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INTRODUCTION 

Investigations by various authors on the t ranspor t of fission r a r e -

gases in reac tor mater ia l s exhibit an obvious sca t te r of diffusion coef

ficients. Though this can be par t ly explained as being caused by the 

varying s t ruc tura l proper t ies of the mater ia l used, it is great ly influ

enced by the fact that the r e l ease kinetics normally does not follow the 

ideal diffusion behaviour. This may make the normal evaluation methods 

inappropriate and, as a consequence, lead to diffusion coefficients 

which may be erroneous by o rde r s of magnitude. 

The fractional gas r e l e a s e , F , has often the form indicated in F i 

gure 1. The first part of the curve , the slope of which has a large va

lue, is normally re fer red to as an activity burs t . Whatever may be the 

cause of this burs t , it is evident that a t l e a s t two processes must 

contribute to the form of the curve. 

As there is very little experimental evidence on the nature of these 

p r o c e s s e s , invest igators a r e often inclined to regard curves of this 

type as normal for diffusion and calculate diffusion coefficients from 

the slope of the la t ter par t of the curve. However, one has to under

stand the nature of the underlying p rocesses which cause the deviation 

from diffusion kinetics if these have been established, it will in most 

cases be possible to evaluate the experiment quantitatively; if not, a 

quantitative evaluation of experimental r esu l t s may be highly unrel iable . 

In the following the abbreviation PAD is used for post-activation dif

fusion and DAD for dum-activation or in-pile diffusion, cf. [5]. The 

references [1] to [10] refer to ea r l i e r publications of Zimen and co-

workers on the subject of r a r e - g a s diffusion in sol ids. 

Note added in proof: The authors would like to draw attention to 

a Harwell repor t on a closely related theme. 

Davies, Long: Abnormal kinetics in the re lease of inert gases from 

uranium dioxide, AERE-M969, May, 1963 
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1 TIMEDEPENDENT DIFFUSION COEFFICIENT* 

Whenever the temperature of the specimen is changed during a PAD 

experiment, the diffusion coefficient D is , of course, also changed and 

may thus be regarded as timedependent. The mathematical consequences 

of this is discussed in section 6.2, and it is pointed out that the correct 

evaluation should be made from an F  tdiagram, at least as long as ide

al diffusion is observed. An F^Tplot would introduce "evaluation burs ts" 

whenever the temperature is increased (cf. Figure 21); such bursts have 

no physical reality. 

Because of the fact that it always takes some time for the specimen 

to attain the anneal temperature, D has to be considered more or less 

timedependent in every PAD experiment, depending on heating time and 

time of annealing. Initial deviations from the ideal linear relation of F 

versus t (see e. g. [11] may be due to this. The Fv/tcurve will have a 

small negative or positive intercept with the Faxis depending on whe

ther zero time is set corresponding to "temperature raised" or "tem

perature attained". It is likely that these deviations from ideal behaviour 

will disappear in an F  tdiagram, cf. Figure 2. 

Since the raregas atoms are much larger than the ions of the host 

crystal, it is to be expected that their diffusion is very sensitive to the 

degree of disorder in the lattice; i. e. , a vacancy rather than an inter

stitialinterstitial mechanism is assumed as a first hypothesis. Since 

the vacancy concentration in a neutronirradiated crystal does not cor

respond to thermodynamical equilibrium but is much higher, the diffu

sion coefficient could be expected to have a larger value than in an un

irradiated crystal. In a PAD experiment the radiation induced defects 

begin to heal out until ultimately their concentration is equal to the equi

librium concentration at the anneal temperature. This means that the 

diffusion coefficient is decreasing and thus timedependent at the begin

■ ĉf. the general mathematical treatment of diffusion release with time

dependent diffusion coefficient by Gaus [6, 8] 
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ning of the anneal. If the commonly observed nonideal behaviour (Fi

gure 1) is interpreted in terms of a timedependent diffusion coeffi

cient, the slope of the latter part of the release curve in an F^t (not 

F ^ ) diagram corresponds to the proper value of the diffusion coef

ficient at equilibrium. 

Whether a burst due to nonequilibrium conditions as described 

above can actually be observed or not, depends on such factors as the 

total neutron exposure, the time required for the nonequilibrium de

fects to heal but, and the limit of detection of the measuring device. 

4 

An attempt to obtain deviations from ideal kinetics as a result of 

this mechanism was undertaken at this laboratory on the system 

CaF2/Ar, for which the ideal kinetics is known to be valid at low i r r a 

diation doses [9], It was found, however, that an increase of the neu

tron dose by a factor 10"̂  did not cause any observable deviations of 

the diffusion kinetics. The release of argon was measured from single 

15 ? 
crystals which had been irradiated to an integrated fast flux of 10 cm 
[9] and 10*° cm [12] respectively; the corresponding argon concen

to Q 
tration was in both cases less than 10 atoms/cm . Though the Fren
kel defect concentration in the latter case roughly corresponds to the 

o *"■" thermodynamical defect concentration at about 900 C, no initial burst 

of activity was found even at temperatures as low as 700°C. On the 

contrary, the diffusion was s l o w e r than in the less irradiated 

crysta ls , and the values of D turned out to be lower within the whole 

range of temperatures. The difference is not appreciable at high tem

peratures but is of the order of several magnitudes at lower tempera

tures. Thus, the diffusion is not enhanced but impeded by the i r r a 

diation. A possible cause to this is discussed at the end of the next section. 

Similar observations of lower D values as a result of irradiation have 

been made by Robertson and MacEwan [13] as well as by Frigerio and 

Gerevini [14] when studying xenon release from UO2', no correlation bet

ween irradiation dose and nonideal kinetics is reported. 

The mechanism discussed above would explain a timedepending 

diffusion coefficient at constant temperature unless the raregas diffu

%) "The'""caTcüTafíoñ was based on the model of Kinchin and Pease 
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*) 
sion proceeds by an interstitial-interstitial mechanism. A second possible 
but not very probable cause deals with the fact that the composition of the 
investigated material may change during an anneal a! constant temperature, 
leading to a change of the diffusion coefficient. It appears in connection 
with UO„ and is discussed in section 3. 2+x 

We conclude that there is so far little reason to believe that the non-
ideal release (Figure 1) can be caused by a process which is equivalent with 
a time-dependent diffusion coefficient. The practical consequence is that all 
such curves have to be evaluated from the slope of a F-,/Γ-diagram, cf. section 6. 

2 TRAPPING AND CONDENSATION IN THE LATTICE 

The non-ideal release of the form observed in Figure 1 may be explained 
by assuming a trapping mechanism. Rare-gas atoms are initially homogene
ously distributed in the host lattice and have to diffuse through the lattice in 
order to reach the surface. If a diffusing atom happens to arr ive at an imper
fection which acts as a sink for the rare-gas , it does not further take part 
in the volume diffusion. The atoms present near the surface of the specimen 
have a higher probability than those in the interior to escape from the 
crystal before being trapped. After a time several of those atoms which would 
normally have reached the surface from deeper layers have been trapped and 
are excluded from diffusion. The investigator observes therefore a decreasing 
slope of the release curve corresponding to the decreasing number of diffus
ing atoms. Thermal movements will, however, limit the hold-up time in the 
t raps , so that the trapped atoms can be released to the host lattice; these atoms 
are free to diffuse to the surface of the specimen unless they are trapped again. 
The overall gas release as seen by the investigator will be similar to the one 
shown in Figure 1. 

Greenwood, Foreman and Rimmer [15] have pointed out that vacancies and 
dislocations may play an important role in the creation of sinks for the diffus
ing rare-gas atoms. Their work was initiated in order to explain 

$) 
This mechanism will have support from the argument at the end of 
section 2 
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bubble formation during irradiation, but the presented mechanism is 

applicable also to problems in PAD work. 

If two raregas atoms meet in the lattice, they are able to combine 

to a pair linked together with the aid of the everywhere existing vacan

cies [16]. Pai rs of raregas atoms with a shared vacancy could be 

formed during a PAD anneal, and the created complex has a diffusion 

coefficient much lower than that of a single atom. According to this 

picture the initial burst observed is in fact due to volume diffusion of 

single atoms. 

The creation of complexes according to 

2 M + vac. ^ [M  vac.  M] 
' s 

could be the first step in the formation of bubbles. However, the random 

encounter of two raregas atoms is very unlikely under normal PAD con

ditions. By definition, the encounter probability per unit length is equal 

to the macroscopic cross section ¿_, =NcT , where N is the number of 

ra re gas atoms per cm05, and<5*can be estimated as the geometrical cross 

section of the nearest region surrounding the raregas atom. Assuming 

the radius of this region equal to about 10 cm, i . e . a few atomic 

distances, the mean free path Λ= l /Σ between encounters is of the order 

of 1 cm at a concentration Ν of 10"·4 cm" 3 . Thus, the random encounter 

of ra re gas atoms in the interior of the specimen is completely unimpor

tant, lest the concentration is considerable higher than 1014 cm" 3 . For 

samples with grain size dimensions much less than 1 cm this concentra

tion has, of course, to be correspondingly higher. 

1 fi 

As an example, if the diameter of the specimen is d = 0. 5 cm, Ν = 10±α 

cm" 3 , and arbitrari ly assuming that by every random encounter two r a r e 

gas atoms are immobilized, the overall fraction («A/d) of atoms reaching 

the surface as single atoms during the annealing process would be of the 

order of one per cent. An initial burst of activity could thus be expected 

from pair formation due to direct encounters. 

However, it seems much more probable that the nucleation takes 

place at defects which are always present in considerable concentration, 
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e. g. dislocation l ines , and that this p r o c e s s is by far the most domi

nating one even at very high concentra t ions when random encounters 

may play a cer ta in ro le . Elec t ron microscope observat ions by Bie r le in 

et a l . [17] support this assumpt ion. These au thors investigated u r a 

nium samples with a maximum burn-up of 20 per cent. After i r r a d i a 

tion at t e m p e r a t u r e s lower than 250°C smal l bubbles of about 10~6 cm 

d iamete r were observed with a densi ty of lO ·^ cm . This is the s a m e 

o rde r of magnitude as can be expected for the density of dis locat ion 

l ines in this kind of ma te r i a l [18]. When i r r ad ia ted a higher t e m p e r a 

tu res or annealed after i r r ad ia t ion , the spec imens contained a s m a l l e r 

number of l a r g e r bubbles as a r e su l t of bubble growth from the p r i 

m a r y ones. 

The immobil izat ion of diffusing gas in forming gas bubbles in UO2 

during PAD exper iments has been shown by Stevens [19]. UO2 was 

i r rad ia ted and then heated for an hour at 1600°C. The spec imen was 

af terwards crushed and the r e l eased xenon was measu red as a func

tion of the crushing t ime . The crushing operat ion was repea ted on a 

s imul taneously i r rad ia ted blank spec imen , which had not been heated 

in o rde r to observe how much gas was r e l ea sed when the body was 

crushed to fine p a r t i c l e s . The heat t r ea ted spec imen exhibited a much 

l a r g e r r e l e a s e , which must have 'been caused by diffusion of r a r e - g a s 

into closed pores during the heat t r ea tmen t . Thus , an additional 

amount of gas is l ibera ted when the closed po re s a r e cut during the 

crushing operat ion. 

In- pile investigations per formed by C a r r o l [20-22] a lso revea l 

I. h at. regions exist, in the UO2 body, in which the r a r e - g a s is collected 

and trapped for weeks . A sudden i n c r e a s e of the s teady s ta te r e l e a s e 

r a t e was observed when cooling the spec imen; the ra t io of Xe-133 : 

Xe-135 changed thereby from 5.9 to 22. This ra t io is theore t ica l ly 

4. 6 at s teady r a t e and a higher ra t io can be observed only if the xenon 

has been excluded from the la t t ice of f issionable m a t e r i a l , allowing 

the isotope ra t io to change as a r e su l t of the m o r e rapid decay of 

Xe-135. The cooling bu r s t was at t r ibuted to a phase - t r ans fo rmat ion 

^ ' T h e effect may a lso be thought of as ind i rec t , due to impur i ty a toms 
connected with them. 
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of the U 0 2 when the tempera ture was lowered. This transformation 

causes gas atoms to be released after being trapped for longer t imes 

as a second phase in the specimen. 

Hurst [23] has treated the case of r a r e - g a s diffusion theoret ical ly, 

taking into account trapping and re turn from the t raps to the lat t ice. The 

reader is re fer red to this work for detai ls . A diffusing atom has a ce r 

tain probability per unit length to be trapped, and a cer ta in probability 

per unit t ime to leave the t rap again. The result ing gas r e l ease curve 

shows the typical initial burs t , and the diffusion coefficient of the r a r e -

gas has , of course , as in the analogous case of pair formation to be 

determinated from the slope of the curve at origin (slope of the burs t ) . 

The general form of the curve may give information on the diffusion 

length before being trapped and the mean l ife-t ime in a t rap . 

A trapping mechanism different from the one discussed above may 

explain the observations made in the experiments with CaF2/Ar [9, 12] 

a l ready mentioned in section 1. The basic assumption is that the argon 

atoms a r e diffusing as intersti t ials and that the diffusion by a vacancy -

mechanism proceeds at a negligable ra te if the tempera ture is high enough 2) 

D 

2) 

When the t empera ture is suddenly increased in a DAD experiment the 
diffusion r e l ease ra te does not simply grow to the steady state level 
corresponding to the higher t empera ture , but reaches a maximum above 
this level before it finally drops to the equilibrium value like a c r i t i 
cally damped oscillation. This is seen from the relation for the current 
j = -D-grad c, considering that the gradient does not change instanta
neously to the new value while the diffusion coefficient does. On lowering 
the tempera ture a corresponding oscillation is obtained but in the oppo
site direction ("negative burs t" ) . This kind of burst which is typical for 
the DAD method and not character is t ic for non-ideal r e l ea se , should 
not be confounded with the enhanced re lease ra te on lowering the tem
pera ture found by Carro l . 

Measurements which a re now being performed at this laboratory on 
doped CaF9 seem to bear out this assumption. 
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The observed decrease of the diffusion with increasing neutron exposure 
can then be a result of trapping d u r i n g irradiation, since the proba
bility that an argon atom is trapped by a neighbor vacancy increases with 
increasing neutron dose. It is postulated that after intense damage all 
argon atoms are trapped in vacancies but for a small portion which is free 
to diffuse as interstitials and is responsible for the release observed. Each 
time the temperature is raised in course of the experiment, the thermal 
movement permits an ever larger portion of the argon atoms to escape 
from the traps and diffuse as intersti t ials. The Arrhenius plot for such a 
release should n o t be a straight line but should asymptotically approach 
the straight line valid for low radiation damage. This is in effect what has 
been experimentally observed [12]. A closer examination also shows that 
this kind of trapping mechanism causes only an unimportant deviation from 
ideal diffusion kinetics, again in agreement with the performed experi
ments. Of course, the above reasoning applies also in the case that the 
traps be physically equivalent to more complicated defects than single 
vacancies. 
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3 SURFACE EFFECTS 

The re a r e seve ra l indications that surface effects may cause an 

initial burs t of r e l e a s e . Consider a surface layer in which the diffusion 

is cons iderably faster than in the bulk of the c rys ta l . The initially homo

geneously dis tr ibuted gas atoms will then behave differently on annea

ling. The surface layer will be rapidly emptied of its gas content p r o 

ducing an activi ty burs t , whereas the subsequent r e l e a se will be con

trol led by the kinetics of slow volume diffusion from the bulk, r egard ing 

the diffusing atoms as free when reaching the surface layer . As the 

slow p r o c e s s can be regarded as wholly independent of the rapid one, 

this co r responds to the model t rea ted in section 6. 3. Uranium dioxide 

can be chosen as i l lus t ra t ion. This ma te r i a l is ex t remely sens i t ive to 

oxidation, and it is known from investigations by Lindner and Matzke 

[24] that the r e l e a s e r a t e of r a r e - g a s e s i nc r ea se s rapidly with increas ing 

oxygen content in U02+x- An oxidized surface will therfore cause an 

initial bu r s t in this ma te r i a l according to the mechanism descr ibed 

above. 

Another possible explanation of the burs t could be given if it is 

a s sumed that a diffusion t r anspor t of excess oxygen takes place from 

the oxidized surface into the bulk on annealing. In the outer layer the 

diffusion coefficient will sink as does the oxygen content, and the r e l e a s e 

r a t e is observed to d e c r e a s e . F o r this mechanism the model of t i m e -

dependent diffusion coefficient descr ibed in section 1 would apply. 

However, it is likely that the r e l e a s e mechanism in UO2 is more 

complicated due to its phase instabil i ty. Cont ra ry to what has been be 

lieved it is not possible to freeze in and obtain a single U02+ x phase 

at room t e m p e r a t u r e . This has been studied with e lect ron microscopy 

by Blank [33]. He found that a disproport ionat ion into UO2 and U4O9 

lias taken place in all cases where χ is g r ea t e r than o.ooo7; the l imit 

of solubili ty of oxygen in UO2 l ies somewhere between 0. 0001 and 

0. 0007. The U4O9 phase was found to be present as coherent p rec ip i 

ta t ions , e . g . minute domains with the coherence of the host lat t ice 

p r e se rved . On annealing these precipi tat ions become incoherent or 
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are eventually dissolved at high enough temperatures. This may cause 
the release of ra re-gases to be higher with higher values of x. 

An interesting experiment was performed by Stevens, MacEwan and 
Ross [25] in order to show that an oxidized surface causes an enhanced 
release rate. They oxidized the surface of UO2 powder and used this ma
terial in PAD experiments. The release curves showed pronounced burs ts , 
while a specimen which was reduced before the anneal did not show an 
initial burst. 

Similarly, experiments performed on UO2 single crystals by Barnes 
et al. [11] resulted in a high initial release ra te , which was thought to 
be a result of oxidation of the surface of the specimen. One of the speci
mens had a thin oxide surface layer as indicated by electron micrographs 
and showed a very high initial release rate . 

Berry et al. [26] kept UO2 pellets in humid air for 6 to 12 hours at 
20°C and observed in subsequent PAD experiments that the release was 
10 to 20 times higher than normal. Fur thermore , an increase in tempe
rature caused a burst , which was the larger the more rapid the tempe
rature was changed. 

An activity burst may have such a trivial reason as a rough surface. 
For the atoms situated in the most superficial layers of the body-the real 
microscopic surface (which is much larger than the macroscopic one) is 
of significance in controlling the rate of diffusion. Atoms reaching the 
surface in a later stage of the experiment have diffused a comparatively 
longer distance from the inside of the crystal and will not be influenced 
by the fine-structure of the surface. The slope of the release curve may 
in the initial stage appear larger than corresponding to the macroscopi-
cally measured surface. This effect should be more pronounced for me
chanically crushed material than for a large single crystal and should 
disappear or at least be markedly affected by tempering before i rradia
tion. The fact that the microscopic surface is important for the nearest 
atoms only is illustrated in Figure 3, which is a simplified picture of a 
rough surface. As the diffusion follows the concentration gradient, which 
is in every point perpendicular to the iso-concentration lines, the effec-
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tive surface for atoms situated in the bulk will be smaller than the mi
croscopic one and ultimately equal to the geometrical one. 

A surface effect, possibly of this kind, which caused an initial burst of 
activity was found by Kalbitzer when investigating the release of Ar-39 
from KCl [27], Single crystal material was crushed, sifted into fractions, 
and irradiated. The subsequent PAD release curves at 107°C showed 
bursts which were more pronounced for small grains than for larger ones. 
If the powder was annealed at 550°C for some hours prior to the i r radi
ation, then the curves showed an ideal behaviour. The observed anomalies 
are apparently due to surface phenomena, the nature of which is not quite 
clear but may be caused surface diffusion or by the presence of a rough 
surface as described above. 

A body which is subject to irradiation by heavy nuclei exhibits radia
tion damage of various kinds. The creation of "c ra te rs" , i .e . highly 
disturbed lattice regions when introducing Rn and Tn in a crystal by r e 
coil was postulated by Flügge and Zimen [28] on basis of experimental 
evidence. The disturbed regions were thought to have a connection with 
the surface so that the rare-gas atoms can easily leave the crystal upon 
heating·, the existence of the craters was discussed in detail by Zimen [29]. 

Strong radiation effects must also result if f i s s i o n p r o d u c t s 
are recoiled into the surface of a specimen. Morrison et al. [30] in this 
way introduced Xe-133 into single crystal alumina and studied the release 
of xenon during PAD heating. A pronounced initial burst was registered, 
and when raising the temperature a new burst was observed. This beha
viour is possibly connected with the healing out of the defects introduced 
by the heavy fission fragments, and a step-wise healing process connected 
with several different activation energies is probable. 

Similar effects arise when introducing rare-gas in metals by ion-bom
bardment. Norton and Tucker [31] have studied the release of krypton 
introduced in this way into the surface of uranium foils. A subsequent PAD 
anneal resulted in a release rate of krypton which is much higher than 
in those experiments where the uranium has undergone fission and there
fore the krypton is homogeneously distributed in the specimen. 
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A special kind of disturbed region is present in reactor fuel material in 
form of fission spikes [32] which are created all over the irradiated 
specimen. The spikes should at least partly heal out during an annealing 
process; a rare-gas atom located in a spike may easily be released if the 
spike is connected with the surface of the specimen [28] [22]. Thus, a 
burst of ra re-gas atoms can be expected originating from a surface layer 
with a depth corresponding to the diameter of a spike. Being a surface 
effect, the burst should be moro pronounced the larger the surface of the 
specimen, notably important for powders and pressed compacts. For 
uranium Brinkmann gives theoretically calculated values of spike diameters 
in the order of 10" cm. This is the same order of magnitude as the sur 
face layer depth, which can be calculated with data (height of burst and 
surface of the specimen) taken from an experiment performed by Barnes 
on UO2 single crystals of integrated thermal neutron exposure nvt = 5.4x 
10 1 7 cm" 2 [11, Tables 3-4 Figure 7]*. On the other hand, Felix [34] ob
served a burst from UO2 single crystal spheres with nvt = 1. 5x 10*' cm" , 
which was about ten times larger than what would have been expected from 
this picture; it would correspond to a spike diameter of about 10"^ cm. 

The surface effects described above due to radiation damage have one 
important property in common. They cause ra re -gases to be released by 
a process, which should not be identified with diffusion but rather with 
recovery of the lattice. This fact may have consequences on the interpre
tation of gas release data, particularly when the diffusing atoms are fission 
fragments or when they are introduced in the lattice by a recoil process. 
If a powder with very small grain size (e. g. of the same order as the r e 
coil range) is used, the t o t a l amount of ra re -gas may be released 
mainly as a result of lattice recovery. When so, it is to be expected that 
the activation energy of the studied release process is the same or nearly 
the same for different r a re -gases . Such results were indeed reported 
[3 5] and can probably not be interpreted as being due to diffusion. 

rd · S/V = Fg = 5. 8 χ 10_i:),(S/V is the surface to volume ratio of the single 
crystal), from which the spike diameter is calculated to be d = 2 χ 10 cm. 
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4 POWDERS AND POLYCRISTALLINE MATERTALS 

4. 1 Influence of grain size 

When the grain s ize becomes small the recoi l losses of r a r e gase s ' 

become important . The relat ionship 

was derived by Flügge and Zimen [28] and gives the fraction leaving by 

recoi l ( £ ) as a function of the recoi l range (R) and the radius of the 

pa r t i c l e s ( r ) . Taking U 0 2 powder with a par t ic le size of 50 u as an example 

and es t imat ing the recoi l range to R = 6 u , about 18 per cent of the fission 

fragments should be lost by recoi l . Thus, when i r radia t ing such a powder 

in an evacuated via l , up to 18 per cent of the xenon atoms will enter neigh

bor pa r t i c l e s by recoi l . As was described in section 3, Morr ison et a l . 

[30] found that recoi l  induced xenon was re leased from alumina in form of 

burs ts ' , only par t of the xenon was re leased at a cer ta in t e m p e r a t u r e , so 

that the t e m p e r a t u r e had always to be increased to cause further r e l e a s e . 

A s i m i l a r behaviour can be expected when investigating UO powder. 

Exper iments were performed at this laboratory by Felix [34] who found 

r 
powder r e f e r r ed to above. Another portion of the same mate r ia l was mixed 

with sodium carbonate powder (volume ra t io 1 : 20) before i r radia t ion in 

o rde r to sepa ra t e the UO gra ins from each other with a distance l a rge r 
Δι 

than the reco i l range and thus preventing the xenon atoms to penet ra te into 

neighboring UO gra ins . After having separated it from the sodium c a r 

bonate , the UO was annealed, and this t ime no burs t was observed. The 

xenon content of the carbonate varied from 13 to 18 per cent. 

4. 2 Influence of grain s ize distribution 

Consider a PADexper iment performed with a powder consisting of 

spher ica l single c r y s t a l s . Pu re volume diffusion is assumed to govern 

the r e l e a s e of r a r e  g a s . It is evident that a burs t of activity may be ob

served when investigating such a powder, if it contains a high percentage 

bu r s t s of 23 per cent of the total xenon content at 1000 C with the 50 
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of smal l sized p a r t i e î e s . An ex t reme case is shown in F igure 4, i l lus t ra t 

ing the kinet ics for a powder mixture made up of only two fract ions: 50 w/o 

of the mixture has pa r t i c l e s of a radius r = a, the r e s t has a rad ius r = 10 a. 

Each fraction r e l e a s e s gas according to F igure 4, and the invest igator ob

s e r v e s the composit ive curve , which exhibits an initial burs t of activity. 

A powder mixture has normal ly quite another pa r t i c l e s ize d is t r ibut ion, 

and one may choose a typical UO2 powder [37, 38] as an example , with 

par t ic le s izes ranging from 10 n to 60 a F igure 5 shows the r e l e a s e curve 

resul t ing from each fraction, cf. [38]. The sum of these cu rves is the ob

served one and is drawn in F igure 6 together with the cu rves which had r e 

sulted from only a 30 u, and a 40 u -fract ion respec t ive ly . The 30 h s ize is 

apparent ly r ep resen ta t ive for the mix ture and approximates the t rue curve 

r emarkab ly well up to F = 0, 5, in spi te of the complex behaviour of the mix

tu re . 

The ideal r e l e a s e pa t te rn from UO2 powder with a g ra in s ize dis t r ibut ion 

s imi l a r to the one used by Matzke and Lindner [39] is shown in the F i g u r e s 

7 and 8. The composit ive curve approximates a 0, 11/u-powder and does 

not deviate ve ry much from the one resul t ing from a powder consis t ing of 

only 0. 10 u -pa r t i c l e s (Figure 8). It is evident that the observed r e l e a s e 

does not give any indications of the underlying, m o r e complex r e l e a s e if a 

powder with a normal par t i c le s ize dis t r ibut ion is used , nor is a burs t to be 

expected. 

4. 3 P o r e desorpt ion and grain boundary diffusion 

Radioactive gas which has collected in open po re s and m i c r o c r a c k s of 

the specimen will of course be easi ly r e l eased upon heating and may be 

observed as a burs t . 

S imi la r ly , grain boundaries pe rmi t a higher diffusion r a t e than does the 

lat t ice [40, 41], and the gas a toms located in gra in boundar ies a r e likely to 

leave the specimen upon heating in form of a bu r s t . 

Some exper iments performed at this l abora tory on uranium metal indi

cates the exis tence of gas r e l e a s e due to grain boundary diffusion [42]. 



- 19 -

An i r r a d i a t e d uranrum specimen was heated in vacuum above its melting-

point, and after cooling a no rma l , multi t empera tu re PAD anneal was 

performed. During melting only par t of the fission gases is r e leased [43], 

and during solidification a la rge par t of the remaining gas is thought to 

enter the gra in boundar ies . The r e l ea se was found to be some o r d e r s of 

magnitude g r e a t e r than that for a blank specimen (Figure 9). 

4. 4 Sintering and grain growth 

Sintering and gra in growth a r e related phenomena and may occur in a 

polycrys ta l l ine ma te r i a l during a PAD exper iment , though the influence 

upon the r a r e - g a s r e l e a s e seems to be a ma t te r of d iscuss ion. 

Auskern [44] favors the opinion that the r e l ea se r a t e d e c r e a s e s as a 

resu l t of s in ter ing because of the inc rease in grain s ize . The gra in growth 

is a well known phenomenon in r eac to r fuel m a t e r i a l s . MacEwan [45-47] has 

investigated UO and found that the inc rease of the mean grain diameter. , 

d, after annealing for t hours at T K is given by 

d2 - d 2 = k χ t° ' 8 exp ( -87,000/RT) o o 

The effect of this surface d e c r e a s e should of course be a lowering of the 

r e l e a s e r a t e . 

However , s in ter ing and grain growth imply that par t of the lat t ice 

const i tuents d ras t i ca l ly change their p laces . The kinetics of s in ter ing of 

NaCl has been studied [48] , whereby the interfacial growth between s p h e r e s 

of NaCl was observed at 700-800 C. Sintering seems to occur by an eva

porat ion-condensat ion mechanism with the ra te -cont ro l l ing step assumed 

to be the diffusion of NaCl-vapor through a thin boundary layer adjacent to 

the condensating sur face . 

A s i m i l a r mechanism seems to govern grain growth in s intered UO 

according to Canadian investigatio ns ' [45-47, 49-50] . The oxide vapor izes 

at the hot ter surface of a pore and condenses on the cooler one, permi t t ing 

the pores to migra te to the center of the pellet where the t empera tu re is 

highest . The grain boundaries continue to move and cer ta in gra ins grow 

at the expense of o the r s , though the changes become slower with t ime at 

constant t e m p e r a t u r e . In view of these findings one can expect those r a r e -
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gas atoms which are located in the regions subject to sintering and grain 
growth to change their position in the lattice. A part of the fission prod
ucts are dumped into grain boundaries within the specimen and may thus 
be released without being involved in volume diffusion through an undis
turbed lattice. The result should be an increase of the release ra te ; it 
is therefore questionable whether sintering and grain growth lead to an 
increase or a decrease of the release rate . Experimental evidence has. 
been obtained at this laboratory indicating that sintering and grain growth 
may result not only in an increase of the release rate but also in creating 
an initial burst [51]. Ar-41 was introduced in pressed pellets of KF by 
an (n, p)-reaction, and the influence of pre-heating upon the gas release 
was studied. If the green pellet was used without tempering a pronounced 
burst was observed (Figure 10) and a visual grain growth had occurred. 
After pre-heating at 800°C for one hour, the release curve showed a 
small burst only and was similar to the release of argon in single crystal 
KF (Figure 10). The specimen had been subject to far-reaching grain 
growth during the pre-heating. 

Further , experiments with powdered UC [42] showed release curves 
not only with an initial burst , but also a second smaller burst at about 
1500°C (Figure 11). This is thought to be due to a beginning sintering, as 
the powder particles clearly adhered to each other, but not to the tantalum 
container material , after heat treatment at about 1700°C. 

There does not seem to be any physical-mathematical picture which 
can be used for the evaluation of PAD release curves if grain growth and 
sintering occur. Information of technical importance may result from such 
experiments but it would be futile to expect diffusion coefficients of accept
abel accuracy. 

DAD loops could be used to study these effects and to determine diffusion 
coefficients from the· steady state release after sintering, phase transformations 
or chemical changes (cf. next section) have occured. 
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5 OTHER CAUSES TO NONIDEAL RELEASE 

5. 1 Phase transformations during the annealing process 

It has been proved by Scott and Buddery [52] that phase changes in 

uranium metal enhance the release rate during a PAD experiment. Sig

nificant re lease of krypton occurs which is apparently associated with 

the α —» ß transformation. The peaks in the release rate a re of short 

duration ard correspond to a release of the order of 0,1 % every time 

the transition temperature is reached. 

The burst of activity found in DAD work on U02 + x when cooling is 

thought to be due to the increased mobility during a phase change of the 

specimen [2022]. Fur thermore , Carrol has shown that the gas released 

in a cooling burst has for a longer period of time been trapped within the 

specimen [2022], cf. section 2. 

These cooling bursts have been thoroughly investigated in PAD ex

periment by Rothwell [53, 54]. The uranium dioxide loses oxygen above 

1800°C and becomes substoichiometrical (U02_yh on cooling U 0 2 _ y 

transform into U0 2 and uranium metal [53], whereby the mobility of 

the atoms in the lattice is enhanced. The release during this transforma

tion is considerable and may amount to a third of the total activity [54]. 

According to recent observations [45, 53, 55] pure uranium dioxide 

may precipitate uranium metal as a second phase on annealing at high 

temperatures in atmospheres of low oxygen pressure . These metallic 

inclusions are only a few microns in diameter and may be detected 

metallographically. Arcmelted U0 2 contains uranium in grain boundaries 

and uranium is also uniformly dispersed throughout the grains. At 1130°C 

the uranium located in the grain boundaries melts and liberates its contents 

of fission gases . 

The presence of metallic uranium in arcfused pieces of single crystal 

U0 2 was suspected by investigators at the Battelle Memorial Institute [11], 

and was thought to cause a sharp but small burst of the release rate during 

a PAD anneal. 
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5. 2 Chemical reaction of the specimen during the PAD annealing process 

Gas releases as low as 10 % are often observed during a PAD experi
ment. Such small amounts of gas originate from so thin a surface layer 
that corrosion to the same depth is normally not detected. One has then to 
take gas release· due to corrosion into consideration. 

It is a well known phenomenon from metallurgy that such a surface 
oxidation layer may be porous and permeable for gases. Therefore the 
release will be influenced by the corrosion, which cannot however be dis
covered or separated from the diffusion because a^/t-law may govern the 
kinetics of both phenomena. If the ra re-gas content is immediately set 
free upon formation of a spongy surface layer, the diffusion kinetics will 
be unimportant for the release. In this case the investigator will observe 
the kinetics of corrosion only. Extreme care has to be taken when working 
with materials which are suspected to react with the ambiant atmosphere 
or with the container materials . 

Even if these conditions are fulfilled one may have trouble in keeping 
the chemical composition of the specimen unchanged. Uranium oxide with 
a composition between UO2 n and U0 2 2 should have to be annealed in 
an atmosphere containing oxygen of a partial p ressure , which is dependent 
upon the temperature, because the partial pressure of oxygen has to match 
the equilibrium pressure at that temperature·, c f . the experiments of 
Stevens et al. cited in section 3 [25]. 

Uranium metal is a strong getter for oxygen and nitrogen, and it is 
extremely difficult to eliminate a surface reaction when heating the metal. 
Oxidation of uranium is known to be accompanied by release of fission gas 
[43, 56], and oxidation of a surface layer only some Angström thick may 
account for the observed release [57, 58]. 

The initial burst registered when PAD heating a uranium specimen [42] 
may well be caused by oxidation, Figure 12. Uranium metal may however 
react also with container materials such as quartz [42, 59], and the use of 
tantalum containers during the heat treatment seems to be necessary [60]. 
A good check is the use of an electropolished, bright specimen, the surface 
of which would be tarnished by a very thin, possibly monomolecular layer, 
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if oxidation has occured during the run. 

Uranium monocarbide is also chemically reactive, and great care has 

to be taken in order to choose a suitable method of investigation [7]. It 

was found in this laboratory [42] that the release of xenon from UC was 

affected by the material , with which the specimen was in contact during 

the PAD heating. A solidsolid reaction occured between specimen and 

container, enhancing the diffusion. A pronounced burst was not observed, 

but the release was many times .higher than during an experiment using a 

chemically indifferent tantalum or tungsten container, Figure 13. Similar 

observations on U0 2 are reported [26]. 

5. 3 Evaporation of the specimen during the anneal 

When working in vacuum systems at high temperatures one almost 

always observes weight losses of the sample during the experiment. When 

evaporation has taken place, its influence upon the release kinetics has to 

be considered. The evaporation losses per unit time ought to be proportional 

to the surface, which means that the radius diminishes with a constant rate 

 dr/dt = g, (51) 

if for simplicity, we consider a spherical body. 

This leads directly to the expression 

F = 3 £t  3¿ t 2 + ¿ t 3 (&2> 
e γ j¿ γά 

where F e denotes the fractional m a s s loss due to evaporation and r the 

initial radius of the sphere. 

The general behaviour of F e as a function of the s q u a r e r o o t o f t i s 
shown together with the normal diffusion release F in Figure 14. One can 
discuss qualitatively the influence of evaporation on the release by use of 
Figures 14-18 without solving the diffusion equation containing a time-depen
dent radius due to evaporation losses. 

F has quite a different kinetics than F , and as it is increasing very 
slowly (parabolic) for small F e -values , it could possibly be mistaken for 



- 24 -

diffusion at higher F values only. If the release were mainly due to eva-

peration and the diffusion unimportant, the initial parabolic part should 
* ) 

clearly expose this. If, on the contrary, the initial part is linear indicat
ing pure diffusion, the curve may later deviate from the ideal behaviour 
as evaporation grows more and more important relative to the diffusion 
as time goes on. A rapid method to discover such a deviation is described 
in [10, 12] and some illustrations are given in Figure 15. Each value of 

2 9 
the function γ1 is formed from the corresponding value of F belonging to 

2 the same time. In the case of ideal diffusion,^ should be identical with 
2 

the extrapolated tangent of the F -t-curve at the origin. In the case of 
n2 evaporation γ should not be a straight line but should bend upwards. This 

is seen to occur in Figure 15b; therefore the deviation from diffusion r e 
lease could possibly be explained as caused by the simultaneous evaporation. 

Experiments from this laboratory on argon diffusion in calcium fluoride 
evaluated with this method show that the influence of evaporation may not 
be as great as might be expected in the first instance. Although evaporation 
is observed in the high temperature stages of the experiments indicated 
by Figure 15a and c, the release seems to be perfectly ideal. That this is 
so might be qualitatively explained in the following way. Evaporation can 
increase the release only by accelerating the transport of r a r e gases in the 
utmost surface layer. However, the concentration of r a r e gases in these 
layers is high only in the very beginning of an anneal, when the evaporation 
is negligable relative to diffusion; then it rapidly falls. Later , when the 
evaporation has grown important, the gas atoms arriving at the surface have 
already travelled from, the inside of the crystal a distance large enough to 
make the surface transport unimportant for the kinetics. 

The surprising result , that in the case of calcium fluoride the simul
taneous evaporation of the crystal during the diffusion anneal does not 
disturb the release kinetics to any remarkable extent may or may not be 
true for crystals of other materials under similar conditions. In order to 
be able to predict this, the evaporation effects were estimated and 
compared for CaF 2 , KCl, U0 2 , and Th0 2 in the following manner. 

Provided this part of the curve is not obscured by a burst. 
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Consider the concentration profile in a sphere of radius r at the time 

t, according to Figure 16. This profile is approximated with the dotted 

square edge profile through the inflexion point, which is equivalent to 

saying, that the boundary of uniform concentration has moved the distance 

yõ t , the diffusion depth (for the following estimation the factorfìì was 

left out of account). At the same time the radius of the sphere has dimin

ished by the amount gt due to evaporation of the surface. As long as gt 

is small compared without, it is to be expected, that the diffusion is not 

appreciably influenced by the evaporation. 

The magnitude of g was determined experimentally according to equat

ion (51) for different temperatures; the results are shown in Figure 18. 

The values for TI1O2 are preliminary values, based on early data of Felix 

[34]; however, only the order of magnitude is of interest in this connection. 

According to Figure 17, at the beginning of the anneal, the diffusion front 

moves faster than the evaporation front, but it is ultimately reached by 

the latter at the point where r^ = r e . (If this point has a physical signifi

cance or not  even at the validity of the above approximation  depends 

on the actual values of g and D, cf. below. ) For comparison between 

different crystal materials the quantity 

t = D 

° 4g2 

was calculated. For t<t0 the evaporation front moves behind and always 

slower than the diffusion front (at tQ the two fronts are separated by the 

largest distance), and the evaporation should have no noticeable influence 

on the diffusion kinetics. 

As an example consider calcium fluoride at 1150°C and pressure of 

12 torr in the gas phase with D = 1. 5 χ IO"6 cm2/s and g = 8 χ 10" cm/min. 

T h e n t = 60 χ 1,5 χ IO' m i n = so hours 
0
  η 

4 χ 64 χ 1 0
_ x U 

The approximation according to Figure 16 is valid, provided that 
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that is 
t « l /D · 10 6 / l . 5 seconds = 180 hours 

if the length L of the crystal is óf the order of 1 cm. As the duration of 
an experiment at 1150°C is of the order of some hours, the validity is 
fullfilled during the whole annealing process . It is not so amazing there
fore in view of the high value of tQ, that the kinetics appear to be ideal. 
For 1300°C the time t 0 is calculated to 1. 5 hours, which means that a 
perturbation of the kinetics due to evaporation cannot be excluded at that 
temperature, at least not towards the end of the experiment. This does 
not, however, prevent the accurate determination of D, cf. Figure 15b. 

The results of the estimation for different crystals are summarized 
in table 5-1 , which clearly indicates that evaporation ra ises no problems 
in connection with CaF2> KCl, and TI1O2 crystals but becomes very 
critical in the case of U0 2 . It is experimentally observed [34] that the 
F(sft) plot is linear up to much higher F values than theoretically ex
pected. This is probably due to the fact that the release is built up of 
both evaporation and diffusion. A clear consequence of this is a seemingly 
abnormal high activation energy. The activation energies for xenon diffusion 
in UO2 reported in the last years are also extremely high; they show a 
strong tendency to grow even higher. 

A single evaporation measurement seems to be a necessary step in 
planning an investigation of r a r e gas diffusion in any kind of material . 
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Table 5-1: Influence of evaporation on the diffusion kinetics 

S y s t e m 

C a F 2 / A r 

( 1 - 2 t o r r ) 

K C l / A r 

( 1 0 " 3 t o r r ) 

U 0 2 / K r 

( I O - 3 - 1 0 " 2 t o r r ) 

U 0 2 / X e 

( I O " 3 - 1 0 " 2 t o r r ) 

T h 0 2 / K r 

( I O " 3 t o r r ) 

T e m p . 

°C 

1150 

1250 

1300 

500 

600 

700 

1500 

1600 

1700 

1500 

1600 

1700 

1700 
1800 

D / 4 g 2 

60 h 

5 h 

1.5 h 

8 h 

20 h 

40 h 

10 h 

20 m 

1 m 

20 m 

1 m 

2 s 

1 0 4 h 

50 h 

1/D 

180 h 

40 h 

20 h 

1000 h 

30 h 

2 h 

1 0 1 1 h 
1 0 1 0 h 

10 9 h 

10 9 h 

10 8 h 

10 8 h 

10 8 h 

10 8 h 
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5. 4 Changed concentration profile due to flux depression 

The diffusion equation valid for PAD experiments is always solved 
under the assumption that the concentration of ra re -gas atoms is constant 
throughout the specimen at the time t = 0 

Consider a sample of pure uranium metal with dimensions of the order 
of 1 cm. The ra re-gas concentration in the body after irradiation will vary 

- Σιχ ν* 
roughly as e , where χ is the distance from the surface andZJis the pro
duct of the fission cross section for U-235 and the enrichment a. Thus the 
gas concentration in the center of the specimen is roughly e ' less 
than at the surface. For pure U-235,a material with no practical importance, 

6 this factor is about 10 , which should lead to a pronounced initial burst 
during a PAD experiment. The factor rapidly decreases with decreasing 
enrichment, being about 10 for a = 20 % and about 3 for a = 10 %. Thus, 
the self-absorption of slow neutrons by the sample during irradiation can 
be excluded as the possible cause of initial bursts described in the l i terature , 
because no measurements were made with heavily enriched mater ia ls . 
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6 NOTES ON THE EVALUTION OF NON-IDEAL RELEASE CURVES 

6. 1 Introduction 

The evaluation of release curves exhibiting an ideal diffusion pattern 
is covered by Lagerwall and Zimen [10] and is not discussed here. In 
contrast to the quantitative treatment in [10] this section is only intended 
to s t ress the general principles and difficulties. 

The published data on diffusion of fission ra re gases in reactor mate
rials are strikingly inconsistent with each other. One of the reasons to 
this may be that several investigators misinterpret the results because 
their methods of evaluation are inadequate, being valid only for the case 
of undisturbed volume diffusion. It is here pointed out why these methods 
often fail and how the correct diffusion coefficients may be obtained from 
experimental data. 

6. 2 Time-dependent diffusion coefficient 

The solution of the diffusion equation 

- | ? = D V 2 c D - const. (6-1) 
3t 

has been given for PAD problems by Inthoff and Zimen [2], who express 

the kinetics in the approximation 

F 2 = ! (S/V) 2 Dt (6-2) 
Τ 

where S/V = surface-to-volume ratio 

Equation (6-2) is valid for pure volume diffusion at a constant tempera

ture as long as F £ 0,2 5. 

Assuming a time-dependent diffusion coefficient, e. g. in the case that 

the temperature is changed during the annealing process , equation (6-1) 

may be rewritten in the form, cf. [36] 

£ . * L .D ( l ) .v . . (...) 
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and the new variable θ so determined that 

3 θ = D(t) (6-4) 
at 

giving 

| | - - V 2 c . (6-5) 

Equation (6-5) is identical in form with (6-1) assuming D be equal to 

one; consequently, its solution corresponding to (6-2) is 

2 4 ς 2 

F* - ^ ( S) θ (6-6) 

2 Therefore a plot F vs t has a slope 

dF2 4 , S. 2 5Θ 4 , S 2 

(V> t f = T ( V > ' D ( t ) -dt T V at T V 
that means, the c u r v e has a s lope which in e v e r y point 

is p r o p o r t i o n a l to D , no m a t t e r how D is c h a n g i n g . 

Consider for instance the case that the temperature is raised twice 

during the annealing process, corresponding to the curve in Figure 19. 

θ is obtained from (6-4) to be 

θ (t) = Γ D ( f ) dt'. (6-8) 
Ό 

Thus, in this case 

θ (t ) ■  f Dx dt' + f 2 D2 dt' + / * D3 dt'  D ^ + D2(t2 t l) + D3(tt2). 

(69) 
2 

This means that the F (t)plot consists of three linear parts, corresponding 

to the three constant diffusion coefficients D , D and D (Figure 19). In order 
X. ¿t ó 

to see what shape an F (,/t)plot will have for the same experiment, we first 

note that the diffusion equation (61) may be written 

Jorree <ei.) 
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from which it is clear that D and t can never appear seperated in the 

solution, but always in the combination Dt. Consequently, it does not 

matter for the concentration profile of gas atoms in the specimen, whether 

a certain fractional release F has been reached on annealing at the temper

ature T during the time t or at the temperature T ' during the time t ' , 

provided that the product Dt is the same in both cases. This means that 

when the temperature is changed from T to T at the point Ρ in Figure 

20, the F (t)plot proceeds exactly in the same way as if the anneal had 

been performed all the time at the temperature T with the beginning of the 
Ci 

anneal displyced the amount ¿. In an F (,/t)plot the part a is of course 

linear, the part b not, because the latter does not start from the origin; 

b has the equation 

F 2 = X 2 ( t  6 ) . (611) 

In an F, ( sfl) coordinate system it becomes 

F 2 = s 2 . 2 ( £ 2  ¿ ) where / t" = Ç (612) 

or 

^ F 2 

1 (613) 
6 ¿Ó 

Equation (13) represents a hyperbola with the asymptote 

^ F 2 

A 1   0 (614) 

which means that 

F =<Z^ = « V t (615) 

The evaluation should apparently be made from the asymptote of the 

F( v/t)curve, which is in practice difficult. Besides, the plot leads to 

the principal misinterpretation as discussed in section 1, by simulating 

small bursts at Τ and Τ which do not exist, and by enlarging already 
¿t O 

existing ones. The consequences of plotting F vs \ft when the temper

ature is changed is seen in Figure 21, where the correct asymptotes 
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have been drawn a lso . As these curves are unsuitable for evaluation, the 

2 

F (t)plot has to be used in the case of timedependent diffusion coeffi

cient. Note that the discussion has assumed that no overlapping bursts 

affect the gas re lease , cf. section 6 .3 . 

6. 3 The case of overlapping processes 

Consider an experiment in which the fractional re lease , F , is accum

ulated and measured. Suppose that the release due to pure volume dif

fusion, f, is overlapped by an activity burst from a source which is rapid

ly exhausted (Figure 22); after a time t , the burst contributes with a 
° ■#·) 

certain constant value, b , to the activity in the gas phase . The mea

sured fractional release F is after a certain time (t ) equal to f + b and 

has the same slope (26) as f. The diffusion coefficient, which has to be 

determined from the experiment, is proportional to 32Γ. 

Upon squaring F one gets (for t> t ) 

F 2 = (f + b)2 = f2 + b 2 + 2 bf = æ 2 t + b 2 + 2b2C ' γ Τ (616) 

2, . 
and the slope of the curve F (t) is 

2 

k(t) = 2e2 + 2 b # . — = X2+b ■  3 | — = 36? (1 +h
r). (617) 

As can be seen from (617) and from Figure 23, this composite slope 

does not correspond to a straight line, though the deviation normally lies 

2 

within experimental e r ror . Thus, from the slope of F (t) a diffusion coef

ficient is calculated, which is larger than the real one, affected with a 

relative e r ror equal to b/f. 

If for instance b is about 10 times larger than f, a quite frequent case , 

a slope about ten times too large is found. On rewritting (617) into. 

k= SÊ2 ξ = X j (618) 

it is seen that 

X 2 = k2 | 2 (619) 

ij3 

The decay is neglected, being unessential for the problem. 
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As lic is proportional to the real diffusion coefficient, a correct 
2 

value can be arrived at from the three observed quantities K, t , and F 
2, , 

in an F (t)plot . Nevertheless, this method may be disadvantageous if 

the measurement is not accurate enough to allow a determination, which 

point on the F (t)plot actually corresponds to a certain kvalue. In 

addition, with this plotting the mere presence of a burst at the initial 

stage will cause a small "burst" at each subsequent change of the tempe

rature ( c f . Figure 23 and section 6.2), although the diffusion may be 
2 

perfectly ideal. In this case the F (t)plot leads to a misinterpretation 
of the response to a temperature change. Consequently, whenever a 

burst occurs , the evaluation has to be made from a plot F vs t̂". 

In many experiments, which are described in the li terature in terms 
2 

of F vs t, not only an initial burst appears, but the temperature is also 

changed several t imes. One realizes from the discussion above that the 

evaluation of diffusion coefficients from the slope of these plots cannot 

be correct . On the other hand plotting of F (>/~i) would not be suitable 

either, though in this case the first stage of the anneal is correctly r e 

presented (Figure 21). There is no'simple straightforward method of 

evaluation in this case, unless the release activity is high enough to per

mit measurement of the release r a t e with an acceptable accuracy. Of 

course, the rate cannot be influenced by the previous history of the r e 

lease, e .g. initial burs ts , unless the concentration profile is thereby 

drastically altered? a fact which is notably advantageous in DAD measure

ments. 

The best thing to do in order to evaluate experiments of this type 

would probably be to plot a curve as the one drawn in Figure 24. Here 

F is a function ofVtt. where t. is the time at which the temperature 

is changed. Most important, as in the F ( ^/tjplot the first annealing 

•\Jf . . . 

>Λ~Ιη several cases the evaluation of D from an F (x/t)plot could perhaps 
be somewhat improved if it is assumed that a large burst causes a 
depletion of the outer layers analogous with the effect of recoil losses. 
The slope after the burst ought then to be doubled before calculating the 
Dvalue as long as bí=¿F, cf. [2]. 
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stage gives directly the correct value of D. The succeeding curve branches 
are hyperbolas as in the F( yTj-plots. However, they approach the asymp
totes more rapidly, and could not be mistaken for small burs ts , being 
hyperbolas in the conjugate position. As is seen in Figure 25, a second 
smaller burst at the temperature Τ may also be detected in this way 
without affecting the evaluation of D too much, provided that the anneal 
at each temperature is not performed over too short a time 

6. 4 The case of competing processes 

This case is thoroughly covered by Hurst in a recent report [23]. 
Assuming the existence of trapping centres and other sinks for diffusing 
ra re -gas atoms, the i n i t i a l part of the release curve is of course 
the significant one for the determination of the diffusion coefficient. Of 
multitemperature anneals only the first stage will be possible to evaluate. 

6. 5 Conclusions 

From the preceding sections it is clear that whenever bursts appears, 
one may get doubtful information by performing multi-stage anneals instead 
of working at a constant temperature. If one has evidence that the cause 
is n o t of the type discribed in 6.4 and would prefer multi-temperature 
anneals from reasons of experimental convenience, the best way of eva
luating such an experiment is probably in te rms of an F (>/t-t.)-plot 
(Figures 24-25). In this case, each stage should be followed long enough 
to compensate for the initial non-linearity of the curve. 

Another way of performing the evaluation would be to subtract the 
2 burst graphically from an F (yU)-curve and then plot F vs t. This 

is more tedious and probably less accurate because the subtraction e r ro r s 
are in practice large. If several bursts occur during the experiment, this 
method can therefore not be recommended. The only possibility is then 
to perform less complicated experiments, e.g. single-temperature 

Because the concentration profile actually is changed in a more or less 
uncontrollable way during a burst , it is an indispensable condition to 
perform the measurement over long periods of time in such cases , quite 
independent of the evaluation method used. 
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annea l s . F o r the sake of convenience, some recommendat ions regard ing 

evaluation a r e l is ted together on the following pages . 

6. 6 Recommendat ions for the evaluation of r e l e a s e curves 

6 . 6 . 1 Re lea se without or with a smal l bu r s t (b<<cF) 

Single- and m u l t i - t e m p e r a t u r e exper iments can be p roper ly evaluated 
over the whole range of F according to [10], (c.f. F igu re 15). F (V*t) can 
be u s e d for s i n g l e - t e m p e r a t u r e anneals but this is not r ecommended (.cf. 
below a) . Recommendat ions for the evaluation if: 

2 2 
a) spec imen r e a c h e s Evaluate from F (t) or *f (t) as above, 

t e m p e r a t u r e slowly. not from F( s/ΐ). 

b) single c ry s t a l p o w d e r A rapid and accura te method of evaluation 
m a t e r i a l is used . is the following. The gra in s ize dis t r ibut ion 

can be substi tuted by a r ep re sen t a t i ve mean 
radius (because otherwise a bu r s t had been 
observed , c.f. F i g u r e 4). Evaluate a c c o r d 
ing to the cor responding sphere [10]. In the 
f (t) d i ag ram the slope will not be constant 
but will s teadi ly diminish as F i n c r e a s e s 
from ze ro to 100 per cent. The mean slope 
at about F = 50 pe r cent gives the c o r r e c t D 
value. (The s ame will be t rue if one plots 

2 2 
a = D t / r with the aid of [10] as a function 
of t and de t e rmines D from this s lope) . 
Other methods: a) to cons t ruc t the c o r r e c t 
r e l e a s e curve from the gra in s ize d i s t r i 
bution (accura te but tedious) , b) to use the 
express ion F ===(S/V) Dt 

if the sur face S is known from a BET 
m e a s u r e m e n t (valid for F ~ 0 , 3 ) , 
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6.6.2 Release with burst (bi*F) 

Consequences if the burst 
is due to: 

a) 

b) 

c) 

Trapping or creation of 
pairs and bubbles 

Grain boundary diffus
ion, pore desorption, 
surface effects (fission 
spikes, oxidized layer 
etc.) 

Extreme grain size dis
tribution 

Determine D from the slope at origin in a 
F2(t) (or F (t)) diagram. This is likely to 
be difficult in pract ice , because only a few 
measuring points can be found by experiment. 
In that case one has to calculate D from 
a larger part of the curve using an t r i a l -
and error-method [23]. 

Single temperature anneal: plot F (\/"t). 
Determine D from the slope according to 
Figure 22; cf. footnote on page 33. 
Multi- temperature anneal: plot F (>/t - t . ) . 
This resul ts in hyperbolas; determine D 
from the slope of the asymptotes. 

As in b).. In this case the distribution can be 
substituted by two representat ive radi i . F rom 
the two slopes of the plot according to Figure 
4, two values of D are provided, which 
should of course be s imi lar . 

d) Phase transformations 
No accurate evaluation method. PAD 

e) Sintering and grain growth experiments highly unsuited*' 

f) Chemical reaction of 
the specimen 

These effects a re best studied in DAD experiments, measuring the 
re lease r a t e . I n this case the evaluation offers no principal 
difficulties. 
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i Fx 10a 

VT [h*] 
5 6 7 8 

F i g . 1; R e l e a s e of X e - 1 3 3 from UC powder at 1600 C 

(Schmeling, unpublished) 

» TCC) 

200 300 
VF[minV2] 

Fig. 2: Temperature variat ions, especially at the be 
ginning of the anneal, can be taken into account 
for in an F - t -d iagramj but not in an F~yt-dia-
gram [ C a F ? / A r , Lagerwall, unpublished] 
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Fig. 3: Concentration potential and gradient 
near a simplified rough surface after 
a certain t ime has elapsed from the 
beginning of the anneal 

const *VT 

Fig. 4: Ideal re lease from a powder made up of only two 
part icle s i zes . The small par t ic les a re quickly 
emptied (a), the la rger par t ic les give curve (b); 
the observed curve is the sum of the two (c). 
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const »vT 
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F i g . 5 : I d e a l r e l e a s e f r o m UO 
p o w d e r t o g e t h e r wi th t h e 
c o r r e s p o n d i n g g r a i n s i z e 
d i s t r i b u t i o n 

F i g . 6: T h e c o r r e s p o n d i n g c o m p o s 
i t e c u r v e t o g e t h e r wi th 
c u r v e s in c a s e of p o w d e r 
m a d e up of only 30 u and 
40 u p a r t i c l e s ' 

40 
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10 

FfA) 

aio 

const* Vt 
10 15 

const Vf 

Fig. 7: Ideal r e l ease from UO_ 
powder together with the 
corresponding grain size 
distribution 

Fig. 8: The corresponding composite 
curve (a) together with curve 
in case of a powder made up 
of only 0. 10 u particles(b) 
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Ó 2 l 6 8 101.2 Τ , 7 Τ , 
0 2 4 6 θ 10 12 

1080'C 

v£t, |Λ] 

'0 2 i 6 8 

Fig. 9: Release of xenon from uranium metal , which 
had been melted for a short t ime after i r r a d 
iation (curve E 23). Curve E 24 shows the r e 
lease from a specimen which has not been melt
ed before the PAD experiment [ Schmeling, un
published] 

Fig . 10: Release of argon from pressed pellets of potass
ium fluoride. A pellet which is not preheated ex
hibits a pronounced burst (a); a preheated pellet 
a small burst only (b), and the subsequent r e 
lease is s imilar to that from single c rys ta l KF(c). 
[ Mundt, unpublished] 
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i F(%) 

Fig . 11 : Release of xenon 
from UC powder.. 
The burs t at 
1420 C is suppos
ed to be caused 
by a slight sinter
ing of the po-wder 
pa r t i c l e s . [ Schme-
ling, unpublished] 

20 

10 

*a£j_J9££ J / / VM- N 
Ó Í 2 3 4 5 6 7 8 , . , . 

0 12 3 4 5 
0 1 2 3 4 5 . . . 

0 1 2 34 5 

Fig . 12: Typical re lease of xenon from 
uranium metal durine a vacu-6 o um anneal at about 970 C. 
The specimen was in contact 
with quartz, and was visually 
corroded after the run [ Schme-
ling, unpublished] 
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F-10*· 
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vT [h*l 
10 

.. F(%) 

40 

30 

20 

V 

VT [h*] 

Fig. 13: Release of xenon from UC; the specimen in con
tact with alumina (E 37), with zirconia (E 35), 
and with tantalum (E 40). All experiments at 
1410-1430°C [Schmeling, unpublished] 
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Fig. Comparison between pure 

diffusion (F) and pure eva

puration (Fe) kinetics. Note 

that diffusion ought to be pre

dominant at the beginning. 

At t=0, the slope of Ftí is 

zero, but that of F finite. In 

the corresponding Fetdia

gram the slope of F e is fi

nite and that of F infinite 

large at t = 0. 

— fr 

Fig. 15: Release kinetics of argon in calcium 

fluoride. If the release is only due to 

volume diffusion in the lattice, the 

function ψ should be identical with 

the langent at F2 = 0, Τ = const. [ 10, 

12] . The diffusion coefficient is ob
* 2 

tained directly from the slope of f : 

2 S df2 

D =;,.—, · — —— . Though evaporation 

fit V dt 

was observed at the high temperature 

stages in a and c, the diffusion seems 

to be perfectly undisturbed. Thè deviat

ion in b corresponds to a decrease of 

S/V by evaporation. D can be accurate

ly calculated from the slope of *fz extra

polated to f2 = 0 . 
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re = r0-gt 

.rd=r0ï/DFJ 
*■» t 

Fig . 16: 

The concentrat ion profile in a sphere 

with the init ial radius r after the 

t ime t has elapsed from the beginning 

of the anneal . 

F ig . 17: The d is tances covered by the diffusion 

front and the evaporation front accord

ing to figure 16 at the t ime t . 
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Fig . 18: The experimental ly de 
t e rmed values of the 
quantity g in equation 
(51) as a function of 
t e m p e r a t u r e for differ
ent c r y s t a l s . 
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Fig . 19: Hypothetical example of r e 
lease d i scussed in the text and 
used in seve ra l f igures below: 
pure volume diffusion (curve 
a) and s imultaneous r e l e a s e 
from other source (curve b) 

F ig . 20: The genera l behaviour of F (t) 
in the case of undisturbed vol
ume diffusion. The t e m p e r a 
ture is suddenly changed 
th ree t imes during the expe r i 
ment , cf. explanations in the 
text . 

/ (a+b) 

Fig . 21 : 

F(Yt) plot of pure volume diffus
ion in case of mul t i t empera tu re 
anneal (the same r e l e a s e as in fig. 
19, curve a). The T - and T - b r a n 
ches s imulate too high a diffusion 
coefficient and exhibit smal l b u r s t s . 
The r ea l values of D a re given by 
the asympto tes . The smal l figures 
indicate how many t imes l a rge r the 
simulated values of D a r e , compar 
ed with the r ea l ones . 

F ig . 22: FQftVplot of pure vol 
ume diffusion(curve A) 
overlapped by another 
gas re leas ing p r o c e s s 
(curve B), resul t ing in 
a composi te r e l e a s e 
(curve C). 
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F i g . 2 3 : I d e a l r e l e a s e s u p e r 
i m p o s e d by one 
s ing le b u r s t at the 

beginning of the a n 
n e a l . ( F - a + b f r o m 
f ig . 19 ) .The b r a n c h e s 
at T and T a r e d i s 
t o r t e d in the F 2 - t 
d i a g r a m b e c a u s e of 
the m e r e p r e s e n c e 
of the b u r s t at T . 
The s lope g ives an 
i n c o r r e c t D va lue for 
a l l t h r e e t e m p e r a t u r e s . 

* - t 

F i g . 24 : T h e s a m e c a s e a s i l l u s 
t r a t e d in fig. 23 , but 
p lo t ted F v s V t - t ' . . 
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Fig . 25: Plot of F v s T T T for 

the case of an initial 

burst at t . ietempera-

ture T and a second, 

smal ler burst at T . 

No burst at T . 

τπτ iiiHshfa. 
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