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A MULTISTAGE SEARCH GAME

SUMMARY

The problem of optimally searching a set of boxes for a hidden
object is formulated as a game. The model is such that parameters
account for the possibility of overlooking the object in a single
search, We obtain optimal stationary strategies and use them to
construct a monotonely converging to Bellman's functional
equations., It is felt that this result may be of use in the

optimazation of machine searches of data systems.



1 Introduction

In the game which we shall consider Player I hides an object in one of
N boxes, labeled from 1 to N. His opponent, Player II, has to search for
the object by successive examinations of the boxes. An examination of the

i-th box (i = 1,ee¢4 N) can be performed at a cost ti> 0 each time and

there is a probability p.(0<p, < 1) of finding the object given that the
y Py i-

right box is searched.

Upon finding the item Player II receives a reward of a Z 0. We shall
solve the game explicitly under the assumption that Player II is restricted
to the use of stationary strategies and discuss the solution of Bellman's
functional equations for the Bayes risk in the non-stationary case.

Let 8 (0< § s 1) stana tor a discount factor applicablé to losses at
future stages of the game. The case 8 = 1 can be solved using the results

on the stationary case.

2. Stationary Minimax Strategies

A stationary strategy for Player II is an N~tuple y = (y1,...,yN);
N
¥i 20, 1i=1,000y Nj PN yj = 1 which denotes a probability distribution,
j=1
chosen once and for all, and by which the box to be examined at each stage

is selected.

A mixed strategy for Player I is an N-tuple x = (x1,...,xN) with x5 > 03
N -
i=1y0¢e4yNand ¥ x. = 1. X denotes the probability of placing the
j=1
object in the i-th box.

If Player I uses a mixed strategy x and Player II a stationary strategy

y the expected return to Player I for each stage of the guzme is given by:
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N
Alx,y) = B yk(tk - apkxk).
k=1
The probability P(x,y) that the object will be found during a given
search equals:
N
P(x,y) = B b %7, -
k=1 K k'k
The discounted expected return to Player I for the entire search is there-

fore given by:

o0 - - Alx,y)
(1) F(x,y) =5 8 [1—P(x,y)] A(x,y) =
r=0 1- 8§ [1-P(x,y)]
provided 1 - 301 - P(x,y)Y # 0.
If we denote by x° = (x:,..o,xg), y° = (y:,...,yg) and v respectively a

pair of minimax strategies and the value of the game with payoff (1) then we

must have

(2) F(x%,y) > vg for all y

F(x,y°) < v§ for all x

The relations (2) can be written as:

N N
(3 D oty - (atvg &) T opx%y. > vy . (1=8)
opie 34" 8 o Pk 2 Yy
for all y and
il o il o 8
(&) qu t Yy - (a+v8 Q) . }31 P 5 W € vs (1= 0)

for all x. Since (3) and (4) are linear inequalities over a simplex we can

replace them by the following equivalent systems:

> v (1_8) for J=l,eee,l

(5) t. - (a+v8.8) P X3 N

o
J J



and
“ N o} o 8
- d = = e e No
(6) 151 L (a+v8 8) Py¥; € Vs (1-9) for 1 = 1, .
N N
The inequalities (5) and (6), together with & y, = & Xy = 1, can all
i=1 j=1

be satisfied with equality. We obtain as the solution of the resulting system:

Nt N oq -
) s [z__a] [s+<1-8>.2-—]

k=1 Pk k=1 Pk

t -(1-8)v
I

1
X T = for =1 se 0 N
p. j ] ]

jo ey 8

f X =1 '
g — T = for i=1,...,N.
Pi\k=1 Pk

The independence of yo of all parameters but the Py i=1,4++,N is quite striking.

e
i

The same holds for the expected duration of the game.

We have:
w© N 2
T - ¥ k[1-P&x°%,y9)] k=1 pH L
k=1 k=1 Pk
Remark

The stationary minimax strategies correspond to the intuitive notion of a
memory-less Player II and are therefore of little practical interest. They are
essential in our discussion of the case 8§ = 1 of Bellman's functional equa-

tions for the non-stationary case.

3. The functional equation for the Bayes risk.

Let x = (x1,...,xN) denote an arbitrary mixed strategy for Player I. We
can ask for the optimal sequential response for Player II against x and for
the minimum expected loss.

We denote by fs (x) the minimum expected loss for Player II against x. An
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An application of Bellman's principle of optimality implies that the following

functional eguation must be satisfied

(8) fs (x) = min [ti ~ ap;x; + $(1 - pixi)f

(T.x)])
1<¢i¢N § 1

with t.> o, O<pi <1, 0< 8_(_ 1, 2> 0 and Tix =§ = (E']""’E:N) defined

by:

(9) ﬁi = X,

B o= x. . e for § £ 1.
J I 1-pyxy

The N~tuple E is the a posteriori distribution derived from x, given that

on: unsuccessful search of the box i was made. We may exclude the case

piX; = 1 (for some i) as being trivial. The transformation (9) is then always

well-defined. When O € 8§ ¢ 1 the functional equation (8) is of Type Two in

Bellman's terminology [1] p.121. The following theorem of Bellman settles the

problem of the existence, unigueness and continuity of the solution of (8)

in this case.

Theorem 1.

Let ﬁs o(x) denote an arbitrary continuous function defined over the set X
?
of all x. Let the sequence of functions fs n(x) n=1,2,++. be defined by the
9

recursion formula:

(10) £ (x) = min Ct. - ap.x. + 8(1 - p.x.)fp (T.x)]
§,n+1 1<4i<N i ivi i™i y i
then the seguence fs n(x) converges to a limit fS(X) for n—» ® . This conver-
9
gence is uniform in x which implies the continuity of fs(x) in x for each
8 . Moreover fs(x) is the unique bounded solution to (8).

Proof:

We refer to the proof given in [1} p.121. The theorem 1 implies that fS(X) is



- 10 -

the Bayes risk for the game using scquential strategies.

A particular choice of £ (x).
9,40

* From now on we shall set fs o(x) = Vg where vs is the value of the game
’

in stationary strategies given by (7). We extend this to 3 = 1 and define

fn(x) by:

(11) fn+1(x) = min [t - ap,x, + (1 - pixi)fn(x)]
1€ i €N

for n = 0'1,ooo

It is noteworthy that f8 n(x)-—)fn(x) for =91~ and for every n. This
]

convergence is uniform in x.

4, Monotonicity properties of the sequence fs n(x)
’

Theorem 2
The sequence fn(x) n=0,1,s0o for ® = 1 is monotome decreasing in n
for 211 x in X. This i%5 not true in general for 0 < 8 <1 but a sufficient

condition for ﬁs n(x) to be monotone decreasing in n for all x and 8§ is
’

that
§; EE < a.
k=1 Pk
Proof:
Since

fs’m,](x) - fS,n(X) < 8" [f8s1(X) - f8 O(x)]

for n = O,J.s it is sufficient to study the sign of the difference

f198(X),— fo,a(x). We have:

(12) f8,1(x) ~ fS,o(X) 1 <mj:n< . Lty - ap;x, + 1 - pixi)vsj -~ Vg

= min Lty - (a + VS) piXiJ
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Let = max min [t, - (a + vs)p.x. ], then it is readily verified
x€X 1< i <N * L2

that P is the value of the N x N-game with pay-off matrix B.

(13) t1 - p1(a+v8) t2 ty
B =
t1 tz - P2(a+vs) s e tN
t, ts ty - py(atvg)

Under the assumptions on t, and 1 the game with matrix B 1is completely

i

mixed and the optimal strategies for the players I* and II* are given by:

N N -1
(1) x* = alv it - o L - v - a 2 1
5 Ps 5 S k=1 Px k=1 Fx

r = 1,...,No

The value P is given by:

/ Nt N -1 N N -1
(15) - (1-8 B X- s ( 2o} 18+0-H g L
P (k=1 Py a) (k:'] P ) k=1 Pk k=1 Px

We have
N ¢t
P:O for 3=1 or a= & -l{
k=1 P
N tk
P*( O for a>» 8 —
k=1 Yx

and since

fs’,](x) - fs’o(x) <@ for all x
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the result follows.

5. The case S - 1

Theorem 5

There exists a bounded concave solution f(x) to equation (8) for & = 1.
Proof: (=)

There exists a bounded solution to equation (8). The functions fn(x)
are uniformly bounded below by -a as is seen from the recurrence relation.
Since the sequence fn(x) is monotone decreasing in n for every x the result
follows. Let f(x) denote the limit of the sequence fn(X)°

The limit-function f(x) is a concave function of x over X. The functions
fn(x) are indeed concave as an induction argument readily shows. Therefore

so is the limit.

Remark:

In many cases fs (x) will be an increasing fuuction of & for all x.
This is true in particular if ti - a p, 20 for i = 1y eee 4 N, In this
i

case we have

£ 5 (%) S f(x) £ (%)
n

for all & and n.

We were unable to prove a relationship between the limit of f8 (x) and

£f(x).

6. Some gen ralizations

Results similar to those above can be obtained for the following gene-
ralized models. We define the game as above, but Player I is no longer
compelled to put the object in one of the N boxes. Player II can now, before
each search, make the claim that the object is not in any of the boxes. If

his claim is correct he receives a reward b » O. If his claim is wrong he

pays a penalty ¢ > O and there are two alternative models depending on whrether

(%) The author thanks Mister Pol V. Lambert for pointing out an oversipght in
an earlier versiox of this theorem.
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this ends the game or whether the search should be continued with the know-
ledge that the object is hidden. Let us refer to these alternative models
as Model A and lModel B, respectively.

The functional equation for the Bayes risk @(x) in Model A is given by:

c(1 = xo) - bxO

@( x) = min

min [ti - & pyx; + ) (1 - pixi)(e(TiX}]

15243 €N

inwhichb)O,c)O,a?—O, ti>O,O<pi51andO<8<1.Here

x = (x% X cee xN) denotes the a priori distribution for Player I,

O’ 11

x. is the probability of not putting the object in any of the N boxes.

0
T.x = E = (81 Eqoes &) is defined by

4 e
. = X .
* + 1-p. X
Pi%y
1
i. = X, o =— j = O, 1, ese i"'1, i+1 9 eee N,
J J 1
-p. X,
11

The fundamental equation for the Bayes risk {(x) in Model B is given by:

(16) e(1-xy) = b x, +8(1-x)) rg (Ty %)
(.P(x) = min
<mnj.n( [t; = apyx +8(1 - pixi)ﬂo(Ti x)1]
1 =21i <N
*5
where TOX=€,=(€1, ese ,EN) with Ei=1 N i=1’ ) ’N’ and
70

fs (x) is the solution of equation (8).
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