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SUMMARY

In order to solve general elliptic equations we compare with respect
to the convergence and accuracy three finite difference schemes, the
five-point, the nine-point, and the mixed type formulas.

The mixed type scheme, suggested by FRIEDRICHS, seems very
efficient in particular since it can easily deal with general interfaces.
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Introduction (*)

In this study we solve numerically general elliptic partial
differential equations. In order to solve them three types of
finite difference formulas are derivedsystematically, using a
variational principie established for these elliptic equations.

In particular, we derive

(1) the well known five-point formulas,

(i1) the nine-point formulas, as suggested by Nohel and
Timlake [7],

(111i) the formulaes of 'mixed' type.

As regards the formulas of mixed type, they have been
suggested by Friedrichs [3] who used then, however, to prove
the existence of the solution of the Neumann problem. In
comparison with the scheme (ii) this type of formula has two
advantages,

Firstly, it can be dealt with by the decomposition method,
see [1], [8], [9]. This decomposition method gives a reduction
of a factor two (roughly) in the number of meshpoints where
the solution must be obtained iteratively.

Secondly, the mixed formulas can treat general interfaces.

In Chapter III some sufficient conditions are established
in order that the coefficient matrices of these three difference
schemes are M-matrices.

In Chapter IV we compare some of the numerical aspects of
the three schemes. The conclusion of this research is that the
scheme (iii) can efficiently be applied to the numerical
solution of general elliptic operators.

(*Y Manuscipt received on November 21, 1966



I. Statement of the Problem

1. The Differential Eguations

In the diffusion approximation of the reactor calculation
the following problem 1is typical.

Let D, A, and F be gxg matrices (D be a diagonal matrix),
® be a g-dimensional vector and A be a constant. R is a region
with boundary ' = I', + T',, n denotes the external normal on the

1 2
boundary.
-vovwe+Ae=1Fre iR,
=0 on T,, (1.101)
Ef =0 on P2,
vwith the adjoint problem
-vpver + 2% o* =15t o inn,
* =0 on P1, (1.1.2)
%ﬁ: = 0 . on P2.

(' means the adjoint, t means the transposed).

The dominant eigenvalue and the corresponding eigenfunction
are the most important quantities in this problem.

Under some conditions, to be imposed upon D, A, F, & R and T
([4], [5]) this problem possesses a dominant, positive, simple
eigenvalue with a corresponding non-negative eigenfunction @
and a corresponding positive adjoint eigenfunction o*,

For the sake of clarity we make some simplifying assumptions.
We consider only a rectangular region R. About more general



boundaries and interfaces see [2] and [3].

The interfaces are approximated by broken straight lines.
We choose the axes along the sides (and the origin of the
coordinate system in one of the angles).

Furthermore, we distinguish two classes of problems,

(1) problems with interfaces parallel to the axes,
(1i) problems with interfaces anyhow.

For the first class of problems the five- and nine-point
formulas will be derived, while for the second class the mixed
formulas will be derived. The derivation is sketched in
chapter II.

2. The Variational Principle

For the functions ® in a certain class{Q} we wish to
render a functional J stationary under condition H = constant

(e.g., 1), with

J = //'(vo* DVE® + 0% A Q)dR,

R
and (102.1)

H = /] O*F ® AR .

R
See [4].

The solutions of this variational principle (if they exist)
can be proved to be solutions of the problem (1.1.1) and (1.4.2).
As 1s well known, we need to consider I =J - % H .

In order to discretizise the problem a net must be set
over the region R. The interfaces are assumed to be mesh
links and the coefficients D, A and F are assumed to be constant



in each cell of the net.

We consider two geometries:

(1) x-y-geometry (cartesian coordinates, ® is independent of z),
(i1) r-z-geometry (cylindrical coordinates, ¢ is independent of
the polar angle 49).
Then, the element of area dR satisfies

4R = x¥ axdy ,

with p =0 in case (i) ,

1 in case (ii) .


















- 13 =

Fra Fao

and  Fgg) = ’ (321.5)
Foy  Fop

H11 and F11 are NoxNo block-diagonal matrices ,

H,, eand F,, are N xN, (i.e. N, rows and N columns) blocked,

12 1

four-diagonal matrices) ,

H21 and F21 are N1xNo blocked, four-diagonal matrices ,

H _ and F.. are N, xN

592 22 1N blocked, five-diagonal matrices ,

The equation H ¢, + H ¢, = % (F11 ¢, + F ) represents

11 1 12 2 1 12 02
the formulas for the five-points. The other equation in (3.1.3)

similarly for the nine-points.

2. Iterative Methods

a) The five- and nine-point formulas

The equation to be solved is

1

H® = ~

Fo .

Write H = D+L+U, where D is the diagonal part of H (in this
partitioning with respect to the gxg matrices), L is the lower
triangular part and U the upper part.

(1) The power method

Start values ¢(O) and h(o) are agsumed to be given.
Outer iteration : H¢(n+1) = % F¢(n), n =0,1,0e001 (3e241)

An+1) _ L (n) "ﬁﬁ(n;1ﬁl - (o) ﬂEQS;i}zn-,(3.2.2)
Fo

rat®||

Alne1)_p(n) <& (3.2.3)

until 7\(n+‘l7

Inner iteration (to solve (3.2.2)) :
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,(0) _ ofn)
Solve (D+L)y(m) = -Uy(m-1)+b m=1,2,00s ,
yin) _ y(m-1)
until max | — (m)i <N ; (3e244)
i vy

the m for which the inner iteration stops be M,

then o(n+1) _ y(M) (being the last computed one).

(ii) The method equipoise

This method is similar to (i).

Here M=1 (only one inner iteration).
Moreover A"/ is estimated by

lpe(2)]
A(n) | "E@ o n = 0,1,000 (3.2.5)

The proper method equipoise consists in taking "x"e = x-e = 2 Xg
where e is the vector with each entry equal to the unity. i

b) The mixed formulas

Here the decomposition method has been used

1

HQ:-XFQ ’
H H

g o< |1 12|
H21 H22

with a block diagonal matrix H,, (see [1] , (8], [9]) .

Ir B = F® , and in this partitioning B® = (3,5 B,),

-1
and G = Hy,, - Hyy Hy, Hi, (see formulas A.2.3),



then & = - H uv!s , (34206)

il
Go, =3 {

(1) The power method

Given the. guesses ¢(0) and X(o) the iterative procedure is as
follows.
Outer iteration: B(n) = Fé(n). n =0y1ye00,

G¢>§n+1) _ 7\‘In (Bgn)_ H

o{n+1) _ _ g1y glntt)

1 11 712 72 *"(‘7
(n+1) _ ,(n) "F<I>(n+1)|| (o) o(n+1)fi
A = E
| e Irat®’)

with the criterion (3.2.3).

In the inner iteration, (3.2.7) is solved as follows. As usual,
G i1s written as the sum of the diagonal, the lower and upper
tridiagonal parts, G = D+L+U.

b = ;T%T (Bgn) - Hyy H;1 Bgn)) ’

(0) _ o(n)

21 Hyl B(n)) (34247)

"1 B(n)

y

(D+L)y(m) = -Uy(m-1) +D M= 1,2,e00

with the criterion (3.2.4) ,
g({n+1) = y(M) (the last computed one).

(11) The method equipoise

As in a) (i) this method means M=1 and the application of the
eigenvalue estimation (3.2.5).
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3. Some Matrix Properties

Whether the coefficient matrices are monotone [1], or not,
is 8till an unsolved problem. In this section we shall establish
some sufficient conditions in order that the matrices H (for the
five- and nine-point formulas, see III.2a) and G (for the mixed
formulas, see I1I1I.2b) are M-matrices. But under these conditions
H for the mixed point formulas is certainly not an M-matrix.

We introduce some definitions,.

Definition 1 : The matrix A = (aij) is said to have the M-structure
ir

&, > O for all 1 ,
and
834 < O for all i and j, J #1 .
Remark 1 : Collatz calls this concept the 'sign distribution'

(1, page 45].

Definition 2 : The matrix A = (aij) is said to be strongly
dilagonally dominant 1if

a 2 2 |a

] > 2 feus|

l 341 |13

with strict inequality for at least one i.

Remark 2 : This concept is sometimes called the 'weak row-sum
criterion' [1, page L6]. In [2, page 181] this property is
simply called 'diagonal dominance'.

Remark 3 : An M-matrix may be defined as a monotone matrix [1]
satisfying definition 1. If A is irreducible and satisfies
definition 2, A 1is irreducibly diagonally dominant. If, moreover,
A satisfies definition 1, A is an M-matrix [10].
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Remark 4 : In the equation H® = % F& (see 3e1e1 , 3e1.2), H is
irreducible by construction (R is a 'connected' region with a
'connected' mesh) and F is non-negative with positive diagonal
entries. If we establish conditions such that H-1 is positive,

! rois positive and irreducible. Then, H' F has a positive,
simple eigenvalue (equal to its spectralradius) with a corresponding
positive eigenvector [10]. Moreover, if H is strongly diagonally
dominant and irreducible, the Gauss-Seidel method applied in the

inner iteration H® = b converges [1], [2].

(a) The five-point formulas

The five-point formulas are given in formula (A1.1). Since

13 and bij are non-negative diagonal matrices and since cij has

a
the M-structure, H has the M-structure too.

Theorem { : If A is strongly diagonally dominant, H is strongly
diagonally dominant (by virtue of the introductory remarks H is
then an M-matrix). '

Proof : Let

13 _ 43 _ o dd _ L dge1 _ _i+1]
) <°k1 8 " Prl T Prl 8x1 =
1

ij 1j+1°\ - i+1] i+13+1 \ +
1{6&1*'&1 )H *(ﬁu * Ty
8 4

Since 3 i1 2 0 , with strict inequality for at least one k,
1=1
H is strongly diagonally dominant.

(-]
oo il d0R

(b) The nine-point formulas

These formulas are given in formula (A1.3).

Theorem 2 : Let
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) 2 3.2 .2
vy = g3k i n? - ) ,
n° k
S
mij =12 v ¢
i]
B, h
If L A (3.3.1)
3 <E
and pid . p Aii , for all 1 and j ,

11 i3

H has the M=-structure.,

If, moreover, Ai'-j is strongly diagonally dominant, H is
strongly diagonally dominant too.

i3 i3

Proof : The matrices aij, bpY, and ¢ have non-negative

off-diagonal entries.

If L = 1 (or, the left boundary condition is gﬁ = 0, see
the appendix A3), p1 = 0 and we need not impose any condition.

The conditions (3.3.1) are equivalent to

1] i _ 1]
9y + B3~ M3 20,

Ba:iLj B -Yﬂ>o,

3617 01 - (oqf + ey >0,

ij + ij ij
37y Oy (a11 + Yll)pi > 0, for all i and J.
Hence aij, bij, and ci'-j are non-negative matrices. Since ei“j
has the M-structure, H has the M-structure too.
As regards the diagonal dominance,
g i3 3 ij+1 1413 _ 13 _ 1413
T = 2, <ekl R f e M L
_ ci:j+1 _ i+1j+1
kl Ck1 : =
&£ 0 13+1 1413 +1J+1
= Ll- 15"1 L(Ykl + Ykl )pi + (Y Ylj;l )91*1} ’

+



- 19 -

or fk > O , with strict inequality for at least one k. H is
strongly diagonally dominant. |

(¢) The mixed formulas
See the formulas in appendix A2.

In theorem 3 we drop the cumbersome indices i,j (of the
meshpoints and the squares), and +, - (of the triangles).

Since a, B and y have the M-structure (a and P are diagonal
matrices), the matrices 4, a, and e have the M-structure too.

Theorem 3 : If in each triangle (of the extended net)

%1 2Ky Yy 0
(3.3.2)
and Bll b IJ-2 Yll, for l=1’ooo’8,

the matrices a, b, and ¢ are non-negative. It 1s sufficient
to take

lJ-1 =1.08 j

and By = 1.8 ’
but see appendix A3, remark.

Proof : The off-diagonal entries of a, b, and ¢ are non-negative.
By virtue of (3.3.2) 849 and c,, are non-negative. In fact,

M1 P 2139 »
+ +
and oy, P 3Ty O
are satisfied in the whole region since

- 0+ \
max <9—, — ) <y e
- + 1

o~ pt/
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Similarly, b11 is non-negative.
Remark : (3.3.2) is equivalent to

m = 75 max (n, b%, W, &) ,

Dll >mA.ll ] 1 = 1,...,8 )

in eachr triangle.

Theorem 4 : If

(1)  (3.3.2) is satisfied,
(11) A}J is strongly diagonally dominant for all i,J,
(111) pid, @13, gid, g1l , o,

G has the M-structure, and is strongly diagonally dominant
(and hence an M-matrix).

Remark : Unfortunately ﬁe did not find sufficient conditiona
in order to satisfy (iii).

Proof : Since dij is non-singular and has the M-structure, the
inverse bij of dij is non-negative. By virtue of theorem 3 Kij,
Lij, Mij, and Nij are non-negative too.

Moreover Tig <0 for m#£ 1.

As in the theorems 1 and 2 condition (ii) implies the
strong diagonal dominance of the five- and nine-point formulas
(here, in the mixed type). Hence,

g
Cig < 21 dig’ l=1,ooo’g’
n=
(3¢343)
or cij € dij. E ,

if E is the matrix with every entry equal to the unity.
ald and v1J can be estimated just as edd in (343+3). Then
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Tij = aig - (01-13 61'13 01-13 + bij 613-1 bij +

b1J+1 61J+1 bij+1 + a1+1j 61+1J ai+1:j

+ >
11
> 613 - ci-1j + bj"-j + biJ+1 + ai+1J E 20,
11 11

since the nine-point formulas are strongly diagonally dominant.
By virtue of (iii) this means that T and hence G have the
M-structure. . _

Let { be the vector with every entry equal to the unity;
we consider now

pid g - [#13 M R LD R RS A sij:]. 1=
= = i1 g1-13 [ai-w s pi=13 , pim13+ ci-w:l L1+
- pld ti-t [%13’1 P LR Tt c13’1] .1+
- plitt g1+ [ai;]+1 L pldvt | pide2 c1;1+1:] L1+

- git1d gi+1] Léi+1j , plt1d , pit1de ci+1j:]. 1+

[?13 s ol 4 oL+t | git13+1 ei+1j] .1 >

+

\Y

L; e T4 T RN RN S B S I I+ AN b R b b B

+ ei+1‘-j+1 + ei+1j:]. 1 >0,

with at least one strict inequality.
Hence G is strongly diagonally dominant.
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IV Numerical Experiments

In order to compare the finite difference schemes (derived
in chapter II and appendix A) programs were written and five
examples, VAR{1 through 5, were tested (these examples are
described in appendix B).

In the iterative schemes (II1.2) we have chosen g = 5.10-h’
n = 102, and the maximum of inner iteration (if present) 10.

Before applying the criterion (3.2.3) ten iterations were
carried out (otherwise, one might find quite a wrong eigenvalue
estimate ).

In the iterative schemes a norm must be chosen. Let
X = (x1,...,xn) an arbitrary vector, then

xlle Ty
o Kl 131'x1| ’

n 2‘i/2
x"2 <1-f1 xi> ’

= max lxi ' °
®  4gisn

!
SiMmS

(L4ete1)

We call these norms the equipoise norm EQ, the absolute sum norm
AB, the Euclidean norm EU, and the maximum element norm MA,
respectively. These four norms are used in the equipoise method,
while only the last three (AB, EU, and MA) are used in the pdwer
method.

As numerical estimates of the convergence rate and the
truncation error, respectively, we introduce o, the 'mean
improvement factor' or the 'mean convergence rate', and a,
the relative deviation between the eigenvalue estimate found

and the 'exact' eigenvalue.

The sequences of the eigenvalue estimates here have
generally a monotone character. We consider now that part of
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the sequence that is both monotone and 'rather accurate' (i.e.
within a certain accuracy; we choose the first significant
figure correct). Let this part of the sequence start with
eigenvalue estimate Ab, and end with the eigenvalue A, and
have the lenght m (either outer iterations only or outer and
inner), then we define

Q

]
2 B
o>1>’|

if A5 A o

(Let1e2)
m.

e

if A < N o
o
In table C2 we give %, related to o
% = (0"1)103 2 0., (u-o"o})

The second number « is defined by

A=A

—=2/, . (4ed.ls)
e

o =

where A = eigenvalue fond ,
A= 'exact' eigenvalue, given in [4].

The results are given in the tables C 1,2,3, and L.
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V  Conclusions
We study the various influences in the convergence.

1. Influence of the finite difference formulas

The application of the nine-point and mixed formulas can
be recommended.

(1) About the convergence (here, the important criterion), we
may conclude from table C2 that the mixed formulas have the
best convergence rate ¢ while the five-point formulas have the
worst rate o.

(ii) About the truncation error, the truncation error is in the
mixed formulas less than in the nine-point formulas but larger
than in the five-point formulas. But a better insight in the
truncation error will be obtained from a big number of
meshpoints.

2. Influence of the norm choice

In some problems a certain norm is good (less iterations)
and in another problem it is worse. But generally speaking,
the norm AB is not to be recommended, while EQ and EU are good
on the whole.

3. Influence of the inner iterations and the iterative method

From table C4 it is clear that the use of inner iterations
has a very small influence in the power method.

Moreover we may conclude that the equipoise method seems
very well suited to this class of problems.
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Appendix A

1. Derivation of the Five- and Nine-Point Formulas for a Rectangle

As we already stated in II.1 the only contributions to the
difference equations in P arise from the neighbouring cells
(the cells which have P as an angle). Hence we consider figure 6.
For the present we drop many cumbersome indices. To obtain the
three other neighbouring cells h and k may have negative values.
v E Q We need to approximate the next

integrals

_.
K T1_//<Dx<bxd.R,
R

T, = *
P(x ,y,J b D h H 2 // iy & R
y 2 2 R

x T3=//¢*odn,
Figure 6
R

P 4x dy (p=0 for the x-y-geometry and = 1 for the

where dR = X
r-z-geometry). We always take & and ¢* in the same class, i.e.

every assumption about ¢ is valid for &* too, and conversely.

We intend to derive with the variational approach the
same formulas as have been derived by Varga's method (using
Green's theorem).,

(1) The five-point formulas

We shall use for the x-y-geometry the approximations which
have been given in [2]. For the r-z-geometry we split each
square in two halves by DE (see figure 6).

The approximations we shall use are the next ones.
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T, - -'I%gl (% * -gf [ {wn) - w*m} {@(a) - @(P)} +
. {M(Q) - w*(v)_} {«m) - ¢(v>}] :
T, = ﬁ}:—g'— [ {o*(v) - w*(P)} {ﬁ(V) - °(P)} ("o * ﬁ)p *

v {o2@) - o ] (o@) - o] (x, + %)P 1

T3 o —'%k—l [ {@*(P) o(P) + o%(V) (,(V)} <x° N ﬁ)P
+ {°'(Q) &(Q) + ©*(H) ¢(H)} +,1_) ]

Proceeding in a way as has been given in [2] the next
five-point formulas are derived.

ENE T R ST IS B R F UL N PSR P EL IR T RS C P RS B & I

='% atd ¢ty (A1.1)
RENE ( 13+1) o
pld | gid x + alt1 ‘I ’
A3 L gl p13, plivt | de1 (2 +Y1;j+1),t . (Y1, 1+1;1+1),t

g <°13+°1°*1>*I . (oi+13+oi+13+1)f1

13 _ 54 13 13
=h1D , B

pid

S

a ’

1}

13 % n,k. ald

13 4 1
¥ =1k, , o 2lnk P,

2 1)
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h P
- - —
Py = (*1 2) ’
_ n, P n, ,»
"1""1"[;1) , ':I=<xi+d}+ﬂ> ,

p =0 for x-y-geometry ,
1 for r-z-geometry .

Remark : The formulas (A1+1) fully agree with those, which are

derived by Varga's method. For the x-y-geometry they are given
in [2] and [11], for the r-z-geometry in [6].

(1i) The nine-point formulas

v (2)
= 3 Following an assumption in [2],
% let @, and Q§ be independent of Xe.
Then we may write
ab—(3) ¢ B >
K Ty 74 (xo * %) [";1 Tt *
Elw ]| ()
(1) -
)3} ) + 2 0%, 0 _ + 2% 0 :] ’
P(x,,y,) 3D 5 H X3 "x3 © "x2 x2
X where Qx1 = ¢x along PH »
Figure 7
2.5 = 2, along AB etc.(see fig.)
Moreover ¢x3 o % (¢x1 + sz) ’
o(H) - ¥(P)
Qx1 > h ’
o o = vV
T2 h °

In this way we derive formula (A1°23). For T2 we assume ¢&

and ¢; to be independent of y. Then,
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+
o
(o]

+
\i%6
'3\9'.
©

S
L

&(v) — &P)
Qyu ~ k ’
0 - ) = ) .

The result is formula (A1.2b). T, is dealt with as follows,

3
T, * hk (xo + %)p@‘(c) o(ec) ,
oc) = [p(®) + &(v) + o(@) + om) | .

The approximations are

T, L{—-i—ké-'- X, + %)p I: {a‘(n) - 0*(P)} {@(H) - Q(P)} +

g {0*(H)-<D*(P)+@‘(Q)-¢*(V)} {Q(H)-Q(P)W(Q)-G’(V)} +

N

+ {o*(q) - o*(v)} {o(a) - c(v)} ] : (A1.2%)

v, « 3 Lpforw) - o)) {an) - 30)] + 3 (5, + B)

x {G‘(V) - o*(P) + ®*(Q) - V(H)\ {Q(V)-MP)W(Q)-@(H)} +

o

+ (x, + n)P {G‘(Q)-Q*(H)} {<I>(Q)—¢(H)} :] ,  (a1.2°)
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P -
T, > '_gg (%, * g) 0%(P) + O%(V) + ®%(H) + wq)] x

x _¢(p) + ®V) + ®H) + ¢(Q)] . (a1.2%)

The next nine-point formulas are derived

- cij o1-1;]-1 _ c:lj+1 °1-1;)+1 _ c1+1;) °1+1:j-1 - c1+1;)+1 Q1+1J+1 +

_ald gim1d | g3 gldm1 L 13H gldet a4 gletd | 10 iy

% <qid gi=13-1 , 9+ ¢ aA LA BRI R S b RS ST Ly q1+13+1¢;+13+1 .

o pld gim13 4 13 gli-t | gii+t glier | 3413 gl+13 4 ¢1J> ,
(A1.3)

M o (o aptdo e

ald = 3(ad 4 a3*)p, - (613 4 pt3*1)p, - (v 4 Yi:l+1)p.1 ,

bt o -ty - a}+13p1+1 + 3(tq] + gt 1IdY) - o, - LT

otd = 3(ald 4 o23*)p, IO AP AL A PR

+ 3(Bi;j + Bij+1)d; + 3(Bi+1:j + Bi+13+1)dz +

. (713 . 713+1)pi + (Y1+13 +-Y1+1J+1)p1+1 ,

qij - ot Py o

I R L

Bij - qij + q1+1J ,

19 2 qij + q1;j+1 + q1+1J + q1+13+1

’



for x-y-geometry,
for r—-z-geometry.

Remark: Again these formulas fully agree with those which can
be derived by Varga's method. For the x-y-geometry these formulas
have been published in [7].
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2:5:

iJ Qi-1j _ bij 1j-1 _ bi;j+1 ¢}3+1 _ cij ®i+ij + dij Qi,‘] -

a
. )\[813 113, (13 gla=1 , (13+1 gds1 | 13 i+t | 1] <I>:L;j:l ,

(A2.1)

29:

- 01—13 ) -13 - bij Q;J-1 - bij+1 Qij+1 - ai+1a Qi+1jl+ aij Qij +
+ ei;j <I>:I.--1 J=1 + eij+1 ¢-1;j+1 + e:I.+1;j i+1J-1 + e:I.+1;j+1 <I>i+1 J+1 -

= Ji l_:ui"ﬂ gi=13 4 13 Glim1 (13t et ) 13, 510 Gl

+ wij <1>:I.--1;j-1 + wi;j+1 °-1;j+1 + w:I.+1;l <I>:I.+1;j-‘l + wi+1;j+1 <I>i+1;j+1]
(A2.2)
13 13+1 13y = _ (. 13+ 13y -
a Y = (a+ + o )pi (Y+ + Y, )01 ’
iJ _ 19 -~ 141 + _ i3 - _ A+1J +
b = B+ Py + g pi PR Y Ty o

13 _ (A*1301

a3+1j)p: - (YE+1J+1 + Yi+1j)o;

B R e I R

+ (ai'JH + Bij” + oti:j + Bij)p;_ +

1dy,.~
+2(Yi+1:l-t»1 + {1_+1:])T-;. + 2(Yij+1 + Y+J)'fi ,

g1yt + (81 4 g ) e

+

3 j = (Bi+1j+1

+ (d1+1 3+
+

+2(Yi+13+1

+2(1i+1j+1

+

),y + (3 el -

+

'{1_+1'-j)’t;: + 2(Y_j;d+1 + Yij)':z +

+

Ar)at 4 o(r2 9 . e



e’V = v

Py = <x1 -3 hijp ey = (xi +3 h1+1>p ’
o = (xi - 5 hijp 9= <x1 ‘% h1+1>p ‘
T = (xi B % hi)p oo s <x1 * 3 h1+1>P ’

I
-

p = 0 for x-y-geometry, and for r-z-geometry.

The right-hand side coefficients sia, tia, uiJ, via, ;ia

]
and wia are obtained directly from - aia, - bla, - cij, dia, aij,
and eij, respectively, by replacing Di‘-j with the null matrix and

Atd witn 19,

In the iterative procedure (III.2b) the right-hand sides
of (A2.1) and (A2.2) are considered as known terms; we denote

them by Vi'-j

5 and V;j, respectively.

Since dij is non-singular we can eliminate the fluxes ¢ in
the five-points from the left-hand side of (A2.2). Then we get
a left-hand side merely consisting of nine-points, corresponding
to the matrix G in III.2b and the formulas (3¢2.6).

We obtain

_ Kij ¢1-2j _ Lij ®ij+2 _ Mij <I>i+2,‘j _ Nij Qi,‘j-2 + Tij <bi;j +

= pli gttt _ Qij pi=13+1 _ pid gi+1J+1 _ gid gi+13-1

-1 _ﬁgj + 1713 g1 v%"j + pld gl v;3'1 + pid+? 613+1v;3+1

. ai+1jbi+1j V;+1j] , (A2.3)

13

ot = (q1d)

?

13 _ 113 gi=13 1-17

H



113

yid

Nid

pid

Qdd

gid
gid

pdd
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biJ+1 6ij+1 b13+2
alt1d pi+1J i+1]

pid gld=1 131 ’

o1m13 g1m13 113 | (13 41371 g13-1 _ 13

ol=17 i=13 i=13+1 | 13+ Gi3+1 10+ _ 13+ ,

pld+1 i+ c13+1 al*t1d pit1d piv1d+1 _ oit1J+1

+ ’

biJ 61;]-1 cij-1 + a.1+1;j 61+1J bi+1J _ e1+1j

G _ 1710 g1 g1m13 | pld G3m1 p13 | 131 g3+ 1341

- a1+1;j 61+1J ai+1;j .
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- +
o o
Then By = max —% , —% = (1.05 + .03 L)?
13 g
: <, T
and pzamax<—f,—1 = (1.2 +6 L)P
i

Py Py
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Appendix B

Description of the Test Examples

With reference to the problem description in chapter I we
give for each example the next information.

(1) The region R with the kind of geometry (p = O or 1).

(1ii) The boundary conditions.

L

O means the y-axis is a part of P1,

1 means the y-axis is a part of P2.

M = O means the x-axis belongs to P1,

1 means the x-axis belongs to Pz.

The other sides belong to P1 in each problem.

(11i) The number of sub regions where the coefficients are
constant.

(iv) The eigenvalue found by Galligani [ J.

(v) The mesh, i.e. the partitioning of the two axes.

E.g. y-axis (kj) (0) «5 (2) 7.5 (14) means that the
mesh length k:j = «5 from J =0 to J = 2
and k:j = [« from J =2 to j = 14.

(vi) The coefficients D, A, and F, constant in each subregion.


















TABLE Cf

Eigenvalues and number of iterations in the equipoise and power methods

Equipoise method Power method with inner iteratiomns
5 9 59 5 9 59
Example Norm n A n A n A D40 A D40 A N4o A

EQ 31 «5795 23 5734 24 «5731

VARA AB | +100 .5423 | +100 «5315 | +88 05513 54(19 5777 L6(13 «5708 L (15 5724
EU 38 5771 30 5715 28 5725 L7(12 «5779 L1( 7 «5716 39( 8 «5730
MA 37 5759 26 5697 17 5762 63(25) .5802 49(16 <5737 50(16 <5749
EQ L6 02426 37 02418 | 29 02420

VARD AB L9 02414 LA 02406 | 38 02403 || +120(50 «02387 | 193(38 o2uu8 | 182y 02438
EU | +100 .02476 85 02450 | 66 «02439|] +118(50 «02384 | 197(39 02449 | 151(26 02442
MA | +100 «02500 96 024481 75 024404 +112(50 .02386 | 207(43 02451 | 164(33 <0244 6
BQ 26 1,024 22 1,026 21 1.027

VAR3 AB 24 1.023 22 1.026 18 1.025 85(18) 1.027 76(17) 1.026 8u(18 1,027
EU 11 1.025 8 1.026 13 1.026 78(15) 1.028 75(16) 1.028 69(14 1.027
MA 22 1.035 17 1.034 20 1.026 65(11) 1.032 61(11 1.0314 59(11 1.031
EQ Lo «9689 31 « 9646 29 9777

VARL AB L «9690 39 « 9646 28 «9658 149(26 «9717 119(25 9654 | 116(26 «9685
EU 32 .9705 26 «9651 22 9693 108(20 «9728 94(19 9663 a3(20 9694
MA 28 «9735 17  .9664 22 «9707 51( 8 9647 59(12 <9704 51(11 «9706
EQ 38 1.,020 32 4,021 25 1.027
AB 55 1.010 L5 1.014 25 «9987 86(35) 1.010 67(20 1.014 56(14 1.018
EU 24 1.017 22 1,018 16 1.018 80(29) 1.008 5( 9) 1.015 52( 7 1.023
MA 3L, 1.039 27 1.031 22 1.027 65(10) 1.015 63(14) 1.031 65(14 1.028

In the second row, 5, 9, and 59 denote respectively the five-point, the nine-point, and the

mixed formulas;

n gives the number of iterations used in order to find A (eigenvalue) in the equipoise method while
n10 gives the totel number of iterations with the number of outer iterations in brackets in the power method

(10 is the maximum number of inner iterations). A Plus sign means that the iterations reached a prescribed
limit without converging.




59
9.8

16.6
3.0

§

3
3
3

|

2
2
L

0.3
o]
0.3

1.5
13
1.4

§

§3
1
2

2
1
2

i

2
2

gu.6
Lot
2.5(1.6

1241

o.u§
0.3
03

|

1.6
1.4
1¢3

)

O.7
Ol
5.9(1.5) ] 2

2

1.0
1.4

Power method with inner iterations

TABLE C2

59

The 'mean improvement factor' o, see (4.1.2); we give <, see (Le1.3)
Equipoise method

M~ O~

@ O YN

e~

Example Norm

y for

and inner).

ion number where the monotony starts in the sequence of
in brackets, the iteration number where the first significant figure
In the power method, % gives two values, one being computed onl

outer iterations and another being computed for all the iterations (outer

In the table, m gives both the iterat

eigenvalue estimates, and,
in the estimate is correct.

the

¢ OSC means the sequence was oscillating.

Remark



TABLE C3

Relative deviation a in %. between the estimate found
here and the 'exact' eigenvalue (see l.1.4)

Equipoise method Ffower method with inner iterationJ
Example Norm 5 9 59 5 9 59
e 60 78'5 u; 1 11 8
< < <
VAR1  Jy 0 10 8 1 10 745
MA 2 13 2 6 5 N
i 6 s 2 > 1 5
< .
VARZ gy | < 20 9 Chesll < 2 1 o5
MA < 30 8 5 <2 2 .5
EQ 21 19 18 . .
AB 22 19 19 1 19 1
VAR3 gy 20 19 19 18 18 18
MA 10.5 11 19 13 15 14
Eg llt g g 1 7¢5 L5
VARL gy 2 8 m 0 6.5 3.5
MA 1 7 2 2 2.5 2
EQ 8 9 15 6
AB 2 2 13 2 3
VAR5 gy 5 6 6 L 3 11
MA 27 19 15 3 19 16




TABLE G4

Influence of the inner iterations. We present here a comparison for the power method between the
application of inner iterations (with at most ten in each outer iteration) and the application

of no inner iterations (or better, one inner iteration, coinciding with the outer iteration).
We used the norm MA.

Five-point formulas Nine-point formulas Mixed formulas

Example| n, A Ryo Mo n, M o Mo n, Ay Byq Mo

VAR{ 49 <5773 63(25) .5802 36 +5735 49(16) <5737 35 <5747 50(16)  .5749
VAR2 | +100  .02322 | +112(50)  .02386 | +100  .04763 | 207(43)  .02451 | +100  ,02966 | 16L4(33)  .02uL6

VAR3 13 1.031 65(11) 1.032 21 1.031 61(11) 1.031 17 1.034 59(11) 1.031
VARY 27 9743 51( 8) 9647 15 9687 59(12) 9704 21 9750 51(11) 9706
VAR5 92 1,007 65(10) 1.015 37 1.013 63(14) 1.034 19 1.017 65(14) 1.028

n, = number of iterations 'without' inner iterations,
l1 = corresponding eigenvalue,

n10= total number of iterations (inner and outer),
where the number of outer iterstions is
given between brackets

+ means the iterations reached a prescribed limit without converging.
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