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Abstract. Let � denote the (2,3,7)-group. We establish an upper bound for the
number of congruence subgroups of index n and a lower bound for the total number of
subgroups of index n. Since the latter grows more quickly, there exist non-congruence
subgroups of index n for all n greater than some n0.
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1. Introduction. Let � denote the (2,3,7)-group, i.e.

� = 〈x, y, z : x2 = y3 = z7 = xyz = 1〉.

Let µ = 2 cos(2π/7), and K = �(µ). We see in Section 2 that K and � are closely
related.

In [1] Cohen obtained families of subgroups of � by studying finite quotients of
�[µ]. This generalised work of Macbeath [5]. We shall see that Cohen’s subgroups are
congruence subgroups in an appropriate sense. In Section 3, we obtain them naturally
from a quaternion algebra over K .

In [2] Conder showed that, for all but finitely many values of n, the alternating
group An is a quotient of �. This uses unpublished ideas of Higman. We shall see that
these are non-congruence subgroups.

To help us distinguish the classes of subgroups, we prove in Section 4 a result
which relates the index of a congruence subgroup to its level (an ideal of �[µ]). This is
analogous to the central result in [12], and the proof uses essentially the same idea.

We will establish an upper bound for the number of congruence subgroups of index
n, and a lower bound for the total number of subgroups of index n. Since the latter
grows more quickly, there exist non-congruence subgroups of index n for all n greater
than some n0.

We use Condor’s results [2] to show that we may take n0 = 167. In fact, Condor’s
results also give non-congruence subgroups of smaller index. The smallest is 15. As
we shall see, Sinkov’s subgroups [9] are non-congruence of index 14. This is the lowest
possible index for a non-congruence subgroup.

In [8], Shimura considered congruence subgroups. We will follow his approach
in Section 3. For our counting arguments and work on non-congruence subgroups,
we need more detail than that given in [8]. We therefore begin with a discussion of a
certain quadratic form. This overlaps with some of Shimura’s work. See, in particular,
[8, Example 3.19, pp. 83–84].
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REMARK. It is easy to see that � is a quotient of the classical modular group �,
which can be defined as

� = 〈t, p : t2 = p3 = 1〉.
It follows that each subgroup of � lifts to a subgroup of �, but it is important to note
that congruence subgroups do not, in general, lift to congruence subgroups of � (see
Section 3).

2. Algebraic preliminaries. Let ω = exp(2π i/7). Then µ = ω + ω−1, so that µ is
a root of the (irreducible) cubic

f (x) = x3 + x2 − 2x − 1. (1)

In fact, µ is the only positive root, and µ > 1. We sum up the results we require
about K in the following theorem. We merely sketch the proof since most of it is a
straight-forward exercise in algebraic number theory.

DEFINITION. For any non-zero ideal A of �[µ], we write N(A) for the cardinality
of the ring �[µ]/A.

THEOREM 2.1. (i) �[µ] is the ring of integers of K.
(ii) 1 − µ is a unit of �[µ], and its conjugates in K are positive.
(iii) Let p be a rational prime. The ideal (p) in �[µ]

(a) splits as P1P2P3, with �[µ]/Pk ∼= GF(p), N(Pk) = p, if p ≡ ±1 (mod 7),
(b) ramifies as (2 − µ)3, with �[µ]/(2 − µ) ∼= GF(7), N((2 − µ)) = 7, if p = 7,
(c) remains prime, with �[µ]/(p) ∼= GF(p3), N((p)) = p3, otherwise.

(iv) Each totally positive unit in �[µ] is a square.

Sketch of proof. (i) It is well-known (e.g. [14]) that an integer α in �(ω) can be
written as

∑6
k=1 akω

k, with ak ∈ �. If α ∈ K , then ak = a7−k (k = 1, 2, 3), and the
result follows.

(ii) follows from formula (1) and the remark after it.
(iii) is an application of a theorem of Kummer (see [14, p. 317]).
For (iv), we observe that K has 3 archimedean places, all real, so the unit group

of �[µ] has 3 generators. Hence the square units have index 8. The result follows by
considering signs of µ and its conjugates µ2 − 2, 1 − µ − µ2.

Let Q be the quaternion algebra associated with the form

F(a1, a2, b1, b2) = a2
1 + b2

1 + (1 − µ)
(
a2

2 + b2
2

)
,

with a1, a2, b1, b2 ∈ K . We write a typical element as [a1, a2, b1, b2]. The identity is
[1, 0, 0, 0] and

[0, 0, 1, 0]2 = (µ − 1)[1, 0, 0, 0].

Since (µ − 1) > 0, we can put j = (µ − 1)1/2 (so j > 0). Then we view Q as a K(j)-
algebra (with [0, 0, 1, 0] corresponding to j). We have the matrix description:

Q =
{(

a1 + ja2 b1 + jb2

−b1 + jb2 a1 − jb2

)
: a1, a2, b1, b2 ∈ K

}

For brevity, we shall usually use the quadruple notation.
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THEOREM 2.2. The �[µ]-module � generated by

u1 = [1, 0, 0, 0], u2 = [0, 0,−1, 0],

u3 = 1
2 [1,−1, µ2 + µ − 1, 0], u4 = 1

2 [µ2 + µ − 1, 0,−1, 1]

is a maximal order of Q.

Proof. To show that � is an order, we need only verify that for m, n ∈
{1, . . . , 4}, umun ∈ �. This is routine.

To show that � is maximal, we compute the discriminant (i.e. det || tr umun||). This
turns out to be (µ − 1)2, a unit of �[µ] (by Theorem 2.1(ii)). Since any order strictly
containing � would have as discriminant a proper divisor, � is maximal.

Let � = {X ∈ � : det(x) = 1}. Observe that each uk belongs to �, so the group
generated by the uk lies in �.

THEOREM 2.3. With u2, u3, u4 as in Theorem 2.2,

(i) � = 〈u2, u3, u4〉.
(ii) � ∼= �/{±I}.
Proof. This result is stated in [7, p. 46]. We shall sketch a proof here.
We begin by observing that (from calculations)

u2
2 = u3

3 = u7
4 = I, u4 = u2u3.

Indeed, by considering the Möbius transformations corresponding to u1, u2, u3 and
their fixed points, < u2, u3, u4 > /{±I} is isomorphic to �.

From [7, p. 40], �/{±I} is discontinuous. Since the (2,3,7)-triangle group is
maximal among discontinuous groups, the results follow.

REMARKS. (i) To follow Shimura’s line of proof, we need Theorem 2.1(iv) to see
that the totally positive units of � have the form αu, with α a unit of �[µ], and u ∈ �.

(ii) This representation of � appeared in [4], though Fricke used the order 2�,
with a corresponding operation X ∗ Y = 1

2 XY . By putting restrictions modulo 2
Fricke obtained subgroups of index 9 and 63. In the language of Section 3, these
are congruence subgroups.

3. Congruence Subgroups.
DEFINITION. For a prime P of �[µ], we write KP (resp. �[µ]P) for the P-completion

of K (resp. �[µ]).

LEMMA 3.1. For each finite non-zero prime P of �[µ], there is a KP-algebra
isomorphism φP : Q ⊗K KP → M2(KP) such that � is mapped into SL2(�[µ]P).

Proof. From [3, p. 54], we see that Q ⊗K KP is isomorphic to M2(KP) if and only if

F(a1, a2, b1, b2) = 0 (2)

has a non-trivial zero over KP.
If P 
= 2�[µ], then Hensel’s Lemma can be applied to (2), starting with a zero

modulo P. Since (1 − µ) is a unit, this is easy to find.
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If P = 2�[µ], we must start with a zero modulo 8�. We may take a1 = a2 = 1,
b1 = µ2 + µ − 1, b2 = 2t, where t2(1 − µ) ≡ 1(mod 2). (The element t exists since each
element of �[µ]/2�[µ] is a square.)

Since M2(KP) has one conjugacy class of maximal order; and this includes
M2(�[µ]P), we may assume that φP(�) = M2(�[µ]P).

We observe that, for any 2 × 2 matrix X ,

(tr(X)I − X)X = det(X)I.

Applying (the KP-algebra isomorphism) φP to each side, we see that φP preserves
determinants. The final part of the lemma follows.

Although we do not require an explicit φP, it is worth noting that we can obtain
one, at least when P contains to an odd rational prime.

Case 1: (µ − 1) is a quadratic residue modulo P.
By Hensel’s Lemma, we can find jP ∈ kP with j2

P = µ − 1. Then a suitable φP is
obtained by mapping j to jP.

Case 2: (µ − 1) is a quadratic non-residue modulo P.
Then (c, d) �→ c2 − (µ − 1)d2 is a norm map from the quadratic extension

of �[µ]/P to �[µ]/P. Thus, by Hensel’s Lemma, we can find c, d ∈ kP with c2 −
(µ − 1)d2 = −1. Put

A =
(

1 c
j −c j

)
.

For a1, a2, b1, b2 ∈ �[µ]P, we have

A
(

a1 + ja2 b1 + jb2

−b1 + jb2 a1 − ja2

)
A−1 =

(
a1 − b1 a2 − b2

(a2 + b2)(µ − 1) a1 + b1

)
.

The required φP is now obvious.

We now return to the view of Q as a quadratic space over K with form given
by (1). We write QP for the corresponding quadratic space over KP.

THEOREM 3.2. Suppose that T is a finite set of finite primes of �[µ] and that, for
each P ∈ T, we have an XP ∈ QP with det(XP) = 1. For any positive integer r, there is
an X ∈ � with

X ≡ XP(mod Pr) (P ∈ T).

Proof. This is a special case of a theorem in [6, p. 314]. To see that this applies, we
observe that

(i) Q has dimension 4 over K .
(ii) Since (1 − µ) has a positive conjugate, det(X) = 0 ⇒ X = 0, so Q is “regular”.

(iii) The set of finite primes of �[µ] is a “Dedekind set”, and QP is “isotropic” where
P is the infinite prime corresponding to the identity embedding of K in �.

DEFINITIONS. For any non-zero ideal A of �[µ], the principal congruence subgroup
of level A in � is defined by

�(A) = {X ∈ � : X − I ∈ A�},
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and in � by

�(A) = �(A) · {±I}/{±I}.

In some respects, the �(A) are easier to handle. For example,

A =
∏

k

P r (k)
k ⇒ �(A) = ∩k�

(
P r (k)

k

)
.

Clearly, �(A) � � and �(A) � �. Using φP, we have maps

ψ(Pr) : �/�(Pr) → SL2(�[µ]/Pr).

By the Chinese Remainder Theorem in �[µ],

A =
∏

k

P r (k)
k ⇒ SL2(�[µ]/A) =

∏
k

SL2
(
�[µ]

/
P r (k)

k

)
(3)

(The product on the right of (3) is direct.) Then we have a map

ψA : �/�(A) → SL2(�[µ]/A).

Finally, we define maps

ψA : �/�(A) → PSL2(�[µ]/A)

by

ψA({±X}) = {±ψA(X)}.

THEOREM 3.3. For each non-zero ideal A of �[µ], the maps ψA and ψA are
isomorphisms.

Proof. We need only show that the maps are surjective.
The result for A = Pr follows easily from Theorem 3.2 (with T = {P}) once

we observe that, if det(X) ≡ 1(mod Ps), then we can find Y ≡ X(mod Ps) with
det(Y ) ≡ 1(mod Ps+1). Hence each element of SL2(�[µ]/Pr) corresponds to an element
of SL2(�[µ]P)

For A = ∏n
k=1 P r (k)

k , we apply Theorem 3.2 with T = {P1, . . . , Pn} and r =
max{r(k)}.

We now determine the indices of the �(A), and hence of the �(A). After The-
orem 3.3, this amounts to finding the order of SL2(�[µ]/A). For P prime, we know
that

|� : �(A)| = |SL2(�[µ]/P)| = N(P)(N(P)2 − 1). (4)

THEOREM 3.4. If P is a prime ideal of �[µ], and r is a positive integer, then

|�(Pr) : �(Pr+1)| = N(P)3
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Proof. Let π generate P over P2. If X ∈ �(Pr), then, as X ≡ I(mod Pr),

φp(X) ≡
(

1 + π ra π rb
π rc 1 + π rd

)
(mod Pr+1).

As det(X) = 1, d ≡ −a(mod P). The result now follows from Theorem 3.2.

COROLLARY 3.5. If A = ∏
kP r (k)

k , then
(i) |� : �(A)| = ∏

kN(P)3r(k)−2(N(P)2 − 1), and
(ii) |� : �(A)| = ε(A)|� : �(A)|, where

ε(A) =
{

1 if A = 2�[µ],
1
2 otherwise.

Proof. (i) follows from (3), (4) and Theorem 3.4.
(ii) follows from (i) and the observation that

−I ∈ �(A) ⇔ 2 ∈ A.

THEOREM 3.6. If A and B are non-zero ideals of �[µ], then

�(A) · �(B) = �(gcd(A, B)).

Proof. Let C = gcd(A, B) and D = lcm(A, B).
As C ⊇ A, B ⊇ D, we have �(C) ⊇ �(A),�(B) ⊇ �(D) so that

�(C) ⊇ �(A) · �(B) ⊇ �(D). (5)

Suppose that P is a prime ideal dividing A or B, and that Pr (resp. Ps) is the greatest
power dividing A (resp. B).

Suppose first that r > s. Then D = PrD1, c = PsC1, with P � C1, D1. By
Theorem 3.3 �(B) has coset representatives of PsD1 over PrD1, so we can replace
�(D) by �(PrD1) in (5).

A similar result holds if r < s, while, if r = s, C and D have the same power of P.
Considering all primes dividing A or B, we get the result.
Suppose that G ≤ � and that there are non-zero ideals A and B of �[µ] such that

�(A) ≤ G, �(B) ≤ G.

Then, by Theorem 3.6,

�(gcd(A, B)) ≤ G.

It follows that the set of ideals C with �(C) ≤ G has a greatest element (with respect
to set inclusion).

DEFINITIONS. A subgroup G of � is a congruence subgroup if, for some non-zero
ideal A of �[µ],

�(A) ≤ G.
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The level of the congruence subgroup G is the largest ideal A for which the inclusion is
satisfied.

REMARK. By Theorem 3.3, we see that the description “principal congruence
subgroup of level A” is consistent with the above definitions.

Since the level is maximal, we have the following result.

LEMMA 3.7. If G ≤ � is a congruence subgroup of level A and A′ strictly contains
A, then G does not contain coset representatives of �(A′) over �(A).

An alternative definition would be that G ≤ � is congruence if, for some non-zero
ideal A of �[µ], and for some subgroup H of PSL2[�[µ]/�),

G = ψ−1
A (H). (6)

The equivalence to the above definition is obvious. However from this point of view,
the definition of level is rather obscure.

We shall see in Section 5 that not all subgroups of � are congruence subgroups.
For the moment, we justify the remark in Section 1 that congruence subgroups of �

do not in general lift to congruence subgroups of �.

EXAMPLE. Let P = 2�[µ]. By Theorem 2.1(iii), P is prime and N(P) = 23. By
Corollary 3.5(ii),

|� : �(P)| = 504.

Now,

� ∼= �/G

where G denotes the normal closure of (tp)7 in �, so that each lifted subgroup has level
7 (in the sense of �). From Wohlfahrt’s Theorem, [13], this will be congruence only if
it contains �(7). Since |� : �(7)| = 168, �(P) does not lift to a congruence subgroup.

4. The level-index inequality. In this section, we obtain an analogue for � of
results in [12].

NOTATION. (i) For α ∈ �[µ], define Ek, Vk(k = 1, 2, 3) by

E1(α) =
(

1 + α α

−α 1 − α

)
= I + αV1,

E2(α) =
(

1 α

0 1

)
= I + αV2,

E3(α) =
(

1 0
α 1

)
= I + αV3.

(ii) Let P be a prime ideal of �[µ]. Suppose that π generates P over P2, and that
{α1 = 1, . . . , αs} is a basis for �[µ]/P over its prime subfield. For r ≥ 0, we put

U(P, r) = {Ek(π rαl) : k = 1, 2, 3; l = 1, . . . , s}.
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REMARK. The matrices Ek(α) (α 
= 0) are parabolic. They play a rôle in the present
theory much as in that of �, though, of course, � has no parabolic elements.

LEMMA 4.1. Let A be a non-zero ideal of �[µ], and α, β, γ ∈ t. Then, for k, l, m ∈
{1, 2, 3}, n ∈ �,

(i) Ek(α)n = Ek(nα),
(ii) Ek(α)El(β)Em(γ ) ≡ I + αVk + βVl + γ Vm(mod A2)

These are trivial exercises.

LEMMA 4.2. Let P be a prime ideal of �[µ] and r ≥ 1. Then �(Pr) is generated over
�(Pr+1) by cosets corresponding to matrices of U(P, r).

Proof. This follows from the proof of Theorem 3.4 (giving the structure of
�(Pr)/�(Pr+1)), and Lemma 3.1, once we note that (Pr)2 is a multiple of Pr+1.

LEMMA 4.3. Let P be a prime ideal in �[µ]. Then � is generated over �(P) by cosets
corresponding to matrices of U(P, 0).

Proof. After Theorem 3.3, it is enough to show that the elements of U(P, 0)
generate SL2(�[µ]/P).

Suppose that X = ( a b
c d ) ∈ SL2(�[µ]/P). By considering E2(1)X if necessary, we

can assume that a + c 
= 0(mod P).
Now Y = E1(α)X has (1, 1)-entry a + α(a + c). By chosing α appropriately Y has

(1, 1)-entry congruent to 1 modulo P. Then Z = E3(β)Y has (2, 1)-entry congruent to
0 modulo P, where B = −Y2,1. As det(Z) ≡ 1(mod P), Z has the form

Z =
(

1 γ

0 1

)
,

i.e. Z = E2(γ ).

THEOREM 4.4. If G ≤ � is a congruence subgroup of level A and index n, then

n3 ≥ N(A).

Proof. Suppose that A has the prime decomposition

A = (2 − µ) r (0)
R∏

k=1

P r (k)
k ,

where r(0) ≥ 0, r(k) > 0(k = 1, . . . , R). Let p0 = 7, P0 = (2 − µ), and, for k =
1, . . . , R, let pk be the rational prime contained in Pk. Note that, because of the
possibility of a rational prime splitting in �[µ], the pk need not be distinct. We choose
a subset S of {Pk} as follows:

Case 1: Pk = pk�[µ]. Then Pk ∈ S. Here N(Pk) = p3
k.

Case 2: pk�[µ] = T1T2T3. For l = 1, 2, 3, let s(l) be the greatest power of Tl dividing
A. Take l with s(l) maximal. Then Tl ∈ S. The other conjugates of Pk do not belong to
S. Here N(Tl) = pk, and N(T1T2T3) = p3

k.
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We have

N(A) = 7 r (0)
R∏

k=1

N(Pk) r (k) ≤ 7 r (0)
∏
pk∈S

P3r(k)
k = L(A), say,

with equality only when conjugate Pk all occur to equal powers. We now show that
n3 ≥ L(A).

For Pk ∈ S, we observe that G is not of level A/Pk, so that 3.7, 4.2 and 4.3 show
that we can find Xk ∈ � with

(i) Xk ∈ �(A/P r (k)
k ),

(ii) Xk corresponds modulo P r (k)
k to an element of the set U(Pk, r(k) − 1),

(iii) {±Xk} 
∈ G.
As Pk 
= (2 − µ), Pk is unramified and we may take p as the element “π” in

the definition of U(Pk). Then Xk corresponds to El(P
r (k)−1
k α), with l ∈ {1, 2, 3}, α 
=

0(mod Pk). Let Yk ∈ �(A/P r (k)
k ) correspond to El(α) in U(Pk, 0). Then {±Yk}m ∈ G if

and only if P r (k)
k divides m.

If r(0) = 0, we put Y0 = I and s = 0.
If r(0) > 0, then we can choose an X0 as above. Here however, P0 generates P 4

0
over P0, so p0 is not a suitable “π”. Choose u such that u ≡ r(0) − 1(mod 3) and
u ∈ {0, 1, 2}, and let s = (r(0) + 2 − u)/3. Then we can choose Y0 ∈ �(A/P r (0)

0 ) such
that {±Y0}m ∈ G ⇔ ps

0 divides m. Note that s ≥ r/0, corresponding to an element of
U(P0, u).

Finally, let Y = Y0
∏

Pk∈S Yk. Since P0 and the Pk (for Pk ∈ S) are co-prime, we

see that {±Y}m ∈ G if and only if ps
0 and each p r (k)

k (Pk ∈ S) divides m. Thus G has

index at least ps
0

∏
Pk∈S p r (k)

k = L(A)1/3.

DEFINITIONS. For n ∈ �, let M(n) (resp. Mc(n)) be the number of subgroups (resp.
congruence subgroups) of index n in �.

As in [1], the level-index inequality allows us to obtain an upper bound for Mc(n).

THEOREM 4.5. For n ∈ �,

Mc(n) ≤ n3 · 33 log2 n · n81 log2 n.

Proof. Suppose that n is a positive integer, and that G is a congruence subgroup
of level A and index n.

From (b), we see that G corresponds in a unique way to a subgroup H of �/�(A).
From 3.5(ii), the latter has order at most N(A)3. Then, by 4.4, the order is at most n9.
From [12, Lemma 3.2] there are at most n9 log2 n possible H (though many of these have
the wrong index).

Now we must consider the number of possible ideals A. Again by 4.4, we have
N(A) ≤ n3. Let m be any integer in the range 2, . . . , n3 (the case n = 1 is trivial). The
integer m has at most log2 m prime factors. At worst, each corresponds to a split ideal
of �[µ], so there are three possible primes in �[µ] with each factor as norm. Hence the
number of ideals A with norm m is at most 3log2 m ≤ 33 log2 n. There are fewer than n3

possible m, so the total number is at most

n333 log2 n.

The result now follows.
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THEOREM 4.6. For n ≥ 335,

M(n) ≥ 2(n−335)/42.

Proof. This proof relies heavily on the ideas of [11]. In particular, we need
the notions of coset diagram, (l)-polygon (l = 1, 2, 3), (1)-composition, (half-)open
diagram and specification. We also require the genus formula, i.e. for a subgroup of
index n in �, there are non-negative integers p, e, f and g such that

n = 84(p − 1) + 21e + 28f + 36g. (7)

Suppose that n ≥ 294. Let f0 (resp. g0) be the least non-negative residue of n modulo
3 (resp. 7). Then f0 ≤ 2, g0 ≤ 6. Let p0 = 0. Then we have

n′ = n − 84(p0 − 1) − 28f0 − 36g0 ≥ n + 84 − 56 − 216
≥ 64.

Also, n′ ≡ 0(mod 3) and n′ ≡ 0(mod 7), so 21|n′. It follows that there is an integer
e0 ≥ 4 such that (u, p0, e0, f0, g0) satisfies (7).

It follows that there is a half-open diagram E for � with n points. Recall (from
[10]) that a half-open diagram either

(a) has at least one (1)-polygon, or
(b) is the result of (1)-composition.
There is a 42-point diagram E with three (1)-polygons. In case (a), we can (1)-

compose E and X to get a diagram X ′ with at least two (1)-polygons. In case (b), we
can “undo” the (1)-composition in X , then compose each of the resultant (1)-polygons
with a (1)-polygon of E to get a diagram X ′ with at least one (1)-polygon (from E).

Hence, if n ≥ 294, we can find an n-point diagram for � which has at least one
(1)-polygon.

For n = 294, . . . , 335, we choose a diagram H(n) of the above type having n points.
In each diagram, we designate a vertex and one (1)-polygon. In E, we choose two of
the (1)-polygons.

We also have (from [11]) a 42-point diagram U which has two (1)-polygons and
one (3)-polygon.

Suppose that n ≥ 335. We can find an integer m such that m ≡ n(mod 42) and
294 ≤ n − 42m ≤ 335.

We take the diagram H(n − 42m) and choose a sequence of m diagrams from
{E, U}. Using (1)-composition we join the sequence to the designated (1)-polygon of
H(n − 42m). Taking the designated vertex of H(n − 42m) as that of the new diagram,
we get an n-point diagram. It is clear that different sequences will lead to different
subgroups of index n in �. Since m ≥ (n − 335)/42, the result follows.

COROLLARY 4.7. As n → ∞,

Mc(n)
M(n)

→ 0.

This is clear from the estimates of 4.5, 4.6.

COROLLARY 4.8. There exists an integer n0 such that, for n ≥ n0, � has a non-
congruence subgroup of index n.
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A (large) estimate for n0 could be obtained from 4.5 and 4.6.
In the next section, we obtain explicit non-congruence subgroups.

5. Non-congruence subgroups.

THEOREM 5.1. Suppose that A = ∏R
k=1 P r (k)

k is a non-zero ideal of �[µ]. Then the
composition factors of �/�(A) consist of

(a) the groups PSL2(�[µ]/Pk) (k = 1, . . . , R),
(b) cyclic groups of order pk, where pk is the rational prime contained in Pk,
(c) cyclic groups of order 2.

Proof. We observe that we have a normal series

�

�(A)
= G0

�(A)
� · · · �

Gl

�(A)
· · · �

GR

�(A)
� 〈1〉

where Gl = ∩l
k=1�(P r (k)

k ) (l = 1, . . . , R)
Now, for l = 1, . . . , R,

Gl−1

Gl

∼= Gl−1

Gl−1 ∩ �
(
P r (l)

l

) ,∼= Gl−1 · �
(
P r (l)

l

)
�

(
P r (l)

l

) = �

�
(
P r (l)

l

) .

The final equality occurs for l > 1 by Theorem 3.6 since Gl−1 ⊃ �(
∏l−1

k=1 P r (k)
k ). It

is obvious for l = 1. Using the ideas of 3.4, we can refine the factor �/�(P r (l)
l ) into

PSL2(�[µ]/Pl) and a number of pl-cycles (if r(l) > 1).
There remains the factor GR/�(A). Any element of GR has the form {±X}, where,

for k = 1, . . . , R,

φpl(X) ≡ ±I
(

mod P r (l)
l

)
.

Then (±X2) ∈ �(A), so each element of GR/�(A) has order 1 or 2. Hence GR/�(A) is
a product of 2-cycles.

DEFINITION. If G ≤ �, then C(G), the core of G, is the greatest �-normal subgroup
contained in G.

REMARK. If G ≤ � is a congruence subgroup of level A, then C(G) ⊇ �(A) since
the former is maximal.

COROLLARY 5.2. For n ≥ 168, there is a non-congruence subgroup of index n in �.

Proof. Let n ≥ 168. From [2], there is a subgroup G of index n in � such that
�/C(G) ∼= An (the alternating group).

Suppose that G is congruence of level A. By the above remark, �(A) ⊆ C(G), and
we have the normal series

�

�(A)
�

C(G)
�(A)

� 〈1〉.

Since �/C(G) is simple it is a composition factor, contradicting 5.1.
Conder gives also the list of smaller n for which such a G exists (and, by the

above proof, each G is non-congruence). The smallest index is 15. In fact, there are
non-congruence groups of lower index already in the literature [9], as we now see.



362 W. W. STOTHERS

EXAMPLE. (Sinkov’s subgroups).
Here it is convenient to use a permutation representation of subgroups. Suppose

that G ≤ � has index n and cosets G = GX1, . . . , GXn. For X ∈ �, we write X̂ for the
permutation of coset suffices induced by post-multiplication by {±X} we recall that

(i) {±X} ∈ G ⇔ X̂ fixes 1,
(ii) 〈Û2, Û3〉 ∼= �/C(G).
(ii) 〈±X〉 ∈ C(G) ⇔ X̂ fixes (1), (2), . . . , (n).

We note that, as {±U2}{±U3} generate �, it is sufficient to give Û2 and Û3.
One of the subgroups in [9] corresponds to the permutations

Û2 = (1, 2)(3, 14)(4, 5)(6)(7, 8)(9, 11)(10)(12, 13),

Û3 = (1)(2, 3, 4)(5, 6, 7)(8, 9, 10)(11, 12, 14)(13).

Call this subgroup G. It is easy to check that 〈Û2, Û3〉 is imprimitive, with blocks

{1, 13}, {2, 12}, {3, 14}, {4, 11}, {5, 9}, {6, 10}, {7, 8}.
Thus G has an overgroup H obtained from the action of û2 and û3 on the blocks.

Clearly, H has index 7 in �. Using the method of [11], we can show that � has exactly 2
conjugacy classes of subgroups of index 7, and both consists of congruence subgroups
of level (2 − µ). (They correspond to subgroups of PSL2(GF(7)) isomorphic to S4.)
Since �/�(2 − µ)) is simple, C(H) = �((2 − µ)).

An easy calculation, using (iii) above, shows that, if Ẑ = Û2
3Û2Û3Û then Ẑ has

order 8 in �/C(G), but 4 in �/C(H). Thus C(G) � C(H). In fact, C(G) has index
1344 (see [9]).

Suppose that G is congruence of level A. From the argument of 4.4, since (2 − µ)|A,
we must have A|14�[µ]. Now we observe that �((2 − µ)) is generated over �(A) by
elements of odd order. Let {±X} be such an element. Then {±X} ∈ �((2 − µ)) ⊆ H
and |H : G| = 2, so {±X2} ∈ G. Since {±X2} has the same order over �(A). Thus we
would have �((2 − µ)) ⊂ G, and hence in C(G). Since �((2 − µ)) has index 168 while
C(G) has index 1344, this gives a contradiction.

Thus Sinkov’s subgroups are non-congruence.

6. Postscript. Other (2, 3, n)-groups can be obtained from quaternion algebras
as in § 2. The key to our results is O’Meara’s result (Theorem 3.2) which need the
triangle group to be the entire set of unimodular matrices in the maximal order. As
stated in [7], this occurs only for n = 7, 9, 11, so only for these can we expect to apply
the methods of this paper.

We hope to show elsewhere that it is possible to prove Theorem 3.3 for a wider range
of triangle groups (viz. those with n prime to 30), but this requires a new approach.
Once an analogue of 3.3 is available, much of the present theory will go through.
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