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THEORETICAL FOUNDATIONS
OF PARAMETER OSCILLATION MEASUREMENTS

SUMMARY

The influence of periodic changes of some localized reactor parameters (cross-sections) on the
output signal of a detector placed somewhere in the reactor will bhe discussed from a general point of
view. For the special case of thermal reactors, a procedure of determining independently the contributions
of the absorption and production of ncutrons to these oscillations will be given.

1 —— GREEN’S FUNCTION FOR THE OSCILLATING PART
OF THE NEUTRON DENSITY

In the most general way a reactor characterized by parameters which depend on
time can be described by the equations (Ref.1):

oN,

= = (1=)x, (B)J:N: + Z X, (E)ACi + S—K:N, (1a)
oC
== B Ne— MG (1b)

where Nt(:,E:u)/llqr is the neutron density at time t in phase space, i.e. per unit volume
per unit energy per unit angle of velocity direction w; B; is the fraction of the fission
neutrons emitted by the i-th delayed neutron emitter; xy(E) is the normalized energy
spectrum of prompt neutrons arising from fission (the emission of the fission neutrons
is assumed to be isotropic in angle); x;(E) is the normalized energy spectrum of the
neutrons emitted by the i-th delayed neutron emitter. The operator J, is defined in
such a way that .

J:N, = SSv(lz)z,(?,lz,t)vz\/,(?,E,Z)¢113do/4,7r

is the production rate of fission neutrons per unit volume, unit time and unit solid angle
. 9 . . - .

at the point r. Similarly, the operator K; is related to the net rate K.N.;/4r at which

neutrons leave the region in phase space as a result of absorption leakage and scattering:

_ :,
KN, = orgrad oV, (1,Es0)) + Seot(ME) 0N (REsn) — SdE’ Sz, (EE mra' i) o' N (1E ') d

[



» » » . - . J .
where 3,(E,E',0o’,r,t) is the cross-section at time ¢ for scattering from the element in
» 9 . 3 .
phase space with coordinates E’,o’,r to the element in phase space having the coordinates

> > . . .
E,o,r. Finally, S(t,E,r,0) is the source density per unit volume, energy and solid angle,

A7 the mean life of the i-th type delayed neutron emitters and 8 = Z,B,-,.

The equations (1) are completed by the boundary conditions, which the solution
N; has to satisfy:

> > > ,
N:(r,E,») continuous in r (2)

. . .. . >
at all interfaces between different media inside the reactor for all values of E, » and t.

> >

Nt(rssE-)‘”A) =0 (3)

> . > >
for all E and t, where r; are the points of the reactor surface and «_ are all values of o for

> > > >
which «'n < 0, n being the outward normal at the point r,.

In general, one must also specify the neutron distribution at an initial instant of
time .

Eliminating C; from equation (la) by using the integrated form of equation (1b),
that is

¢

Cilt)= ,Bi\dt' JeN s e=Ate=) (1b*)
we obtain the equation
N t
3 :
att = (1-B)x, (E)JN, +in<E)ﬁi,\f\dt’JuN~ e~ M= S— KN, (4)

— o0

In the special case of time independent parameter values, which moreover cor-
respond to the critical condition, we have in the absence of an external source

X(E)JCNC-—Ich(}:O (48)

where J., K. are the above-defined operators, in which the parameters are chosen to
correspond to criticallity, and

X(E)=(1—p)x, (E) + Y x, (E)B: (5)

Let us now consider the case where the parameters (cross-sections) will be changed
periodically in a certain region of the reactor, such that

$(Eytr) = SE) + of(Eotor)



etc. If the amplitudes of these parameter oscillations are small as compared with the
mean values of the parameters—which shall correspond to the critical state—then we
can write the neutron density in phase space in the form

Ni(BEw) = Ne(1E.o) + ni(r.Eo) (6)

For the operators J,, K; we can write

Jo=J.+ ji (7)
K =K.+ k, (8)

where the operators j; and k; are given by the expressions

1 ~ e A R
Ny =— \ \dEdsm E)o (Ear)oN, (Flm) (9)
4 ‘
EO
( ' >
kN, = 0wt (FE£) 0N (1 Eoe) — \LIE'\dsz’a_,(E,l'I’,m-m;,t Vo' N (FE o) (10)

[}

Since we assume the oscillations to be of small amplitude, we can neglect second
order terms except in the sample itself, where the flux will always be somewhat disturbed.
Thus in general we have to interpret the cross-sections o as effective cross-sections, differ-
ing from the real cross-sections by a self-shielding factor.

We obtain from eqs. (4) and (4a)

t

0 ’ .
e frnd (1 —ﬁ)x (E)Jcn; —|— ZX, (E)B;M\dt']vlu'(z—)\.“—' )
ot ’ i .
,
—Keny + (1—B)x,(E)jelNe + Zx[(E)B,-A;gdt’jtwceﬁ.“—f'v_k,N,, (11)

— oo

Since the changes of the cross-sections are assumed to be periodic in time, we can
expand them in a Fourier series. Let T be the period. It is clear that n, is also a periodic
function with the same period T. Since the equations (11) are linear, it is sufficient to
know the response n; to a harmonic oscillation of the parameters, for the general problem
can then be solved by a superposition of such solutions. Therefore we assume ihat

Je = joe ki = ke (12)
Then we will have a steady state oscillation n, of the form
ny = n,c (13)

where n, is in general a complex quantity since the oscillation n, is not in phase with
the parameter oscillations, except in particular cases.

We obtain from (11)
(Ke + ip—L(E,p)Jc)n, = (L(E,p) jo— ko) N« (14)



where

XO(E ,Bk/\k

L(E.p)=(1—B)x,(E +Z T (15)

is a known function.

> > > i
Let I,(r,E,0:r',E'v’) be the Green’s function of the operator
i.e. the solution of the equation

(Ko 4 ip—L(E,p)J)T, = 8(r—1")8(E—E") 8(0—0") (16)

> >3
satisfying the same boundary conditions as the neutron density. Thus T',(r,Ew;r’ E’,m’)
9
is the neutron density in phase space due to a monodirectional source at the point r'.
9
Also it can be 1nterpreted as a measure of importance of a neutron at (r E'.w') to the

neutron density at (rE,w)

If this funcltion were known, we could calculate n, directly as a function of j,N.

and k,N.:
> >
ny(r.Ew) Sg\d‘ r'do’'dE'T (r, ,a) 7 E’,m WL(E p)jN' —E,N.'} (17)

where the prime at j,N. and k,N. indicates that these expressions have to be taken at the
R T
point (r',E',0").



2 — DEFINITION OF THE RESPONSE FUNCTIONS
FOR ABSORPTION AND PRODUCTION AND OF THE RESPECTIVE INTEGRALS

Let a detector be placed at a point 7 in the reactor. This detector can be assumed
to have a large bandwidth, so that its response can be taken independent of the frequency
p with which the flux oscillates at the point r. But in general the response will he a
function of the neutron energy and neutron direction. Let thie response function be

> . .
R(E,»), that is, the signal at the detector output is

> > > e 2 > >
S(t) =S, + s,e :\ \dEdQR(E,m )N (rE2) -+ e‘/"\ \dEdQR(E,m)n,,, (REw)  (18)

> >
We are mainly interested in the periodic signal s,. Inserting for n,(r,E,0) the expres-
sion eq. (17) we get

= \ \ dE'dQ'dr'C,(F57 E' o ) { L(E'sp) joNe' — N, } (19)
where
Co(rir E' o) :\ \dFdQR (Eoo) Ty (FE it B ') (20)

>
can be interpreted as the contribution of a neutron at ' with energy £’ and direction o’
9

to the counting rate of the detector at r.

From now on we shall restrict our consideration to samples occupying only a small
9; ~ .o 3
volume V around the point ry, ie. we put o (Et,r) = o, (FE)Veir §(r—ry) ete. Using the
expressions (9) and (10), eq. (19) becomes

> Ficd it > ‘,-)I o > > .
Sp = Gv( ,r(),p) (r())— \\dr dQ C (r r(), 'J)’)o'q(\h )v N,-(r,,,h ) + I (1,\(7'."';,[)) (2])

where
> > 1 > ,
G_r(r,ro,p) 1 \\(ll’ dQC (r r(,, ,u)I)L(E »p) (22)
T
> ’ > 2 )
P(ry) = Vg \dEdQv(Eb(r/(E)uN,.(r',.I‘,,m) 123)
Gu(Faronp) = \ \dBdac, GiraE' o)
E, ot
>
{ng"\d”"u (E'.E", ml o’ o' N, (r(,,r", u)")—a (E' )v ! (ru.El.wl)} (24)

;
_)I +//
If the oscillation is done with a non-moderating sampie, thcn a (B E", ' o) =
9 .
oy (B o' (n" 8(E'—E") and if furthermore the neutron density at r., is isotropic in the
: . . > > .
velocity space (which is the case in the center of the reactor) then G,(r.ro,p) vanishes

for all r and p.



Up to now, we did not introduce any simplifying assumptions except for the
neglect of higher order terms in eq. (11). Therefore, eq. (21) is quite general and
can be used for any type of reactors — fast, intermediate or thermal. In the par-
ticular case of thermal reactors, almost all absorptions occur in the thermal range

or slightly above — let us say between the energies zero and 5 kT. If the point g
is not very close to ro, the function C, (—;a—')'O:EsZ) should not vary much, if E’ is varied with-
in the thermal range, especially in a heterogeneous reactor, since a neutron originating
at 7 with a particular energy E’ will alter this energy very soon as a result of collisions
with moderator nuclei, so that its energy will fluctuate within the thermal range. Also
th(_; angular direction, i_1)1 which the neutron is emitted, will not have a large influence,
if r is far enough from ro. Therefore, for thermal reactors we can assume approximately
that
SKT

>> > >> 1

" 77 >
Cp(r:r09E >0 ) = Ga(r,ro,P) =

© o do
\dE\Tc,,(?;?O,E,m) if 0 <E'<SKT  (25)
T

=3

2K
0

Thus we can write for thermal reactors and non-moderating samples
>-> > > > >
so = G/(r,ro.p)P(ry) —Gu(r,ro,p)Airy) (26)

where

> (o > >
Alry) = V\ \dEon,,(E,) oN, (ro,Er) (27)

that is, A(_;O)—<the “absorption integral”— is the total neutron absorption per unit time
in the sample (under the irradiation given by UN,.(-I)'(),E,Z))), and P(ro)—the “production
integral’—is the number of fission neutrons produced per unit time by the sample. The
functions G/(_I)';U,p) and G, (-r>,_r)0,p), which we shall call “production response funetion” and
“absorption response function” respectively, do not depend any more on the sample
characteristics but only on the properties of the reacior and the detector in question.



3 — DETERMINATION OF THE RESPONSE FUNCTIONS
AND THE RELATED INTEGRALS

In order to calculate these functions, one has first to calculate the neutron distri-
bution N, in the critical state of the reactor and then one must determine 1, as a solution
of eq. (16). From I', one obtains the response functions afier some integrations as in-
dicated in eqgs. (20), (22) and (25). Of course, the exact solution of the equation (4a)
for N, and of eq. (16) for 1, is not possible, but if one uses standard approximation
methods as multigroup diffusion theory, Monte-Carlo- or Sy-calculations, one can obtain
an answer with a high degree of accuracy. Knowing the functions G; and G, we can—in
the case of a well-thermalized reactor—determine the production and absorption integrals
from the signal of the detector by using eq. (26). In order to separate the two integrals
in question, one could examine the response signal s, for two [requencies p, and p, and
solve the two corresponding equations for P and A, obtaining

>> . >> . > >
P = {Ga(",r()spz) Sp,— Gl rrospi)Sp, }/A(rﬂ'()apul’:) (28)

> >> > >
A= {(;/(r9r07P2)sp,_c[(rar(JsPl)sp: }/A(ra"mpn/’:) (2())

where

> > >
G/(r,r(,,m) G_r(rernapz’

>> )
A(r,ro,pisps) = (30)

> >>
G.(rro.p) G.(rro.p:)

Examining approximate expressions for G, and G; as can be found using two-group
diffusion theory, one finds that a delermination of P and A4 on the basis of the frequency
response is possible only if one locates the detector very close to the sample (i.c. |¢'—;.,|
smaller than a relaxation length). Otherwise the determinant A becomes too small.

Usually it is preferable to use a spatial discrimination instead of a frequency diseri-
mination. For this purpose one records the same (usually the fundamental) harmonic
in twg different detectors 1 and 2 at _1)-1 and _r)-, Since the response functions R'( C,Z) and
R*(E,0) of the two detectors will, in general, not be the same, one has to calculate separa-

. 1 1 2 . .
tely the functions G,, G, and G, sz. Once these functions are known, one can determine
A and P from the signals of the two detectors:

2> > 1 1> ) > >
P = {Ga(Tzsr(hp)sp—Un(rurtnp)Sp}/@lc(an:'aroi,[)) (28’)
2> > 1 1> > 2 > > > '
A= {G[ (TZ,"OaP)Sp—G/ (TUTO,P)sp}/@12("1”'2,7'();;0) (29 )
where
> > 2> >
> > > G[1 ("177'()7[3) G!(rz’rmP)

(30%)

Ol‘_‘(rhr%r();P) = N > >
1 2
Ga(r17r09p) Gu(r2ar07P)

Again it is necessary to place one of the two detectors very close to the sample,
the other rather far away in order to get a large value for the determinant.



1t is even possible to make relative measurements of the production and absorption
integrals without knowing the functions G, and G, {3]. In order to do so, one first has
to oscillate a standard sample of some suitable 1/v-absorber (for instance boron).

One then obtains (the index “0” referring to the standard sample)

0 >>

§, = _Ga(r9r09P)A0(:0) (31)

Afterwards one oscillates the (non-fissionable) absorber under exactly the same
conditions as the standard sample. The ratio of the two absorption integrals is then
simply given by the ratio of the two signals:

A/Ay=s,/sy (32)

The situation becomes more difficult in the case of a fissionable sample. Here it
is necessary to introduce a second standard sample, containing uranium 235. Since the
absorption cross-section of uranium 235 has an almost pure 1/v-behaviour [2], the ratio

Z= Azﬁ/Ao

will be independent of the position in the reactor and can be obtained by a simple
calculation.

Eq. (26) can now be written in the following form

For an arbitrary sample containing fissionable material we can now write

0
—s,(A4/4
p/p%:s"—sz:"_(g"/_“) (33)
o p

Defining the functions ¢ and b by
25 0
a=s, —s, Z
0
b= —s,
we can rewrite eq. (33) in the simple form

s, =a (P/Pss) 4+ b-(4/A4,) (34)

It is to be kept in mind, that the functions ¢ and b are determined by measure-
ments with the standards only. They are functions of detector location and frequency.

Eq. (34) is analogous to eq. (26) except that instead of the functions G, and G,
there appear the experimentally determined coefficients a and b and instead of the
absolute production and absorption integrals there intervene the relative ones. But it
is clear, that the same methods for separating 4 and P that we have discussed above can
be applied here too for the determination of 4/4, and P/P.;.

10



Appendix

CALCULATION OF THE FUNCTIONS G,, G,,
FOR AN OSCILLATOR IN THE CENTER OF A SPHERICAL BARE REACTOR,
USING TWO-GROUP DIFFUSION THEORY [4]

In the two-group diffusion approximation we have two possible energy values, E,
and E., which we shall indicate simply in form of indices at the physical quantities, i.e.
¢y = ¢(F,) etc. We can write

Xeg = Xon = 1 Xio = Xgu™ 0 (35)
JN = kZug, (36)
'—D V2 + ):12 0 ‘ ¢'1 ,
KN = ! ‘ (37

and eq. (4a) simply becomes

(38)

Trying a solution of the form

¢1:C1Xs ¢'2:C:X
where X is a solution of
v:X+ BoX=0

vanishing at the extrapolated surface of the reactor, leads to the well-known critical
condition
D, B S —k3 .
1 [¢] + e “—~a — 0 '3())
— 2y D,B, + Sy

Equation (39) has two values of BZ as roots of which the larger will be denoted

by po, the smaller by —uj. Writing

L(E.p) =f(p)  L(Esp) =0 (40)
we have
KAk . B
=1- R T L (40
f(p) B+Z i LPZ i a)
k i

which can be written in terms of its real and imaginary parts

f(p) = 1—y1(p) —iv(p) (41)

11



where

B ipf p* P
/1 et R )f ¢ S frnt R el 42)
¥1(p) c1 P,Z.’\"+ip} IZ e M+ ip - A - p? (
. B ipfPr pBrAK
b(p) = Im) ip S _FF | = §p - - 43
v (P) ml LPZ A + iP } Z " A + iP ’\i + P2 . ( )
k k K

The functions ¢,(p) and ¢.(p) are given in table I.

Eq. (16) now becomes

(44)

(Dlvz—zw_ip/vl f(P)kSu ) (Tu(—;;',/))\)_ (8(7__;/)>
0

>, )
lﬂzl(rarI’P)

<D1V:“E12—iP//U1 f(P)kEa )(rlz(rarlsp)>:_< 0 ) (45)

R . > >, > >,
10 D.7:—3,—ip/vy au(r,r',p) S(r—r)

Saa ngg—E,l—ip/vg

>, . >
where all Ty (7,r",p) have to vanish for values of r that correspond to the extrapolated
surface of the reactor.

?
For a spherical reactor and a source in the center, i.e. r' =0, it is clear from

. . >
symmetry considerations, that the T';;(r,0,p) depend only on r (and p). We can construct

these solutions of eqs. (44) and (45) by superposition of the solutions u and w of the
equations

1 d/ dw
+ ptu =0 2\ =0 (46)
r* dr dr ,

Pl U

1 d<‘)du

which vanish at the extrapolated boundaries of the reactor, i.e. at r = R. The quantities
p® and —v* are the roots of the equation

DIBZ+2]2+iP/vl —f(P)kzu

=0
— X0 D::B:‘i‘za‘i‘ip/vz
which can be written in the more familiar form
21?2 . :
1+ LB +LPT1 —f(p)k —0 (47)
-1 1 + L.B*+ ipr.
where
Lf:D]/:n: L.;-,:DE/‘\:‘lL
and
1 1
T, = To —
1}1.\.‘.13 v‘:l‘a

12



For a reactor of ORGEL type, r, is of the order of some fractions of a micro-second
and can therefore be neglected, since we consider only small frequenciecs. For small fre-

quencies we can write
2 2 2 2 2
po=po+ du v =vo+ 8y (48)
Taking into account eq. (39) and neglecting higher order lerms, we oblain

bk 4 gk + pra [1 4 Lipo])
Li+ L+ 2 Ll

St = —

(49)

Yak 4 i(gak + pro [1—Livg])
L? L2—2 L:L:v?

Svi=+

After this calculation of v* and p?, we proceed to the solution of the eqs. (46) in
which the substitutions © =U/r, w = W/r lead to the simple equations

avu dw

—_ V=0 —v* WV =0 50
dr® T e (50

The solutions of the egs. (50) that vanish at r = R are (normalized to 1 for r =10)

U— s_iu p(R—r)

sin R
(51)
sinh v(R—r)
T sinh R
We can now try a solulion of eq. (44) in the following form:
ri'y (r0,0) = AU + BW
(52)
T (r,0,0) = ASU 4+ BS'W
where
s=-22. Lo g e
S 14 L:_'_'/J," + ipT2 14 L:j[,L;
(53)
g Su 1 '. (1 L:3v' —ipr.
S l—Lil': + 1pTs 0 1 —L"'_’v;':
with
Sia 1 p 1
S = . S’ == 2. — }
TR L4 L °T T3, 1—Lb (54)

Since T.; is everywhere regular, ri,,(r,0,p) must vanish for r = 0, which vields the
) 4 » P ’ )

condition

AS+ BS' =0 (55)

13



Because of the 3-function there will be a singular behaviour of Ty, at r = 0, which
is such that '

d
—Dl'4ﬂr2_rll(r90) =1
dr

r=0
This gives the condition '
4=D.(4 4 B) =1 (56)
We thus obtain
S S
A= oo B=—
4D, (55 4D, (5—5) 57)
and therefore
T44(r,0,p) = 1 {—-SU+SW} = 1{U W}
) =Gy T T e
(58)
T (r,0,p) = =55 U-—W}
2(r,0,p __1;;Zi?§t:3?5{ -
where
S —
=55 =5
By the same procedure we find
T12(r,0,0) = ! {U-W}
0 = 4D, 5-%)
1 1 (59)
T2(r0,p) = —————{SU-S'W} =
22(r,0,p) 4qerg(S—S’){ S'W} =0y {aeU 4 BW}

Let us assume that our detector responds only to thermal neutrons and that its
thermal counting efficiency is unity, i.e. R, =0, R, = 1. Then we get from eq. (20):

Cl (raO,P) = I‘2l (T,O,p) C2(r’O9P) - PZZ (r90-,P) (60)

Finally we obtain

—S'Sf(p)

Gf(rSO’P) = Cl(T,O,p)f(p) = Z;‘E—(S—-—Sl) { U— W}
1 (61)
Culr.0,p) = Co(r,0sp) = 7—5-{aU + W'}

Numerical example:

We take a spherical unreflected core with the following properties:

k=108, L, =120 cm?, L; =200 cm?, D, =1.2 cm, D, =1 cm,

thus 3, = 10~2em~", 3, =5X10"3em~?, r, = 0,7, = 0.91 X102 sec.

14



We then obtain:
o = 2.452X 104 ecm~*

vy = 1.358%X 10-* cm—*

and

R="—=2008m
o

We consider two oscillation frequencies, p, = 0.314sec~' and p, = 3.14 sec~', cor-
responding to the periods T, = 20 sec and T; = 2 sec, respectively. We use the following
convenient abbreviations:

M,(r,p) = 10* X (Magnitude of G,(r,0,p))
or(r,p) = —Phase of G(r,0,p) in degrees
and similarly for G,.

As a result of the indicated numerical calculations we obtain the values of table II.

15



TABLE I

THE FUNCTIONS y,(p) AND y,(p)

T (sec) 100 50 20 10 5 2 1 0.5 0.1
p(sec—1) 0.0628 0.126 0.314 0.628 1.26 3.14 6.28 12.6 62.8
Y1 x 103 1.750 2.622 4.088 5.067 5.695 6.163 6.331 6.378 6.398
. x 108 1.681 1.955 2.018 1.639 1.180 0.667 0.385 0.202 0.041

16




TABLE II

MAGNITUDE AND PHASE OF G; AND G, AS FUNCTIONS OF r

r(ecm) 10.8 20.8 140.8 60.8 80.8 100.8 125.8 150.8 175.8 200.8
M, (r,p.) 0.994 0.879 0.750 0.662 0.568 0.439 0.343 0.217 0.100 0.000
Ps(r,p1) 215 24.2 27.1 28.5 29.3 29.8 30.3 305 30.7 —
M;(r,p.) 0.752 0.640 0.526 0.452 0.383 0.314 0.228 0.143 0.0654 | 0.000
@r(r,p2) 18.5 21.7 25.4 27.3 28.4 29.1 29.8 30.1 30.4 —
Ma(r.p,) 1.22¢ 0.983 0.764 0.687 0.582 0.450 0.351 0.223 0.103 (1.000
Pa(r,p1) 19.0 23.3 27.2 28.4 29.3 29.8 30.2 30.5 30.7 —
M.(r,p-) 0.966 0.688 0.540 0.463 0.392 0.325 0.233 0.147 0.06678 | 0.000
@a(r,p:) 14.7 20.6 253 27.3 28.4 29.1 29.8 30.1 30.1 —

17
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