 , 3 , . . . , I 

= 1 + L . 
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Then μ. = max f-1 , ~ ) = (1 .05 + .03 L ) P 

1 i \ P ¡ P ¡ / 

and 

- + 
τ., τ. 

Ug = max Λ-* , ""+■ ) β (1 .2 +.6 L) 
i VPi Pi 

kP 
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Appendix Β 

Description of the Test Examples 

With reference to the problem description in chapter I we 
give for each example the next information. 

(i) The region R with the kind of geometry (p = 0 or 1). 

(ii) The boundary conditions. 

L = 0 means the y-axis is a part of Γ., 
= 1 means the y-axis is a part of Γ . 

M = 0 means the x-axis belongs to Γ , 
= 1 means the x-axis belongs to Γ . 

The other sides belong to Γ. in each problem. 

(iii) The number of sub regions where the coefficients are 
constant. 

(iv) The eigenvalue found by Galligani [4]· 

(v) The mesh, i.e. the partitioning of the two axes. 

E.g. y-axis (k.) (θ) .5 (2) 7.5 (14) means that the 
mesh length k. = .5 from 3 = 0 to 3 = 2 
and k. = 7·5 from 3 = 2 to j = 14. 

(vi) The coefficients D, A, and F, constant in each subregion. 
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1 . 
1 

4 · 9 12.2 

- 3y 
VAR 1 

ρ = O 
L = O , M 
4 r e g i o n s 
λ = .5772 

= O 

102.2 

Mesh 
y -ax i s ( k . ) 
x - ax i s ( h . ) 

(O) .5 (2) 
(O) 2.45 (2) 

7.5 04) 
3.65 ( 4) 7.5 (16) 

REGION 
11 12 11 12 

1 
2 
3 
4 

REGION 

2.1744 
1.36515 
1.274 
1.2847 

D2 

.OO3672 

.003214 

.010317 

.011045 

A21 

.0 

.0 

.0 

.0 

Δ 
A22 

.0 

.0 

.0 

.0 

Ρ 21 

.0 

.072019 

.0 

.004629 

F 22 

1 
2 
3 
4 

1.0241 
.8061 
.8331 
.824605 

-.003455 
-.000782 
-.01019 
-.009884 

.01048 

.0579 

.000153 

.OO3983 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 



y 4 

30, 

24. 

12, 

6. 

2. 3. 

- ko -

8. 

ρ = 0 
L = 1 , M = 0 
3 regions 
λ » .02428 

-·* 

VAR 2 

Mesh 
y-axis (kj) (θ) 2. (15) 
x-axis (h±) (O) 1. ( 2) .5 (4) 1. (9) 

Coefficiente 

REGION L11 L12 Ρ 11 12 

1 
2 
3 

REGION 

1 
2 
3 

1.52 
1.53 
1.50 

D2 

1.32 
1.33 
1.31 

.01186 

.01299 

.0107 

A21 

-.0052 
-.0053 
-.0053 

-.0032 
-.0041 
.0 

A22 

.00804 

.00996 

.00382 

0. 
.0041 
.0021 

P21 
0. 
0. 
0. 

0. 
.0042 
.0022 

P22 
0. 
0. 
0. 



600. 

300 

120 

Ρ » 1 
L = 1 , M = 0 
4 regions 
λ = 1.0465 

240. 300. 340. χ 

Mesh 
y-axie (kj) (0) 
x-axis (h.) (θ) 

40. (3) 45. ( 7) 50. (13) 
30. (8) 20. (11) 10. (15) 

VAR 3 

Coefficients 

REGION 

1 
2 
3 
4 

REGION 

1 
2 
3 
4 

D1 

1.27 
1.27 
1.29 
1.27 

D2 

.836 

.836 

.842 

.836 

A11 

.011978 

.011978 

.010570 

.011978 

A21 

-.0109 
-.0109 
-.01057 
-.0109 

A12 

.0 

.0 

.0 

.0 

A22 

.OO4406 

.004186 

.OOOO67 

.OO4246 

F11 

.0 

.0 

.0 

.0 

Ρ *21 

.0 

.0 

.0 

.0 

Ρ *12 

.OO4938 

.004938 

.0 

.004938 

Ρ 22 

.0 

.0 

.0 

.0 



VAR 4 

= O 

102.5 

Mesh 
y-axis (kj) (θ) 7.5 
x-axi β (h±) 

(2) 15. (14) 7.5 (16) 
(0) 9.1667 (3) 10. ( 9) 7.5 0 0 

Coefficients 

REGION 11 12 Ρ 11 12 
1 
2 
3 
4 

REGION 

1.75 
1.38 
1.38 
1.75 

D2 

.02118 

.02386 

.02386 

.02118 

A21 

.0 

.0 

.0 

.0 

A22 

.0 

.0 

.0 

.0 

Ρ *21 

.0 

.113 

.113 

.0 

Ρ 22 

1 
2 
3 
4 

.328 

.4717 

.4717 

.328 

-.02118 
^.0134 
-.0134 
-.02118 

.02008 .0 

.07172 .0 

.05972 .0 

.008083 .0 

.0 

.0 

.0 

.0 



yJ 

80. 

65. 

35. 

I 

2 

1 

20. 

1 

21. k .0. 

- *»3 -

ρ 3 0 
L = 1 , M = 
3 regions 
λ = 1.0124 

VAR 5 

Mesh 
x-axis (k±) (θ) 5. (16) 
x-axis (h±) (0) 5. ( 4) .5 (6) 4.75 (10) 

Coefficiente 

REGION 11 12 11 Ρ 12 

1 
2 
3 

REGION 

1.7 
1.7 
.5 

D2 

.016 

.041 

.1 

A21 

.0 

.0 

.0 

A22 

.0 

.0 

.0 

Ρ *21 

.0832 

.0 

.0 

F22 

1 
2 
3 

.42 

.23 

.1 

-.016 
-.041 
-.0 

.055 

.012 
1.5 

.0 

.0 

.0 

.0 

.0 

.0 



TABLE C1 

Eigenvalues and number of iterations in the equipoise and power methods 

Example Norm 

VAR1 

VAR2 

VAR3 

VAE4 

EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 

Equipoise method 

n 
31 

+ 100 
38 
37 
46 
49 

+100 
+100 

40 
41 
32 
28 

• 5795 
.5423 
.5771 
.5759 
.02426 
.02414 
.02476 
.02500 

26 1.024 
24 1.023 
11 1.025 
22 1.035 

.9689 

.969O 

.9705 

.9735 
38 1.020 
55 1.010 
24 1.017 
34 1.039 

n 
23 

+ 100 
30 
26 

37 
41 
85 
96 

31 
31 
26 
17 

-5734 
.5315 
• 5715 
.5697 
,02418 
,02406 
,02450 
,02448 

22 1.026 
22 1.026 
8 1.026 
17 1.034 

.9646 

.9646 

.9651 

.9664 
32 1.021 
45 1.014 
22 1.018 
27 I.03I 

59 

n 
24 

+88 
28 
17 
29 
38 
66 
75 

29 
28 
22 
22 

.5731 
• 5513 
.5725 
• 5762 
.02420 
.02403 
.02439 
.02440 

21 1.027 
18 1.025 
13 I.O26 
20 1.026 

.9777 

.9658 

.9693 

.9707 
25 1.027 
25 .9987 
16 1.018 
32 1.027 

Power method with inner iterations 

n 10 

+120(50, 
+118(50 
+112(50, 

-5777 
-5779 
.5802 

.02387 

.02384 

.02386 

85(18) 1.027 
78(15) 1.028 
65(11) I.O32 

149(26) .9717 
108(20) .9728 

51( 8) .9647 

86(35) 1.010 
80(29) 1.008 
65(10) 1.015 

n 10 

193(38. 
197(39, 
207(43, 

119(25, 
94(19, 
59(12, 

.5708 

.5716 

.5737 

.02448 

.02449 

.02451 

1.026 
1.028 
1.031 

.9654 
,9663 
.9704 

67(20) 1.014 
54( 9) 1.015 
63(14) 1.031 

59 

n 10. 

148(24] 
151(26, 
164(33, 

-5724 
.5730 
.5749 

,02438 
,02442 
,02446 

84(18) 1.027 
69(14) 1.027 
59(11) 1.031 

.9685 

.9694 

.9706 

56(14) 1.018 
52( 7J 1.023 
65(14) 1.028 

In the second row, 5, 9, and 59 denote respectively the five-point, the nine-point, and the mixed formulas; 
n gives the number of iterations used in order to find λ (eigenvalue) in the equipoise method while 
n 1 0 gives the total number of iterations with the number of outer iterations in brackets in the power method 
(10 is the maximum number of inner iterations). A plus sign means that the iterations reached a prescribed limit without converging. 



TABLE C2 

The 'mean improvement f a c t o r ' a, see ( 4 · 1 · 2 ) ; we give τ , see ( 4 . 1 . 3 ) 

Equipoise method 
59 

Power method with inner iterations 
59 

Example Norm m m m m m m 

VAR1 

VAR2 

VAR3 

VAR4 

EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 
EQ 
AB 
EU 
MA 

1(11 
1(52: 
1(14, 
2(12, 
1(10; 
1(10( 12( 6! 
10(41 
1(8! 1(8. 
1P< 7(3, 

3(8i 3(8 
2 ?< 8(3, 

2(23] 
2(40. 
4(14, 
11( 9, 

6.5 
1.7 
5.9 
5.5 
5.1 
4.5 
2.2 
3.0 
1.3 
1.1 
2.0 
0.7 
2.1 
2.1 
2.8 
1.7 
1.2 
0.7 
1.7 
1.3 

1 9, 
1(54, 
1M2, 
2(10. 

1 
1 
9I 

β; 
8 
5, 

7(30, 

2\ 
2( 
2! 

12 

18) 
.29) 
,12) 
J O ) 

7.6 
1.3 
6.2 
6.4 

5.9 
4.9 
2.5 
3.0 

1.5 
1.1 
2.6 
1.3 
2.5 
2.8 
3.3 
6.7 
1.3 
0.9 
IO 
0.8 

6.7 
2.0 
7.5 
12.0 
6.4 
4.6 
2.4 
3.6 
1.3 
1.5 
0.8 
1.8 
3.1 
2.7 
3.6 
3.2 
1.9 
1.5 
1.7 
2.8 

Iftj 
ose 

5.2(3.3, 
5.9(2.8. 
1.5(1.4, 

3.1(2.2, 
2.9(2.1 
3.0(2.2, 

1.5(0.3, 
0.8(0.2 
1.2(0.2, 

3.4(0.6; 
4.5(0.8. 
8.7(1.2, 

0.6(0.6) 
0.6(0.6) 
0.9(0.2) 

12.1(4.6] 
21.6(4.1, 
2.5(1.6, 

1(14) 6.1(2.3] 
1(14) 6.6(2.5, 
1(15) 5.4(2.3, 

1.6(0.4] 
1.4(0.3, 
1.3(0.3, 

3.2(0.7, 
4.0(0.8 
0.8(0.1, 

m 
3(2 ) 

1.0(0.7) 
1.4(0.4) 
5.9(1.5) 

9.8(4.9 
16.6(4.3 
3.0(1.8' 

1 
1 
1 

L 1 1 ) 
,11) 
[11) 

9 . 3 ( 2 . 5 ) 
9 . 2 ( 2 . 7 ) 
8 .4 (2 .9 ) 

1.5(0.3, 
1.0(0.2, 
1.4(0.3, 

3.1(0.7, 
4.6(1.0. 
4.5(0.9] 

1.2(0.8) 
2.8(0.4) 
5.5(1.6) 

In the table, m gives both the iteration number where the monotony starts in the sequence of 
eigenvalue estimates, and, in brackets, the iteration number where the first significant figure 
in the estimate is correct. In the power method, τ gives two values, one being computed only for 
the outer iterations and another being computed for all the iterations (outer and inner). 
Remark : OSC means the sequence was oscillating. 



TABLE C5 

Relat ive deviat ion α in %o between the estimate found 
here and the ' exact ' eigenvalue (see 4.1*4) 

Example Norm 

EQ 

VAR
1 BU 

MA 

EQ 

VAR2 ¿J 
MA 

EQ 

V A R
3 ¿υ 

MA 

EQ 

VAR
^ ÉS 

MA 

EQ 
V A R

5 ¿J 
MA 

Equipoise method 

5 

4 
< 60 

0 
2 

1 
6 

< 20 

< 30 

21 
22 
20 
10.5 

4 
4 
2 
1 

8 

2 

5 
27 

_ _ _ _ _ 

9 

6.5 
< 79 
10 
13 

4 
9 
9 
8 

19 
19 
19 
11 

8 
8 
8 
7 

9 

2 

6 

19 

59 

7 
< 45 

8 
2 

3 
10 

4.5 
5 

18 
19 
19 
19 

5 
7 
4 
2 

15 

13 

6 

15 

Power method with inner iterations 

5 

1 
1 
6 

< 2 
< 2 
< 2 

18 
18 
13 

1 
0 
2 

2 
4 
3 

9 

11 

10 

5 

1 
1 
2 

19 
18 

15 

7.5 
6.5 
2.5 

3 
3 
19 

59 

8 

7.5 

4 

.5 

.5 
• 5 

18 
18 
14 

4.5 
3.5 
2 

6 
11 
16 



TABLE C4 

Influence of the inner iterations. We present here a comparison for the power method between the 
application of inner iterations (with at most ten in each outer iteration) and the application 
of no inner iterations (or better, one inner iteration, coinciding with the outer iteration). 
We used the norm MA. 

Example 

VAR1 
VAR2 
VAR3 
VAR4 
VAR5 

Five-point formulas 
ni 

49 
+100 
13 
27 
92 

λ1 
.5773 
.02322 

1.031 
.9743 
1.007 

n10 

63(25) 
+112(50) 
65(11) 1 
51 ( 8) 
65(10) 1 

No 
.5802 
.02386 
.032 
.9647 
.015 

Nine-point formulas 
ni 
36 

+ 100 
21 
15 
37 

λ1 

.5735 

.04763 
1.031 
.9687 

1.013 

nio 
49(16) 

207(43) 
61(11) 
59(12) 

63(14) 

λ10 

.5737 

.02451 
1.031 
.9704 

1.031 

n1 
35 

+100 

17 
21 
19 

Mixed 
λ1 

.5747 
,02966 

1.031 
.9750 

1.017 

formulas 
nio 

50(16) 

164(33) 
59(11) 
51(11) 
65(14) 

λ10 

.5749 

.02446 
1.031 
.9706 

1.028 

η. = number of iterations 'without' inner iterations, 
λ. = corresponding eigenvalue, 
n10= total number of iterations (inner and outer), where the number of outer iterations is 

given between brackets 
+ means the iterations reached a prescribed limit without converging. 
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