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THEORETICAL FOUNDATIONS 

OF PARAMETER OSCILLATION MEASUREMENTS 

SUMMARY 

The influence of periodic changes of some localized reactor parameters (cross­sections) on the 
output signal of a detector placed somewhere in the reactor will be discussed from a general point of 
view. For the special case of thermal reactors, a procedure of determining independently the contributions 
of the absorption and production of neutrons to these oscillations will be given. 

1 — GREEN'S FUNCTION FOR THE OSCILLATING PART 

OF THE NEUTRON DENSITY 

In the most general way a reactor characterized by parameters which depend on 

t ime can be described by the equations (Ref. 1) : 

■(l-ß)Xu(E)JtNt + ^Xi(E)XiCi + S-KtNi ( l a ) 
dt 

dCi 

: ßJtNt-Xid (lb) dt 

where Nt(r,E,a>)/4vr is the neu t ron density at t ime t in phase space, i.e. per uni t volume 

per uni t energy per uni t angle of velocity direction ω; /?; is the fraction of the fission 

neutrons emit ted by the i­th delayed neutron emit ter ; *<)(£) is the normalized energy 

spectrum of p rompt neutrons arising from fission (the emission of the fission neutrons 

is assumed to be isotropic in angle) ; Xj (E) is the normalized energy spectrum of the 

neutrons emitted by the i­th delayed neut ron emitter. The operator ]t is defined in 

such a way tha t 

JtNt — [ [v(E)Xj{Í,E,t)vNt(Í,E%)dEdn/ÍTT 

is the product ion ra te of fission neutrons per uni t volume, uni t t ime and unit solid angle 

at t he point r. Similarly, the opera tor Kt is related to the net rate KtNt/4nr at which 

neutrons leave the region in phase space as a result of absorption leakage and scattering: 

E. 

KtNt = t­grad(WV t ( r ,E, t ) ) + Xiot(t,E,t)vNt(t,E,t) - \dE'\%,(E,E'^-t'^,t)v'Nt(r,E'X')dn' 



where Zs(E,E',o>-a>',r,t) is the cross­section at time t for scattering from the element in 

phase space with coordinates Ε',ω',Γ to the element in phase space having the coordinates 

E,<a,r. Finally, S{t,E,r,o>) is the source density per unit volume, energy and solid angle, 

λ, the mean life of the i­th type delayed neutron emitters and β = / , β;. 

The equations (1) are completed by the boundary conditions, which the solution 

Ν t has to satisfy: 

Nt(r,E,<a) continuous in r (2) 

at all interfaces between different media inside the reactor for all values of E, ω and t. 

/V((r8,E,L) = 0 (3) 

for all E and t, where rs are the points of the reactor surface and ω_ are all values of ω for 

which ω·η < 0, η being the outward normal at the point rs. 

In general, one must also specify the neutron distribution at an initial instant of 

time in­

Eliminating C, from equation (la) by using the integrated form of equation (lb), 

that is 

( 

Ci(t) = ßAdt'JrNre-X'(—'> ( lb ') 

we obtain the equation 

t 

' 'l =(l-ß)Xn(E)JtNt+J\i(E)ßi\i\dt'Jt-Nt-e-h«--)+S-KtNt (4) 
dt 

In the special case of time independent parameter values, which moreover cor­

respond to the critical condition, we have in the absence of an external source 

X(E)JCNC-KCNC = 0 (4a) 

where Jc, Kc are the above­defined operators, in which the parameters are chosen to 

correspond to criticallity, and 

χ(Ε)=(1-β)χο(Ε)+Jjit(E)ßi (5) 
i 

Let us now consider the case where the parameters (cross­sections) will be changed 

periodically in a certain region of the reactor, such that 

%¡{E,Cr) = Xc,(E,t) + a,(Ejt*r) 



etc. If the amplitudes of these parameter oscillations are small as compared with the 

mean values of the parameters—which shall correspond to the critical state—then we 

can write the neutron density in phase space in the form 

¿V« (r,E,t) = Nc (r,£,t) + n, ( r,E,t) (6) 

For the operators Jt, K, we can write 

Jt=Jc + j , (7) 

Kt = Ke + k, (8) 

where the operators jt and k, are given by the expressions 

7 W, = ­ M ' [dEdnv(E)ar(E,¿)vN,(Í,E¿>) (9) 

ktJSt = au,t(r,E,t)vN,(r,E,o,i - \dE'\da^AE,E',<o-o>,r,t)v'Nt(r,E',a') (10) 

Since we assume the oscillations to be of small amplitude, we can neglect second 

order terms except in the sample itself, where the flux will always be somewhat disturbed. 

Thus in general we have to interpret the cross­sections σ as effective cross­sections, differ­

ing from the real cross­sections by a self­shielding factor. 

We obtain from eqs. (4) and (4a) 

ί 

= (l-ß)x(E)Jcnt + 2¡X; (Ε) β ¡λλ dt'J en,'e ,,-\,(ι-ιΊ 
dt 

-Kcnt + a-ß)x0(E)jtNc+^iXiE)ßi\Adt'jt'Nce-^'-->-klN,. ( 11 ) 
i J 

Since the changes of the cross­sections are assumed to be periodic in time, we can 

expand them in a Fourier series. Let Τ be the period. It is clear that nt is also a periodic 

function with the same period T. Since the equations (11) arc linear, it is sufficient to 

know the response nt to a harmonic oscillation of the parameters, for the general problem 

can then be solved by a superposition of such solutions. Therefore we assume that 

jt=jpe">· kt = kpe
i"· (12) 

Then we will have a steady state oscillation nt of the form 

nt = ripe"' (13) 

whet'e n9 is in general a complex quantity since the oscillation nt is not in phase with 

the parameter oscillations, except in particular cases. 

We obtain from (11) 

(Ke + ip-L(E,p)Jc)np=(L(E,p)ji,-kp)Nc (14) 

5 



wh e 

is a known function. 

XÄE)ßkXk 

L(E,p) = ( l ­ ) S ) X n ( E ) + V ­ ï — — (15) 

Let Tp(r,E,uítr',Ε'ω') be the Green's function of the operator 

Kc + iP-L(E,p)Jc 

i.e. the solution of the equation 

(Kc + ip_L(E,p)J c)rp = δ ( r ­ r ' ) S ( £ ­ £ ' ) δ & ­ ω ' ) (16) 

satisfying the same boundary conditions as the neutron density. Thus Tp{r,E,<a;r'',Ε ,a> ) 

is the neutron density in phase space due to a monodirectional source at the point r'. 

Also it can be interpreted as a measure of importance of a neutron at (τ',Ε',ω') to the 

neutron density at (r,E,u>). 

If this function were known, we could calculate np directly as a function of jpNc 

and kpNr : 

nPCr,EX) = \ ( \d3r'dü'dE,VPCr,E%-p,E,X,){L{E',p)jpNc'-kpNc'} (17) 

where the prime at jpNc and kpNc indicates that these expressions have to be taken at the 

point (r',Ε',ω). 



2 — DEFINITION OF THE RESPONSE FUNCTIONS 

FOR ABSORPTION AND PRODUCTION AND OF THE RESPECTIVE INTEGRALS 

Let a detector be placed at a point r in the reactor. This detector can be assumed 

to have a large bandwidth, so that its response can be taken independent of the frequency 

ρ with which the flux oscillates at the point ;­. But in general the response will be a 

function of the neutron energy and neutron direction. Let the response function be 

R(E,a>), that is, the signal at the detector output is 

S(t) — Sc + spe"" —\ \dEdaR(E,t)NcCr,E,t) + e'>\ \d£dí2R(E,t)np(r,E,^) (18) 

We are mainly interested in the periodic signal sp. Inserting for np(r,E,u>) the expres­

sion eq. (17) we get 

Sp = \\dE'dçi'd^CpCr^,E'X'){L(E',p)jpNc'-kpN,.'} (19) 

where 

C0Crvr',E'%') =\ \dEdnRiEM)YPCr,El¿'.E'X') (20) 

can be interpreted as the contribution of a neutron at r' with energy E' and direction ω' 

to the counting rate of the detector at r. 

From now on we shall restrict our consideration to samples occupying only a small 

volume V around the point r(), i.e. we put af{E,t,r) ~ σ( ( E) Ve'1" S(r — r„) ele. Using lho 

expressions (9) and (10), eq. (19) becomes 

Sp = G /(r,ro,p)P(ro)­FUdE'dn'Cp(r;ro,E',t ')^a(í; ')u '¿V Í.(ro,E',t. ') + VGKCrX,P) (2\) 

oliere 

GfCr,t0,p) =±-[[dE'dn'CPCr?r0,E'Z')L(E',p) (22) 

pCrn) = V\ \dEdQv(E)ar(E)v!\Anl.E,t) (23) 

G„(r,rlhp) = 1 \dE'dn'Cp(r;r,),E',o,' I 

dE"\dn"aJE',E", t'-t")v"Nc(r0,E",t")-as(E'WN,.(n„E'X')\ (24) 

If the oscillation is done with a non­moderating sampie, then σΗ(Ε ,Ε", o> ·ω") = 

σ,(Ε',ω'·ω")δ(Ε' — E") and if furthermore the neutron density at r(J is isotropic in the 

velocity space (which is the case in the center of the reactor) then GH(r,rn,p) vanishes 

for all r and p. 



Up to now, we did not introduce any simplifying assumptions except for the 

neglect of higher order terms in eq. (11). Therefore, eq. (21) is quite general and 

can be used for any type of reactors — fast, intermediate or thermal. In the par­

ticular case of thermal reactors, almost all absorptions occur in the thermal range 

or slightly above — let us say between the energies zero and 5 kT. If the point r 

is not very close to r0, the function Cp(r,ro,E,co) should not vary much, if E' is varied with­

in the thermal range, especially in a heterogeneous reactor, since a neutron originating 

at r with a particular energy E' will alter this energy very soon as a result of collisions 

with moderator nuclei, so that its energy will fluctuate within the thermal range. Also 

the angular direction, in which the neutron is emitted, will not have a large influence, 

if r is far enough from r0. Therefore, for thermal reactors we can assume approximately 

that 

5kT 

Cp{rfr0,E'%') ss Ga(r,r0,p) = —— \dE\_fLcp(r;r0,E,t) if ( ? < £ ' < 5kT (25) 
5 k 1 ι 4­7Γ 

Thus we can write for thermal reactors and non­moderating samples 

sp = Gf(r,r0,p)P(rtì) —Gu(r,r0,p)A[rti) (26) 

A(r0) = V\ \dEdo(Ta(E)vN<;(r0,E,<,>) (27) 

whe 

that is, A{r0)—the "absorption integral"— is the total neutron absorption per unit time 

in the sample (under the irradiation given by vNc(ro,E,u>)), and P(r0)—the "production 

integral"—is the number of fission neutrons produced per unit time by the sample. The 

functions Gf{r,rn,p) and G„(r,r0,p), which we shall call "production response function" and 

"absorption response function" respectively, do not depend any more on the sample 

characteristics but only on the properties of the reactor and the detector in question. 



3 _ D E T E R M I N A T I O N OF T H E RESPONSE FUNCTIONS 

AND T H E R E L A T E D INTEGRALS 

In order to calculate these functions, one has first to calculate the neutron distri­

but ion Nc in the critical state of the reactor and then one must determine Vp as a solution 

of eq. (16). F r o m Γρ one obtains the response functions after some integrations as in­

dicated in eqs. (20), (22) and (25). Of course, the exact solution of the equation 14a) 

for Nc and of eq. (16) for Yp is not possible, but if one uses s tandard approximation 

methods as mul t igroup diffusion theor\ r, Monte­Carlo­ or Sv­calculations, one can obtain 

an answer with a h igh degree of accuracy. Knowing the functions Gf and G„ we can—in 

the case of a well­thermalized reactor—determine the produclion and absorption integrals 

from the signal of the detector by using eq. (26). In order to separale the Iwo integrals 

in question, one could examine the response signal sp for two frequencies p, and p.. and 

solve the two corresponding equations for Ρ and A, obtaining 

Ρ = {Ga(r,ro,p2)sPl—G„{r,r,hpi)sp.}/A(r,rQ,pl,p-, 128) 

A — {G/(r,ro,p2)sP] —G /(r,r0,p1)sP;,}/A(r,ro,p„p,.) (29) 

whe 

A(r,r0,pi,p2 

G/(r,r0 ,pi) G/(r,ro,p2) 

G„(r,r0,pi) G„(r,ro,p2) 

(30) 

Examining approximate expressions for Ga and G/ as can be found using two­group 

diffusion theory, one finds that a de te rmina t ion of Ρ and A on the basis of the frequency 
I* "* 

response is possible only if one locates t h e detector very close to the sample (i.e. \r — /· |, | 

smaller than a relaxation length) . Otherwise the determinant Λ becomes too small. 

Usually it is preferable to use a spatial discrimination instead of a frequency discri­

minat ion. For this purpose one records the same (usually the fundamental) harmonic 
■ > ­ > ­ » 

in two different detectors 1 and 2 at r1 and r·,. Since the response functions R'iE.m) and 

■ > 

β­(Ε,ω) of tlie two detectors will, in general, not be the same, one has to calculate separa­

tely the functions Ga, G¡ and G„, G¡. Once these functions are known, one can determine; 

A and Ρ from the signals of the two detectors: 

Ρ = {Ga(r2,rn,p)s1
p—G1

a(rl,rt),p)s¿
p}/Q12(r„r2,r();p) Í28' ) 

­4 = {G¡(r2,rlhp)sp—G; (r,,ro,p)sp}/0i2('"i,r ;;,rn;p) (29') 

Øi2(r„r2 , r ,>;p) = 
G){rur0,p) Gs(r2,ra,p) 

Ga(ri ,r0 ,p) Ga(r2,ro,p) 

(30') 

Again it is necessary to place one of the two detectors very close to the sample, 

the other ra ther far away in order to get a large value for the determinant . 



I t is even possible to make relative measurements of the product ion and absorption 

integrals without knowing the functions Ga and G¡ [ 3 ] . In order to do so, one first has 

to oscillate a s tandard sample of some suitable l /w­absorber (for instance bo ron ) . 

One then obtains (the index " 0 " referr ing to the s tandard sample) 

o * ■ > * 

sp= —Ga(r,r0,p)A0(r0) (31) 

Afterwards one oscillates the (non­fissionable) absorber unde r exactly the same 

conditions as the s tandard sample. The rat io of t h e two absorption integrals is then 

simply given by the ratio of the two signals: 

A/Al) = sp/sp (32) 

The situation becomes more difficult in the case of a fissionable sample. Here it 

is necessary to int roduce a second s tandard sample, containing u ran ium 235. Since the 

absorption cross­section of u r an ium 235 has an almost pure l/t>­behaviour [2 ] , the ra t io 

Ζ = A2-JAo 

will be independent of the position in the reactor and can be obtained by a simple 

calculation. 

Eq. (26) can now be writ ten in the following form 

Gf(r,r0,p)P2r, = sp" —spZ 

For an arbi t rary sample containing fissionable mater ia l we can now write 

p/p2s= ''-fa/**) ( 3 3 ) 

S
J
'' — s" Ζ 

Defining the functions a and b by 

25 0 „ 

α = sp —spL 

b = — sp 

wc can rewrite eq. (33) in the simple form 

8„ = a-(P/PM)+b-(A/A0) (34) 

It is to be kept in mind, that the functions a and b are determined by measure­

ments with the s tandards only. They are functions of detector location and frequency. 

Eq. (34) is analogous to eq. (26) except tha t instead of the functions G„ and Gf 

there appear the experimental ly determined coefficients α and b and instead of the 

absolute product ion and absorption integrals there intervene the relative ones. But it 

is clear, tha t the same methods for separating A and Ρ tha t we have discussed above can 

be applied here too for the determinat ion of A/An and P/P2-,. 

10 



A p p e n d i x 

CALCULATION OF T H E FUNCTIONS G„, G,, 

FOR AN OSCILLATOR IN T H E C E N T E R OF A SPHERICAL BARE REACTOR, 

USING TWO-GROUP DIFFUSION T H E O R Y [4] 

In the two-group diffusion approximation we have two possible energy values, E, 
and E2, which we shall indicate simply in form of indices at the physical quantit ies, i.e. 
ψ, =<ƒ>(ƒ?,) etc. We can write 

X , i = X o , , = 1 

Λ/V = Α2α</>,> 

/ _ D l V 2 + 2 l 2 o 

V = V = 0 Λ.',2 Λ0,2 

KCN = 
-S,. - D 2 v 2 + 2„ 

(35) 

(36) 

(37 ) 

and eq. (4a) simply becomes 

(38) 
0 1 ν - ψ , - 2 , 2 < / > ι + A2a<p2 = 0 

Ο2ν-φ2-Χαφ2+Χΐ2ψχ = 0 

Trying a solution of the form 

φΐ == Cj Χ, ψ·> = Cn A 

where X is a solution of 

v-X + B2
0X = 0 

vanishing at the extrapolated surface of the reactor, leads to the well-known critical 
condition 

D, B o + 2 , 2 -kXa 

- S 1 2 D 2 B 0 + 2a 
0 (39) 

Equat ion (39) has two values of Bo as roots of which the larger will be denoted 

(40) 

by μ0, the smaller by — vo. Wri t ing 

L(E1,p)=f(p) L ( £ 2 , p ) = 0 

we have 

/(Ρ) = ι-/? + v - ^ - = = ι - ip y - ^ 
¿J λ]; + lp ¿ J Λ;. -+- lp 

which can be writ ten in terms of its real and imaginary parts 

f(p) =1-ψ1(ρ)-ίψ2(ρ) 

(40a) 

(41) 

II 



/here 

ΨΛΡ) =RJ 

y
 li 

ßn 
Y Rt 

ipßk 

Xli + ίρ \ Li Xk + ίρ 

Mp) = ¡J ip y
 ß

* X = y/m
 ip/?

* = γ-***!. 
Li Xu + ip \ L¿ Xu + ip L¿X: + p-

1 7 . T . T . h 

(42) 

(43) 

The functions ψι(ρ) and i/<2(p) are given in table I. 

Eq. (16) now becomes 

D1v--X¡2-ip/vi f(p)kXa 

D2V- — Xa — ip/vJ v r u l ( r , r ' , p ) 

i 

F u (r,r ,p) 

,*·», 

'8(r-r'. 

0 

D 1 v ­ ­ 2 , 2 ­ i p / v 1 /(p)fc2a \ /T12(r,r',p)\ I 0 

2 1 2 D2--Xa-ip/vJ \r22(ï,P,p)' \8(r­r') 

(44) 

(45) 

where all r¡fc(r,r',p) have to vanish for values of r tha t correspond to the extrapolated 

surface of the reactor. 

For a spherical reactor and a source in the center, i.e. r' = 0, it is clear from 

symmetry considerations, tha t the r¡;c(r,0,p) depend only­ on r (and p). We can construct 

these solutions of eqs. (44) and (45) by superposit ion of the solutions u and w of the 

equations 

1 d I du\ 

(^­+^« = 0 
1 d I dw \ 

— · — r 2 — - \ - v * w = 0 
r- dr \ dr 

(46) 

which vanish at the extrapolated boundaries of the reactor, i.e. at r = R. The quanti t ies 

μ2 and — v- are the roots of the equation 

DiB* + 2i 2 + ip/v, -f(p)kXa 

­ 2 , 2 D2B? + Xa + ip/v2 

which can be written in the more familiar form 

i + L 2 B 2 + i p T l ~f(p)k 

1 l + L 2 B 2 + i p r 2 

(47) 

where 

L; = D,/XÍ2 L¡=D2/Xa 

Λ 

\2 



For a reactor of ORGEL type, τ, is of the order of some fractions of a micro­second 

and can therefore be neglected, since we consider only small frequencies. For small fre­

quencies we can write 

μ . ~ = μ ο + δ μ . " ν =. v0 + δν" (48) 

Taking into account eq. (39) and neglecting h igher order terms, we obtain 

^fc + i(^2/c + p r 2 [ l + L2p.0Ji 
δρ." = 

L* + L?. + 2L*LV 0 

(49) 

\¡/Jt + i{\¡i2k-\- ρτ2 [1—Livo]) 
δν- = ­I 

τ L­ + L ­ ­ 2 L ­ / 7 V 
1 ' 2 , 2 II 

After this calculation of v" and μ-, we proceed lo lhe solution of lhe eqs. (46) in 

which the substi tutions u = U/r, w = W/r lead to the simple equations 

dW ■ μ*υ = 0 d^r-VW = 0 (50) 
dr' ' ' dr* 

The solutions of the eqs. (50) that vanish al r = R are (normalized to 1 for r = 0) 

sin p.(R —#·) 
U 

W = 

sin ¡di 

sin/i i'(R —r) 

sin/i vii 

(51) 

We can now try a solution of eq. (44) in the following form : 

rl\Ar,0,p) = AU + BW 

rr2 1(r ,0,p) = ASU + BS'W 

( 521 

where 

1 / Ε2δρ. + ι'ρτ2 

— Oll i 
S,t 1 + L;>­ + ipr2 \ 1 + £ ,> ; 

L28v —ΐρτ 
(53) 

S' = — = - ■ ; ­ ~ S' 1 
2„ l ­ L V + ipr2 °\ 1 ­ L ; v 

/ilh 

2 1 2 1 „ 2 1 2 1 

Sa l + L­/A­ Xa Í — L­V­

Since Γ21 is everywhere regular, rF2,(r,0,p) must vanish for r = 0, which yields the 

condition 

,4S + BS ' = 0 (55) 
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Because of the δ-function there will be a singular behaviour of r l t at r = 0, which 

is such that 

d 
■Ό,Ατττ* — T^rß) 

dr 
= 1 

r = 0 

This gives the condition 

^DJA + Β) = 1 (56) 

We thus obtain 

S' S 
~~ 4TTD1(S­S') ~ 4 Í D 7 Õ S ^ S T ( 5 7 ) 

and therefore 

where 

r " ( r ' ° " ' ) = 4 T r D , ( S ­ y ) ! ­ S ' t ' + S ' r ) = 4^rl^ + " r ) 

_S5' 

r " ( ^ ) =4 , r D , ( S ­ f f )
{ C ' ­ r i 

S -S' 

(58) 

57>0 
S ­ S ' r S-S' 

By the same procedure we find 

r ' 2 ( ^ ) = 4^(S­S0 { [ / ­ r } 

r22(rAp)^^2(
1

s_s,){St/­^} = ^ L 7 { a t / + ̂ } 

(59) 

Let us assume that our detector responds only to thermal neutrons and that its 

thermal counting efficiency is unity, i.e. Rx = 0, R2 = 1. Then we get from eq. (20) : 

d (r,0,p) = Γ21 (r,0,p) C2(r,0,p) = Γ22 (r,0,p) (60) 

Finally we obtain 

Gf(r,0,p)=CAr,0,p)f(p) = - J ^ . { U ^ W } 

Ga(r,0,p) = C2(r,0,p) = — ! — {aU + ßW} 
4πΓΐ)2 

Numerical example: 

We take a spherical unreflected core with the following properties: 

k = 1.08, Lx = 120 cm2, h\ = 200 cm3, Dx = 1.2 cm, D2 = 1 cm, 

thus Sis = IO""2 cm-1 ,2a = 5X10~3 cm-1 , Tl = 0,τ2 = 0.91X-10.-3 sec. 

14 
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We then obta in : 

2 = 2 . 4 5 2 X l 0 - 4 c m - -Ρ-υ 

ν0 = 1 . 358ΧΐΟ- 2 ϋ^ -= 

R = — = 2.008 m 
μ o 

We consider two oscillation frequencies, p, = 0.314 s e c - 1 and p2 = 3.14 s e c - 1 , cor­
responding to the periods Tx = 20 sec and T2 = 2 sec, respectively. We use the following 
convenient abbreviations : 

Mf{r,p) = 102 X (Magnitude of G/(r,0,p)) 
ff(r,p) = —Phase of G/(r,0,p) in degrees 
and similarly for G„. 

As a result of the indicated numerical calculations we obtain the values of table I I . 
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TABLE I 

THE FUNCTIONS ^ ( P ) AND φ2(Ρ) 

T(sec) 

p ( sec - 1 ) 

^■xlO3 

^ X l 0 3 

100 

0.0628 

1.750 

1.681 

50 

0.126 

2.622 

1.955 

20 

0.314 

4.088 

2.018 

10 

0.628 

5.067 

1.639 

5 

1.26 

5.695 

1.180 

2 

3.14 

6.163 

0.667 

1 

6.28 

6.331 

0.385 

0.5 

12.6 

6.378 

0.202 

0.1 

62.8 

6.398 

0.041 
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TABLE II 

MAGNITUDE AND PHASE OF G, AND G„ AS FUNCTIONS OF r 

r(cm) 

M,(r,Pl) 

<Pi(r,P¡) 

M,(r,P,) 

<P/(r,P=) 

Ma(r,Pl) 

<PAr,p,) 

Ma(r,p2) 

<Pn(r,p2) 

10.8 

0.994 

21.5 

0.752 

18.5 

1.224 

19.0 

0.966 

14.7 

20.8 

0.879 

24.2 

0.640 

21.7 

0.983 

23.3 

0.688 

20.6 

40.8 

0.750 

27.1 

0.526 

25.4 

0.764 

27.2 

0.540 

25.3 

60.8 

0.662 

28.5 

0.452 

27.3 

0.687 

28.4 

0.463 

27.3 

80.8 

0.568 

29.3 

0.383 

28.4 

0.582 

29.3 

0.392 

28.4 

100.8 

0.439 

29.8 

0.314 

29.1 

0.450 

29.8 

0.325 

29.1 

125.8 

0.343 

30.3 

0.228 

29.8 

0.351 

30.2 

0.233 

29.8 

150.8 

0.217 

30.5 

0.143 

30.1 

0.223 

30.5 

0.147 

30.1 

175.8 

0.100 

30.7 

0.0654 

30.4 

0.103 

30.7 

0.0678 

30.4 

200.8 

0.000 

— 

0.000 

— 

0.000 

— 

0.000 

— 
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