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Abstract. The radical of a module over a commutative ring is the intersection
of all prime submodules. It is proved that if R is a commutative domain which is
either Noetherian or a UFD then R is one-dimensional if and only if every (finitely
generated) primary R-module has prime radical, and this holds precisely when every
(finitely generated) R-module satisfies the radical formula for primary submodules.
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Prime submodules of modules over commutative rings have been studied by
various authors. In particular, a number of papers have been devoted to trying to
calculate the radical of a module; see, for example, [2]-6]. Only in special cases is there
a simple description of the radical. It is natural therefore to ask whether the radical
of a primary module has a simple description. McCasland and Moore [5, Theorem
2.10] proved that if R is a PID (principal ideal domain) and M is the free R-module
R™ for some positive integer n, then the radical of any primary submodule of M is
a prime submodule of M. We shall show that this is not true in general.

Given a commutative ring R, R-modules which satisfy the radical formula were
first considered by McCasland and Moore [5]. In [3], commutative Noetherian rings
R such that every R-module satisfies the radical formula, were characterized. In this
paper, we characterize all commutative Noetherian rings R such that every R-mod-
ule satisfies the radical formula for primary submodules and show that these are
precisely the commutative Noetherian rings such that every primary R-module has
prime radical.

Throughout this note all rings are commutative with identity and all modules
are unital. Let R be a ring and let M be an R-module. For any submodule N of M let
(N:M)={re R:rM C N}. A submodule N of M is called prime (respectively, pri-
mary) if N # M and whenever r € R,m € M and rm € Nthenm € Norr e (N: M)
(respectively, r € /(N : M)). Note that for any ideal a of R,

Ja={re R: /" € a for some positive integer n}.

If N is a primary submodule of M and p = /(N : M), then p is a prime ideal of R
and we shall call N p-primary. The module M will be called primary if its zero sub-
module is primary. For any submodule N of an R-module M, the radical, rad,(N),
of N is defined to be the intersection of all prime submodules of M containing N and
rad,(N) = M if N is not contained in any prime submodule of M. The radical of the
module M is defined to be rad;,(0).

Given a ring R and a submodule N of an R-module M we define

Ey(N)={rm:re R,me M and r*m e N for some positive integer k}.
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Then RE)(N) will denote the submodule of M generated by the non-empty subset
Ey(N) of M. Note that RE/(N) consists of all finite sums of elements of Ejy/(N).
McCasland and Moore [5] say that the module M satisfies the radical formula if
rad(N) = REy(N) for any submodule N of M. Now we say that the module M
satisfies the radical formula for primary submodules if rad(N) = RE(N) for every
primary submodule N of M.

1. Radicals of primary modules. The first result is well known and the proof
(which is easy in any case) is omitted.

LeEmMA 1.1. Let p be a prime ideal of a ring R and let M be an R-module. Then a
proper submodule N of M is p-primary if and only if

() pSV(N: M), and
(b) ecm¢ N, for all c € R\p, m € M\N.

It is clear that for any module M, prime submodules of M are primary. In par-
ticular, maximal submodules (being prime) are primary. Thus, non-zero modules
which are either projective or finitely generated have primary submodules (see [1,
Proposition 17.14]). The next result shows that free modules have a rich supply of
primary submodules.

PROPOSITION 1.2. Let p be a prime ideal of a ring R and let a be a p-primary ideal
of R. Let M be a free R-module with basis {m; : i e I}. Let (ay;) be an A x I matrix
with entries in R such that a,;¢ a for some € A, jel Let N be the subset of M
consisting of all elements m in M such that m = _,_, rim; for some r; € R(i € I), where
ri # 0 for at most a finite number of elements i € I, and ) ,_; a,it; € a for all A € A.
Then N is a p-primary submodule of M.

Proof. 1t is clear that N is a submodule of M and m;¢ N so that N # M. Let
p € p. There exists a positive integer k such that p* € a and hence p*M € aM C N.
Let m € M and ¢ € R\p such that ¢m € N. There exist elements s; € R(i € I) such
that s5; # 0 for at most a finite number of elements i € J and m =}, ;sim;. Then
cm =Y, ;csimi € N implies that ), a(cs) €a(h € A), ie. (D, ansi) €a
(A € A) and hence ), ; ay;5; € a. Thus m € N. By Lemma 1.1, N is p-primary.

We now turn our attention to the radical of primary modules. Note first the
following elementary fact whose proof is omitted.

LeEMMA 1.3. Let p be a prime ideal of a ring R and let N be a p-primary submodule
of an R-module M. Then REy(N) = N+ pM C rady(N).

LEMMA 1.4. Let m be a maximal ideal of a ring R, let M be an R-module and let N
be an m-primary submodule of M. Then rady(N) = N +mM = REy/(N). Moreover
N+ mM is a prime submodule of M or M = N +mM.

Proof. Clearly N C N+ mM and it is easy to check that N+ mM is a prime
submodule of M or M = N +mM. Then rad(N) = N+ mM = RE(N) by Lemma
1.3.
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COROLLARY 1.5. Let R be a 0-dimensional ring. Then a primary R-module M has
prime radical if and only if M contains a prime submodule.

Proof. The necessity is clear. Conversely, suppose that M contains a prime sub-
module K. Let p= /(0 : M). Because R is 0-dimensional we know that p is a max-
imal ideal of R. Now Lemma 1.4 gives that rad,;(0) = pM and pM is a prime
submodule of M because pM C K # M.

Note that Sharif, Sharifi and Namazi [6, Theorem 2.8] proved that if R is a 0-
dimensional ring then every R-module satisfies the radical formula. In Lemma 1.4, it
is possible for M to equal N+ mM for an m-primary submodule N of M, as the
following example shows.

EXAMPLE 1.6. There exists a ring R having a nil idempotent maximal ideal m so
that if M is the R-module m then 0 is an m-primary submodule of M but M = mM.

Proof. For any prime p, let F be any field of characteristic p and let G be the
Priifer p-group C(p™). Let R denote the group algebra F[G]. Then R is a commu-
tative ring whose augmentation ideal m has the desired properties; (for more details,
see [8, Lemma 5.5]).

If R is a Noetherian ring in Lemma 1.4, then N + mM is a prime submodule of
M for any m-primary submodule N of the R-module M. For, in this case,
m" C (N: M) for some positive integer n and hence M = N+ mM implies that
M =N+ m"M = N, a contradiction. Thus M # N + mM. In view of this, to study
rings with the property that every primary module has prime radical it is natural to
restrict to Noetherian rings.

Let R be any ring and let M be an R-module. If N is a proper submodule of
M, then K is a minimal prime submodule of N in M if K is a prime submodule
of M, N C K and whenever L is a prime submodule of M with K2 L D N then
K=1L.

LEMMA 1.7. Let R be any ring, let p be a prime ideal of R and let N be a p-primary
submodule of a finitely generated R-module M. Let K={me M :cm e N+ pM
for some ¢ € R\p}. Then K is a minimal prime submodule of N in M.

Proof. Clearly K is a submodule of M. Moreover pM C K and it is easy to check
that the (R/p)-module M/K is torsion-free. Suppose that M = K. Because M is
finitely generated, there exists a € R\p such that aM C N+ pM; ie. a(M/N) C
p(M/N). Using the usual determinant argument, we find that »(M/N) = 0 for some
b € R\p. But this implies that bM € N and hence b € p, a contradiction. It follows
that M # K and K is a prime submodule of M.

Let L be a prime submodule of M such that KO L O N. Let q = (L : M). Sup-
pose that q £ p and let d € q\p. Then dM C L C K and hence M = K, a contra-
diction. Thus q € p. On the other hand, it is clear that pM C L, so that p € q. Hence
p = q. It follows that N+ pM < L and that K € L. Thus K = L.

Let q be a prime ideal of a ring R and let n be a positive integer. Then the nth
symbolic power @™ of q is defined by
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q" ={re R:rceq" for some c € R\q}.
It is well known (and easy to check) that q* is a q-primary ideal of R.

LEMMA 1.8. Let R be any ring such that every primary submodule of the R-module
R® R has prime radical. Then q = {r € q: rc € pq+q® for some ¢ € R\p} for all
distinct prime ideals p,q of R withp 2 q.

Proof. Suppose not and that p 2 q are prime ideals of R such that q 22 a, where
a={req:rcepq+q?, forsomece R\p}. Let aep\q and bheq\a. Set
M = R® R and let

N={me M:cme R(a,b) +q*M, for some ¢ € R\q}.

Clearly >M C N and N is q-primary, by Lemma 1.1. Set K = rad/(N). Then K is a
prime submodule of M. By Lemma 1.7,

K={me M:cm e R(a, b)+ qM for some ¢ € R\q}.

Note that

a(1,0) = (a,0) = (a, b) — (0, b) € R(a, b) + qM

and hence (1,0) € K. Let x, y € R such that (x, y) € N. There exist ¢ € R\q, r € R,
u, v € ¢* such that

c(x,y) = r(a, b) + (u, ),

and hence

cex=ra+uand cy =rb+v.

Note that ¢y € q and hence y € q. Moreover
e(xb — ya) = ub — va € ¢,

so that xb—yaeq® and xbepq+q?. By the choice of b, xep. Thus
(x,y) ep®p=pM. It follows that N C pM. Clearly pM is a prime submodule of
M. Hence K = rady/(N) € pM. However (1, 0) € K gives the contradiction 1 € p.

THEOREM 1.9. The following statements are equivalent for a Noetherian ring R
with prime radical n.
(i) Every primary R-module has prime radical.
(i) The radical of every primary submodule of the R-module R ® R is prime.
(ili) For every non-maximal prime ideal q of R there exists ¢ € R\q such that
cq=0.
(iv) Every non-maximal prime ideal q of R is the only q-primary ideal of R.
(v) R is Artinian or R is one-dimensional and n is an Artinian R-module.
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Proof. (i) = (ii). This is clear.

(ii) = (iii). Let q be any non-maximal prime ideal of R. There exists a maximal
ideal p of R such that p22q. By Lemma 1.8, q ={r € q: rd € pq+ q® for some
d € R\p}. The usual determinant argument gives d’q € q® for some d’ € R\p.
Hence q = q'». By [7, Exercise 8.37] c¢q = 0 for some ¢ € R\q.

(iii) = (iv). This is clear.

(iv) = (1). Let M be any primary R-module; i.e. the zero submodule is q-primary
for some prime ideal q. Suppose that q is a maximal ideal of R. Then qM is a prime
submodule of M and rad,(0) = qM, by Lemma 1.4. Now suppose that q is not
maximal. There exists a positive integer n such that "M = 0. By (iv) q = q" and
hence ¢q € q" for some ¢ € R\q. Then cqM = 0 and hence qM = 0. By Lemma 1.1,
M is a torsion-free (R/q)-module and hence 0 is a prime submodule of M. In any
case, rad,,(0) is prime.

(iii) = (v). Suppose that p,2 p; 2 p, are distinct prime ideals of R. By (iii),
there exists b € R\p; such that bp; =0 C p, and hence p; C p,, a contradiction.
Thus R is 0-dimensional, and hence Artinian by [7, Proposition 8.38], or R is one-
dimensional. Set a = {r € R: rn = 0}. Let p be a prime ideal of R such that the ideal
aCp. If pis not maximal, then ¢p =0 for some ¢ € R\p. Hence cn =0 and
¢ € a Cp, a contradiction. Thus p is maximal. It follows that every prime ideal of
the ring R/a is maximal and hence R/a is an Artinian ring by [7, Proposition 8.38]
again. Now n is a finitely generated (R/a)-module so that n is an Artinian (R/a)-
module and hence also an Artinian R-module.

(v) = (iii). If R is Artinian, then (iii) is clearly true. Now suppose that R is a
one-dimensional ring such that n is an Artinian R-module. Let q be a non-maximal
prime ideal of R. Then q/n is a minimal prime ideal of the semiprime Noetherian
ring R/n. There exists g € R\q such that gq C n. Note that the R-module n has a
composition series and hence p; ...p,n = 0 for some positive integer k and maximal
ideals p(1 <i < k) of R. Thus p,...p,gq =0 and hence ¢q = 0 for some ¢ € R\q
because p; £ q (1 <i < k).

COROLLARY 1.10. Let R be a semiprime Noetherian ring. Then every primary R-
module has prime radical if and only if R is at most one-dimensional.

Proof. This follows at once from Theorem 1.9.
The following example illustrates the last theorem.

EXAMPLE 1.11. Let R be the polynomial ring Z[X], M the R-module R ® R and N
the submodule R(2, X) + R(X,0). Then N is a p-primary submodule of M, where p is
the prime ideal RX, and rad;(N) = KNmM, where K is the prime submodule R ® RX
and m the maximal ideal R2 + RX.

Proof. It is easy to check that N is p-primary, because N = {(u,v) € M :
Xu — 2v € p?} and Proposition 1.2 applies, K and mM are prime submodules of M
and K={me M :cm e N+ pM for some ¢ € R\p}. Let L be a prime submodule of
M such that N € L. Let q = (L : M). Note that p € q. If p=q, then K € L. Suppose
that p # q. Then q = RX + Rq for some prime ¢ in Z. Next note that

KNnmM=m& RXC N+qM
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because if q # m then N+ qM = R @ q. It follows that rad/(N) = KN mM.

Among non-Noetherian rings, the case of UFD’s is of interest. For UFD’s we
have the following result.

THEOREM 1.12. The following statements are equivalent for a UFD R.
(1) Risa PID.
(i1) Every primary R-module has prime radical.
(ii1) The radical of every primary submodule of the R-module R @ R is prime.

Proof. (1) = (ii). This follows from Corollary 1.10.

(i1) = (iii). This is clear.

(ii1) = (1). It is sufficient to prove that R is one-dimensional. (See [7, Exercise
14.21].) Suppose not. Let p 2 q 2 0 be distinct prime ideals of R, where q has height
1. Then q = Rx for some element x. By Lemma 1.8, there exists ¢ € R\p such that
cx € pq +q? = px + Rx? and hence ¢ € p + Rx C p, a contradiction. Thus R is one-
dimensional.

2. The radical formula. In this section, our concern is with rings R such that
every R-module satisfies the radical formula for primary submodules. An R-module
M satisfies the radical formula for primary submodules if and only if rad(N) =
N + pM for every prime ideal p of R and p-primary submodule N of M (Lemma 1.3).

LeMMaA 2.1. Let R be a ring such that for every non-maximal prime ideal q, cq = 0
for some element ¢ € R\q. Then every R-module satisfies the radical formula for pri-
mary submodules.

Proof. Let M be an R-module and let N be a p-primary submodule of M, for
some prime ideal p of R. Suppose first that p is a maximal ideal of R. By Lemma 1.4,
rady/(N) = N+ pM = RE/(N). Now suppose that p is not maximal. There exists
¢ € R\p such that ¢p =0 and hence ¢cpM =0 C N. It follows that pM C N and
M/N is a torsion-free (R/p)-module. Thus N is a prime submodule of M and
rady(N) = N = REy/(N). Therefore M satisfies the radical formula for primary
submodules.

COROLLARY 2.2. Let R be a one-dimensional domain. Then every R-module satis-
fies the radical formula for primary submodules.

Proof. By Lemma 2.1.

Leung and Man [3, Theorem 1.1] showed that a Noetherian domain R is
Dedekind if and only if every R-module satisfies the radical formula. In view of
Corollary 2.2, we see that any one-dimensional Noetherian domain R that is not
Dedekind (for example, R = Z[,/5] or more generally R = Z[,/d] for any square-free
integer d with d = 1(mod 4)) has the property that every R-module satisfies the
radical formula for primary submodules but the R-module R @ R does not satisfy
the radical formula (see [3, Corollary 5.2]).

We now turn our attention to trying to prove a converse of Lemma 2.1.
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LEMMA 2.3. Let R be a ring such that the R-module R ® R satisfies the radical
formula for primary submodules. Let q be any prime ideal of R. Then aq € a*q + q®
for any element ¢ € R\q.

Proof. Letae R\q, b € q. Let M = R® R and let
N={(x,y) e M:a*x — by € ¢?}.

By Proposition 1.2, N is a g-primary submodule of M. Note that if (x, y) € N then
a*x € by +q® C q, so that x € q. Let K be any prime submodule of M such that
N C K. Then ¢°M C N gives that qM C K. Since (b,a*) € N it follows that
0, %) = (b, a®) — (b,0) € K, and hence (0, a) € K. Thus (0, a) € rady(N) = N +qM
by Lemma 1.3

There exist x,y € R, u, v € q such that (0, a) = (x, y) + (u, v), where (x, y) € N;
i.e. a>x — by € . Now by = a’x + z for some z € ¢ and a = y + v, so that

ab = yb +vb = &°x + z + vb € a*q+ q?
because x € q (see above).

THEOREM 2.4. The following statements are equivalent for a Noetherian ring R.
(1) Every R-module satisfies the radical formula for primary submodules.
(i) The R-module R & R satisfies the radical formula for primary submodules.
(ii1) For every non-maximal prime ideal q of R there exists ¢ € R\q such that
cq=0.

Proof. (i) = (ii). This is clear.

(i1) = (iii). Let q be any non-maximal prime ideal of R. There exists a maximal
ideal p of R such that & p. Let a € p\q. By Lemma 2.3, aq € a’q + q'® and hence
M = aM, where M is the finitely generated R-module (aq 4+ q®)/q'?. Hence there
exists b € R such that (1 —ab)M = 0; i.e. (1 — ab)aa C q®. It follows that q = q©®
and hence ¢q = 0 for some ¢ € R\q, by [7, Exercise 8.37].

(iii) = (i). This follows from Lemma 2.1.

We have already remarked that there exist Noetherian domains R for which
every R-module satisfies the radical formula for primary submodules but not every
R-module satisfies the radical formula. The following result shows that this cannot
happen for UFD’s.

THEOREM 2.5. The following statements are equivalent for a UFD R.
(1) Risa PID.
(ii) Every R-module satisfies the radical formula.
(ii1) Every R-module satisfies the radical formula for primary submodules.
(iv) The R-module R & R satisfies the radical formula for primary submodules.

Proof. (1) = (ii). See [2, Theorem 9].

(i)= (iii) = (iv). These implications are clear.

(iv) = (i). Let q be any height 1 prime ideal of R. Then q = Rq for some (prime)
element ¢ of R. Moreover, q? = Rg*>. Let a € R\q. By Lemma 2.3, aq € a’q + q¥ =
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Ra*q + Rq? and hence a € Ra’> + Rq. There exist r, s € R such that a = ra®> + sq and
hence (1 — ra)a = sq € q. It follows that | — ra € q; i.e. R = Ra + q. Therefore q is a
maximal ideal of R. Hence R is a PID.

Combining Theorems 1.9, 1.12, 2.4 and 2.5 we have the following result without
further proof.

COROLLARY 2.6. Let R be a ring which is either Noetherian or a UFD. Then the
following statements are equivalent.

(1) Every primary R-module has prime radical.

(i1) Every R-module satisfies the radical formula for primary submodules.

It is natural to ask whether (i) and (ii) in Corollary 2.6 are always equivalent.
We have the following special case.

PROPOSITION 2.7. Let S be a domain and let R be the polynomial ring S[X]. Then
the following statements are equivalent for R.
(1) Risa PID
(i1) Every primary R-module has prime radical.
(iii) Every R-module satisfies the radical formula (for primary submodules).
(iv) S is a field.

Proof. (i) = (ii). This follows from Theorem 1.12.

(i) = (i). Let q denote the prime ideal RX of R. By the proof of (iii) = (i) of
Theorem 1.12, q is a maximal ideal of R. Hence S is a field and R is a PID.

(i) = (iii). This follows from Theorem 2.5.

(iii)) = (i). Again using q = RX, the proof of Theorem 2.5, (iv) = (i), shows that
q is a maximal ideal and hence R is a PID.

(i) = (iv). This result is well-known.

Let R denote the polynomial ring Z[X] and q the prime ideal RX of R. Let
M = R@® R and let

N={(r,s) € M :4r — Xs € RX*}.

By Proposition 1.2, N is a q-primary submodule of M. It can easily be checked that
N=R(X,4)+ R0, X)+ X>M. In this case, REy(N)= N+ XM = R(0,4) + XM.
However, it is also easy to check that rady(N) = R(0,2) + XM # RE/(N).
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