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THE GENERALIZED GRADIENT, ITS COMPUTATIONAL ASPECTS

AND ITS RELATIONS TO THE MAXIMUM PRINCIPLE

SUMMARY

The maximum principle and the related theorems of the Pontrya-
gin team lead to a generalization of the well-known steepest
descent possible,

This generalization comprises the introduction of dynamic
stresses,

For this reason the state vector no longer moves along the
steepest descent, but the 7 -vector of the adjoint system

does.

With respect to the simulation of the dynamic stresses and the
elegant technique of implicit computing of Lagrange multipliers,
the analogue computer appears to be appropriate for generalized
gradient optimization.

1. INTRODUCTION

Wg consider the problem of minimizing a given function F (x1, o e ey

xl, e s ey xn) where the variables xi +) are subject to constraints

of the form:

g(x1,...,x1,...,xn)$0 j=1, « « oy m
One possible technique for this kind of problem is based upon the con-
struction of a get of differential equations of the steepest descent type
for the wvariables xi. Pyne [?] hag done this for linear programming
problemg on the analog computer, but his method is equally valid for
nonlinear objective functions and constraints. Representing the whole
set of variables x* by the vector x = (x1, o e ey xi, .« ., X)) the
steepest descent equations can be written as

m

'f = - k[grad P (x) +dé kjgj(x) grad gj(x)J (1)

jof)

i

p_.

._ R .
JUpper indices, which obviously should not be considered as exponent:,

will be used throughout the teXt.
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large and positive if g%(x) > 0

with: k
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I

An additional aspect of these equations is the implicit computation of

the functions k., gj(x) as approximations of the Lagrange multipliers for
gj(x) = 0. ThisJis related to the theory of the penalty functions studied
by Courant and Moser [3] . Indeed, relation ( 1 ) could have been written

as

%% = -k grad P (x) (3)

where P (x) is a penalty function,

P (x) =F (x) + %zzz;kj l:gj (XX] 2 ( 4)
j:

which has to be minimized without additional constraints. The approxi-

mation is the better the more kj tends to infinity for gJ (x)” 0.

It is obvious that the set of equations ( 1 ) and ( 2 ) or ( 3 ), ( 4 )

and ( 2 ) is not the only possible one describing trajectories of x (t)
ending at (at least a local) minimum of F (x). This means that addi-

tional constraints and even additional criteria with respect to the

optimal trajectory could be satisfied before it is uniquely determined.
These latent degrees of freedom make some generalizations possible. The
maximum principle and other theorems of the Pontryagin team [1] will permit
us to analyse a related but more general problem and to define the con-

cept of generalized gradient.

2. ESETATEMENT OF THE PROBLEM

. 1 i
Fo(x, « .., xl, e e ey xn) is a given function which has to be guided

to its (local) minimum at some time T, taking account of following
system of congtraints.

We consider x (t) to be a state vector x = (x1, . e ey xl, e e ey Xn)a

belonging to a closed subset G of the n-dimensional state space and
vhose evolution is described by a system of ordinary differential

equations

M:f[x(t_),u(t)] (5)

dt
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with f = (f1, . e ey fl, . e ey fn). In this system the control vector
u = (u1, o« o ey ur) has to be chosen as an element of the closed subset

U of the r-dimensional control space. The subset G is defined by

(6)

gd (x) £ 0 3

1]

—_
-

.

.

.
-

=

and the subset U is defined by
1
q (U.)éo 1=1’ . . o5 S (7)

We shall show that minimizing F (x) by generalized gradient corresponds

to minimizing the functional EsT
J(X)=F[x(t+T)] —F[x(t)] = /fo (x, u) dt' ( 8)
with . ¢ ‘

0 2~ F)I“ X d :
£ (x, u>=Z——ﬁ—l® 227 (x, w) (9)
v X

The initial condition Xo of the optimal trajectory reduces to one point.

At every instant X, = X (t). The final condition x, = x (t + T) belongs

1
to the set of all possible x, reachable in a time T from t, with ad-

missible u€U. Ve call this set R, (t) and its boundary f[x (t + T)] = 0,

3. THI GENERALIZED GRADIENT AS A SPECIAL. CASE OF THEL MAXIMUM PRINCIPLE

The optimal trajectory completely lies in the interior of G

Requiring that u (t) is piecewise continuous and that all £ and all
‘BF/Z)xl are defined and continuous on G x U together with their partial
derivatives, we can apply the maximum principle for the problem de-

fined in § 2. By definition we have

m m
i .\ DF i
3{=Z%f“z<yi ’}éo()xi)f (10
(=0 L=

The vector function/}L= (Vi,ff}, . . .,1%5) of the adjoint system is

given by the Hamiltonian system
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a¥ —a<%=—’>b'§:g “JF _\4—1(,}5+ DF bfd

T 5 L e s 5T

Knowing that’ﬁyo is negative and constant this relation can be reduced

m
o2 2D S 2

=7
Calling ’Vi + fYO 22511 - ’}Vi' we can write the Hamiltonian system as
follows ”
H - Z Vet
(=1

AY: DY
dd’yrt L'Dx _Z’V?fi

This formulation obviously corresponds to another problem, which has
the same :f‘:'L (x, u) as the original one of § 2, but with a different
ad joint system (»Di %'YE') and with f'o = 0, Such a problem has a
trivial solution. All admissible u€U satisfying the boundary con-
ditions are optimal. This is only possible if‘gf% 0, which means
ﬁk' = 0, independantly of U , initial or final conditions. For this

/yi:;_.lii ’%o”‘1 at

reason we have

il
O

(1)

In contrast to most other applications, the control variable is not

determined by the maximum principle.
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3,2, The trajectory partly lies in the interior of G and partly on

the boundary of G.

Introducing the Lagrange multipliers for the boundary of G and

the jump conditions for y/at the junction points where the optimal
trajectory reaches or leaves the boundary of G, we apply the
maximum principle for restricted state coordinates. A reasoning

similar to that of § 3.1. leads to the relations ( 12 ) and ( 13 ).

For simplicity we took m = 1 in relation ( 6 ).
/1’0 >F+ 2-& /%=-1 9{50 ( 12)
i o
Dx Dxt
) =0 for g (x) < 0 ( 13 a)
n
dF_ . g

‘% - 1= TD Bxé

Z (24 )

(=1

for g (x) =0 ( 13 b)

B

Relation ( 13 b ) satisfies the boundary condition (7%C grad g) = O
+
for ¢ (x) = 0 )

3.3. The transversality conditions

Since Qfs 0 it finally turns out that the optimal control u has to
be determined by the tran*versality conditions of the theorems of
Pontryagin, stating that ¥(t,), which corresponds in our problem
to W (t + T), has to be orthogonal to the set Rp(t) of the final
events x, = x (t1) = x (t + 7). Two possibilities have to be con-
sidered. They are illustrated in Pig. 1.
a) x (t + T) lies in the interior of Ry, (t). In this case the
orthogonality condition can only be satisfied by

d%; (¢ + 1) é? f + 2>—55-)

- ’Dxi x (t + 1) =0 ( 14 )

+) By(a, b) we maean the scalar product of the vectors a and b.
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8. While optimizing we have to take account of the values of F (x)
only for x in the interior of RT(t). Outside this region F (x)
is completely ignored. It looks as if thg optimizing system has
a limited "horizon" of information around the moving point x (t)
and which is defined by R (t) If the trajectory stops at a
local optimum, the optlmlzer never finds a possibly higher
optimum if this lies outside its horizon. The probability of
staying at a 1ocal.optimum obviously grows with decreasing T
and becomes a certainty for T arbitrarily small. The concept
of the horigon of an optimizing system seems to be realistic.
Indeed, the ability of predicting and interpreting all possible
events within some time period T is linked to a degree of complexit
which is limited for most technologically realizable optimizing

systems.

4. TEE STEEPEST DESCENT AS A SPECIAL CASE OF THE GENERALIZED GRADIENT
We consider the problem of § 2 with the following restrictions:
T =At = arbitrarily small
£ ooyt i=1, .4 .yn ( 17)

q<u>=i‘(ui>2—1so | (18)
(=1
By ( 18 ) U is represented by a unit hypersphere in the n-dimensional
state-space. It follows immediately that Rzgt(t) too is a hypersphere
with radius At and that for x (t + 4 t) on the boundary ?= 0 we
have
('BF A Qg

> > Jx(t+4t)/ﬂgal.x(t+4t)=5ﬁ/L3(t+dt)—xﬂtﬂ
(24 at) o

Knowing that for x (t +41t) on f>= 0, uis on g (u) = 0 we can

I

calculate

%At= Z ui%—é.g+)\1§)
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Since yZ is negative for a minimizing problem we have the following

final/solution:

%%= 0O for grad F +M>\ grad g = O ‘ ( 19 )
%% = -k (grad F + ) g?ad g) ( 20 )
with X=(13a) ad ( 13b")

-
o 3)

M - 1/2

‘ D g2
30,1“ =[Z<D_jf+) _b—:f) (21)

=1

k=

LPOn

Relations ( 19 ) and {%?O ) ‘obviously are equivalent to ( 1 ) for
Akm = 1. The only points meriting some comment are k and.,X'o As stated
: already in the introduction kj gj (x) (j = 1) is nothing but an
approximation of the Lagrange multiplier,k , generated by implicit
computing. As far as k is concerned, in relation ( 20 ) it has been
taken for the highest possible speed of x up to the endpoint. At the
‘endpoint however, ( 19 ) is necessary since ( 20 ) becomes undeter-
mined. In relation ( 1 ) k has not yet been specified. The only im-
portant restriction on k is that it is a scalar, which is the case
in ( 1) as well as in ( 20 ),
To resume, it has been shown that for the steevest descent not only
W&i but also dxi/dt is directed along (grad F + ) grad g). This is
true because T = 4t and P [x (t + A'tﬂ = O is a hypersphere.

5. COMPUTATIONAL ASPECTS OF THE GENERALIZED GRADIENT

On condition that grad F (x) and grad g (x) have sufficiently simple
analytical expressions (or some simple analytical approximation,
preferably linear, quadratic or third order polynomials) the

equations ( 1 ) can be programmed without difficulty for analog and
digital computers. In most cases the same is true for the generalized
grudient if we take T = A t. Especially when the set of equations ( 5)
conatitutes a complicated, high order, non-linear dynamical system the

choice of an analog computer is indicated.
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