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THE GENERALIZED GRADIENT, ITS COMPUTATIONAL ASPECTS 

AND ITS RELATIONS TO THE MAXIMUM PRINCIPLE 

SUMMARY 

The maximum principle and the related theorems of the Pontrya

gin team lead to a generalization of the wellknown steepest 

descent possible. 

This generalization comprises the introduction of dynamic 

stresses. 

For this reason the state vector no longer moves along the 

steepest descent, but the ̂ vector of the adjoint system 

does. 

W i t h r e s p e c t t o t h e s i m u l a t i o n o f t h e d y n a m i c s t r e s s e s a n d t h e 
e l e g a n t t e c h n i q u e o f i m p l i c i t c o m p u t i n g o f L a g r a n g e m u l t i p l i e r s , 
t h e a n a l o g u e c o m p u t e r a p p e a r s t o b e a p p r o p r i a t e f o r g e n e r a l i z e d 
g r a d i e n t o p t i m i z a t i o n . 

1. INTRODUCTION 

We c o n s i d e r t h e problem of min imiz ing a g iven f u n c t i o n F (χ , . . . , 

χ 5 . . . , χ ) where t h e v a r i a b l e s χ ) a r e s u b j e c t t o c o n s t r a i n t s 

of t h e form: 

One p o s s i b l e t e c h n i q u e f o r t h i s k ind of problem i s based upon t h e con

s t r u c t i o n of a s e t of d i f f e r e n t i a l e q u a t i o n s of t h e s t e e p e s t d e s c e n t t y p e 

f o r t h e v a r i a b l e s x ' . Pyne |_2J h a s done t h i s f o r l i n e a r programming 

problems on t h e ana log computer , but h i s method i s e q u a l l y v a l i d f o r 

n o n l i n e a r o b j e c t i v e f u n c t i o n s and c o n s t r a i n t s . R e p r e s e n t i n g t h e whole 

s e t of v a r i a b l e s χ by t h e v e c t o r x = ( x , . . , , x , . . . , χ ) t h e 

s t e e p e s t d e s c e n t e q u a t i o n s can be w r i t t e n a s 

m 

¿ ï - - k 
d t κ 

grad F ( χ ) +/ k . g ^ ( x ) g rad g ( x ) J ( 1 ) 

)Upper indices, which obviously should not be considered as exponent:.;, 

will be used throughout the text. 
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with: k. = 0 if g
J
(x) ̂  O 

J
 i ( 2 ) 

k. = large and positive if g (x) > 0 
»J 

An additional aspect of these equations is the implicit computation of 

the functions k. g (χ) as approximations of the Lagrange multipliers for 

i 
g (χ) = 0. This is related to the theory of the penalty functions studied 

by Courant and Moser Í 3j · Indeed, relation ( 1 ) could have been written 

=  k grad Ρ (χ) ( 3 ) 

ui 

J=1 

as 

dx 
dt 

where Ρ (χ) i s a penal ty function 
m 

Ρ (χ ) = F ( χ ) + j 

which has to be minimized without additional constraints. The approxi

mation is the better the more k. tends to infinity for g ( χ ) ^ 0. 
J 

It is obvious that the set of equations ( 1 ) and ( 2 ) or ( 3 )> ( 4 ) 

and ( 2 ) is not the only possible one describing trajectories of χ (t) 

ending at (at least a local) minimum of F (x). This means that addi

tional constraints and even additional criteria with respect to the 

optimal trajectory could be satisfied before it is uniquely determined. 

These latent degrees of freedom make some generalizations possible. The 

maximum principle and other theorems of the Pontryagin team fll will permit 

us to analyse a related but more general problem and to define the con

cept of generalized gradient. 

2. STATEMENT OF THE PROBLEM 

F (χ , . . ., χ , . . ., χ ) is a given function which has to be guided 

to its (local) minimum at some time t , taking account of following 

system of constraints. 

We consider χ (t) to be a state vector x = ( x , . . , , x , . . . , x ) , 

belonging to a closed subset G of the ndimensional state space and 

whose evolution is described by a system of ordinary differential 

equations 

~ ^ = f [χ 00, u (t)j ( 5 ) 
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with f = (f , . . ., f , . . ., f ). In this system the control vector 

u = (u , . . ., u ) has to be chosen as an element of the closed subset 

U of the rdimensional control space. The subset G is defined by 

g
J
 (x) < 0 j = 1, . . ., m ( 6 ) 

and the subset U is defined by 

q
1
 (u) ̂  0 1 = 1, . . ., s ( 7 ) 

We shall show that minimizing F (χ) by generalized gradient corresponds 

to minimizing the functional t+T 

J (x) = F Γ χ (t + T)l - F Fx (t)] = / f° (χ, u) dt' ( 8 ) 

è 

with 

f° (χ, u ) = y ^ i g i f « ( X i u) ( 9 ) 

The initial condition χ of the optimal trajectory reduces to one point. 

At every instant χ = χ (t). The final condition χ = χ (t + T) belongs 

to the set of all possible x, reachable in a time Τ from t, with ad

missible UÉÏÏ. We call this set R„ (t) and its boundary ρ jx (t + T)| = 0. 

3. THE GENERALIZED GRADIENT AS A SPECIAL. CASEOF THE MAXIMUM PRINCIPLE 

).1. The optimal trajectory completely lies in the interior of G 

Requiring that u (t) is piecewise continuous and that all f and all 

^F/V χ are defined and continuous on G χ U together with their partial 

derivatives, we can apply the maximum principle for the problem de

fined in § 2. By definition we have 

Ή W 
) f1 ( 10 ) 

¿~o ¿=1 

The vector function / = (/ , /., . . ., / ) of the adjoint system is 
given by the Hamilton!an system 
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- - -^ - -t st £r> - ¿ ( « *r, j-j ) Jx-

Knowing that /Γ is negative and constant this relation can be reduced 

to 

d ( ^ γ 1 F } =_y (y γ, ^ 2L. 
d t x / o

 ¿χ
1
 ¿, «

 r
°)¿")¿-

Calling / . + / c—r = / · WQ can write the Hamiltonian system as 

>x 

follows /M 

dx1 7># f i 
d t 3%' 

/vi 
ÍVí ~*>% χ  ^ O / dr i - Σ T&'Ür 

This formulation obviously corresponds to another problem, which has 

the same f' (x, u) as the original one of § 2, but with a different 

adjoint system ( γ . ·/ ψ. ) and with f = 0 . Such a problem has a 

trivial solution. All admissible ugU satisfying the boundary con

ditions are optimal. This is only possible if 3t = 0, which means 

j . = 0 , indepondantly of U , initial or final conditions. For this 
ι 

reason we have 

Ί fa1 ° 

In con t ra s t to most o the r a p p l i c a t i o n s , the cont ro l v a r i a b l e i s not 

determined by the maximum p r i n c i p l e . 
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3.2. The trajectory partly lies in the interior of G and partly on 

the boundary of G. 

Introducing the Lagrange multipliers for the boundary of G and 

the jump conditions for r at the junction points where the optimal 

trajectory reaches or leaves the boundary of G, we apply the 

maximum principle for restricted state coordinates. A reasoning 

similar to that of § 3.1. leads to the relations ( 12 ) and ( 13 )· 

For simplicity we took m = 1 in relation ( 6 ). 

γ !?+xlz r -, # . o ( , 2 ) 
£>x ¿x 

X = 0 for g (χ) < 0 ( 13 a) 

y~ ^
F · its. 

λ =  i ^ * 1 » s 1 for g (χ) = 0 ( 1 3 b) 

Y ( ^ )
2 

0 = 1 

Relation ( 13 b ) satisfies the boundary condition (/, grad g) = 0 

for g (χ) = 0
 +
) 

3.3· The transversality conditions 

Since <χ= 0 it finally turns out that the optimal control u has to 

be determined by the transversality conditions of the theorems of 

Pontryagin, stating that r(t ), which corresponds in our problem 

to r(t + T), has to be orthogonal to the set Ρφ(Ό of the final 
events χ = χ ( t ) ■= χ ( t + Τ). Two possibilities have to be con
sidered. They are illustrated in Fig. 1. 

a) χ (t + T) lies in the interior of L (t). In this case the 

orthogonality condition can only be satisfied by 

y i ( f T > . g i + > ! £ ) l ( t + T ) . o ( 1 4 ) 

+ ) Ey (a, b) we mean the scalar product of the vectors a and b. 
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This is true whatever be the value of T. 

b) χ (t + T) lies on the boundary Ο [χ (t + T)] = 0 of ET(t), 

Now we have 

i> "3 ÌL, 
^ <

t + I
'-^

+A
^-(t+T)-/'^)x(t + ,) < ' 5 > 

Fig. 1 

3·4· Conclusions 

1. With the generalized gradient it is no longer true that dx/dt = 

f (χ, u) moves along the steepest descent, but the vector jr 

of the adjoint system takes over the same function. 

2. Since the Hamiltonian is identically zero, the optimal control 

can only be determined by the transversality conditions and 

not necessarily in a unique way. 

3. If the optimal trajectory χ (t) stops somewhere (dx/dt = θ) at 

a time f in a point χ (f)» it necessarily stops inside Rm (f). 

This means (cfr ( 14 )) that this point is a (local) optimum of 

F (x). The fact that the trajectory stops implies u = constant, 

but not necessarily u = 0. 

4. The optimal trajectory does not necessarily stop anywhere, even 

at a (local) optimum of F (x). Indeed, the imposed system of 

constraints (cfr. ( 5 ) > ( ° " ) > ( 7 ) ) may very well be of such 

a kind that it is completely impossible to keep the system at the 

optimum of F (χ). This is not at all in contradiction with the 

optirnality of the trajectory. Fig. 2 illustrates this phenomenon. 
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Fig. 2 

5· Whenever χ (t + Τ) lies on the boundary €>= O of R_ (t), the 

trajectory can be determined by ( I5 )> the definition of 

0 = 0 and the equations ( 7 ) giving the boundary of U. Indeed 

these relations determine u (t) and L·. Examples will be given 

in § 4 and § 6. 

6. Whenever χ (t + T) lies in the interior of R„ (t) the trajectory 

is not uniquely determined unless Τ = Δ t is arbitrarily small. 

Indeed, the trajectory is composed of a sequence of initial 

conditions χ (t) of an optimization problem for t ^ t' ¿ t + T 

of which only the final condition is given by our optimization 

criterion (8). In this case we propose a new optimization 

criterion. 

t + T 

■ / F (χ) dt' ( 16 ) 

The problem will be subject of further study. Meanwhile the 

difficulty will be bypassed by taking T arbitrarily small, 

which eliminates the optimization between t and t + T. 

7. It should be noticed that the evolution of the system only takes 

accoxmt of the direction of the vector (grad F + ,Χ grad g ) and 

not of its magnitude. The speed of evolution is more closely 

related to the system of dynamical constraints ( 5 )
 an(

i the 

boundary of Ü ( 7 ). 
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8. While optimizing we have to take account of the values of F (χ) 
only for χ in the interior of R,p(t). Outside this region F (χ) 
is completely ignored. It looks as if the optimizing system has 
a limited "horizon" of information around the moving point χ (t) 
and which is defined by Ηφ(ΐ). If the trajectory stops at a 
local optimum, the optimizer never finds a possibly higher 
optimum if this lies outside its horizon. The probability of 
staying at a local optimum obviously grows with decreasing Τ 
and becomes a certainty for Τ arbitrarily small. The concept 
of the horizon of an optimizing system seems to be realistic. 
Indeed, the ability of predicting and interpreting all possible 
events within some time period Τ is linked to a degree of complexit 
which is limited for most technologically realizable optimizing 
systems. 

4. TEE STEEPEST DESCENT AS A SPECIAL CASE OF THE GENERALIZED GRADIENT 
We consider the problem of § 2 with the following restrictions: 

Τ =A t = arbitrarily small 
f1 = u1 i = 1, . . ., η ( 17 ) 
q (u) = ¿Ju 1

)
2
 - 1 ^ 0 ( 18 ) 

6=1 

By ( 18 ) U is represented by a unit hypersphere in the ndimensional 

statespace. It follows immediately that R (t)' too is a hypersphere 

Δ t 

with r a d i u s Δ t and t ha t for x ( t + Z l t ) o n the boundary P= 0 we 

have 

"ox
1
 "dx

1 X
 ^

 + 4 t
) / 7>χ

Χ X
 ^

 + 4 t
) /

 L
 - J 

= ( 2 / 4 t ) u1 

Knowing that for χ (t +4t) on D= 0, u i s o n q ( u ) = Owe can 

calculate 

Ϋ-^-Σ*^^ 
L-1 
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Since h, is negative for a minimizing problem we have the following 

final solution: 

If = 0 for grad F + \ grad g = 0 ( 19 ) 

d. χ 

Il =  k (grad F + \ grad g) ( 20 ) 

with X = ( 13 a ) and ( 13 b') 
■K 

k = 
2A 

41
 11/2 

.<__ ¿)x 2>χ 
( 21 ) 

Relations ( 19 ) and (*?0 ) obviously are equivalent to ( 1 ) for 

m = 1. The only points meriting some comment are k and A · As stated 

already in the introduction k. g (χ) (j = 1) is nothing but an 

approximation of the Lagrange multiplier \ , generated by implicit 

computing. As far as k is concerned, in relation ( 20 ) it has been 

taken for the highest possible speed of χ up to the endpoint. At the 

endpoint however, ( 19 ) is necessary since ( 20 ) becomes undeter

mined. In relation ( 1 ) k has not yet been specified. The only im

portant restriction on k is that it is a scalar, which is the case 

in ( 1 ) as well as in ( 20 ). 

To resume, it has been shown that for the steepest descent not only 

j . but also dx /dt is directed along (grad F + ,λ grad g). This is 

true because Τ = Δ "t and D lx (t + Δ t)l = 0 is a hypersphere. 

5. COMPUTATIONAL ASPECTS OF THE GENERALIZED GRADIENT 

On condition that grad F (χ) and grad g (x) have sufficiently simple 

analytical expressions (or some simple analytical approximation, 

preferably linear, quadratic or third order polynomials) the 

equations ( 1 ) can be programmed without difficulty for analog and 

digital computers. In most cases the same is true for the generalized 

gradient if we take Τ = Δ\ t. Especially when the set of equations ( 5 ) 

constitutes a complicated, high order, nonlinear dynamical system the 

choice of an analog computer is indicated. 
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We draw special attention to the implicit computing of the Lagrange 
multipliers by k . g (χ) or the equivalent technique of the penalty 
functions. This technique is extremely simple and well adapted for 
programming on analog computers,., because of the continuous repre
sentation of the variables on the computer. B.ut equally for digital 
computers the technique seems to have considerable advantages with 
respect to the direct computation of the Lagrange multipliers by 
relation ( 13a, b). The accuracy of the approximation technique 
can be studied in terms of constraint "violations", corresponding 
to the maximum positive values of g (x). These violations are 
roughly proportional to λ./k., a ratio which tends to zero with 
growing k.. For large k. however, difficult convergence problems 

J J 
in digital computers may arise. Even with the analog computer, in 
spite of its continuous representation, stability may become an 
embarrassing problem, since the stability is more strongly related 
to the structure of equations ( 5 ) an(i ( 7 )· Introducing additional 
damping forces for g ( x ) ^ 0 or nonlinear functions instead of 

-j ' constant k s is very useful, but their influence upon the accuracy 
of the optimal trajectory still has to be examined carefully. 

The simulation of IT on a digital computer generally poses no difficult 
problems. On the analog computer it can be done in several ways. If 
possible the use of limiters is the most practical one. This is 
especially true for hyperparallelopipeds. A more general technique 
is once more the introduction of Lagrange multipliers y for 
q (u) = 0, which have to be computed again in the same way as the 
X 's. Since u (t) can move in U without friction and without inertia, 
new stability problems add to the already discussed ones. They very 
often can be solved by a more realistic interpretation of the under
lying physical phenomena. 

Whenever grad F (χ) and grad 'g (x) have no simple analytical ex
pression all hope should not bo lost. Modern perturbation techniques 
and sensitivity analysis are often very useful and easily pro
grammable tools for estinuiting cumplicated gradients. This is 
especially the case for iteration procedures of the gradient type 
for solving two point boundary problems and parameter optimizations 
[4]. 
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Timedependant optimising functions and constraints, making the 

whole system nonautonomous, do not affect the generality of the 

proposed techniques. As Pontryagin states it is sufficient to 

consider time, wherever it appears explicitly, as a new state 

variable χ  t and to add a new equation of type ( 5 )
: 

, η + 1 /, , . 
dx /dt = 1 . 

6. EXAMPLE OF A GENERALIZED GRADIENT APPLICATION 

In terms of the statement of the problem of § 2 we take 

dx /dt = u"x i = 1, . . ., n 

ë (χ) i o 

q1
 (u) =  u

1
  A

i
 ^ 0 

¿ + n
 (u) = + u

1
  B

1
 < 0 

τ = Δ t 

The boundary of the set of possible events θ\ χ (t + Δ t) j 

takes the form of 

x
1
 (t + ¿\ t) = ( A1 ¿it) x1 (t) 

x
1
(t + <ut)=(+B

1
idt)x

1
(t) for i = 1, ..., η 

= 0 

22 ) 

( 23 ) 

Fig. 3 clearly shows the structure of the solution, which can very 

well be approximated by the equations ( 24 ), taking full advantage 

of the implicit computing technique. 

4
l
° 

q>o 

Fig. 
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dx 

dt 
 k χ grad F (χ) + ^ g (χ) grad g (x) ( 24 ) 

with:  Αχ ^ dx/dt <¡ Bx 

k and k large and positive, but k = 0 for g (χ) ̂  0. 

A and Β are constant vectors with coordinates A and Β , representing 

the edges of the hyperparallelopiped U. 

The larger k and k the better the accuracy, but the more critical the 

stability of dx/dt whenever it lies between Ax and Bx. This particu

larly happens on the boundary g (χ) = 0 (see fig. 3). 

The analog computing diagram takes the form of Fig. 4. 

+25 

(Λ 

XrO 
-A' 

o F&J 

k± γΟ-J grad γ&) 

Fig . 4 
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7. APPLICATION FIELDS 

Tho most important class of engineering applications probably is the 
optimization of industrial production processes for which the slow 
variation of the properties of the process constitutes a system of 
dynamical constraints of type ( 5 )> a n¿ for which a certain profit 
function corresponding to the quality of the final product, the pro
duction costs or some other criterion can be fixed |_6J. 

Another interesting field would be the study of macro-economic structures, 
Indeed, the generalized gradient opens the possibility of integrating 
the laws of economic growth and economic optimization in one model. 
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