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MHC | major histocompatibility complex 
MOI | multiplicity of infection 
Mtb | Mycobacterium tuberculosis 
MUFA | monounsaturated fatty acids 
 
NADH | nicotinamide adenine dinucleotide, 
reduced 
NADPH | nicotinamide adenine dinucleotide 
phosphate, reduced 
NO | nitric oxide 
 
PAMP | pathogen-associated molecular 
pattern 
PC | phosphatidylcholine 
PE | phosphatidylethanolamine 

PEC | peritoneal exudate cells 
PI | phosphatidylinositol 
PI3K | phosphoinositide 3-kinase 
PL | glycerophospholipid 
PLA2 | phospholipase A2 
PS | phosphatidylserine 
PUFA | polyunsaturated fatty acids 
 
SCD1 | stearoyl-CoA desaturase 
SEM | standard error of the mean 
SFA | saturated fatty acids 
SIMPER | similarity percentage 
SM | sphingomyelin 
 
TAG | triacylglycerol 
TB | tuberculosis 
TLR | Toll-like receptor 
TNFα | tumour necrosis factor alpha 
 
WT | wild-type 

 
 
 



xix 
 

ENGLISH ABSTRACT 

Tuberculosis (TB) is characterised by infection of Mycobacterium tuberculosis (Mtb) living 

on a lipid diet within lung granulomas. The differentiation of macrophages into lipid-filled 

foam cells is a hallmark of the lung tubercle that forms in patients with active pulmonary TB. 

Mycolic acids (MAs), the abundant lipid virulence factors in the cell wall of Mtb, provide a 

hydrophobic interface for lipid nutrition and can induce this foam phenotype possibly as a 

way to perturb host cell lipid homeostasis to support the infection. It is not exactly clear how 

MAs allow differentiation of foam cells during Mtb infection. Chemically synthetic MAs, 

each with a defined stereochemistry, representing the major classes of natural Mtb MA, 

differentially steer host macrophages. Here we first investigated how chemically synthetic 

MAs, each with a defined stereochemistry similar to natural Mtb-associated mycolates, 

influence cell foamy phenotype and mycobacterial proliferation in murine host macrophages. 

Using light and laser-scanning-confocal microscopy, we assessed the influence of MA 

structure first on the induction of granuloma cell types, second on intracellular cholesterol 

accumulation, and finally on mycobacterial growth. While methoxy mycolates (mMA) 

effected multi-vacuolar giant cell formation, keto-MAs (kMA) induced abundant intracellular 

lipid droplets (LDs) that were packed with esterified cholesterol. Macrophages from mice 

treated with kMA were permissive to mycobacterial growth, whereas cells from mMA 

treatment were not. Alpha-MA (αMA) had no notable effect on macrophage physiology. This 

suggests a separate yet key involvement of oxygenated MAs in manipulating host cell lipid 

homeostasis to establish the state of TB.  

 

We therefore hypothesised that the induction of phenotypically and functionally distinct 

macrophage populations by the oxygenated MAs could be accompanied by unique lipidome 

profiles. Next, we investigated how the peritoneal macrophage lipidome is affected by the 
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individual MAs, employing electrospray ionisation tandem mass spectrometry (ESI-MS/MS). 

Compared to placebo and αMA, oxygenated MA treatment elicited significantly more 

glycerophospholipid (PL), lysophospholipid (LPL) and sphingolipid synthesis. However, 

global PL synthesis and induction of eicosanoid potential was pronounced in 

phosphatidylcholine (PC) for mMA macrophages, and in phosphatidylethanolamine (PE) and 

phosphatidylserine (PS) for kMA macrophages. All lysoPC species were strongly 

upregulated by both oxygenated MAs. Finally, the occurrence of ceramide (Cer) and 

sphingomyelin (SM) with saturated acyl chains was mainly associated with mMA treatment, 

whereas unsaturated acyl chains and dihydrosphingomyelin were mostly associated with 

kMA treatment. Selective secretion of various ratios of oxygenated MAs may thus steer 

innate immunity through the lipidome of macrophages to establish persistent TB.  

 

MAs assign a unique fingerprint to mycobacteria and display diverse biological functions. 

This work provided evidence for an improved understanding of the manifestation of TB. The 

keto and methoxy mycolates studied here, differentially interfere with host lipid homeostasis 

and materialisation of the TB disease phenotype. We clearly show that the type of 

oxygenated distal group of the meromycolic moiety influences foamy macrophage regulation, 

cholesterol accumulation and mycobacterial growth facilitation through the lipidome of its 

host cell. These are crucial findings, as the Mtb cell envelope displays significant structural 

variation in MA oxygenation class and proximal cyclopropane configuration, which is 

continuously remodelled in response to growth needs. Collectively this study provides a 

molecular basis by which the safety and mechanism of MA biolipids as plausible therapeutic 

agents may be assessed, and so to provide a starting-point for planning risk assessments for 

future development of nanomedicines for targeted drug delivery against macrophage borne 

infectious diseases, asthma and vaccine adjuvants.  
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NEDERLANDSTALIGE SAMENVATTING 

Tuberculose (TB) is een aandoening van de longen die wordt gekenmerkt door ondermeer de 

aanwezigheid van Mycobacterium tuberculosis (Mtb) bacillen in long granulomen en levend 

op een dieet van lipiden. Een differentiatie van longmacrofagen tot zogenaamde 

schuimcellen, gevuld met lipiden, vormt een hoofdkenmerk van de long tuberkel die zich 

vormt in patiënten met actieve pulmonaire tuberculose. Mycolzuren (MZen) vormen de meest 

abundante lipide virulentiefactoren in de celwand van Mtb. Als hydrofobe interfase staan 

deze MZen mede in voor de aanlevering van lipide nutriënten en de opwekking van 

schuimcellen ter ondersteuning van de bacillaire infectie. Echter, het is alsnog onduidelijk 

hoe MZen aanleiding geven tot het ontstaan van schuimcellen bij infectie. Synthetische 

MZen, representatief voor de belangrijkste klassen van natuurlijk voorkomende Mtb MZen, 

oefenen een differentiële werking uit op macrofagen. In dit proefschrift hebben we in eerste 

instantie nagegaan in hoeverre verschillende synthetische MZen, chemisch overeenkomend 

met Mtb-geassocieerde MZen, al dan niet in staat zijn tot het opwekken van een 

schuimfenotype en in het ondersteunen van bacillaire groei in (muis) macrofagen. 

Gebruikmakend van ‘laser scanning confocale microscopie’ werd de invloed van de MZ-

structuur op de opwekking van granuloom-geassocieerde celtypes, de intracellulaire 

accumulatie van cholesterol en intracellulaire bacteriële groei nagegaan. Terwijl methoxy-

MZ (mMZ) de opwekking van multivacuolaire reuzencellen opwekte, ondersteunde keto-MZ 

(kMZ) de intracellulaire accumulatie van lipide druppels (LD) rijk aan veresterd cholesterol. 

Macrofagen van muizen behandeld met kMZ waren permissief voor mycobacteriële groei, 

terwijl macrofagen van proefdieren behandeld met mMZ geen versnelde mycobacteriële 

groei vertoonden. Alfa-MZ (aMZ) tenslotte oefende geen waarneembaar effect uit op de 

macrofaag fysiologie en functie. Deze waarnemingen wijzen op gedifferentieerde 
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sleutelfuncties uitgeoefend door geoxygeneerde MZen in het manipuleren van de lipide 

homeostase in de gastheercel bij het ontwikkelen van TB.  

 

Aansluitend hierop werd de mogelijkheid onderzocht dat het opwekken van fenotypisch en 

functioneel onderscheiden macrofaagpopulaties door de verschillen MZen vergezeld gaat van 

wijzigingen in het lipidoomprofiel van de cellen. Aldus werd in een volgende stap 

lipidoomprofiel geanalyseerd aan de hand van ‘electrospray ionisation tandem mass 

spectrometry’ (ESI-MS/MS). Vergeleken met placebo- en aMZ-behandeling, vertoonden 

macrofagen behandeld met geoxygeneerde MZen significant verhoogde niveaus aan 

glycerofosfolipiden (FL), lysofosfolipiden (LFL) en sphingolipiden. Globale FL synthese en 

inductie van eicosanoied potentieel was meer uitgesproken in fosfatidylcholine (FC) bij mMZ 

macrofagen en in fosfatidylethanolamine (FE) and fosfatidylserine (FS) bij kMZ macrofagen. 

Alle lysoFC species vertoonden sterk verhoogde niveaus bij beide geoxygeneerde MZen. 

Tenslotte kwamen ceramide (Cer) en sfingomyeline (SM)  met verzadigde acyl-ketens 

voornamelijk voor bij mMZ-behandeling terwijl onverzadigde acyl-ketens en 

dihydrosfingomyeline geassocieerd voorkomen met kMZ-behandeling. Wijzigingen in de 

verhoudingen aan MZ-klassen kan aldus een directe weerslag hebben op de natuurlijke 

immuniteit van de gastheer via het beïnvloeden van het lipidoom van de macrofaag. 

 

De samenstelling aan MZen vormt een mycobacteriële vingerafdruk maar biedt tevens de 

mogelijkheid aan de bacillen om de gastheer immuun respons aan te sturen. De resultaten 

beschreven in dit doctoraatproefschrift bieden verdere inzichten in hoe de bestudeerde 

mycobacterium-geassocieerde MZ-klassen kunnen bijdragen tot de ontwikkeling van 

tuberculose via een differentieel interfereren met de gastheercel lipide homeostase. Aldus 

tonen onze data aan dat het type van geoxygeneerde distale meromycolgroep – keto of 
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methoxy – een weerslag heeft op de vorming van schuimcellen, de opname van cholesterol 

en intracellulaire mycobacteriële groei alsook op het lipidoom van de gastheercel. Deze 

bevindingen zijn belangrijk ondermeer in het kader van de beduidende structurele variatie in 

MZ oxygenatie klasse van de Mtb celwand onder verschillende groeicondities. Tevens levert 

deze studie een moleculaire basis aan voor het evalueren van de veiligheid en mechanisme 

van werking van MZ-biolipiden bij een potentiele toepassing als therapeutisch agens 

ondermeer voor de verdere ontwikkeling van nanomedicijnen voor een gerichte drugafgifte 

tegen aandoeningen waarin macrofagen een mediërende rol spelen zoals infectieziekten, 

astma en vaccin adjuvanten. 
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1. Tuberculosis: an ancient, but persisting human infectious disease 

1.1. The disease 

Tuberculosis (TB) is a deadly airborne disease of mainly the respiratory organs which, 

according to archeopathologists, may well be the oldest bacterial infectious disease of 

humans1. The Mycobacterium tuberculosis (Mtb) causative agent is so well adjusted to its 

human host, that almost a third of all humans today are latently infected with TB1. Of the 

approximately 10 million new cases per annum, around 16% die and a further 5% develop 

multi-drug resistant TB2. This is compounded by simultaneous infection with human 

immunodeficiency virus (HIV), which hastens mortality from years to weeks and strongly 

correlates with diminished socio-economic standing. The prolonged anti-TB therapy that is 

required increases the probability of treatment non-compliance, with concomitant 

development of drug resistance2. In 2014, the World Health Organisation reported that the 

global TB incidence is most extensive in sub-Saharan Africa with more than 500 new cases 

reported per 100,000 people that year2 (Fig. 1). In spite of the immense scale of global 

infection, less than 15% of individuals develop active disease. Immunocompetent patients are 

able to contain the Mtb bacillus in lung and tissue granulomas, but complete eradication is 

rarely attainable. Sometimes, latent bacilli can reinitiate active disease up to decades 

following initial exposure. Although the bacillus Calmette-Guérin (BCG) vaccine has been in 

use for almost a century with high efficacy in minors, it is less effective in adolescents and 

adults. As a result, chronic and latent TB infection remains a serious global health concern 

and a research focus for finding innovative solutions to manage the epidemic3.  

 

1.2 The tuberculosis pathogen 

Mycobacteria are classified under the Order Actinomycetales, Suborder Corynebacterineae, 

and Family Mycobacteriaceae4, 5. The genus Mycobacterium is broadly divided into fast- and 
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slow-growing species. Some are purely environmental organisms, others opportunistic 

pathogens, but Mtb is classified among the host-adapted, pathogenic mycobacteria6. Mtb is a 

slow growing bacillus with a doubling time of ~18 hours. It forms part of the TB-complex of 

organisms, which is phylogenetically divided into eight lineages7-9. These include the human-

adapted species M. africanum and M. canetti as well as the animal host subspecies M. bovis, 

M. caprae, M. microti, M. pinnipedi, M. orygis and M. mungi.  

 

 

Figure 1 | Global estimated TB incidence rates in 2014 per 100,000 people2.   

 

The distinctive feature of Mtb is a waxy cell envelope that lends an acid fast property to the 

bacillus. A lipid-rich cell wall is essential for survival and virulence and provides protection 

against degradation by host immune defence chemicals and antibiotics10. The Mtb cell 

envelope contains multiple structural elements broadly divided into layers of peptidoglycan, 

arabinogalactan and mycolic acid (MA)11, 12. The peptidoglycan layer surrounds the inner 

plasma membrane and forms long polymer meshes of 4-3 and 3-3 peptide crosslinks between 

N-acetylglucosamine and N-acetylmuramic acid. Polymer modifications are interspersed and 
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comprise glycosylated N-acetylmuramic and amidated peptide side chain residues. The 

highly branched layer of arabinogalactan enfolds the peptidoglycan layer and mostly contains 

galactose and arabinose sugars. About 10% of the N-acetylglucosamine is covalently attached 

to repeated galactan disaccharides in the arabinogalactan layer13. Galactan chains are variably 

coupled to arabinan that may contain succinyl or non-N-acetylatedgalactosamine 

modifications. These modifications are characteristic of pathogenic mycobacteria and is 

associated with enhanced infectivity13, 14. Long-carbon chain MA monomers are ligated to 

arabinan by the fibronectin-binding proteins of the Mtb antigen 85 complex15. This layer 

forms the characteristic waxy lipid coat that contributes to cell wall impermeability.  

 

1.3 The pathogenesis of tuberculosis 

The biology and pathogenicity of TB has been widely reviewed16-18. Tubercle bacilli are 

dispersed from patients with active TB through aerosolised droplets that are inhaled into the 

lungs of uninfected individuals. Alveolar macrophages are first to phagocytose the bacilli, 

inducing a localised proinflammatory infiltration of blood-derived mononuclear cells. 

Macrophages represent the primary line of innate immune defence after which spontaneous 

healing, acute disease, or bacillary containment will result. In most healthy individuals with 

strong innate immune defences disease will not develop and early clearance and healing 

occur19. As there is a distinct regulation of immune effector machinery throughout Mtb 

infection20, patients with compromised immune systems like those co-infected with HIV 

(~10% of cases) will suffer acute disease progression. Bacilli that are able to successfully 

resist host microbicidals or prevent phagolysosomal fusion may result in increased bacterial 

burden and dissemination through the bloodstream or lymphatics to other organs, tissues or 

immune cells. In the majority of cases, infected host macrophages trigger a secondary 

immune response through cytokine release or by degradation and shuttling of antigen 
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peptides to the cell surface. This is mediated by major histocompatibility complex (MHC) 

class II proteins that are recognised by T cells for immune activation21. The adaptive response 

then signals chemo- and cytokine-dependent recruitment and maintenance of other immune 

cells, such as neutrophils and lymphocytes, to migrate to the primary infection site. 

Granuloma formation marks the containment of the infection with limited noticeable disease 

indications. During this time, Mtb-infected patients do not transmit the disease. When 

containment fails due to host confounding factors, for example elderly, malnourished or 

immune-compromised patients, caseation of granulomas can occur. This is due to the release 

of bacteria from the necrotic centre into the airways of infected patients, leading to a 

productive cough and aerosolised spread of infectious bacilli.  

 

2. Host response to Mtb infection 

Mtb uptake occurs through specific receptors that influence successive host cell signalling 

pathways20, 22-24. During bacterial internalisation, germ line-encoded host pattern recognition 

receptors (PRRs) are expressed in the cytosol, at the cell surface or lysosome and endosome 

membranes to detect pathogen-associated molecular patterns (PAMPs). PAMPs are 

conserved microbial-specific small molecule motifs. Important bacterial PAMPs include 

lipopolysaccharide (LPS), mannose and peptidoglycan carbohydrates, nucleic acids and 

flagellin peptides. The PRRs expressed by immune cells directed at innate activation include 

the Toll-like (TLR; e.g. TLR2/4/9), C-type lectin (e.g. Dectin-1) and Nod-like (e.g. NOD2) 

receptors. Key receptors that are responsible for mediating attachment, engulfment and 

internalisation of Mtb via phagocytosis consist of the scavenger, mannose and complement 

receptors20.  
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Although numerous mediators have been implicated in the host response upon Mtb infection, 

those strongly associated with disease progression reflect an interplay of host and/or pathogen 

genetic predisposition with environment25. The establishment of a primary infection mostly 

depends on the virulence of the mycobacterium and the state of activation of resident host 

cells responsible for pathogen uptake. Macrophage microbicidal activity is strongly enhanced 

by cytokine stimulation of mainly interferon-gamma (IFNγ) and tumour necrosis factor alpha 

(TNFα), which rapidly constrain bacilli to the endocytic pathway and exposes them to 

phagosome acidification and destruction by reactive oxygen or nitrogen26. Bacterial 

pathogens however, have evolved numerous escape and survival tactics27. This is more so for 

Mtb which, being among the most ancient of human bacterial pathogens, holds the edge in 

manipulating the immune system of its host to benefit the pathogen. Thus, Comas et al. 

reported that human T cell epitopes of Mtb are hyperconserved8, even to a larger extent than 

the so-called essential genes, indicating that Mtb has co-evolved a host-pathogen relationship 

that is even more critical for its survival than its own metabolic pathways. The ability of Mtb 

to avoid destruction by host microbicidal machinery, combined with its ability to manipulate 

host immunity will consequently result in the formation of a granuloma.  

 

Granulomas are the signature histopathology of pulmonary TB and the product of an adaptive 

cell-mediated immune response to the inhalation of aerosolised Mtb28. It represents a balance 

between ongoing bacillary replication (active TB) and a strong immune cell-induced growth 

suppression towards latent TB, which happens in more than 90% of Mtb infections29. 

Granulomas are structured cellular complexes enclosing a caseous core rich in debris and 

lipids and containing necrotic infected macrophages and extracellular bacilli (Fig. 2). The 

macrophage-rich zone of the granuloma consists of epitheloïd macrophages, multinucleated 

giant cells (MGC) and lipid-laden foam cells, all of which can contain Mtb bacilli. Additional 
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immune cell infiltration and migration occurs towards the periphery of mainly dendritic cells 

(DC), neutrophils and natural killer (NK) cells18. Concentric layers of fibroblasts and 

leukocytes enclose the granuloma, segregating the infection to prevent bacterial 

dissemination (Fig. 2).  

 

 

 
 

 

Figure 2 | Cellular composition of the Mtb-induced granuloma. Following aerosolised Mtb inhalation into 
the lungs, bacilli are internalised by alveolar macrophages (granuloma core). Subsequent T cell stimulation 
results in cytokine-dependent macrophage activation to the lipid-laden foam phenotype (granuloma periphery). 
Mature granulomas morphologically comprise a necrotic core with extracellular bacilli surrounded by 
concentric layers of apoptotic, infected, foamy and epitheloïd macrophages. As part of a localised infection, 
granulomas are also characterised by aggregates of multinucleated giant cells (MGC), neutrophils, and natural 
killer (NK) and dendritic (DC) cells.  
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A study by Tsai and colleagues assessed with flow cytometry the influx of cells in murine 

lungs to convert from the acute to the chronic phase of Mtb infection30. At 2-week post 

infection, macrophages (F4/80+) and neutrophils (Ly6G+) represented the most abundant cells 

of the acute phase at 36-37% each of the total leukocyte population (CD45+). Macrophages 

remained at this proportion during the 12- and 27-week post infection chronic stages, while 

the neutrophil population was reduced in the lungs by half at both time points. The CD3+ T 

lymphocytes became the dominant leukocyte population four weeks post infection and 

remained an important cell type throughout the chronic stages (35-47%). T helper cells 

(CD4+, 60-69%) comprised the major subset of the T lymphocyte population throughout 

infection with cytotoxic T cells (CD8+, 17-32%) contributing a lesser portion. The B 

lymphocytes (CD19+) made up the minor population of all the CD45+ leukocytes during the 

acute phase (<2%), but increased 4-fold from 4-weeks post infection. Though the numbers of 

DCs (DEC205+) per lung slightly increased over the six month assessment period, they stably 

represented 3-4% of the total lung leukocyte population. Neutrophils and macrophages thus 

predominate during the early acute phase of Mtb infection, representing the initial 

antimicrobial defences. In addition to macrophages remaining in the lungs, the CD3+ T cell 

population becomes important during the maintenance of chronic infection.  

 

Though reported here for a murine model of Mtb infection, which may by far removed from 

the case of human TB, the mouse model remains a powerful tool. Mice are inexpensive and 

easy to handle or manipulate genetically31. Murine and human granulomas are characterised 

by similar leukocyte populations that will follow an ordered sequence of events upon 

infiltration into the lungs30, 32. Many similarities exist, in particular at the level of the 

macrophage populations. Both acute and chronic phases of infection can be followed in 

mice33-35. Animal in vitro and ex vivo models of Mtb infection thus present ideal 
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opportunities for understanding the complex host-pathogen dynamics in the Mtb granuloma 

and may allow for the development of novel TB therapeutics.  

 

3. Current anti-TB therapy 

Apart from an immense effort into the development of vaccines, diagnostics and anti-TB drug 

treatments, the rise in human populations led to the evolution of modern virulent strains 

causing global TB epidemics36. To effectively eradicate TB, new therapeutics and treatment 

regimes are urgently needed. TB drugs are broadly classified based on their efficacy and 

comprise the first, second, and third-line drugs37. The first-line drugs are widely used and are 

most effective against susceptible (non-resistant) TB strains, including Rifampicin, Isoniazid, 

Ethambutol and Pyrazinamide37, 38. Isoniazid targets and eradicates actively growing bacteria, 

while Rifampicin has an additional sterilising effect as potent bactericidal agent. Ethambutol 

significantly slows bacterial replication while Pyrazinamide, though weakly bactericidal, is 

effective against non-replicating bacteria in acidic environments (i.e. inside macrophages or 

at acute inflammation sites)38. Second-line drugs are primarily used when bacilli become 

resistant to first-line therapies. These drugs may be inaccessible in developing regions (e.g. 

Fluoroquinolones) or have toxic side-effects (e.g. Cycloserine) and poor efficacy (e.g. Para-

aminosalicylic acid)37. Third-line drugs are the least effective or well characterised (e.g. 

Clarithromycin and Clofazimine)39.  

 

Drug-susceptible, active TB can be 90% successfully treated in HIV-negative patients with 

an intensive six-month antibiotic regimen38. This comprises an initial two-month treatment 

with the four major first-line drugs followed by maintenance with Isoniazid and Rifampicin 

for a further four months. However, various acquired resistance, for example in multidrug, 

extensively and totally-drug resistant strains, can develop as a result of poor drug quality, 
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interrupted supply and irregular drug use40. The bacterial mechanisms of action for acquiring 

resistance include decreased permeability barriers, degrading or inactivating enzymes, 

modification of drug activation or metabolism pathways and drug target amplification or 

modification (i.e. chromosomal mutations)41. The mycobacterial envelope comprises multiple 

layers of lipids with interspersed sugars and protein and provides the hydrophobic character 

that protects against chemotherapeutic agents. The Mtb cell wall is biologically active and 

thus largely responsible for its virulence, pathogenicity and persistence. Key components 

comprise the genes and proteins involved in fatty acid synthesis and lipid metabolism42. 

Novel TB therapies should hence stem from research that focuses on understanding the 

functional diversity of key virulence lipids, like the MAs. 

 

4. Mycolic acids 

4.1 General structure of mycolic acid 

A key feature of intrinsic antibiotic resistance is the low permeability of MA-containing 

bacterial cell walls from the phylum Actinobacteria, which includes species of 

Corynebacterium, Nocardia, Rhodococcus and Mycobacterium43, 44. The Mtb cell envelope 

comprises intricate layers of peptidoglycan, arabinogalactan, glycolipids, MA (α-alkyl, β-

hydroxy fatty acids) and lipoproteins, with MA being the dominant constituent12, 14. The 

structural and biochemical properties of MAs have been reviewed recently45. In short, these 

wax-like hydrophobic lipids comprise a mycolic motif with long non-functionalised alkyl 

chain and a meromycolate chain with up to two functional groups that can be either 

oxygenated (distal group) or unoxygenated (distal or proximal group; Fig. 3A). Three main 

Mtb MA classes exist: the most abundant unoxygenated alpha-MA (αMA), the less abundant 

oxygenated methoxy- (mMA) and the least abundant keto-MA (kMA). Though some trans- 

may be present, αMA essentially exists in cis-cyclopropane configuration while mMA and 
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kMA contain either cis- or trans-cyclopropanation with an adjoining methyl branch12. A 

major advance towards understanding the functional diversity of MAs in TB was made since 

2005 in the development and manufacture of synthetic analogues of representatives of each 

of the major MA classes46-48 (Fig. 3B).  

 

 

 

Figure 3 | Mycolic acid structures. The biochemical structures are given of the A, general MA, where X and Y 
represents the distal and proximal groups, respectively; and a-d are varying lengths of methylene chains45 and B, 
synthetic MAs: MA lipid backbone (MM194), cis-alpha (JR1080), cis-methoxy- (JR1046), trans-methoxy 
(JRRR121), the epimeric (GK324) and monomeric (JRCT112) isomers of cis-keto and trans-keto (GK323). 
Numbers in brackets represent carbon chain lengths and wiggly line indicates a mixture of stereoisomers at that 
position.  
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4.2 Mycolic acid and host-pathogen interactions 

Mtb closely regulates its proliferation in macrophage host cells, owing most of its virulence 

to a highly structured cell wall of which MA makes up a substantial portion12. In nature the 

inflammatory neutral αMA (fixed at ~50%) and proinflammatory mMA and kMA (variable, 

totalling ~50%) in the Mtb bacillus cell wall can be tuned to complement growth and 

proliferation10, 49. While most Mtb PAMPs are TLR agonists50, the MA biolipid was 

identified as a PAMP eliciting innate responses similar to Mtb infection, but independent of 

TLR51. In a murine model of lung exposure to MA, Korf and team51 recorded the induction of 

lipid-filled alveolar foam cells and inhibition of TNFα production. This would likely support 

intracellular Mtb growth whilst allowing escape from host cell destruction. MA treatment of 

mice also caused cell infiltration and cytokine expression involved in containment of Mtb 

infection; observed by a rapid neutrophilic infiltration to MA-exposed murine lungs and 

production of the proinflammatory cytokines IL-6 and IL-12. A conditioning of macrophages 

was observed with MA treatment that enabled antimicrobial TNFα, IFNγ and 

myeloperoxidase production upon subsequent treatment of the cells with LPS as a secondary 

innate stimulus51. Release of IL-12 and IFNγ by host cells activates a Th1 response, leading 

to bactericidal functions through recruitment of CD4+ T cells and nitric oxide (NO) 

production52. As key membrane lipid of the Mtb bacillus, MA may thus contribute to a role of 

steering the innate host-pathogen response to establish active TB.   

 

A striking feature of MA treatment is the induction of macrophage giant cell and foamy 

phenotypes in murine peritoneal and alveolar macrophages51, 53, 54 that closely represents the 

characteristic foam cell in lung granulomas of TB patients34. Key features of foam cells 

include enlarged (giant) size and the accumulation of intracellular vacuoles and neutral lipid 

droplets (LDs), mainly comprising cholesterol esters and/or triacylglycerol (TAG)54, 55. MAs 
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have been shown to bind cholesterol-specific antibodies and the sterol-binding agent 

amphotericin B, suggesting that the three-dimensional structure of MA has cholesteroid 

structural properties56. Cholesterol, a common structural component of mammalian cell 

envelopes present within lipid rafts, is involved in diverse cellular processes57. Cholesterol 

can therefore be an attractive target for pathogens to infect host cells or modulate their 

dynamics. Mycobacteria in particular utilise cholesterol for entry, inhibition of 

phagolysosomal fusion and persistence58-60. It is thus clear that free MAs regulate 

mycobacterial pathogenesis, but it is unclear how this happens. Further study using these long 

carbon chain fatty acids in disease models is therefore necessary. The recent availability of 

chemically synthetic MAs provided the opportunity to make this happen, to which this thesis 

aimed to contribute. 

 

5. Macrophages as central host cell of the Mtb bacillus 

Macrophages are associated with every phase of TB progression from the establishment of a 

primary infection to latent persistence in the granuloma, and the potential reactivation up to 

decades later18, 61. As facultative intracellular pathogen, Mtb targets these macrophage 

mononuclear phagocytes, which are instrumental in mediating both the innate and adaptive 

protective immune functions62.  

 

5.1 Macrophage phenotype, function and polarisation 

Innate immune cells like macrophages regulate their polarisation as a result of interaction 

with extracellular stimuli and the adjacent microenvironment63-65. As macrophages display 

abundant biological activity they differentiate along a spectrum into proinflammatory 

(classical M1) and regenerative or immune-regulatory (alternative M2) lineages66. The switch 

into the M1 or M2 modes is mediated by haematopoietic growth factors, cytokines, and 
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multiple small glucose and lipid metabolites67, 68. M1 macrophages are primed by IFNγ, but 

need stimulation by a second signal for instance TNFα or bacterial virulence factors, to 

become efficient antigen presenting cells (APCs) with enhanced synthesis of 

proinflammatory cytokines and reactive nitrogen or oxygen species69. Classically-activated 

M1 macrophages display strong microbicidal and tumouricidal capacity. Conversely, 

secretion of IL-4 and IL-13 by type-2 T helper cells converts macrophages to the anti-

inflammatory, alternatively activated M2 phenotype70. Alternatively activated macrophages 

have reduced MHC class II expression and are thus less efficient towards antigen 

presentation or elimination of intracellular pathogens. M2 macrophages are more effective in 

tissue repair and resolution of inflammation. Though the importance of innate immune cells 

in inflammatory activation or resolution has been well characterised, specific metabolic 

pathways involved in directing the various stages of macrophage activation has only recently 

obtained serious attention.  

 

5.2 Macrophage metabolism and mycolic acids 

Macrophage activation and metabolism are related (reviewed in71-75). Biswas and 

Mantovani69 summarised key intrinsic metabolic features of the M1 (proinflammatory) and 

M2 (anti-inflammatory) modes. Polarised macrophages exhibit diverse plasticity in glucose, 

lipid and amino acid metabolism as well as distinct regulation of iron storage and redox 

balance. Macrophage redox state is linked to intracellular glutathione. High glutathione levels 

drive a reductive M1 state and low levels bring forth an oxidative M2 mode. M1 relates to the 

phenotype of aerobic glycolysis (Warburg effect), which is typical of active proliferating or 

cancerous cells76, while M2 relates to a tissue repair phenotype with a metabolic state that 

favours oxidative phosphorylation. High aerobic glycolysis in malignant tumours is 

characterised by increased cellular glucose import, de novo fatty acid synthesis and a 
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preference for lactate fermentation to produce cellular energy77. A noteworthy justification 

for this altered metabolic state is the provision of important biosynthetic substrates required 

for cell proliferation other than just ATP78. Similarly, in LPS-activated innate immune cells a 

metabolic transition towards aerobic glycolysis confirmed that proinflammatory signals can 

skew cellular metabolism towards anabolic mode79. Regulation of L-arginine metabolism is 

effected by nitric oxide synthase 2 (NOS2) and arginase 1 (ARG1): M1 macrophages 

(NOS2high) synthesise reactive nitrogen intermediates from L-arginine to augment 

microbicidal and tumouricidal function, whereas M2 macrophages (ARG1high) catalyse L-

arginine to L-ornithine and polyamines for matrix remodelling80. While iron is a crucial 

cofactor in cellular processes, Mtb expresses essential iron-storage proteins for growth and 

protection against host oxidative stressors81. The M1 phenotype (Ferritinhigh) mainly upholds 

iron storage to reduce its availability to pathogens and to enhance proinflammatory activity, 

while M2 (Ferroportinhigh) promote iron export for tissue repair and immune regulation. The 

capacity of macrophages to alter metabolic profiles and activation state in response to 

microenvironment and cellular stimuli thus drives inflammation mediation or resolution. 

 

There are important lipid regulators of macrophage functional dynamics as well. For 

example, prostaglandin-endoperoxidase synthase (PTGS), a key enzyme generating 

prostaglandins and thromboxanes from arachidonic acid, is differentially expressed in M1 

and M2 macrophages. While M2 cells induce the expression of the PTGS1 isoform, M1 cells 

upregulate PTGS2 in response to stimulatory factors. There is also distinct induction of fatty 

acid uptake and oxidation genes in M2, but not M1 macrophages.  

 

Vander Beken et al. recently assessed the effect of MA chemical structure on the induction of 

pulmonary inflammation in murine macrophages53. Phosphatidylcholine liposomes loaded 
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with examples of methoxy and keto mycolates caused inflammation with distinctly more total 

cells and neutrophils in bronchoalveolar infiltrate as compared to an empty liposome control 

treatment. Gene induction analyses by RT-qPCR showed elevated expression of 

proinflammatory genes (Il6, Il12b and Ccl2) in CD11c+ cells from oxygenated MA-treated 

mice (opposed to control phosphatidylcholine liposomes). Interestingly, the anti-

inflammatory cytokine IL-10 was 6-fold higher in mMA-treated lungs (versus kMA). While 

the M1 activation marker NOS2 was only upregulated in mMA-treated cells, the M2 marker 

ARG1 was induced under all MA conditions (except αMA). Oxygenated MAs furthermore 

did not induce expression of TNFα. It has been shown that TNFα and IL-10 have opposing 

roles in Mtb infection. While TNFα induces NO-dependent apoptosis in Mtb-infected 

macrophages, IL-10 inhibits inflammatory cytokine release and NO production, permitting 

intracellular bacterial growth82. Increased cellular infiltration and proinflammatory gene 

expression in cells exposed to oxygenated MAs signify M1 activation. Yet oxygenated MA 

treatment also induced select M2 markers. Assessment of the differential innate immune 

activity of MA by Vander Beken et al. did not clarify which synthetic oxygenated MA 

stimulates either M1 or M2 activation53, as cells from mice exposed to these mycolates 

exhibited traits of both modes. Research suggests that macrophage activation changes 

throughout TB development. A recent study of macrophage polarisation in an in vitro model 

of tuberculous granuloma formation identified a mixed macrophage M1/M2 orientation83. 

Following Mtb infection, macrophage polarisation markers changed from predominately M1 

(CXCL11 and iNOS) during the early phase to M2 (CD206, CCL17 and CCL18) at the later 

stage of granuloma formation. Polarisation status was further assessed in lung tissues from 

patients with pulmonary TB by immunohistochemistry and qPCR for induction of M1 and 

M2 markers. In Mtb-infected tissues mixed M1/M2 markers were recorded 

(iNOShigh/CD206high and CXCL11high/CCL17high/CCL18high), but M2 markers 
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(iNOSlow/CD206high) dominated in tissues from patients with active TB. Though speculative, 

the mixed M1/M2 immune orientation induced by oxygenated MAs likely correlates with a 

phase-dependent contribution during TB progression of each of these classes to the Mtb cell 

wall composition, thus warranting further investigation.  

 

6. Cholesterol homeostasis in macrophages 

6.1 Transcriptional regulation of cellular cholesterol 

The genetic regulator of systemic and cellular cholesterol homeostasis is the liver X receptor 

(LXR). LXRs are transcription factors that regulate the expression of cholesterol associated-

target genes, and act as cholesterol sensors to maintain the fine balance of uptake and export 

of cholesterol84. The two LXR isoforms, LXRα (NR1H3) and LXRβ (NR1H2), share ~80% 

homology in DNA- and ligand-binding sequences85, but are differentially expressed. LXRα is 

predominately expressed in metabolically active tissues like the liver, intestines, adipose 

tissue and peripheral macrophages, whereas LXRβ is ubiquitously expressed at low to 

moderate levels throughout the body86. The endogenous ligands of LXR are oxidised 

cholesterol derivatives (oxysterols) and intermediates of the cholesterol biosynthesis pathway 

such as desmosterol87. The most common oxysterol ligands are 22(R)-hydroxycholesterol 

(steroid hormone biosynthesis metabolite), 24(S)-hydroxycholesterol (brain and plasma), the 

most potent agonist 24(S),25-epoxycholesterol (located in liver), 20(S)-hydroxycholesterol, 

and 27-hydroxycholesterol (macrophages and plasma)85.  

 

To regulate gene expression in a ligand-dependent manner, LXRs must form obligate 

heterodimers with the retinoid X receptor (RXR) α, β or γ. LXRs are master cholesterol 

sensors that in the absence of a ligand, reside in the nucleus bound to LXR response elements 

at target gene promoters85. LXR-RXR heterodimers interact with corepressor complexes that 



CHAPTER I 
General Introduction 

18 

 

Ilke Vermeulen | PhD thesis | 2016 
 

suppress transcription. Upon binding of an endogenous oxysterol agonist, conformational 

changes in the ligand-binding pocket initiate recruitment of coactivator complexes that lead 

to transcriptional activation of target genes. Cellular cholesterol levels are tightly controlled 

by not only the LXRs for cholesterol efflux, but also the sterol regulatory element-binding 

proteins (SREBP) 1c and 2 for fatty acid and cholesterol biosynthesis and transport, 

respectively85, 88. When cellular cholesterol levels are low, precursor SREBPs are processed 

to active transcription factors for protein expression of enzymes (e.g. HMG CoA reductase) 

and receptors (e.g. low density lipoprotein receptor, LDLR) involved in cholesterol 

production and uptake88. The LXR-RXR heterodimers will remain suppressed by 

corepressors to inhibit cholesterol efflux. When cellular cholesterol rises, coactivators are 

recruited upon binding of oxysterol ligands that initiate transcription for proteins mediating 

cholesterol efflux or induce genes involved in LDLR degradation86, 88. The degradation of the 

LDLR involves the E3 ubiquitin ligase, inducible degrader of LDLR, which targets the 

LDLR for ubiquitination and eventual lysosomal destruction89. Without the LDLR, 

macrophages would not be able to internalise plasma-derived native LDL particles.  

 

6.2 Cellular cholesterol transport 

For macrophages to be converted to foam cells a distinct dysregulation in the flow of LDL in 

and out of the cell, will be evident. VLDL and LDL are important transporters of cholesterol 

from the liver and intestines to peripheral tissues like macrophages90. Cholesterol-rich LDL 

can then be internalised via the LDLR, while modified LDL (oxidised or acetylated) is taken 

up by the scavenger receptors SR-A or cluster of differentiation 36 (CD36) integral 

membrane proteins (Fig. 4). CD36 is also known as fatty acid translocase (FAT/CD36) due to 

its role in cellular long chain fatty acid transport91. LDL particles are predominately 

composed of phospholipids, esterified cholesterol and TAG, which are largely metabolised 
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by the cell92. Cholesterol imported into the cytosol after LDL breakdown is then either 

esterified for storage into LDs or sequestered into high density lipoprotein (HDL). ATP-

binding cassette transporter A1 (ABCA1) and G1 (ABCG1) are the exporters of cellular 

cholesterol (Fig. 4). Any genetic deficiency or interference in the transcriptional pathways of 

ABCA1 and ABCG1 may result in increased foam cell formation. 

 

The plasma cholesterol acceptors, apolipoprotein A-I (apoAI) and HDL particles, collectively 

regulate cholesterol export along with the transporters ABCA1 and ABCG1. The membrane 

transporter ABCA1 transfers cholesterol to extracellular lipid-poor apoAI for priming into 

nascent HDL particles (apoAI-HDL). The endogenous secretion of apoE, known to mediate 

cholesterol release to the lipid-free cholesterol acceptor apoAI, cohesively modulates 

macrophage cholesterol levels along with plasma apoAI and the membrane transporter 

ABCA193. Furthermore, the LXR target gene ADP-ribosylation factor-like 7 functions with 

ABCA1 to move cholesterol from inside the cell to extracellular apolipoproteins94. ABCG1 is 

primarily an intracellular transporter that translocates to the plasma membrane for 

extracellular formation of mature HDL particles95, 96. Inside the cell, ABCG1 distributes 

cholesterol to endocytic vesicles before redirecting them away from the endoplasmic 

reticulum (ER), where esterification of LDs occurs, to the cell membrane for capture into the 

apoAI-HDL particles (Fig. 4). Mature HDL particles are then sequestered from peripheral 

tissues, like macrophages, to the liver where they are processed or excreted during the 

process of reverse cholesterol transport92. 
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Figure 4 | Cholesterol transport in macrophages. When cellular cholesterol is low, sterol regulatory element-
binding protein (SREBP) precursors become active transcription factors that mediate expression of proteins 
necessary for cholesterol synthesis and uptake through the low density lipoprotein receptor (LDLR). Liver X 
receptor-retinoid X receptor (LXR-RXR) heterodimers are bound by corepressors and expression of cholesterol 
efflux is suppressed. Upon increase of cellular cholesterol, oxysterols bind the LXR transcription factor that 
recruits coactivators to mediate transcription of cholesterol efflux genes. The ATP-binding cassette transporters 
A1 (ABCA1) and G1 (ACBG1) are responsible for movement of intracellular cholesterol to the plasma lipid 
acceptor apolipoprotein A-I (ApoAI) where they are primed to mature HDL complexes for transport away from 
peripheral tissues to the liver. 
 

6.3 Macrophage foam cell formation 

Fat-laden foam cells are widely implicated in disease pathologies like atherosclerosis and 

vascular disease. As a result, the broadest body of knowledge on foam cell formation relates 

to this field97-100. Mtb infection, however, also drives macrophage differentiation to the foamy 

phenotype54, 101. The provision of a safe, nutrient-rich harbour for the lipid metabolising 

bacilli is facilitated by an alteration of the host macrophage to accrue LDs55. As macrophages 

are key phagocytes of the innate immune system their role in disease pathogenesis stems 

from a normal protective function, which Mtb exploits to its own benefit.  
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The generally accepted view on foam cell formation is that SR-mediated uptake of modified 

(oxidised or acetylated) LDL will result in lipid-loaded macrophages102. Though scavenger 

receptors class A and B (CD36) knockout mouse models have shown substantially reduced 

lipid uptake, this did not abrogate foam cell formation103, 104. Other important receptors 

implicated in foam cell formation are the PPAR nuclear receptors and those associated with 

eicosanoid biosynthesis, for example the lipoxygenase and leukotriene receptors105, 106. 

Whereas the SRs mediate uptake of LDL, the PPARs partly regulate SR function to which the 

eicosanoids form natural PPAR ligands107. LDs, which are abundantly induced during foam 

cell formation, are far more than inert fat storage compartments108, 109. They have dynamic 

functions in immunity, cellular physiology and lipid homeostasis110. The formation of LDs in 

leukocytes is in fact an important event associated with innate immune activation111.   

 

6.4 Cholesterol and the Mtb bacillus 

As facultative intracellular pathogen constrained by a host-derived phagosome, Mtb bacilli 

are challenged to acquire nutrients for survival and replication. Precisely what nutrients are 

assimilated during the various stages of infection and how they are attained remain ill-

defined, but host lipids are an essential source. Initial evidence for this was highlighted by an 

enhanced respiration of Mtb bacilli isolated from murine lungs following growth on fatty 

acids, rather than carbohydrates112. Subsequently Cole et al. in their work on deciphering the 

Mtb genome identified a profound coding capacity associated with lipid biosynthesis and 

degradation113. Cholesterol is the abundant structural sterol of cell membranes114 and is 

essential for Mtb virulence and pathogenesis115, 116. The catabolism by Mtb of cholesterol 

involves extensive sets of enzymes for steroid ring degradation or β-oxidation of the 

branched-chain fatty acids117. In particular, 35 of the ~80 genes associated with cholesterol 

metabolism encode for members of the acyl-CoA dehydrogenase family, which are the 
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principal enzymes responsible for truncation of the cholesterol side-chain118-120. Whereas 

catabolism of the steroid rings produces pyruvate and propionate, complete β-oxidation of the 

side-chain yields a 17-keto steroid intermediate (androstendione) and the metabolites acetyl-

CoA and propionyl-CoA121. Acetyl-CoA and propionyl-CoA are then respectively further 

oxidised by the tricarboxylic acid (TCA) and methyl citrate cycles122. When fatty acids are 

the sole carbon source, acetyl-CoA is directed through the glyoxylate cycle for anapleurosis 

of TCA intermediates like oxaloacetate122. Alternatively, malonyl-CoA can be generated by 

carboxylation of acetyl-CoA for biosynthesis of long-carbon chain MAs in the Mtb fatty acid 

synthase-II enzyme pathway12. Propionyl-CoA, a precursor of potentially toxic metabolites to 

Mtb, is either directed into the methyl citrate or methylmalonyl pathways for generation of 

succinate or succinyl-CoA, respectively; or is carboxylated to yield methylmalonyl-CoA123. 

This latter metabolite can then be incorporated into methyl-branched fatty acids for 

generation of bacterial envelope lipids123.   

 

7. The major mammalian membrane lipids 

Lipids are distinct carbon (C), hydrogen (H) and oxygen (O) containing compounds that are 

hydrophobic and soluble in organic solvents or other lipids90. The building blocks of lipids, 

namely fatty acids, comprise linear hydrocarbon chains with an organic acid group or 

carboxyl (-COOH) at one end. Chain length and degree of saturation with H atoms 

significantly influence the structural properties and functioning of fatty acids124. Fatty acids 

with single covalent bonds between C atoms are saturated (SFA) whereas those containing 

one or more double bonds are monounsaturated (MUFA) and polyunsaturated (PUFA), 

respectively. The common lipid classes that make up mammalian cells include the 

glycerophospholipids (PL) and derivative lysophospholipids (LPL), sphingolipids, 

triglycerides, sterols, eicosanoids and lipoproteins90.  
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Besides structural and energy storage functions, lipids are important in membrane 

organisation, trafficking and signalling dynamics125-127. Lipid organisation in cells is largely 

achieved by the bulk lipid classes, particularly those organised within membranes, while the 

function and behaviour of the myriad minor lipids complement the dynamic cellular 

organisation of the major species. Four distinct metabolic pathways regulate the majority of 

lipid interactions in eukaryotic cells including the PLs, sphingolipids, glycerolipids and non-

esterified (free) fatty acids128. Lipid metabolism networks have been well studied (reviewed 

in128-130). As a result, quantitative alterations in lipid class or species can reveal changes to 

enzyme activity or gene expression involved with regulating cellular lipid turnover. 

Understanding how lipid biosynthesis and degradation pathways function or change 

following physiological perturbations, can therefore allow the identification of mechanisms 

responsible for disease pathogenesis128. 

 

7.1 Glycerophospholipids 

PLs form key components of cellular membranes and participate in plasma lipid transport90. 

Phosphoglycerides consist of two fatty acyl chains attached to a glycerol backbone (C3H8O3) 

containing a phosphorylated alcohol head group124. Major PL classes are defined by the 

structure of the head group, but PL diversity in eukaryotic cell membranes (i.e. more than 

1000 types) is ascribed to distinct molecular species classified according to the variation in 

fatty acyl chains esterified to the glycerol backbone at the sn1 and sn2 positions124, 127 (Fig. 

5). These fatty acids normally contain 14 to 24 carbon atoms and zero to six double bonds130. 

Generally, the sn1 alkyl chain is saturated or monounsaturated while the sn2 position is 

polyunsaturated130. Without the alcohol the parent compound is phosphatidic acid, an 

important precursor of PL biosynthesis present at low levels in all cells124. The polar 

(alcohol) moiety that is choline, ethanolamine, inositol or serine, can be esterified to the sn3 
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hydroxyl of glycerol through phosphoric acid (H3PO4) – thus giving rise to the lipids 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and 

phosphatidylserine (PS)127 (Fig. 5). The amphipathic nature of PLs that form unique 

membrane bilayers is attributed to the interaction of the hydrophobic (nonpolar) hydrocarbon 

fatty acyl tails with the hydrophilic (polar), negatively charged phosphorus-containing head 

regions. As the hydrocarbon chain linkage at the sn2 position is always an ester, the subclass 

referring to phosphatidyl results from an ester bond (in contrast to an ether or vinylether) at 

the sn1 position of the glycerol moiety128. 

 

Mammalian plasma membranes are characterised by asymmetric distribution of PLs, 

glycolipids (comprising lipid moieties with an adjoined sugar) and cholesterol131. The 

distribution and quantity of lipid components vary with important implications for membrane 

fluidity and function132. While PC is highly abundant constituting ~50% of total PL content, 

PE comprises 20-50%, PS ~10% with minor contributions of PI127, 133. Choline-containing 

PLs (i.e. PC) are mainly located on the exoplasmic leaflet while the acidic PI and the amino-

PLs (i.e. PE and PS) are enriched on the cytoplasmic leaflet133, 134. PLs have important 

structural and physiological functions and primarily define the permeability barrier of cell or 

organelle membranes by forming PL mono- or bilayers124. PLs do not have inherent catalytic 

activity, but influence a wide range of membrane-related cellular processes135. In particular 

PS, PI and PI phosphates (PIPs) form essential enzyme substrates for many signalling 

processes involving specific protein interactions. Cell bilayer matrices house many proteins 

involved in cell recognition, energy and signal transduction, solute transport and secretion, 

DNA replication, and provision of donor particles for synthesis of macromolecules136. The 

lateral and transverse lipid assembly into membranes are closely linked to their biosynthesis 
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in the ER, translocation from the ER lumen to the cell cytosol, and movement between the 

organelle compartments, endo- and ectoplasm137.  

 

 

Figure 5 | Composition of mammalian glycerophospholipids. Representation of the chemical configurations 
of the glycerophospholipids (PLs) in mammalian cell membranes. PL classes are defined by the polar moiety 
(X) attached to the phosphate head group. An ester, ether or vinylether linked to the hydroxy group of the 
glycerol backbone at sn1, respectively specifies the phosphatidyl, plasmanyl or plasmenyl subclasses. Molecular 
species are generated through variation in carbon atom number, and location and number of double bonds of the 
chains at R1, R’1 and R2. Phospholipase (PLA, PLC, PLD) cleavage sites are indicated128. 
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Owing to the diversity of membrane PL species and their important biological functions, lipid 

compositions must be carefully controlled. Membrane PL homeostasis is regulated by the 

processes of biosynthesis, remodelling, degradation and interorganelle trafficking, each the 

product of distinct enzymatic pathways. A comprehensive body of literature exists regarding 

PL synthesis, remodelling and degradation in mammalian cells128, 130, 138. Cellular levels of 

phosphatidic acid, the precursor of all PLs, are important for maintaining PL pools. Synthesis 

of phosphatidic acid entails sn1 acylation of glycerol-3-phosphate (by acyl-CoA:glycerol-3-

phosphate acyltransferase) to generate lysophosphatidic acid, which is further acylated (by 

lysophosphatidic acid acyltransferase) to produce phosphatidic acid de novo (Fig. 6). 

Phosphatidic acid may also be generated through diacylglycerol (DAG) phosphorylation by 

DAG-kinase or by enzymatic degradation (discussed later). PL synthesis using phosphatidic 

acid then follows either of two pathways: dephosphorylation of DAG (by phosphatidic acid 

phosphatase) for generation of PC, PE, PS or TAG; or conversion of phosphatidic acid to 

cytidine diphosphate (CDP)-DAG (by CDP-DAG synthase) for synthesis of the acidic PI, 

phosphatidylglycerol, or cardiolipin (Fig. 6). 
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De novo synthesis of PC occurs exclusively through the sequential activity of choline kinase, 

cytidyltransferase and cholinephosphotransferase via the CDP-choline (Kennedy) pathway 

(Fig. 6). PC can also be generated via methylation of PE by PE-N-methyltransferase, but this 

occurs primarily in hepatocytes139-141. Two pathways are involved in PE synthesis, namely 

CDP-ethanolamine and PS decarboxylation142. The CDP-ethanolamine pathway is analogous 

to that of PC generation, but with ethanolamine, not choline, as substrate. The cytidine 

triphosphate (CTP) phosphocholine or phosphoethanolamine cytidyltransferase reaction 

limits PC or PE synthesis via the Kennedy pathway. PE formation mediated by PS-

decarboxylase occurs in the inner mitochondrial membrane, but as PS is synthesised in the 

ER, evidence suggests that translocation of PE through the cell and to other membranes may 

be rate-limiting143. PS-synthase 1 and 2, respectively substitutes the PC and PE head groups 

via base-exchange with L-serine in the mitochondria-associated membrane compartment of 

the ER to produce PS142. PI is generated via a two-step process144. CDP-DAG is synthesised 

from phosphatidic acid and CTP by CDP-DAG synthase, which then undergoes condensation 

with myo-inositol by either CDP-DAG:inositol-3-phosphatidyltransferase or PI synthase to 

generate PI (Fig.6). 

 

Remodelling of de novo generated PLs, or the Lands’ cycle, maintains PL homeostasis and 

molecular species composition and involves cycles of deacylation and reacylation catalysed 

by the coordinated reactions of phospholipase A (PLA), acyl-CoA synthases, transacylases 

and LPL-acyltransferases (reviewed in145, 146). PL remodelling also mediates arachidonic acid 

(AA) signalling, enzyme activation in the inner mitochondrial membrane, oxidised PL repair 

and maintenance of functional alveolar surfactant130. Acyl chain removal from the glycerol 

backbone by PLA catalyses the committing step along the pathway. In particular, PLA1 and 

PLA2 respectively hydrolyse the acyl chain from the sn1 or sn2 positions of the glycerol 
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moiety. Following PLA-mediated acyl chain cleavage, a different fatty acid may be 

reacylated by the activity of acyltransferases, which catalyses the transacylation of an acyl 

group from acyl-CoA to various acceptors.  

 

The degradation of PLs has two important functions: As a result of the rapid yields of many 

PL species, degradation pathways maintain basal PL turnover, but also generates second 

messengers involved in signalling following stress or inflammatory stimuli147, 148. According 

to the broad body of literature available on PL synthesis, much less is known regarding 

cellular PL degradation mechanisms. However, the enzymes known as phospholipases 

mediate cleavage of mammalian PL substrates149. Three major phospholipases are described 

based on their sites of cleavage, namely phospholipases A, C and D (PLA, PLC and PLD) 

(Fig. 5). PLA mediated acyl-chain removal from the sn1 or sn2 positions yields 2-acyl- or 1-

acyl-LPL respectively, and a free fatty acid. Both PLC and PLD are considered 

phosphodiesterases148. PLC cleaves the bond before the phosphate of the glycerol backbone, 

thus forming DAG and a phosphorylated head group. The activity of PLC is essential for 

generating second messengers involved in signal transduction, for example inositol-3-

phosphate. Cleavage of the bond after the phosphate of the glycerol moiety is mediated by 

PLD, which produces phosphatidic acid and an alcohol head group150. PLD-catalysed 

hydrolysis of primarily PC is a third example of cellular phosphatidic acid generation. Even 

though levels of phosphatidic acid are transitory, these diacyl-glycerophospholipids serve 

essential functions in lipid biosynthesis, membrane curvature and signalling151. PLB exhibits 

both sn1 and sn2 fatty acyl ester hydrolysis, thus generating LPLs; but it can also act upon the 

acyl chain of LPLs as lysophospholipases (which is how PLB is commonly referred to)149. 
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7.2 Lysophospholipids 

LPLs are major products of the Lands’ cycle, which is primarily regulated by the concerted 

activities of PLA and LPL-acyltransferases (LPLAT)145, 152. The activity of PLA1 and PLA2 

thus generates LPLs, which may be reacylated to form intact PLs or hydrolysed by 

lysophospholipases to produce a PL backbone and a fatty acid. LPLAT, the key enzyme 

completing the remodelling process, is responsible for acylating the LPLs generated by 

PLA1/2. LPLs are thus bioactive PL metabolites that regulate important cellular functions and 

disease processes153, 154. With chemical structures similar to the glycerol-derived PLs, LPLs 

consist of a phosphate head group linked to a glycerol backbone at the sn3 carbon, but differ 

from PLs in that a single hydroxyl group is acylated at the sn1 or sn2 position155, 156 (Fig. 7). 

LPLs are de novo biosynthesised via the activity of phospholipases or acyltransferases from 

glycerol-3-phosphate and fatty acyl-CoA, or by PL fatty acid hydrolysis from either of the 

acyl chain positions155. Despite a simple structure and low abundance in cell membranes, 

LPLs display broad biological activity in numerous cell types and tissues involving neoplasia 

and immunity153, 157, inflammation158, cancer159, 160, and metabolic disorders like 

atherosclerosis161. Lysophospholipidomic interpretation is still in its infancy, but is a rapidly 

growing field of knowledge162. As a consequence, a clear understanding of the biological 

functions of lysophosphatidylcholine (lysoPC), -ethanolamine (lysoPE), -inositol (lysoPI) and 

-serine (lysoPS), remains to be elucidated155.    

        

LysoPC is derived from PC and reacylated by lysoPC acyltransferases (LPCAT)163. LPCAT2 

is strongly expressed in macrophages and along with lysoPC, which acts as chemoattractant 

to inflammation sites, contribute to an overall proinflammatory effect163, 164. The 

proinflammatory activity of lysoPC involves modulation of T cell functions165, 166, enhancing 

expression of proinflammatory cytokines166, 167 and conversion of pro-cytokines to their 
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biologically active forms by caspase-1 following lysoPC-dependent NADPH oxidase 

stimulation and reactive oxygen species (ROS) production168. LysoPE, a metabolite from PE 

hydrolysis by PLA2, is largely understudied. LysoPE has been implicated in cancer as marker 

metabolites in hepatocellular carcinoma169 and through chemotactic migration and invasion 

of ovarian cancer cells170, though anti-inflammatory activity has also been reported171. 

LysoPC and lysoPE can also form major constituents of oxidised LDL particles and LDs172, 

173.  

 

 

Figure 7 | Chemical structure of glycerol-based lysophospholipids. Representation of the chemical structures 
of the glycerol-derived lysophospholipids. R, fatty acyl chain155. 
 

7.3 Sphingolipids 

Another class of important structural mammalian cell membrane lipids are the sphingolipids. 

Sphingolipids contain three key structural elements, namely an 18C alkane (i.e. sphinganine) 

or alkene (i.e. sphingosine) sphingoid long-chain base (lcb), a fatty acid attached to the sn2 

carbon of the lcb via an amide-bond, and a hydrophilic head group linked to the sn1 

hydroxyl174-176. Head groups comprising sugars produce the glycosphingolipids, whereas 

phosphorylcholine generates sphingomyelin (SM), which represents the sphingolipid 

lysophophatidylcholine

lysophophatidylinositol lysophophatidylserine

lysophophatidylethanolamine
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analogue of PC (Fig. 8). Ceramides (Cer) consist of the sphingoid lcb and the sn2-linked fatty 

acid of variable length only, thus forming the backbone of all complex membrane 

sphingolipids177 (Fig. 8). Apart from the core moiety, structurally diverse sphingolipids are 

classified according to the free non-acylated sphingoid lcb (i.e. sphingosine), N-acylated 

sphingoid base or the complex N-acylated sphingoid base with polar moiety at the sn1 

position175. Sphingosine (d18:1) is the most abundant sphingoid base in animal tissues. It 

contains sn1 and sn3 hydroxyl groups, and an amine and trans-double bond in sn2 and sn4 

positions, respectively176. SM is largely located on the outer plasma leaflet (like PC), where it 

exerts diverse biological activities133.   

 

Figure 8 | Chemical structure of sphingolipids. Representation of the chemical structures of the ceramide and 
sphingomyelin sphingolipids in mammalian membranes. Ceramide comprises a sphingosine base with amide-
linked fatty acid and forms the hydrophobic backbone of the phosphorylcholine-containing sphingomyelin135. 
 

Important membrane associated sphingolipids that function in signalling and metabolism like 

Cer and SM, exhibit great structural diversity attributed to an excess of 20 identified fatty 

acid species in mammalian cells that differ in chain length and degree of saturation and 

hydroxylation178, 179. Cer can be generated in mammalian cells from the activity of SMase 

hydrolysis in the cell membrane, via the salvage pathway where complex sphingolipids are 

catabolised to sphingoid bases and reacylated to form Cer, or through de novo synthesis in the 

ER by enzymatic reactions using precursor molecules180. De novo Cer synthesis follows the 

condensation of palmitoyl-CoA (16:0) with L-serine to form 3-keto-sphinganine, which is 

Ceramide Sphingomyelin
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further reduced to sphinganine, N-acylated to dihydroceramide and after addition of a 4,5-

trans double bond by dihydroceramide desaturase, produces Cer180, 181. The reactions 

catalysed by serine palmitoyltransferase (generating 3-keto-sphinganine) and Cer synthase 

(CerS, catalysing fatty acyl-CoA addition to sphinganine generating the saturated Cer 

precursor) are the major regulatory steps along the de novo pathway181. Cer synthesised in the 

ER is then delivered to the Golgi apparatus by vesicular transport or Cer transport proteins 

(CERT). The conversion of Cer to complex sphingolipids or metabolites in the Golgi entails 

metabolism by Cer kinase to ceramide-1-phosphate, or by CerS for generation of glucosyl- or 

lactosylceramide126. Conversion of Cer to SM is mediated by SM synthase that transfers 

phosphorylcholine from PC, thus producing SM and DAG. In contrast, SM to Cer conversion 

occurs through the activity of SMase, which releases the phosphorylcholine head group from 

the sn1 position of the sphingoid base179. Interestingly, de novo generated Cer may also 

undergo degradation in the ER by either neutral or alkaline ceramidases, accordingly 

sustaining the balance of SM versus sphingosine and sphingosine derivatives182.  

 

The salvage pathway of Cer accumulation is primarily associated with late endosome or 

lysosomal compartments, which delivers 50 to 90% of the Cer pool183. Following the 

hydrolytic release of sphingolipids from the plasma membrane and internalisation by the 

endocytic or lysosomal compartments, acidic forms of SMase and glycosidase degrade SM or 

glycosphingolipids to Cer, which is further metabolised by acidic ceramidases to produce 

sphingosine126. Recycled sphingosine can then be directed towards glycerolipid synthesis or 

be reutilised for sphingolipid generation. Sphingosine kinases that catalyse ATP-dependent 

phosphorylation of sphingosine substrates leaving endosomes or lysosomes, generate 

sphingosine-1-phosphate (S1P)184. S1P is a pro-survival cell growth lipid that suppresses 

programmed cell death185. Conversely, S1P degradation is mediated by either S1P 
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phosphatase dephosphorylation back to sphingosine (reversible reaction), or by S1P lyase that 

produces hexadecenal and phosphoethanolamine (irreversible reaction). Both of the S1P 

lyase products are then reused for the production of PE184.  

 

Mammalian CerS consists of a six-member enzyme family (CerS1-CerS6) that are integral 

membrane proteins of the ER catalysing the acylation of sphinganine by N-acyltransferase 

(reviewed in126, 182, 186, 187). Each CerS displays specific catalytic activity towards acyl chains 

of defined length ranging from 14 to 26 carbon atoms that are saturated or monounsaturated. 

Research into the regulation of the CerS isoforms is limited. However, acyl-CoA specificity 

for each of the CerS enzymes have been identified: C18 for CerS1, C20 to C26 for CerS2, 

C22 to C26 for CerS3, C18 to C22 for CerS4, C16 for CerS5, and C14 and C16 for CerS6186. 

As Cer levels are affected by numerous sphingolipid enzymes and proteins regulating CerS 

stability and activity, identifying the precise contributions of each of the CerS enzymes to 

cellular Cer metabolism becomes challenging186.  Nevertheless, what is clear is that Cer with 

specific acyl chain lengths and/or saturation display unique membrane biophysical properties 

and mediate diverse cellular processes in signal transduction and disease188.  

 

7.4 Cholesterol  

The nonpolar sterol lipids in mammalian cells largely comprise cholesterol and its 

derivatives124. As a subgroup of steroids, cholesterol is a key integral lipid in plasma 

membranes and the trans-Golgi compartments and also exhibit important biosynthetic 

precursor and signalling functions57. Steroids consist of a core structure of C17 atoms fused 

into a four-ringed organic compound of three cyclohexane rings and a single cyclopentane124. 

The oxidation of, and variation in, functional groups attached to the four-ring core ascribes 

diversity to the steroid lipids. Cholesterol is the most abundant sterol in mammalian cells 
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with unique biophysical properties that influence membrane organisation, fluidity and 

signalling114. In addition to a role in membrane trafficking, esterified cholesterol is an 

essential component of cellular LDs189. LDs not only provide important nutrient reservoirs, 

but are dynamic cell organelles involved in diverse biological processes110. 

 

7.5 Eicosanoids 

Eicosanoids are primarily derived from C20 fatty acids known as AA (20:4n-6) and have 

wide-ranging transcellular and physiologic functions in homeostasis and inflammation190, 191. 

Biosynthesis of eicosanoids is dependent on the levels of free AA. The Lands’ cycle is 

instrumental to the generation of PUFA-containing PLs, which also constitute major sources 

of lipid mediators including eicosapentaenoic acid, docosapentaenoic acid and AA. 

Arachidonate is esterified to the sn2 hydroxyl of glycerol-derived PLs, in particular to PI. 

Upon cleavage of the ester bond by PLA2, a LPL and an AA is released. Distinct PI 

metabolic cascades may also generate free AA through the activity of PLC on AA-containing 

DAG backbones. For example, PLC will cleave the phosphodiester bond before the 

phosphate of PI-4,5-bisphosphonate (PIP2), yielding PI-1,4,5-trisphosphate (PIP3) after 

hydrolysis of the 1,2-cyclic phosphodiester, and DAG as products. The activity of DAG 

lipase then catalyses the sn2 removal of arachidonate from the glycerol moiety, thereby 

liberating a monoglyceride (MAG). Arachidonate can then be steered towards either of three 

pathways for synthesis of eicosanoids. Enzymatic conversion of AA by cyclooxygenase 

(COX), lipoxygenase (LOX) and cytochrome P450-monooxygenase (CYP450) will 

respectively generate the prostaglandins and thromboxanes, leukotrienes and lipoxins, and 

epoxyeicosatrienoic and hydroxyeicosatetraenoic acids192, 193. 
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8. Lipidomics: profiling of cellular lipid pathways and networks 

Lipidomics entail the comprehensive study of the organisation, activity and biological 

pathways of cellular lipids194. To investigate the lipid metabolome and its myriad metabolites, 

different analytical platforms should be employed. Dependent on the type of analysis method, 

various output levels can be obtained such as information on the lipid class, fatty acid sum 

composition, location of fatty acid attachment to the glycerol backbone, or position of the 

fatty acid double bond195. High performance liquid chromatography (HPLC) or gas 

chromatography (GC) methods are well-established and can analyse numerous lipid extracts. 

However, detection may be of moderate resolution or throughput capacity and may require 

the use of volatile compounds or radioactive in vivo labelling196. Though a relatively recent 

field when compared with proteomics or genomics, major progress in lipidomics research 

over the last decade was achieved by novel applications of chromatographic and spectrometry 

technologies197.  

 

Whereas traditional lipidomic strategies showed great promise, detailed lipid profiling has 

demonstrated rapid analysis of individual molecular species directly from biological extracts 

without pre-separation into lipid class198, 199. Advances in mass spectrometric techniques like 

nuclear magnetic resonance (NMR), electrospray ionisation (ESI) and tandem mass 

spectrometry (MS/MS) have greatly improved earlier limitations and now allow robust and 

reliable analysis of complex lipid mixtures200, 201. ESI is a highly suited method for 

characterising polar lipids in ion-containing solvents, such as PLs, glycolipids and 

sphingolipids, which results in singly charged molecular ions202. Addition of serial-separation 

(e.g. MS/MS) greatly simplified limitations in sample purification and derivatisation of GC-

MS methods199. ESI-MS/MS that utilises the precursor ion and neutral loss scanning 

capability of MS/MS is performed on minute quantities of unfractionated biological sample 
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extracts, and will quantify molecular species based on carbon number and saturation202. In the 

ESI-MS/MS method, collision-activated dissociation of the head group of each lipid will 

result in the formation of common fragments that are either charged or uncharged. Charged 

fragments will undergo positive or negative precursor ion scans while uncharged common 

fragments are exposed to neutral loss scanning. Continuous sample infusion and sequential 

precursor or neutral loss scanning will yield a complete lipid profile of all molecular species 

in a lipid class through a series of distinct mass spectra203. For quantitative results, the 

spectrometer setup (in precursor and neutral loss scanning mode) necessitates calibration for 

mass and energy of fragmentation as well as the addition of numerous internal standards. A 

drawback however, is the lack of distinction between acyl chains that make up the total 

carbon and double bonds of each molecular species, with the outcome that combined-acyl 

chain species are reported202, 203.  

 

8.1 Macrophage lipidomics 

Macrophages effortlessly phagocytose and eliminate invading microbes through production 

of reactive nitrogen and oxygen intermediates and by shuttling microbes to acidic and 

hydrolytic lysosomes204. Pathogenic Mtb, however, is one of the most successful intracellular 

bacterial species that has evolved numerous mechanisms of host manipulation. By subverting 

phagosome maturation and destruction from lysosomal hydrolases, Mtb-restrained vacuoles 

remain fusion-competent and are able to derive nutrients from the recycling endosomal 

network205, 206. The block in phagolysosomal fusion is mediated by Mtb membrane lipids207. 

The importance of PI and its phosphorylated derivates in signal transduction, cytoskeletal 

organisation and as substrates for modifying-enzymes is well demonstrated208, 209. Moreover, 

phosphatidylinositides are important mediators of discrete membrane trafficking events 

during organelle biogenesis following phosphorylation of the inositol head-group at the 3, 4 
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or 5 position (or in combination)210, 211. In particular, PI3P is required in abundance on 

endosome and phagosome membranes to mediate maturation through recruitment of distinct 

fusion proteins212. As calcium flux is also important for phagosome maturation, Mtb can 

inhibit this through suppression of sphingosine kinase activity213.  

 

While the physiological functions of single lipid mediators have been more studied214, 215, 

lipid profiles of host cells in the context of bacterial invasion are less documented. Yet since 

2008 a few important reports on macrophage lipidomics emerged216-221. LPS is a major 

membrane lipoglycan of Gram-negative bacteria with important endotoxic properties that 

activate immune cells via TLR4222. As a result, native or synthetic LPS (i.e. Kdo2-lipid A; 

KLA) stimulation in macrophages has been studied widely as in vitro or ex vivo models of 

bacterial immune cell activation216, 217, 219, 223. By developing robust LC-MS/MS platforms, 

the groups of Buczynski223 and Norris219 quantitatively described the eicosanoid profiles of 

diverse murine macrophages. In particular, Norris et al. examined KLA-dependent TLR4 

activation in murine resident alveolar, thiogycolate-elicited, bone marrow-derived and 

RAW264.7 macrophages219. Their results identified unique COX metabolism between KLA-

treated and -untreated cells, but also among macrophage types. All TLR4-activated cells 

expressed substantially more COX-derived species (5- to 188-fold; versus untreated cells) 

while the metabolite prostaglandin D2 (PGD2) was significantly elevated in immortalised 

(~250 pmol/µg DNA) compared to primary macrophages (<10 pmol/µg DNA)219.  

 

Dennis and co-workers217, in a model of LPS challenged RAW264.7 macrophages, assessed 

lipidome changes effected by bacterial inflammatory insult and pharmacological perturbation 

of the sterol pathway. Following KLA treatment, more than 400 molecular species were 

identified that reflected alterations in PL, sterol, and eicosanoid lipid profiles. While total PL 
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content remained unchanged over 24 hr in KLA-treated cells, reduced levels were recorded in 

control cells after 12 and 24 hours of treatment. In KLA-treated cells, a 7-fold increase was 

recorded in the phosphatidic acid species 32:0, 34:0, 34:1, 36:0 and 36:1. Saturated species of 

PI were elevated whereas species with polyunsaturation (i.e. 38:4) were reduced by 50% 

compared to control cells. Saturated free fatty acids and acyl-CoA increased in KLA-

stimulated cells. This coincided with a downregulation in elongase or desaturase 

transcriptional machinery. For example, low abundances of stearoyl-CoA desaturase (SCD1) 

mRNA reflected less monounsaturated acyl-CoA species. SCD1 is a key lipogenesis enzyme 

that forms the double bond in stearoyl-CoA to produce monounsaturated from saturated fatty 

acids224. In particular palmitoleic (16:1n-7) and oleic (18:1n-9) acid from palmitic (16:0) and 

stearic (18:0) acid, respectively224. In spite of being a key regulator of metabolism, SCD1 has 

been implicated in atherosclerosis, cancer and inflammation (e.g. loss of SCD1 attenuates 

inflammation in adipocytes)225, 226. Dennis et al. further recorded distinct changes in cellular 

sterols after 24 hours of KLA treatment217. Substantial elevation in cholesterol 25-

hydroxylase mRNA coincided with up to 8-fold enrichment of the precursor intermediates 

desmosterol and lanosterol. 25-Hydroxylase is an essential enzyme catalysing the reaction for 

25-hydroxycholesterol generation, a potent antiviral oxysterol implicated in cell membrane 

rearrangements that inhibit viral entry227. Interestingly, after KLA treatment the majority of 

sterol biosynthesis genes decreased with the exception of 3-hydroxy-3-methylglutaryl-CoA 

reductase (HMGCR)217, the rate-limiting enzyme of the mevalonate pathway responsible for 

NADPH-dependent generation of cholesterol and isoprenoids228. Elevated expression of 

HMGCR coupled with 2-fold more cholesterol in KLA-treated cells (versus control) 

suggested sterol synthesis. In addition, important changes in sphingolipid profiles were 

reported following KLA treatment in RAW264.7 macrophages. Compared with control cells, 

levels of SM, glycosphingolipids, Cer and the potent signalling metabolite S1P, were 
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elevated. The rise in sphingolipid abundance was linked to de novo biosynthesis as early 

intermediates in the pathway increased (sphinganine and dihydroceramide) and the primary 

biosynthesis enzyme (serine palmitoyltransferase) was upregulated. Cer species with very 

long-chain fatty acids were not affected by KLA treatment (i.e. C24:0 and C24:1). Yet, fatty 

acids and mRNA of SM and glycosylceramides were induced. A substantial increase in 

sulphated galactosylceramides was reported that might have been as a function of 

macrophage phagocytosis, but also as an anti-inflammatory signal since sulfatides are known 

suppressors of proinflammatory cytokines229. The researchers also recorded an early 10-fold 

upregulation of COX mRNA in KLA-treated cells. COX converts free AA, mobilised from 

the glycerol backbone sn2 position of membrane PLs or lysoPLs by PLA2, to precursor 

PGH2230. Whereas free arachidonate levels decreased after an initial spike (possibly due to 

elevated COX activity), several COX-derived metabolites (PGF2α, PGE and PGD2) were 

detected in culture media that were strongly correlated with upregulation of prostaglandin 

synthesis genes (Ptgs2 and Ptges)217.  

 

Dennis et al. furthermore assessed changes to macrophage lipid profiles after 

pharmacological inhibition of sterol biosynthesis217. Statin treatment prevented the KLA-

induced rise in biosynthetic intermediates, but had little effect on global cholesterol or 25-

hydroxycholesterol content (possibly as these molecules can be derived from uptake of 

cholesterol-rich lipoproteins114). In response to sterol pathway inhibition, distinct increases in 

eicosanoid species (i.e. PGD2 and PGE2) were associated with elevated mRNA of coinciding 

synthesis enzymes. Crosstalk between the sterol and eicosanoid pathways was independent of 

the LXR, an interesting finding as LXRs are key regulators of cellular cholesterol 

homeostasis231. This suggested involvement of an alternative conduit to the sterol-eicosanoid 

coupling. As the first documented study on quantitative immune cell lipidome dynamics it 
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greatly contributed to a better understanding of lipid profile changes following inflammatory 

activation and inhibition of a metabolic pathway.   

 

8.2 Significance of studying macrophage lipid metabolism during mycobacterial infection 

Intracellular pathogens like Mtb may target any of the unique lipid features of its host to 

manipulate cellular functioning for bacillus uptake, replication and persistence232, 233. Lipid 

profile analysis of the most abundant lipids within MA-induced foam cells is thus necessary 

to identify a possible structure-function involvement of lipids in cell signalling and 

membrane trafficking during TB. Therefore, studying the contribution of lipids in 

macrophages and how they change after treatment with various pathogen-associated MAs 

will allow us to better understand the role of MAs in TB.  

 

9. Aims 

Mtb cell wall MAs that are important pathogen virulence factors, are proven PAMPs and 

immune response steering agents. However, Mtb MAs display extensive structural variation 

in oxygenation class and proximal cyclopropane configurations influencing antigenicity, but 

are continuously remodelled depending on growth needs. To gain a better understanding of 

the biological function of each of the major MA classes, we investigated in this study the 

induction of foamy macrophage phenotypes and how their lipidomic regulation influenced 

the facilitation of intracellular mycobacterial growth. The objectives for each chapter are 

reported on as follows in this thesis:  

 

9.1 Chapter II: Mycolates of Mycobacterium tuberculosis modulate the flow of cholesterol 

for bacillary proliferation in murine macrophages 
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To better understand the mechanisms responsible for the establishment of active TB related 

granulomas, we investigated how in vivo treatment of mice with chemically synthetic MAs, 

each with a defined stereochemistry representing the separate major classes of Mtb 

mycolates, influence cell differentiation and support of mycobacteria in peritoneal 

macrophages. We assessed the influence of MA structure first on the induction of foamy 

macrophages and multinucleated giant cells identified by light and laser-scanning-confocal 

microscopy, second on cholesterol accumulation and finally on intracellular mycobacterial 

growth. 

 

9.2 Chapter III: Lipidome immunomodulation of murine macrophages by chemically 

synthetic mycobacterial mycolates 

In Chapter II of this thesis, we report how MAs differentially change the phenotype of 

macrophages to facilitate mycobacterial survival and proliferation. By using individual 

chemically synthetic MAs, each with a defined stereochemistry, representative of the three 

main classes of natural MA, mMA was found to cause vacuolation while kMA induced 

cholesteryl ester rich LD accumulation in murine macrophages. Only macrophages associated 

with kMA, but not mMA treatment, could sustain intracellular mycobacterial growth. αMA 

had no notable effect on macrophage physiology. We therefore hypothesised that the 

induction of phenotypically and functionally distinct macrophage populations by the 

oxygenated MAs could be accompanied by unique lipidome profiles. Employing an ESI-

MS/MS lipidomics approach, we therefore studied changes in the lipidome of murine 

peritoneal macrophages following in vivo treatment with chemically synthetic representatives 

of the major classes of Mtb MAs. We report here on changes in the composition of PLs, 

LPLs and sphingolipids among the lipidomes of murine peritoneal macrophages differentially 

treated with each of the MA classes. 
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9.3 Chapter IV: General Discussion 

In the final chapter of this thesis, we discuss the potential impact of the results obtained in the 

experimental chapters and how this may relate to the future development of novel anti-TB 

therapies and research.  

 

9.4 Appendix: Exploration of comparative ex vivo cellular technologies 

Considering the complex and diverse nature of immunological responses and the need for 

animal models to simulate human immune response models, extensive optimisation of 

experimental conditions and protocols were required. In the Appendix we thus outline the 

optimised conditions for this research project and the resulting observations that led to our 

eventual working experimental models as employed and described in the Materials and 

Methods in Chapters II and III.  
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1. Introduction 

Mycobacterium tuberculosis (Mtb), the aetiological agent of tuberculosis (TB), infects 

approximately 2-3 billion people globally1. Though only a minority of infected individuals 

(<15%) will develop pulmonary disease during their lifetime, most remain prolonged 

asymptomatic carriers that may develop active disease later on1. In this instance bacilli are 

not entirely cleared, but remain in a state of dormancy inside its host. Throughout this period, 

Mtb resides inside lung granulomas, the main histopathology of TB2. The granuloma milieu 

is characterised by a multifaceted host immune response of containment and destruction, yet 

Mtb bacilli are able to counteract and evade host defences3-5. During active TB, granulomas 

are characterised by large cell aggregates of lymphocytes, neutrophils, dendritic cells and 

peripheral fibroblasts6. Key effector cells of granuloma formation are macrophages, which 

can differentiate into vacuolar multinucleated giant cells (MGCs) or lipid-laden foam cells7. 

Tuberculous bacilli may reside in foam cells or escape into the cell-free caseous centre of the 

granuloma2, 7. The biochemical signalling pathways involved in foamy phenotype regulation 

remain understudied. Growing evidence indicates that an advanced metabolic network stands 

at the centre of the unique adaptation of Mtb in its host macrophage8-10, regulating the 

manifestation of latent, chronic or acute TB. 

 

The Mtb cell envelope comprises intricate layers of peptidoglycan, arabinogalactan, 

glycolipids, mycolic acids (MAs; α-alkyl, β-hydroxy fatty acids) and lipoproteins, with MAs 

being the dominant constituent11, 12. The structural and biochemical properties of MAs have 

been reviewed recently13. In short, these wax-like hydrophobic lipids comprise a mycolic 

motif with long non-functionalised alkyl chain and a meromycolate chain with up to two 

functional groups that can be either oxygenated (distal group) or unoxygenated (distal or 

proximal group)13. Three main Mtb MA classes exist: the most abundant unoxygenated 
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alpha-MA (αMA), the less abundant oxygenated methoxy- (mMA) and the least abundant 

keto-MA (kMA; Fig. 1)14, 15. Orientation of the proximal cyclopropane differs. αMA 

essentially exists in cis- configuration (though a small amount of trans- may be present), 

whereas mMA and kMA contain either cis- or trans-cyclopropanation with an adjoining 

methyl branch11. Whilst the level of αMA is fixed at ~53% and oxygenated MA at ~47%, the 

ratio between the two oxygenated MAs varies with methoxy at 32-40% and keto at 7-15%16, 

depending on the growth stage of the bacilli17-19. Mtb envelope derived lipids potently 

influence host immunity20-22, while host cell lipidomes are exploited by intracellular 

pathogens like Mtb to gain entry and replicate23. The work by Cole et al. on deciphering the 

Mtb genome identified two distinct sets of complex enzymatic machinery for successive 

biosynthesis of fatty acids, meromycolates and long carbon chain MAs24. A MA-rich cell 

wall that can be altered depending on physiological requirements is essential for Mtb 

virulence17, 18. We previously showed that in vivo MA treatment induced peritoneal and 

alveolar macrophages of the foam phenotype in mice25, 26, similar to that in macrophages 

from the TB granuloma27. At the onset of TB infection, foam cells form that are 

characteristically enlarged and filled with multiple lipid droplets (LD) and vacuoles28, 29. 

Cholesterol is abundantly distributed across cell membranes and forms a major constituent of 

LDs30, 31. It also plays a unique role in Mtb virulence and pathogenesis. Mtb preferentially 

catabolises cholesterol as nutrient source whilst its acquisition, through a unique Mtb import 

system, is necessary to establish and maintain persistent infection32, 33. In macrophages, the 

genetic regulator of cellular cholesterol homeostasis is the liver X receptor (LXR)34. LXRs 

are transcription factors that act as cholesterol sensors and that maintain the balance of 

cholesterol uptake and export through regulation of expression of cholesterol-associated 

target genes35.  
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2. Research aims 

� To better understand the mechanisms responsible for the establishment of active TB 

related granulomas, we investigated how in vivo treatment of mice with chemically 

synthetic MAs, each with a defined stereochemistry representing the separate major 

classes of Mtb mycolates, influence cell differentiation and support of mycobacteria 

in peritoneal macrophages. We assessed the influence of MA structure first on the 

induction of foamy macrophages and MGCs identified by light and laser-scanning-

confocal microscopy, second on cholesterol accumulation and finally on intracellular 

mycobacterial growth.  

 

� To determine how foam cells brought about by non-tuberculous means compares to 

foam cells induced by the different mycolates, we also investigated cholesterol 

accumulation and mycobacterial growth of peritoneal macrophages from LXR-

deficient mice.  

 

Our results show that Mtb mycolates differentially steer host macrophages to either an 

enlarged vacuolar or a lipid-laden foamy phenotype. We report it is kMA that induces mainly 

cholesterol ester accumulation and intracellular LDs to sustain facilitation of Mycobacterium 

bovis bacille Calmette-Guérin (BCG) proliferation. mMA was found to induce vacuolation 

with no change in cholesterol ester levels and no improvement in the ability to sustain and 

facilitate mycobacterial growth. αMA treatment had a negligible effect on these parameters. 

In macrophages with a deficiency in LXR activity that is characterised by perturbed 

cholesterol transport or export, we recorded foam cells with abundant cholesterol ester-

containing LDs that showed elevated BCG replication.  
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3. Materials and methods 

3.1 Mycolic acids 

Natural MA mixture was isolated and single synthetic MAs synthesised as previously 

described16, 36-38. The single MAs used for in vivo murine treatment in this study all contained 

cis-cyclopropanation, referring to the orientation of the proximal cyclopropane. MA 

treatments comprised cis-αMA, cis-mMA, cis-kMA consisting of a mixture of both epimers 

of the distal α-methyl-ketone group with S- and R-stereochemistry, and a natural isolated 

mixture of all three MA classes (each as a complex mixture of homologues) similar to the 

natural composition of MAs in the Mtb cell wall (MA mix) (Fig. 1), i.e. ~53% αMA, ~38% 

mMA and ~9% kMA.  

 

3.2 Animals  

Mice used were specific pathogen-free C57BL/6 WT females, aged eight to twelve weeks 

(Janvier Labs, France). C57BL/6Bom WT and LXRα-/-β-/- mice39 were bred in the animal 

facility of Ghent University. Animals were housed individually in a temperature- and light- 

controlled facility and received mixed ration feed and water ad libitum. Experiments were 

preapproved by the Ghent University Ethical Committee for Animal Experimentation in 

accordance with current European laws regarding the welfare and humane use of animals. 
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Figure 1 | Mycolic acid structures. The biochemical structures of the synthetic MAs are given for examples of 
the alpha (αMA; JR1080), methoxy (mMA; JR1046) and keto (kMA; GK324) classes containing cis-
cyclopropanation. Numbers in brackets represent carbon chain lengths and wiggly line indicates a mixture of 
stereoisomers at that position.  
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3.3 Experimental design 

Mice were treated intraperitoneally (i.p.) with various control or MA solutions two days prior 

to harvesting of peritoneal exudate cells (PEC). Macrophages from PEC were cultured for 

three days and live cells fluorescently labelled for foam cell markers and examined by laser-

scanning-confocal microscopy on each day (0 h, 24 h and 48 h time points; Supplementary 

Fig. S1). The mycobacterial model was similar to the foam cell model except that following 

overnight adherence, cells were infected for 6 h with M. bovis bacille Calmette-Guérin 

expressing the dsRed fluorescent protein (BCG-dsRed; a gift from Prof. Ben Appelmelk from 

the Department of Medical Microbiology and Infection Control at the Vrije Universiteit 

University Medical Centre in Amsterdam via the Unit of Medical Biotechnology at the 

Inflammation Research Center in Ghent). After three washes with endotoxin-free PBS 

(Lonza), the cells were stained with fluorescent markers for confocal microscopy (0 h) to 

assess macrophage morphotype or left for up to five days to measure mycobacterial growth 

(48 h and 96 h). The LXR model was similar to the mycobacterial model apart from mice 

were not treated with MAs prior to harvesting PEC.  

 

3.4 Mycobacterial culture and infection 

BCG-dsRed has been described previously40. The BCG strain Copenhagen (Danish 1331) 

was used here 41, which has no mMA, but similar quantities each of αMA and kMA42. 

Bacterial cultures were grown in Middlebrook 7H9 broth (Difco) supplemented with 0.2% 

glycerol, 0.05% Tween-80 and 10% Middlebrook AODC enrichment containing oleic acid, 

albumin, dextrose and catalase (Becton Dickinson). BCG expanded to an OD600nm of 0.8-1.0 

was used to infect cells ex vivo at a multiplicity of infection (MOI) of 1 bacterium per cell for 

6 h. Following the 6 h infection, cells were washed three times with warm endotoxin-free 

PBS and cultured at 37°C and 5% CO2. 
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3.5 Injectable solutions and macrophage isolation 

Liposomes were used as carrier to deliver the highly hydrophobic MA compounds to target 

cells. As a first step, L-α-Phosphatidylcholine (PC, Sigma) powder was dissolved in 

chloroform at 100 mg/ml (10% w/v). PC and MA dissolved in chloroform were vortexed and 

heated before undergoing dehydration on a heat block (90°C) and the dried lipids recovered 

in endotoxin-free PBS. Solutions underwent a series of vortex and sonication steps at 65°C 

until homogenous milky consistency. Mice were immediately treated in vivo by i.p. injection 

(25 µg MA/100 µl/mouse). A liposome control (Lipo) was formulated as described for the 

MA solutions, but without the addition of any synthetic MA. Two days after in vivo 

treatment, mice were euthanized via cervical dislocation and PECs harvested by peritoneal 

lavage. Mouse abdomens were decontaminated with 70% ethanol and 10 ml ice cold 

endotoxin-free PBS injected i.p. Following a short abdominal massage, PECs were removed 

into sterile 15 ml tubes and kept on ice until further processing by centrifugation (1200 rpm, 

4°C, 10 min) and red blood cell lysis (ACK lysing buffer, Lonza; 50% v/v). PECs were 

seeded in 250 µl culture medium (5x105 cells) in µ-Slide 8-well microscopy plates (Ibidi). 

Culture medium consisted of RPMI 1640 (Gibco) supplemented with LPS-free and heat-

inactivated FCS (10%), sodium pyruvate (2 mM), non-essential amino acids (1%), 

penicillin/streptomycin antibiotics (0.2%), and β-mercaptoethanol (0.1%). Cultures were 

enriched for macrophages by overnight adherence. All cells were cultured at 37°C and 5% 

CO2.  

 

3.6 Light and laser-scanning-confocal microscopy 

An aliquot of cell suspension equal to 5x104 to 1x105 cells was taken for cytospin analysis. 

The cytospin filter was primed with 100 µl PBS (300 rpm, 1 min) before addition of 200 µl 

cell suspension (300 rpm, 5 min). After an overnight drying step, cells were fixed in methanol 
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for 30 min at -20°C and dried for 2 h. Cells were stained with undiluted May-Grünwald for 5 

min (granular stain), washed in PBS, and stained for 20 min in 20x diluted Giemsa (nuclear 

stain). Cells received a final wash with bi-distilled water and were left to dry overnight. At 

least 200 cells were counted per treatment with a standard light microscope.  

 

Live cells were stained with fluorescent markers for confocal microscopy at the time points 

specified in culture medium without amines and serum at 37°C for 30 min. Nuclear DNA 

was stained with Hoechst (1 µM), cellular cytoplasm with CellTrackerRed or 

CellTrackerBlue (10 µM) and neutral LDs with Bodipy493/503 (8 µg/ml; Molecular Probes). 

Cells were washed three times in warm endotoxin-free PBS to remove unbound probe and 

fixed consecutively for 15 min in 2% then 4% paraformaldehyde. Macrophages were 

classified as enlarged vacuole-positive (V+) when their cell size was ≥24 µm and multiple 

large vacuoles were present. Fluorescently labelled cells were viewed on a Leica TCS SP5 

AOBS inverted confocal microscope with a 63x HCX PL Apo 1.4 oil objective and stacked 

images taken at 0.42 µm slices with a spectral photomultipliers DFC320 colour camera (36-

bit, 7 megapixels, non-confocal). Training and technical support was provided by the Bio 

Imaging Core facility of the Flemish Institute of Biotechnology (Ghent).  

 

3.7 Quantification of intracellular cholesterol content 

Macrophage intracellular cholesterol was quantified using the Calbiochem 

cholesterol/cholesteryl ester quantitation kit (Merck Millipore, Cat. No.428901). Cell pellets 

(1x106 cells) were freeze-thawed five times in liquid nitrogen, homogenised with pestle in 

200 µl chloroform:isopropanol:NP40 (7:11:0.1, v/v/v) and centrifuged for 10 min at 14,000 

rpm. The organic lower phase was transferred to a clean microcentrifuge tube and air-dried at 

50°C. To remove any residual chloroform, samples were further vacuum-dried for 30 min at 
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45°C. The dried lipids were dissolved in 200 µl cholesterol reaction buffer at 40°C for two 

cycles of heating (10 min) and vortexing with a final vortex of 5 min. All extracted samples 

and standards were added to a volume of 50 µl in a black 96-well plate followed by 50 µl of 

reaction mix 1 (with cholesterol esterase) or 2 (without cholesterol esterase) for determination 

of total cholesterol and free cholesterol, respectively. The assay plate was incubated at 37°C 

for 60 min; then fluorometrically measured on a FLUOstar OMEGA microplate reader 

(~535/590 nm). Cholesterol standards were plotted against relative fluorescence units and the 

concentration of total, free and esterified cholesterol (free subtracted from total) calculated as 

µg/106 cells. 

 

3.8 Statistical analyses 

The number of mice used for experiments comprised a minimum of five mice per treatment. 

Data were obtained from at least three independent experiments or 500 cells from no less 

than five separate microscopy images. The distribution of all data was determined by a 

Shapiro-Wilk (W) normality test. Nonparametric Mann-Whitney U or Kruskal-Wallis one-

way analysis of variance tests (H; with Dunn’s ranked sum multiple comparisons) were used 

to assess the proportion of foam cells in PEC cytospins and cellular cholesterol content 

(dependent variables) for each treatment or cholesterol fraction (categorical variables). 

Generalised linear model analyses (GLM: Poisson distribution with sequential Sidak pairwise 

comparisons) were used to assess counts of the number of cellular vacuoles, LDs, and bacilli 

(dependent variables) for each treatment or MOI at specified time points (predictors). Image 

processing and quantification of cellular markers for confocal microscopy were conducted 

with Volocity 3D Image Analysis Software (PerkinElmer Inc.). All other statistical analyses 

were performed with IBM SPSS Statistics 23 (IBM, Chicago IL, USA) and GraphPad Prism 
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5 (GraphPad Software, Inc.). Results were presented as mean ± standard error of the mean 

(SEM) and were considered significant at P ≤ 0.05.  

 

4. Results 

4.1 Mycolic acids of the methoxy oxygenation class promote the formation of multi-vacuolar 

foam cells  

To assess the influence of MA structure on the induction of multi-vacuolar giant foam cells, 

mice were i.p. injected with 25 μg of various MAs (alpha, methoxy or keto) (Fig. 1) or 

control compounds (PBS or liposome carrier without synthetic MA). PECs were harvested 

two days after treatment. Macrophages were examined by cytospin analysis and laser-

scanning-confocal microscopy. PEC from mice treated with PBS, liposome carrier without 

synthetic MA (Lipo) and αMA-containing liposomes contained <10% vacuolar foam cells 

(Fig. 2A-B). In contrast, PEC from mice treated with liposomes containing kMA or mMA 

showed ~15% and 27-30% vacuolar foam cells, respectively. GLM analysis showed a clear 

difference among the treatments in their ability to induce vacuoles (Supplementary Table S1). 

mMA clearly effected vacuole formation with significantly more enlarged vacuole-positive 

(V+) cells (25-35%) as compared to kMA (5-10%) and other treatments (<5%) (Fig. 2C-D). 

In addition, the proportion of enlarged V+ cells from the mMA cell population remained 

significantly elevated over time when kept in culture. At the 48 h time point, the 

macrophages from mMA treatment remained enlarged, while all other treatments resulted in 

macrophages returning to normal size (<5% enlarged V+ cells) (Fig. 2C). MGCs were seen 

mainly among the enlarged V+ cells induced by mMA (Fig. 2E).  
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Figure 2 | Mycolic acids of the methoxy oxygenation class promote the formation of multi-vacuolar foam 
cells. The proportion of vacuole-rich macrophages was determined by light microscope images of May-
Grünwald-Giemsa stained cells on cytospins and by laser-scanning-confocal microscopy (mean ± SEM). (A) 
Percentage of foam cells in PEC fraction from the control (PBS and Lipo), αMA, mMA and kMA treatments. 
(Shapiro-Wilk: W = 0.801, **P < 0.01; Kruskal-Wallis: H = 12.100, *P < 0.05, df = 4, n = 3 independent 
experiments; ns, not significant). (B) Light microscope images of cytospins showing vacuolar foam cells in PEC 
fraction. Images were taken at 100x oil magnification. Arrows indicate multinucleated giant cells (MGCs). Scale 
bar: 10 µm. (C) Induction of enlarged vacuole-positive (V+) cells is shown for control (PBS and Lipo) and the 
various MA-treated mouse peritoneal macrophages over time, as measured by laser-scanning-confocal 
microscopy (GLM: Wald Chi-Square = 753.924, ***P < 0.001, df = 14, n = 5 per time point; ns, not 
significant). (D-E) Laser scanning confocal microscopy images showing enlarged V+ cells for PBS, αMA and 
mMA treatments. Arrows indicate MGCs. Stacked images, 63x oil objective. Scale bar: 20 µm. (E) Zoomed 
images from the mMA treatment in D. 
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4.2 Mycolic acids of the keto oxygenation class induce foam cells rich in cholesterol-laden 

lipid droplets  

A clear difference was observed among treatments in their ability to induce LD accumulation 

(Fig. 3; Supplementary Table S2). kMA significantly induced LDs, up to 3-fold higher in 

comparison to all other treatments (Fig. 3A). Clearly, kMA was the strongest inducer of 

intracellular lipids in peritoneal mouse macrophages at all time points assayed. In order to 

normalise for LDs involved in regular macrophage metabolic activity, the LD number in 

PBS-treated cells was selected as baseline value against which relative increases or decreases 

of LDs in other treatments were compared. From this relative analysis, kMA again emerged 

as the MA class that significantly and prominently induced an increment in LDs in the 

macrophages (Fig. 3B-C). To further substantiate and quantify the accumulation of LDs in 

kMA-treated macrophages, the levels of intracellular active cholesterol and stored cholesteryl 

ester was determined in peritoneal macrophages isolated two days after oxygenated mMA or 

kMA treatment (Supplementary Table S3). Macrophages from the kMA treatment contained 

substantial intracellular esterified cholesterol, which also accounted for 77% of the total 

cholesterol content (Fig. 3D). Thus, the ratio of esterified-to-free cholesterol was distinctly 

elevated in the LD inducing kMA treatment and not in vacuole inducing mMA treated cells 

(Fig. 3D-E). 
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Figure 3 | Mycolic acids of the keto oxygenation class induce foam cells rich in cholesterol-laden lipid 
droplets. The induction of LDs is shown for peritoneal macrophages from control (PBS and Lipo) and αMA, 
mMA and kMA-treated mice (mean ± SEM). (A) LD accumulation in murine macrophages harvested at 
specified time points following the control and various MA treatments (GLM: Wald Chi-Square = 353.662, P < 
0.001, df =14, n = 5 per time point). (B) Relative induction of LDs over time as compared to PBS (broken line). 
(C) Laser-scanning-confocal microscopy images depicting variation in LD induction for PBS, αMA and kMA 
treatments. Arrows indicate LD filled cells. (D) Cellular cholesterol content of variously treated cells. Bars 
represent total cholesterol, subdivided in the amount of free and esterified cholesterol for each of the treatments 
(µg/106 cells). Upper panel, fraction percentages of free and esterified cholesterol are shown in the bars (n = 12 
mice; Shapiro-Wilk: W = 0.813, P < 0.05; Kruskal-Wallis: H = 24.726, P < 0.001, df = 3). Lower panel, the 
ratio of esterified-to-free cholesterol is given for the various treatments (Kruskal-Wallis: H = 26.554, P < 0.001, 
df = 3). (E) kMA induced LDs in peritoneal macrophages as identified by the neutral lipid probe 
Bodipy®493/503. (C, E) Stacked images, 63x oil objective. Scale bar: 20 µm. Significant P values were ranked 
as P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***); ns, not significant.       
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4.3 Mycolic acid induced lipid droplet accumulation in macrophages promotes BCG 

proliferation  

In order to determine to what extent LD induction by kMA or vacuole induction by mMA 

may affect mycobacterial growth, peritoneal macrophages from mice treated with kMA or 

mMA were infected with BCG-dsRed and cultured for five days (Fig. 4A). Control groups 

again consisted of peritoneal macrophages isolated from mice injected with PBS (placebo) or 

the unoxygenated αMA. Infection of the macrophages with BCG did not abrogate the 

accumulation of LDs in kMA-treated macrophages and did not induce, as such, an 

accumulation of LDs in placebo- or mMA-treated macrophages (Fig. 4B, upper panel). 

Strikingly, BCG replication was strongly enhanced in the kMA-treated macrophages (Fig. 

4C), resulting in a near 3-fold increment in BCG numbers compared to the placebo-treated 

macrophages or macrophages treated with mMA (Fig. 4B, lower panel; Fig. 4D; 

Supplementary Table S4-S5). Macrophages from mice treated with a natural mixture of MA 

made up of αMA (~53%), kMA (~9%) and mMA (~38%) showed an intermediate induction 

of LDs as well as BCG replication (Fig. 4B), indicating that the presence of either mMA 

and/or αMA does not inhibit the LD-inducing and BCG proliferative biological function of 

kMA. 
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Figure 4 | Mycolic acid induced lipid droplet accumulation in macrophages promotes BCG proliferation. 
Following in vivo treatment with MA, peritoneal macrophages were infected ex vivo with BCG-dsRed (MOI 1, 
broken line) and cultured until timed interval measurements were taken by laser-scanning-confocal microscopy 
(mean ± SEM). (A) Laser-scanning-confocal microscopy images (zoomed) showing macrophages from mock or 
BCG infections. The presence of a BCG-dsRed bacillus can be clearly distinguished. Scale bar: 2.5 µm. (B) 
Upper panel, LD accumulation in peritoneal macrophages over time (GLM: Wald Chi-Square = 636.496, P < 
0.001, df = 17, n = 5 per time point). Lower panel, proliferation of BCG bacilli over time (GLM: Wald Chi-
Square = 250.303, P < 0.001, df = 17, n = 5 per time point). On the X-axis, “Mix” denotes a natural purified MA 
extract consisting of ~53% αMA, ~38% mMA and ~9% kMA. (C-D) Laser-scanning-confocal microscopy 
images depicting a clear difference in the presence of BCG-dsRed bacilli in peritoneal macrophages from mice 
treated with either kMA or mMA. Stacked images, 63x oil objective. Scale bar: 20 µm. Arrows indicate BCG-
dsRed bacilli. Significant P values were ranked as P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***); ns, not 
significant.       
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4.4 Assessment of mycobacterial growth in lipid droplet-accumulating macrophages from 

LXR-deficient mice 

In order to determine whether foamy macrophages brought about by non-tuberculous means 

would also display elevated intracellular mycobacterial growth similar to kMA-treated 

macrophages, we investigated this parameter in peritoneal macrophages from LXR-deficient 

KO mice. Macrophages deficient in LXR contained abundant LDs sustained over time (Fig. 

5A; Supplementary Fig. S2). This was accompanied with intracellular accumulation of 

esterified-to-free cholesterol at a ratio of ~8:1 in KO mice (Fig. 5B). Strikingly, these LD-

accumulating macrophages, elicited by a deficiency in LXR activity, also showed a 

significantly increased mycobacterial growth as compared to macrophages from WT mice 

(Fig. 5C; Supplementary Table S6-S7).  
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Figure 5 | Mycobacterial growth in lipid droplet accumulating macrophages from LXR-deficient mice. 
(A) Macrophages from WT and LXR-deficient mice were cultured for five days and the intracellular LD 
prevalence analysed by laser-scanning-confocal microscopy. KO-cells contained ~10-fold more cellular LDs in 
comparison to WT-cells, though no significant change in the number of LDs per 100 cells was observed over 
time (GLM: Wald Chi-Square = 99.093, P < 0.001, df = 5, n = 4 per time point; sequential Sidak pairwise 
comparisons P > 0.05). Laser-scanning-confocal microscopy images depicting clear morphological differences 
in LD prevalence between WT and KO macrophages. Scale bar: 20 µm.  (B) Cholesteryl esters accounted for 
88% of total cholesterol in LXR-deficient cells (left panel) that also contained significantly elevated ratios of 
intracellular esterified-to-free cholesterol (right panel; Mann-Whitney: U = 144.000, P < 0.001, df = 1, n = 12 
mice). (C) Macrophages from WT and KO mice were infected ex vivo for 6 h with BCG-dsRed (MOI 1, broken 
line) and cultured for five days. Mycobacterial growth was measured by laser-scanning-confocal microscopy at 
specified time points, and was significantly increased in LXR-deficient cells over time (GLM: Wald Chi-Square 
= 576.689, P < 0.001, df = 17; n = 6 per time point; sequential Sidak pairwise comparisons P < 0.05). Data 
represent mean ± SEM. Significant P values were ranked as P < 0.05 (*) and P < 0.001 (***); ns, not 
significant.       
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5. Discussion 

The hallmark response to Mtb infection is the formation of granulomas that, in spite of being 

crucial to host protection, are exploited by mycobacteria for survival and persistence43. 

Granulomas contain distinct macrophage populations of which foam cells loaded with neutral 

lipids and giant cells containing abundant vacuoles are characteristic44. It was shown 

previously that natural, purified Mtb MA induces cellular features similar to those observed 

in granuloma cell populations25. However, as MAs are heterogeneous, we determined in this 

study to what extent examples of individual MA classes sustain the foamy and/or vacuolar 

giant cellular traits in macrophages. The clear difference reported here between mMA and 

kMA treatment in murine macrophages – a distinct induction by mMA of vacuoles without 

LDs and an upregulation of LDs without vacuoles by kMA – indicates the occurrence of 

independent triggers for giant versus foamy cell phenotypes during Mtb infection. The 

pathophysiological significance of these independent macrophage responses possibly reflects 

a strategy by Mtb to persist inside the key immune effector cell responsible for its 

elimination45-47. In nature, the inflammatory neutral αMA class makes up approximately 50% 

of all MAs whereas the ratio of pro-inflammatory mMA to kMA classes in the Mtb bacillus 

cell wall is variable and may be tuned to complement growth and persistence13, 17, 18. Korf et 

al.25 previously showed that macrophages from mice treated with the natural MA mixture 

(similar to the MA mix used in this study) containing approximately 32-40% methoxy 

mycolates, accumulated large intracellular vacuoles like those reported by us here after 

treatment with pure (100%) mMA. Our results furthermore showed that the macrophages 

harvested from mice after natural MA mix treatment, which contains 7-15% keto mycolates, 

significantly accumulated intracellular LDs and allowed for mycobacterial growth, 

comparable to the macrophages from the pure (100%) kMA treatment group, but reduced by 
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about half. One could therefore anticipate that the changes brought about by regulation of the 

MA class composition by Mtb will not be extreme.  

 

LDs are widespread cell organelles dedicated to the storage of neutral lipids like cholesteryl 

esters48. Numerous studies have reported on the close association of this distinctive lipid 

organelle with Mtb pathogenesis28, 46, 49-52. The dynamic interaction of the LD with the Mtb-

containing vacuole was recorded in an in vitro granuloma model by Peyron and team28. 

Electron microscopy analyses of foam cells showed that phagosomes containing bacilli 

migrated towards LDs and eventually engulfed them. D’Avila et al.53 observed in a murine 

model of TB using the vaccine strain BCG, a dose-response in LD formation over time. Close 

associations between LDs and phagosomes were recorded in BCG-infected treatments, with 

significant LD induction observed after 24 hours that remained elevated for about two weeks 

after infection. Cytoskeleton arrangement and phosphatidylinositol-3-kinase, an enzyme 

involved in cellular regulation of proliferation, trafficking and metabolism54, were identified 

to play key roles in the LD recruitment to bacilli-enclosed phagosomes55. It is thus clear that 

pathogenic mycobacteria regulate biogenesis or accumulation of host cell lipids into LD-

confined organelles, which may be further manipulated to intimately associate with the 

phagosomes enclosing the bacilli. An important question is the pathophysiological relevance 

of this association. Research suggests that the LD-phagosome interaction serves a dual 

purpose: at one end to benefit the microorganism and at the other to aid the host cell in 

microbe elimination28, 32, 56. LDs may serve as a nutrient source to the bacillus through direct 

assimilation of host cell lipids 28 or as nutrient reservoir during latency32. In contrast, host 

cells employ LDs to disseminate important anti-bacterial factors as was recorded in an in 

vitro study of latex bead phagosomes and pathogenic mycobacteria56. Phagosomes infected 

with Mtb and exposed to distinct lipids (i.e. arachidonate, ceramide and sphingomyelin) 
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induced actin assembly in macrophages, a process involved in microtubule organisation and 

LD trafficking55. Lipid exposure also effected phagolysosomal fusion and decreased 

phagosome pH, events indicative of phagosome maturation and engagement of bactericidal 

machinery56. It was noted that the kMA induced LD accumulation in macrophages tended to 

rapidly return to normal after removing the kMA stimulation, while the mMA induced 

vacuolation of the macrophage was maintained after removal of mMA. Enlarged intracellular 

vacuoles, like those induced after treatment with mMA, represent structures formed by 

invagination of the external cell membrane phospholipid bilayer into the cytosol57. These 

double-layered vacuoles form stable structures that essentially provide a compartment for 

upholding the bacterium. LDs are phospholipid monolayer organelles critically involved in 

cellular lipid metabolism58. As dynamic structures mediating lipid exchange or consumption, 

removal of the LD-inducing stimulus can be expected to coincide with rapid turnover and/or 

catabolism of the LDs by cellular machinery.  

 

As indicated above, we confirmed that αMA is functionally neutral and showed that the 

oxygenated MAs effected pronounced changes with remarkable segregation of foam cell 

features: mMA induced enlarged multi-vacuolar cells whereas kMA stimulated cells to 

accumulate LDs with most of its cholesterol converted to the cholesteryl ester storage form. 

We next verified the relevance of these responses to intracellular growth of mycobacteria. 

Using kMA-induced foamy cells and mMA-induced giant cells, we infected these 

macrophages ex vivo with BCG-dsRed and measured replication of the bacilli over time. Our 

results showed that intracellular growth was promoted in kMA-induced foamy macrophages, 

but not in mMA-induced giant cells. Macrophages classically convert into foam cells through 

a dysregulation in the balance between influx and efflux of cholesterol. Cholesterol is 

transported to peripheral macrophages in LDL that are taken up by the cell through the LDL 
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receptor, or in the oxidized form, through scavenger receptors SRA and CD36. Cholesterol 

efflux is mediated by the transporters ABCA1 and ABCG1 that load the cholesterol on HDL 

for transfer to the liver, a mechanism known as reverse cholesterol transport. These processes 

are regulated by the lipid sensing nuclear receptors LXR and PPARγ. A direct role for LXR 

in mycobacterial foam cell formation has not been reported. However, mice deficient in LXR 

show spontaneous foam cell formation59. LXR-deficient macrophages may be considered a 

cell model of the late stage of Mtb infection, where the macrophage has been modified to 

shut off its cholesterol export without limiting cholesterol import, aiming at providing a rich 

sterol nutrition source for mycobacterial growth and replication. We therefore investigated 

whether foam cells generated through a non-infectious condition, namely a deficiency in 

LXR activity, would also facilitate growth and proliferation of BCG bacilli. Similar to 

macrophages from mice treated with kMA, LXR-deficient macrophages accumulated 

cholesteryl ester-rich LDs and were facilitative towards mycobacterial growth. LXR-deficient 

macrophages contained more than double the amount of cholesterol compared to what could 

be induced with kMA and facilitated proliferation to almost double the number of BCG 

mycobacteria per 100 cells after 96 hours. These results suggest that LXR may indirectly 

function as a negative regulator of mycobacterial foam cell formation and mycobacterial 

growth. Although speculative, this proposition is in line with a previous report showing that 

LXR-activity suppresses the outgrowth of Mtb bacilli in a mouse model of pulmonary Mtb 

infection60.  

 

Our study addressed the individual contribution that examples of each of the three main 

classes of MAs from Mtb makes towards the induction of foam cells and multi-vacuolar giant 

cells as well as towards the facilitation of intracellular mycobacterial proliferation. All three 

features are important elements of the manifestation of TB in human lungs and were elicited 
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to varying degrees by the individual MA classes studied. Thus, we showed here that it is 

kMA that induces mainly cholesterol ester accumulation within intracellular LDs and 

facilitates mycobacterial BCG proliferation. In contrast, mMA was found to induce vacuole 

formation, characteristic of giant cells found in Mtb lung granulomas, with however no 

change in cholesteryl ester content or an improved ability to sustain and facilitate 

mycobacterial growth. Finally, αMA treatment exerted a negligible effect on all three 

parameters. These findings suggest separate important roles for keto and methoxy oxygenated 

MA classes in manipulating the host macrophage response during the establishment of TB. 

This new insight may assist in deciphering and targeting the Achilles’ heel of the tubercle 

bacillus according to an approach recently reviewed by Nataraj et al.61, relying on the most 

recent understanding of how MA is synthesised and differentiated into classes by Mtb. 

Cyclopropanation provides the minimum functionalisation associated with MA virulence17. 

Dubnau et al.18 provided evidence that cyclopropanation or functionalisation of the distal 

group of the meromycolic chain represents the first step of a common pathway responsible 

for generating methoxy and keto mycolates. Differential regulation of this single mechanism 

can thus allow mycobacteria to manipulate MA class composition of alpha, methoxy and keto 

mycolates during growth progression. Evidence for this was provided by Yuan et al.19, who 

showed that keto mycolates are more abundant during the early stage of mycobacterial 

infection, but gives way to methoxy mycolates that become more abundant in the later phase 

of infection. Our results imply that much may be accomplished by attempting to control the 

switch between methoxy and keto mycolates as a principle of drug treatment to combat TB. 

One argument for this was provided by Slama et al.62 who showed that mMA was much more 

abundant in the virulent Mtb H37Rv strain than in the attenuated Mtb H37Ra strain. This has 

to be understood in the wider context that other differences between the H37Rv and H37Ra 

strains were also identified, but the researchers then achieved better resolution of the 
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evidence62: A recombinant Mtb H37Rv was generated with a single gene KO of a protein 

involved in the late stage of MA biosynthesis, namely HadC. HadC is a dehydratase that is 

not catalytically active, but holds the longer form of the elongating merochain of MA in a 

complex with HadB, which catalyses dehydration of a β-hydroxyacyl in the merochain to an 

enoyl. The hadC KO Mtb H37Rv showed a reduction in the abundance of mMA similar to 

that found in Mtb H37Ra62. It accordingly also had lower virulence, approximating that of 

Mtb H37Ra, lost its cording and biofilming ability and its envelope integrity, thus making it 

more susceptible to the hydrophobic drug rifampicin. It should be noted that these biological 

effects could not only be ascribed to the lowering of the abundance of mMA, because the 

hadC KO Mtb H37Rv also had a larger degree of unsaturation in the merochain and could not 

produce the small amount of extra-long chain MAs of all three classes that are present in the 

WT Mtb H37Rv.  

 

Whereas the group of Slama62 demonstrated the advantage of being able to reduce the 

abundance of mMA in Mtb, our results could imply that even more may be achieved by 

interfering with kMA production in Mtb. However, Dubnau et al.18 managed to create a hma- 

KO mutant Mtb H37Rv that produced no oxygenated MA at all. The mutant Mtb also showed 

severe loss of virulence, but was still able to grow and multiply in a monocytic cell line or in 

lungs and spleen of infected mice. Thus, kMA seems not to be essential for survival of Mtb 

and is hence not a prime target for the conceptualisation of a new anti-TB drug; although we 

have demonstrated here how kMA allows the mycobacterium to thrive, but not survive, in the 

target host cell. 
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6. Conclusion 

Our study addressed the individual contribution that examples of each of the three main 

classes of MAs from Mtb makes towards the induction of foam cells and multi-vacuolar giant 

cells as well as towards the facilitation of intracellular mycobacterial proliferation. All three 

features are important elements of the manifestation of TB in human lungs and were elicited 

to varying degrees by the individual MA classes studied. Thus, we showed here that it is 

kMA that induces mainly cholesterol ester accumulation and intracellular LDs and facilitates 

mycobacterial BCG proliferation. In contrast, mMA was found to induce vacuole formation, 

characteristic of giant cells found in Mtb lung granulomas, with however no change in 

cholesteryl ester content or an improved ability to sustain and facilitate mycobacterial 

growth. Finally, αMA treatment exerted a negligible effect on all three parameters. These 

findings suggest separate important roles for keto and methoxy oxygenated MA classes in 

manipulating the host macrophage response during the establishment of TB.  

 

7. Supplemental data 

All supplemental data pertaining to this study have been compiled as an additional chapter, 

which is provided on a separate compact disc along with this thesis.  

 

7.1 List of supplemental data 

Table S1 | Sequential Sidak pairwise comparisons showing within- and between-group 
differences in the proportion of enlarged vacuole-positive (V+) cells induced by MA  

Table S2 | Sequential Sidak pairwise comparisons showing within- and between-group 
differences in the induction of LDs by MA 

Table S3 | Cellular cholesterol levels of murine peritoneal macrophages 

Table S4 | Sequential Sidak pairwise comparisons showing differences among treatments in 
LD induction and mycobacterial replication of murine peritoneal macrophages 
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Table S5 | Sequential Sidak pairwise comparisons showing within- and between-group 
differences in LD induction and mycobacterial replication of murine peritoneal macrophages 

Table S6 | Sequential Sidak pairwise comparisons showing differences in LD induction and 
mycobacterial growth at various MOIs of WT and LXR-deficient mouse macrophages 

Table S7 | Sequential Sidak pairwise comparisons depicting within- and between-group 
differences in mycobacterial MOI over time for WT and LXR-deficient macrophages 

Figure S1 | Schematic overview of the experimental design of the foam cell and 
mycobacterial models 

Figure S2 | Fluorescently-labelled macrophages from WT and LXR-deficient mice after five 
days of culture  

 

7.2 Additional experiments  

Screen for LXR target genes and ER stress markers in MA-treated macrophages 

Figure S3 | LXR target genes 

Figure S4 | ER stress markers 
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1. Introduction 

Tuberculosis (TB) is a deadly airborne disease of mainly the respiratory organs and is 

transmitted by the bacterial pathogen Mycobacterium tuberculosis (Mtb)1. Mtb bacilli target 

macrophage mononuclear phagocytes that are instrumental in mediating innate and adaptive 

protective immune functions2. Macrophages are associated with every phase of TB 

progression, including the establishment of a primary infection, latent persistence in 

granulomas, and reactivation3, 4. Granulomas constitute the histopathological hallmark of 

pulmonary TB. The intricate granuloma environment holds a balance of ongoing bacillary 

replication that is characterised by high bacterial load, and an immune cell-induced growth 

suppression demonstrated by non-replicating drug-resistant bacilli, also known as latent TB5.  

 

Mtb is known for inducing multiple changes to the host cell lipidome. For example, the 

depletion of sphingosine or phosphatidylinositide (PI) lipid mediators from the vacuolar 

envelope hinders phagosome maturation and fusion with acidic lysosomes by interfering with 

actin assembly6, 7. Mycobacterial factors can furthermore alter the molecular packaging of 

cholesterol and sphingomyelin (SM) in host membrane lipid rafts8, mediate fatty acid 

acquisition via the hydrolysing activity of Mtb lipases9 and effect membrane changes by 

manipulating the degree of unsaturation of phospholipid species of host cells10. Host lipids 

may also serve as nutrients for the bacilli during the various stages of infection. Initial 

evidence for this was provided by the enhanced respiration of Mtb bacilli isolated from 

murine lungs following growth on fatty acids, rather than carbohydrates11. More recent work 

highlighted the close association of mycobacteria with host-derived cholesterol, shown to be 

essential for entry into host cells and to support mycobacterial proliferation and 

pathogenicity12-14. Cholesterol is an abundant structural sterol distributed within cell 

membranes15. Yet the induction of cytosolic lipid droplets (LDs) by Mtb bacilli may also 

sustain an important esterified cholesterol reservoir. Natural Mtb infection or exposure to 
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Mtb-derived MAs can drive macrophage differentiation to the foam phenotype, which is 

characterised by accumulation of intracellular vacuoles and cholesterol entrapped in cytosolic 

LDs16-18.  

 

A distinctive feature of Mtb is a waxy cell envelope that lends an acid fast property to the 

bacillus. A lipid-rich cell wall is essential for survival and virulence and provides protection 

against degradation by host immune defence chemicals as well as antibiotics19. The outer 

membrane of Mtb is rich in highly branched long-chain lipids known as mycolic acids 

(MAs)20. The general structure of MA lipids consists of a branched mycolic motif (with a 

non-functionalised long alkyl chain) and a functional group-containing meromycolate 

chain21. The meromycolate chain can be either oxygenated or unoxygenated. The three main 

MA classes of Mtb consist of the abundant (fixed at ~53%) unoxygenated alpha-MA (αMA) 

and the less abundant (variable, totalling ~47%) oxygenated keto- (kMA) and methoxy-MA 

(mMA)22 (Fig. 1). The three MA classes are further subdivided based on the configuration of 

the proximal cyclopropane: though a small amount of trans- may be present, αMA essentially 

exhibits a cis-configuration whereas kMA and mMA can contain cis- or trans-

cyclopropanation and an adjoining methyl branch20. Each is also present as a complex 

mixture of homologues with chains of different lengths. 

 

Qualitative and quantitative investigation of lipids can lead to an enhanced comprehension of 

disease mechanisms and the identification of diagnostic markers, which has important 

significance in disease diagnosis and drug development23, 24. Electrospray ionisation tandem 

mass spectrometry (ESI-MS/MS) lipidomics has greatly improved earlier detection methods 

and now allows for a robust and reliable analysis of complex lipidomes25-28. Whole system 

lipidomics of host cells in the context of bacterial invasion constitutes an emerging field. 

Several contributions by Dennis and co-workers highlighted the utility of lipidomics to study 
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disease. For example by assessing changes in essential fatty acids29, eicosanoid metabolism30, 

31 and in 2010 a comprehensive analysis of changes to a macrophage lipidome and 

transcriptome following inflammatory insult in primary and immortalised macrophages was 

reported32. As the first documented study on quantitative immune cell lipidome dynamics, the 

work by Dennis et al.32 greatly contributed to a better understanding of the lipid response of 

host cells to inflammatory activation and metabolic inhibition. Examining pathogen-induced 

changes in host cell lipidomes is a powerful approach for discovering new druggable targets 

that result from host-pathogen interaction. Here we applied a lipidomics approach to improve 

our understanding of TB, as various acquired drug resistant strains are developing owing to 

poor drug quality and non-compliance with use33. 

 

2. Research aims 

� In Chapter II of this thesis, we report how MAs differentially change the phenotype of 

macrophages to facilitate mycobacterial survival and proliferation. By using 

individual chemically synthetic MAs, each with a defined stereochemistry, 

representative of the three main classes of natural MA34-36, mMA was found to cause 

vacuolation while kMA induced cholesteryl ester rich LD accumulation in murine 

macrophages. Only macrophages associated with kMA, but not mMA treatment, 

could sustain intracellular mycobacterial growth. αMA had no notable effect on 

macrophage physiology. We therefore hypothesised that the induction of 

phenotypically and functionally distinct macrophage populations by the oxygenated 

MAs could be accompanied by unique lipidome profiles. Employing an ESI-MS/MS 

lipidomics approach, we therefore studied changes in the lipidome of murine 

peritoneal macrophages following in vivo treatment with chemically synthetic 

representatives of the major classes of Mtb MAs. We report here on changes in the 

composition of glycerophospholipids (PLs), lysophospholipids (LPLs) and 
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sphingolipids among the lipidomes of murine peritoneal macrophages differentially 

treated with each of the MA classes.  

 

3. Materials and methods 

3.1 Mycolic acids 

Natural MA mixture was isolated and single synthetic MAs synthesised as previously 

described22, 34-36. The MAs used for in vivo murine treatment in this study comprised a natural 

isolated MA mixture similar to the natural MAs in the Mtb cell wall (MA mix), cis-αMA, cis-

mMA, and cis-kMA consisting of a mixture of both epimers of the distal α-methyl-ketone 

group with S- and R-stereochemistry (Fig. 1). Cis- refers to the orientation of the proximal 

cyclopropane.  

 

3.2 Animals  

C57BL/6 WT female mice, eight to twelve weeks of age, were used for experiments (Janvier 

Labs, France). All mice were housed in specific pathogen-free conditions in a controlled 

animal facility at the Flemish Institute of Biotechnology (Ghent). Mice received mixed ration 

feed and water ad libitum. Experiments were preapproved by the Ghent University Ethical 

Committee for Animal Experimentation in accordance with current European laws regarding 

the welfare and humane use of animals. 
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Figure 1 | Mycolic acid structures. Chemical structures of the synthetic mycolic acids (MAs) containing cis-
cyclopropanation: alpha (αMA; JR1080), methoxy (mMA; JR1046) and keto (kMA; GK324). Numbers in 
brackets represent carbon chain lengths and wiggly line indicates a mixture of stereoisomers at that position.  
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3.3 Injectable solutions and macrophage isolation 

Liposomes were used as carrier to deliver the highly hydrophobic MA compounds to target 

cells. As a first step, L-α-Phosphatidylcholine (PC; Sigma®) powder was dissolved in 

chloroform at 100 mg/ml (10% w/v). PC and MA stock solutions were vortexed and heated 

before undergoing dehydration on a heat block (90°C) and the dried lipids recovered in 

endotoxin-free PBS (Lonza). Solutions underwent a series of vortex and sonication steps at 

65°C until homogenous milky consistency. Mice were immediately treated in vivo by 

intraperitoneal (i.p.) injection (25 µg MA/100 µl/mouse). Two days after in vivo treatment, 

mice were terminated via cervical dislocation and peritoneal exudate cells (PECs) harvested 

by peritoneal lavage for enrichment of F4/80+ macrophages. Mouse abdomens were 

decontaminated with 70% ethanol and 10 ml ice cold endotoxin-free PBS injected i.p. 

Following a short abdominal massage PECs were removed into sterile 15 ml tubes and kept 

on ice until further processing by centrifugation (400xg, 4°C, 10 min) and red blood cell lysis 

(ACK lysing buffer, Lonza; 50% v/v). PECs were seeded in 250 µl culture medium (5x105 

cells) in µ-Slide 8-well microscopy plates (ibidi®). Culture medium consisted of RPMI 1640 

(Gibco®) supplemented with lipopolysaccharide-free and heat-inactivated foetal calf serum 

(10%), sodium pyruvate (2 mM), non-essential amino acids (1%), penicillin/streptomycin 

antibiotics (0.2%), and β-mercaptoethanol (0.1%). Cultures were enriched for macrophages 

by overnight adherence. All cells were cultured at 37°C and 5% CO2. 

 

3.4 Magnetic labelling and enrichment of F4/80+ macrophages 

For lipidomics analyses, murine F4/80+ macrophages were isolated from total PEC using 

MACS magnetic cell sorting (Miltenyi Biotech) according to manufacturer’s instructions. In 

short, PECs were labelled with biotinylated anti-F4/80 (AbD Serotec, C1:A31) and 

subsequently incubated with magnetic anti-biotin Streptavidin microbeads. Cell suspensions 

were loaded onto a MACS column and magnetically separated with a MACS sorting magnet. 
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Magnetically retained material was eluted from the column and an aliquot stained with anti-

F4/80-APC (eBiosciences, clone BM8) to assess purity on an LSRII flow cytometer (BD 

Biosciences; FlowJo Software), which was ~68-78% (Supplementary Fig. S1).  

 

3.5 Electrospray ionisation tandem mass spectrometry 

Lipids were extracted from F4/80+ macrophages and PL, LPL, ceramide (Cer) and 

sphingomyelin (SM) content quantified by ESI-MS/MS. Cell pellets diluted in PBS were 

mixed with 800 µl 1 N hydrochloric acid-methanol (1:8, v/v), 900 µl chloroform, and 200 

µg/ml butylated hydroxytoluene antioxidant (2,6-di-tert-butyl-4-methylphenol; Sigma 

Aldrich). Organic fractions were dried at room temperature with a Savant Speedvac spd111v 

(Thermo Fisher Scientific) and lipid pellets stored under argon gas at -20°C. Lipid pellets 

were reconstituted in methanol:choloroform:ammonium hydroxide (90:10:1.25, v/v/v) 

immediately prior to measurement. MS analysis was performed with a triple 

quadrupole/linear ion trap instrument model 4000 QTRAP (AB SCIEX) equipped with a 

TriVersa NanoMate (Advion Biosciences) robotic nanosource for automated sample injection 

and spraying. Lipid species were quantified by multiple reaction monitoring in 

positive/negative ion mode. Collision energy settings employed were as follows: 50 eV/45 

eV (PC/SM), 35 eV (PE), -35 eV (PS), -60 eV (PI) and -35 eV (Cer). Addition of lipid 

standards was based on the amount of DNA in each sample (nmol/µg DNA) and comprised 

PC25:0, PC43:6, LPC13:0, LPC17:1, SM d18:1/12:0, PE25:0, PE43:6, LPE13:0, LPE17:1, 

PS25:0, PS31:1, PS37:4, PS43:6, LPS13:0, LPS17:1, PI25:0, PI43:6, LPI13:0, LPI17:1, and 

Cer d18:1/17:0 (Avanti Polar Lipids). Cer and SM nomenclature contained the prefix d to 

illustrate the number of hydroxyl groups in the alkyl chain, which consisted of dihydroxy 

sphingoid bases37. PL summary groups represented the total contributions of two combined 

fatty acyl chains containing no unsaturation (SFA), one unsaturation (MUFA) or multiple 

unsaturation (PUFA).  
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3.6 Arachidonic acid containing phospholipids 

To investigate the possible abundance of arachidonic acid (AA) in the PL profiles of murine 

peritoneal macrophages harvested after treatment with control PBS or various MAs, we based 

ourselves on the results from a recent publication that employed MS-based lipidomic 

analyses for identifying the most abundant AA-containing PL species in murine peritoneal 

macrophages38. Of the 23 AA-containing PL species recorded in resting murine peritoneal 

macrophages by Gil-de-Gómez and team38, we matched their data with results from our study 

and identified 15 corresponding PL species that most likely contain AA. These plausible AA-

containing PL species were then compared among treatments in the current study.  

 

3.7 Statistical analyses 

MS data were corrected for carbon isotope distribution and differences in ionisation 

efficiency due to chain length. Data were normalised based on the amount of DNA and only 

lipid species with a 5-fold intensity above blank values were included in analyses. 

Similarities in the quantitative (nmol/µg DNA) lipid species profiles were assessed by 

SIMPER (similarity percentage) to identify those species responsible for distinguishing 

among treatments. Influential lipid species consisted of those contributing at least 75% to 

dissimilarity among macrophage populations. A one-way ANOSIM (analysis of similarity 

with treatment as factor) was used to determine if differences among groups were statistically 

significant (Euclidian similarity matrix; 10,000 permutations). ANOSIM output was reported 

as an R value and an associated significance (P) value. R values ranged from one 

(dissimilarity) to zero (similarity) with negative values seldom reported. ESI-MS/MS output 

was derived from two independent biological experiments that each comprised pooled murine 

F4/80+ macrophages from ten individual C57BL/6 mice (n = 2 independent experiments, n = 

20 mice; αMA n = 10 mice). MS data were analysed with custom made RALP 4.0 software. 
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All other analyses were performed with PAST 3.039 and IBM SPSS Statistics 23 (IBM, 

Chicago IL, USA).  

 

4. Results 

4.1 Glycerophospholipids 

PL species analysed were denoted by the number of carbon atoms in both fatty acyl chains, 

followed by their combined number of double bonds. ESI-MS/MS recorded 47 to 56 

individual PL species contributing to the total phosphatidylcholine (PC), -ethanolamine (PE), 

-inositol (PI) and -serine (PS) content of murine F4/80+ peritoneal macrophages 

(Supplementary Fig. S2-S5). PC comprised a larger portion of the total PL fraction in 

macrophages from the mMA treated mice (59.8%) compared to the other treatments (32-

39%; Table 1). PE and PI each contributed <20% to the total PL content in cells from all 

treatments. PS ranged from 33 to 37% of total PL content, but was reduced in macrophages 

from mMA treated mice (~22%). In comparison to placebo (PBS) treated mice, macrophages 

from the MA mix treated mice contained 3- to 4-fold more PL content of all four head 

groups. Quantitatively, mMA contributed most to the increase in typical outer leaflet PL (PC) 

observed in macrophages, while kMA contributed most to the increases in the classical inner 

leaflet PS, PI and PE (Table 1).  

 

Upon comparing the relative abundance of PL species belonging to the saturated, 

monounsaturated and polyunsaturated summary groups among the macrophage populations 

of the variously treated mice (Fig. 2A-C), it was observed that lipid species containing 

saturated acyl chains (SFA) associated mainly with PC, polyunsaturated species (PUFA) 

mainly with PS, and monounsaturated species (MUFA) equally among PC and PS. mMA 

treatment stimulated more SFA in PC and MUFA in PC and PS, while kMA steered more 

towards PUFA in PS and PE. In addition, the global lipidomic profiles consisting of all 
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measured lipid species were assessed by SIMPER analysis to identify the most influential 

species contributing at least 75% to cumulative dissimilarity among the groups. The 

influential species were assessed in conjunction with the relative abundance of global species 

from the three unsaturation summary fractions (Fig. 2D-G, Supplementary Table S1). The 

MA mix and kMA elicited much more PC, PE, PI and PS synthesis than αMA, but mMA 

only elicited the synthesis of PC in a pronounced way. For the PC lipid class these were 

mostly species comprised of 36 carbon atoms combined with one to four unsaturations (Fig. 

2D). Multivariate one-way ANOSIM on quantitative data showed that PBS treatment data 

were dissimilar to that of the MA mix and kMA treatments across PL fractions (R > 0.75, P < 

0.01; Supplementary Table S1). Cells from the oxygenated mMA and kMA treatments were 

dissimilar in all PL profiles (R > 0.5, P < 0.01). PL signatures of kMA cells significantly 

varied from the αMA lipid species (R > 0.75, P < 0.01). The relative up- and downregulation 

of PL species in each class was compared between cells from the oxygenated MA treatments 

to that of the αMA (Fig. 2H, Supplementary Fig. S6-S9). Signatures of PC, the PL 

predominantly associated with the outer leaflet, were entirely upregulated in cells from the 

oxygenated MA treatments relative to αMA. Macrophages from the kMA treated mice 

exhibited respectively 30%, 50% and 80% more upregulation of PI, PS and PE PL species 

that are primarily associated with the inner leaflet, compared to those from mMA treated 

mice (Fig. 2H).  
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Table 1 | Composition of the major glycerophospholipids, lysophospholipids and sphingolipids of murine 
F4/80+ peritoneal macrophages. The relative contributions (%) of the major head groups to total phospholipid 
and lysophospholipid content are given for macrophage populations from mice treated with placebo (PBS) or 
the various mycolic acids (MA). The quantitative contributions to each of the major phospholipid and 
lysophospholipid head group classes (nmol/µg DNA) are also provided. Phospholipid ratios represent total 
monounsaturated to saturated lipid species (MUFA/SFA), total polyunsaturated to saturated lipid species 
(PUFA/SFA), and total phosphatidylcholine to phosphatidylethanolamine lipid species (PC/PE). Total fatty 
acids (FA), contribution of all lipid species within a lipid category. ESI-MS/MS data are from two independent 
experiments each comprising pooled F4/80+ macrophages from multiple mice (n = 10; mean ± SEM). PI, 
phosphatidylinositol; PS, phosphatidylserine.     

 Control groups Main MA classes (oxygenated*) 
 PBS MA mix αMA kMA* mMA* 

Phospholipids     
PC (%) 37.1 38.9 32.6 37.6 59.8 
PE (%) 10.7 13.9 12.6 12.3 6.8 
PI (%) 16.0 14.1 19.1 13.3 10.4 
PS (%) 36.2 33.2 35.7 36.8 22.9 
Phospholipid species (nmol/µg DNA)    
PC   75.7 ± 18.8 264.4 ± 27.0 97.1 231.0 ± 0.5 271.8 ± 38.7 
PE   21.9 ± 2.0   94.1 ± 3.6 37.7   75.6 ± 7.3   31.0 ± 11.1 
PI   32.6 ± 0.1   95.5 ± 6.3 56.9   81.8 ± 1.2   47.4 ± 7.7 
PS   73.8 ± 13.6 225.2 ± 49.7 106.5 225.7 ± 0.8 104.1 ± 17.3 
Total FA 204.0 ± 30.5 679.1 ± 46.6 298.1 614.1 ± 7.5 454.4 ± 7.4 
MUFA/SFA ratio     
PC 0.6 1.1 0.9 1.1 1.2 
PE 2.1 4.2 2.4 4.3 3.7 
PI  0.7 1.6 0.7 1.9 1.6 
PS  3.4 3.7 3.0 4.4 4.6 
PUFA/SFA ratio     
PC 1.9 2.7 1.6 2.7 2.8 
PE 10.9 25.2 14.5 24.6 18.1 
PI 8.9 24.7 11.2 22.7 17.0 
PS 14.0 14.1 10.7 15.8 12.0 
PC/PE ratio 3.5 2.8 2.6 3.1 8.8 
Lysophospholipids    
lysoPC (%) 45.5 50.7 59.6 64.1 77.7 
lysoPE (%) 8.9 10.0 4.8 8.0 2.6 
lysoPI (%) 21.9 15.4 12.6 10.8 7.7 
lysoPS (%) 23.7 23.9 23.0 17.1 12.0 
Lysophospholipid species (nmol/µg DNA)    
lysoPC   57.2 ± 13.9   83.2 ± 16.6 88.6 157.8 ± 16.7 176.5 ± 17.7 
lysoPE   11.2 ± 3.0   16.3 ± 0.2 7.1   19.7 ± 2.9     6.0 ± 1.0 
lysoPI   27.4 ± 5.6   25.3 ± 0.1 18.6   26.6 ± 0.7   17.4 ± 0.4 
lysoPS   29.7 ± 2.5   39.3 ± 0.8 34.1   42.0 ± 2.1   27.3 ± 1.5 
Total FA 125.5 ± 20.0 164.1 ± 15.6 148.4 246.0 ± 22.4 227.3 ± 14.7 
Sphingolipids    
Ceramide species (pmol/µg DNA)    
Total FA 123.7 ± 12.2 218.5 ± 7.9 132.2 227.2 ± 35.1 271.3 ± 1.0 
Sphingomyelin species (nmol/µg DNA)    
Total FA 63.1 ± 14.3 105.6 ± 6.2 71.5 106.9 ± 1.6 115.2 ± 10.9 
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Figure 2 | Glycerophospholipid profiles of murine peritoneal macrophages. Mice were treated with placebo 
(PBS) or the various mycolic acids (MA) and F4/80+ peritoneal macrophages isolated from total peritoneal 
exudate cells. The major glycerophospholipid species within each macrophage population were then quantified 
by ESI-MS/MS. (A-C) Shown for each of the major head group classes, the relative contributions (%) to total 
phospholipids of saturated lipid species (A) or those with one unsaturation (B) or multiple unsaturations (C). For 
each treatment, the sum of all bars equals 100%. Significant variation was assessed by an independent samples 
Kruskal-Wallis test (n = 9 per head group, df = 19) for the saturated (SFA: H = 34.324, P < 0.05), 
monounsaturated (MUFA: H = 34.838, P < 0.05) and polyunsaturated (PUFA: H = 34.733, P < 0.05) lipid 
species. (D-G) Quantitative abundance (nmol/µg DNA) of the influential lipid species within the various 
phospholipid classes. Influential lipid species were identified using SIMPER and significant differences 
assessed by one-way ANOSIM with post hoc pairwise comparisons (Supplementary Table S1). Lipid species 
are ranked based on the number of unsaturations and total carbon number of two combined fatty acyl chains. 
Data are given as mean ± SEM. (H) Proportional contributions are given for the number of phospholipid species 
(in each head group) of macrophages from mMA- or kMA-treated mice that increased (grey) or decreased 
(black) relative to cells from the unoxygenated αMA treatment. Data represent relative log2 change in absolute 
abundance and indicated values are the proportional upregulation of total lipid species within each phospholipid 
class (Supplementary Fig. S1-S4). Data are from duplicate experiments (n = 2).      
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4.2 Arachidonic acid-containing phospholipids 

Of the fifteen corresponding PLs species that most likely contain AA (20:4) in this study, the 

five most abundant species were PC36:4 (indicative of 16:0/20:4), PC38:4 (indicative of 

18:0/20:4), PE38:4 (indicative of 18:0/20:4), PI38:4 (indicative of 18:0/20:4) and PS38:4 

(indicative of 18:0/20:4) (Fig. 3). MA mix stimulated synthesis or uptake of all these PL 

species in comparison to placebo (PBS) treatment (Fig. 3). The major contributor to this 

seemed to be kMA. Besides elevation in the PC species 36:4 and 38:4, hardly any increase in 

inner leaflet-associated PL species most likely containing AA was observed in cells from 

mice treated with mMA.  
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Figure 3 | Murine peritoneal macrophage profiles of glycerophospholipids likely containing arachidonic 
acid (AA). The profiles of the glycerophospholipid species most likely containing AA (20:4) are given for 
individual F4/80+ peritoneal macrophage populations (nmol/µg DNA; mean ± SEM). Phospholipid summary 
bars show proportional contributions of likely AA-containing species to each phospholipid class (%). PC, 
phosphatidylcholine (black); PE, phosphatidylethanolamine (light grey); PI, phosphatidylinositol (dark grey); 
PS, phosphatidylserine (white). 
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4.3 Lysophospholipids 

A total of 13 to 27 LPL species contributed to the lysophosphatidylcholine (lysoPC), -

ethanolamine (lysoPE), -inositol (lysoPI) and -serine (lysoPS) content of murine F4/80+ 

peritoneal macrophages (Supplementary Fig. S10-S13). The relative contribution of lysoPC 

to total LPL content was the largest for cells from mice treated with mMA (~77%) followed 

by kMA (~64%) and the αMA, MA mix and PBS treatments (45-59%; Table 1). As a 

consequence, levels of lysoPE in cells from mice treated with mMA (2.6%) were clearly 

lower in comparison to all other groups (5-10%). MA mix treatment did not induce 

noteworthy LPL changes in macrophages compared to placebo (PBS) treatment (Fig. 4A-G, 

Table 1). Individual kMA and mMA, however, strongly induced lysoPC PLs with saturated 

and unsaturated aliphatic chains (Fig. 4A-C). In particular, lysoPC lipid content was 

comparable between kMA and mMA cells, but was up to 2-fold enriched relative to αMA 

cells (Fig. 4D). LysoPC is an export immune signaller. This may implicate that kMA and 

mMA as individual synthetic substances may be bioactive in the body.  

 

The influential fatty acids within each of the LPL classes were determined by SIMPER (Fig. 

4D-G, Supplementary Table S2). Multivariate one-way ANOSIM on quantitative data 

showed that cells from kMA and mMA treatments had similar lysoPC signatures (R = 0.25, P 

< 0.05), but different lysoPE, lysoPI or lysoPS profiles (R = 1, P < 0.01). The lysoPC content 

of cells from the oxygenated MAs was distinct from all other treatments (R = 1, P < 0.01; 

Supplementary Table S2). LPLs of cells from mice treated with unoxygenated αMA were 

distinct from the oxygenated MAs (R = 1, P < 0.01), but not lysoPE and lysoPI from mMA 

cells (R < 0.25, P < 0.01). Relative to the unoxygenated αMA, all lysoPC signatures were 

upregulated in cells from the oxygenated MA treatments (Fig. 4H, Supplementary Fig. S14-

S17). While less than 45% of species were downregulated in kMA cells, downregulation in 
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global levels of lysoPE (76.0%), lysoPI (60.9%) and lysoPS (70.4%) was recorded in cells 

from mice treated with mMA (Fig. 4H).  

 

 

 

Figure 4 | Lysophospholipid profiles of murine peritoneal macrophages. (A-C) Shown for each of the major 
head group classes, the relative contributions (%) to total lysophospholipids of saturated lipid species (A) or 
those with one unsaturation (B) or multiple unsaturations (C). For each treatment, the sum of all bars equals 
100%. Significant variation was assessed by an independent samples Kruskal-Wallis test (n = 9 per head group, 
df = 19) for the saturated (SFA: H = 34.235, P < 0.05), monounsaturated (MUFA: H = 34.789, P < 0.05) and 
polyunsaturated (PUFA: H = 34.610, P < 0.05) lipid species. (D-G) Quantitative abundance (nmol/µg DNA) of 
the influential lipid species within the various lysophospholipid head groups. Influential lipid species were 
identified using SIMPER and significant differences assessed by one-way ANOSIM with post hoc pairwise 
comparisons (Supplementary Table S2). Lipid species are ranked based on the number of unsaturations and total 
carbon number of each fatty acyl chain. Data are given as mean ± SEM. (H) Proportional contributions are 
given for the number of lysophospholipid species (in each head group) of macrophages from mMA- or kMA-
treated mice that increased (grey) or decreased (black) relative to cells from the unoxygenated αMA treatment. 
Data represent relative log2 change in absolute abundance and indicated values are the proportional upregulation 
of total lipid species within each lysophospholipid class (Supplementary Fig. S5-S8). Data are from duplicate 
experiments (n = 2).      
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4.4 Sphingolipids - ceramide and sphingomyelin 

Lipidomic analyses identified 38 Cer and 21 SM lipid species contributing to the sphingolipid 

content in murine F4/80+ peritoneal macrophages (Supplementary Fig. S18-S19). The 18-

carbon sphingoid base of all Cer species consisted of N-acylsphingosine (d18:1). SM 

comprised, in addition to species containing one to four unsaturations in the 18-carbon alkyl 

chain, species with N-acylsphinganine (d18:0, dihydroceramide) backbones, 

dihydrosphingomyelins. Compared to macrophages from placebo (PBS) treated mice, cells 

from the MA mix treatment were enriched in sphingolipid content (Table 1). Total Cer and 

SM species were up to 3-fold higher in cells from mice treated with the oxygenated MAs 

relative to unoxygenated αMA. SIMPER analysis identified the influential lipid species (Fig. 

5A,E; Supplementary Table S3). mMA induced more Cer and SM with saturated acyl chains, 

compared to kMA that induced these with a higher degree of unsaturation (Fig. 5B). Using 

quantitative data, ANOSIM analysis showed that cells from the oxygenated MA treatments 

were dissimilar to each other and to the unoxygenated αMA in all sphingolipid species (R > 

0.5, P < 0.01; Supplementary Table S3). Cer and SM lipid species were >93% upregulated in 

cells from the kMA and mMA treatments, measured against the unoxygenated αMA 

(Supplementary Fig. S20-S21). Peritoneal macrophages from variously treated mice 

consisted of C12 to C26 acyl chain Cer species (Fig. 5C), including saturated Cer species 

from 16 to 26 carbons (Fig. 5D). In comparison to PBS treated control mice, cells from mice 

that were treated with MA mix were enriched in mainly C16 and C24 Cer species (Fig. 5C), 

but mostly the C16 saturated species (Fig. 5D). The enrichment shown for cells from the MA 

mix treated mice was mimicked by the oxygenated mycolates with kMA inducing Cer levels 

similar to the MA mix treatment, and mMA inducing even higher levels than the MA mix. 

MA mix treatment also induced ~4-fold more SM lipid species with dihydroceramide 

(saturated) backbones, of which kMA was the main contributor, as compared with placebo 
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treatment (Fig. 5E). Macrophages from mice treated with unoxygenated αMA failed to 

substantially upregulate any of the recorded Cer or SM species (Fig. 5). 

 

 
Figure 5 | Sphingolipid profiles of murine peritoneal macrophages. (A, E) Quantitative abundance of the 
ceramide (Cer, pmol/µg DNA) and sphingomyelin (SM, nmol/µg DNA) influential lipid species within the 
different murine F4/80+ macrophage populations. Influential lipid species were identified using SIMPER and 
significant differences assessed by one-way ANOSIM with post hoc pairwise comparisons (Supplementary 
Table S3). Cer and SM species contained dihydroxy sphingoid bases consisting of 18 carbons in the alkyl chain 
with either a single (Cer) or zero to four (SM) unsaturations. Lipid species are ranked firstly according to the 
number of double bonds in the sphingoid base alkyl chain, followed by the number of carbon atoms and 
unsaturations of the amide-linked fatty acid. (B) Relative induction of Cer lipid species containing a saturated or 
unsaturated fatty acyl chain as compared to placebo (PBS, broken line). (C-D) Acyl chain and saturated acyl 
chain profiles of the amide-linked fatty acid of Cer species. Differences are shown for F4/80+ peritoneal 
macrophages (pmol/µg DNA) in all Cer acyl chain lengths (C) and how the saturated acyl chain lengths are 
represented (D). (F) Profiles of the SM dihydroxy sphingoid base with zero to two unsaturations in the alkyl 
chain. Significant differences were determined using independent-samples Kruskal-Wallis tests with pairwise 
comparisons for Cer acyl chain (H = 133.301, P < 0.001, n = 76 per treatment, df = 39), Cer saturated acyl chain 
(H = 51.642, P < 0.01, n = 12 per treatment, df = 29) and SM sphingoid base alkyl chain unsaturation groups (H 
= 35.803, P < 0.01, n = 36 per treatment, df = 14). Cer species: medium-chain (C12), long-chain (C14, C16, C18 
and C20), very long-chain (C22, C24 and C26). Data are from duplicate experiments (n = 2) given as mean ± 
SEM. 
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5. Discussion 

Considering the key importance of the MAs in the mycobacterial cell envelope for 

virulence16, 40-42, our lipidomic analyses of macrophages from MA-treated mice aimed to 

identify the role that various MA classes may play in the establishment of TB through lipid 

signalling. Employing ESI-MS/MS, we assessed peritoneal macrophages from C57BL/6 mice 

isolated two days after in vivo treatment with MAs. We identified 13 to 56 distinct molecular 

species across ten lipid categories and highlighted differential steering of lipid homeostasis 

by MA. The main findings of the current study are that relative to placebo treatment, 

macrophages from mice treated with the natural mixture of MAs showed greater than 3-fold 

increases in all of the four main PL fractions, pronounced eicosanoid potential and ~2-fold 

more sphingolipid content. Hardly any variation was recorded between the macrophage 

lipidomes from the placebo and αMA treatments. Lipidomics analysis further demonstrated 

that individual oxygenated kMA or mMA treatment stimulated global PL synthesis and PL 

species likely containing AA, lysoPC induction of species with saturated and unsaturated 

aliphatic chains, as well as substantial sphingolipid generation. It is important to note that 

many of the lipid stimulating effects induced by MA mix treatment can be explained by its 

relative composition of unoxygenated to oxygenated MA classes. Though unoxygenated 

αMA predominates with a fixed ratio of ~53% of total natural Mtb MA22, its abundance did 

not compensate for the lack of distinct PL or sphingolipid inducing activity recorded in this 

study. This supports the inflammatory “neutral” characteristic of αMA17. Oxygenated MAs 

make up the other ~47% of the composition of the natural Mtb MA22, but ratios of mMA to 

kMA classes are variable depending on the growth stage of the bacilli42-44. Individual 

oxygenated MA treatment did both exhibit pronounced lipid synthesising activity, but 

dissimilarity in lipidome profiles between macrophages from mice treated with the two 

oxygenated mycolate compounds was recorded.  
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Our lipidomics results relate to a differential induction by MAs of granuloma foam cell 

phenotypes. Using light and laser-scanning-confocal microscopy, we show in Chapter III of 

this thesis that MA structure influences the induction of granuloma-associated macrophage 

populations, intracellular cholesterol accumulation and mycobacterial growth. Whereas mMA 

effected enlarged multi-vacuolar foam cell formation and kMA induced abundant 

intracellular LDs that were rich in esterified cholesterol, αMA had no notable effects. Results 

from this study thus show that macrophages from mice treated with mMA contained 

abundant PC comprising ~60% of the total PL content with a ~3-fold higher PC/PE ratio, 

associated with outer (convexed) membrane vacuole formation45. Cells from kMA-treated 

mice were rich in PC, PE and PS, associated with inner (concaved) leaflet intracellular LDs45. 

Vacuoles are PL bilayer enveloped structures derived from the ER or the plasma membrane, 

while LDs come about by fat and cholesterol accumulation in between the leaflets of the 

double layered PL structure of the ER, budding off as LDs enveloped by a protein 

impregnated PL monolayer. The PL composition determines the LD-proteome that is taken 

from the ER, and which provides particular metabolic functions for the types of LDs found in 

different cell types46. Therefore, macrophage populations from kMA and mMA treated mice 

may have very different biochemical functions, beside their phenotypic differences, indicated 

by their LD and vacuolar traits. Altered PC/PE ratios have been shown to influence the 

membrane potential and integrity of hepatocytes, steering inflammation and disease 

progression from steatosis to steatohepatitis in a murine model of liver disease47. The 

decrease in relative abundances of saturated lipid species versus elevation in 

monounsaturated species observed for the oxygenated MA treatments, might imply activation 

of the expression of enzymes involved in fatty acid desaturation such as stearoyl-CoA 

desaturase 1, the enzyme that converts saturated to monounsaturated fatty acids48. 

Upregulation of PE and PS polyunsaturated species with four to six unsaturations by kMA 

treatment, furthermore suggests an increase in enzymes involved in fatty acyl chain 
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elongation such as the fatty acid elongase subtypes (ELOVL 1-7)48. The propensity towards 

elevated PC in macrophages from the mMA treatment, but comprehensively elevated 

PC/PE/PS in kMA macrophages indicates different lines of maturation of intracellular lipid 

structures. This may be driven by divergent enzymatic activities along the de novo generation 

pathways, as distinct downregulation of species by mMA in the PE and PS components was 

also noted. The fine regulation of the differential species composition of the various PLs is 

remarkable, and indicates pronounced MA induced differences of kinase, acyltransferase or 

synthase in the endoplasmic reticulum (ER) between the macrophage populations49, 50.  

  

An important antimicrobial defence and immunoregulatory mechanism that is mediated by 

lipid pathways in the macrophage is the generation of various eicosanoids derived from AA 

(20:4)51-53. AAs are found esterified to various PLs in especially LDs, but also in nuclear and 

cytoplasmic membranes53-55. Eicosanoid potential was induced by oxygenated MA treatment, 

mMA associated with PC and kMA with PS and PE. None of the three individual MA types 

could simulate the potential eicosanoid inducing activity of the natural MA mixture, but kMA 

had a stronger effect, mMA weaker, and αMA hardly had any effect. This implies synergistic 

activity of the mMA and kMA classes when combined as it occurs in nature, and testifies to 

the strong potential of Mtb MA in manipulating host cells towards establishing TB, or 

triggering of host cells into effective anti-mycobacterial defence. Indeed, in the case of TB it 

was demonstrated how manipulation of the levels of the eicosanoid prostaglandin E2 could 

enhance pathogen survival in a mammalian model of pulmonary Mtb infection56. Another 

example is the demonstration of the fine balance of the eicosanoids Lipoxin A4 and 

Leukotriene B4 for optimal protection in TB57. As a result of the potent biological activity of 

AA, levels are tightly controlled through the activity of phospholipase A (PLA)2 and LPL-

acyltransferases that regulate the membrane PL cycle of deacylation-reacylation58. In resting 

cells, reacylation is dominant over deacylation and the majority of AA is esterified to 
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membrane PLs whilst free AA levels remain small. Activated immune cells react to agonists 

or pathogenic stimuli by remodelling membrane lipid composition and metabolism, releasing 

stores of AA and other key lipid intermediates54, 55, 59.  

 

LPLs may accumulate in significant quantity in LDs60, 61. Following insult or cell activation, 

PLA-mediated PL hydrolysis generates LPLs that may exert diverse biological functions 

through specific G-protein coupled receptors62, 63. LPLs containing PC and PS head groups 

can stimulate NADPH oxidase and calcium ion mobilisation in activated phagocytes64, 65. 

Translocation and assembly of the membrane-bound NADPH oxidase enzyme complex by 

activated immune cells is dependent on AA availability, and primarily produces superoxide 

anion66. MA mix treatment did not induce prominent upregulation of LPL species relative to 

the PBS control, but macrophages from mice treated with either of the individual oxygenated 

MAs more than doubled their lysoPC content and all measured acylated species were 

upregulated relative to αMA. Here, the predominance of the αMA class in the MA mix 

treatment may be responsible for its absence of LPL-stimulating activity, as individual αMA 

also failed to induce significant LPL generation. LysoPC is a proinflammatory lipid mediator 

reportedly involved in macrophage activation67. As one of several antigenic lipids bound by 

natural killer T (NKT) cells through the nonclassical antigen-presenting molecule CD1d, 

lysoPC elicited IFNγ cytokine release upon exposure to antigen presenting cells expressing 

CD1d68, 69, suggesting involvement in Th1 proinflammatory steering. Downregulation in 

relative abundances of unsaturated lysoPS in macrophages from both kMA and mMA treated 

mice was observed. LysoPS stimulates the Th2 type activity of mast cell degranulation 

specifically through the serine group, mainly when the associated acyl is unsaturated63. Its 

downregulation by the two oxygenated MAs observed here would then orientate more 

towards the Th1 mode of response. We previously reported that the natural MA mixture 
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induces LD-loading in mice during foam cell differentiation and steer host cells to a 

proinflammatory, Th1-type mode16.  

 

Cer forms the anchor backbone of all sphingolipids and is delivered to the Golgi for 

conversion to ceramide-1-phosphate, SM, glucosylceramide or more complex 

glycosphingolipids70. Beyond a structural function, bioactive Cer derivatives largely mediate 

anti-proliferative effects such as caspase induction, cytochrome release and apoptosis in 

response to stress or injury stimuli71, 72. They also form important precursors for innate 

signalling metabolites73. The balance among autophagy, apoptosis and necrosis plays a 

crucial role in the pathogenicity of Mtb. Necrosis is a strategy whereby virulent Mtb evades 

host defences while under pathophysiological conditions, autophagy facilitates antigen 

presentation74, 75. Autophagy is also a key process regulating the turnover of cellular nutrients 

and lipid metabolism76. Here we showed that oxygenated MAs, but not αMA, significantly 

stimulated the production of Cer and SM with mMA having the stronger effect. mMA 

induced more Cer and SM with saturated acyl chains, compared to kMA that induced these 

with a higher degree of unsaturation. Notably, the C16 and C24 acyl chain containing species 

are elicited in substantial quantity. Rise in endogenous levels of saturated C16 fatty acyl Cer 

species in particular is strongly associated with induction of apoptosis in cultured, primary 

and cancer cells77. In contrast evidence exists that dihydroceramide, which is present in low 

cellular abundance, counteract Cer-induced cell death75. Notwithstanding the anti-

proliferative effects of both saturated and desaturated Cer, dihydroceramides steer towards 

autophagy whereas Cer induces apoptosis75. Apoptosis is an important antimicrobial defence 

mechanism by which Mtb-infected macrophages liberate bacilli for phagocytic clearance and 

antigen presentation to stimulate adaptive T cell immunity74, 78. In this work we did not 

record any Cer lipid species with sphinganine backbones, but dihydrosphingomyelins were 

observed in small quantity. MA mix treatment induced in macrophages ~4-fold the amount of 
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dihydrosphingomyelin present in control (PBS) cells. Compared with the neutral αMA, kMA 

stimulated substantially higher levels of dihydrosphingomyelin than mMA. The induction of 

~40% more 16:0 Cer by the proinflammatory mMA, likely triggering a proapoptotic host 

defence, versus stimulation of dihydroceramide-containing SM species by kMA, suggests an 

interesting and divergent mechanism by which Mtb bacilli could manipulate the host 

environment. Could it be that stimulation of SM species containing dihydroceramide bases 

represent a strategy through which Mtb bacilli allow fusion of LDs with vacuoles? It certainly 

seems plausible that kMA treatment inducing cholesterol ester accrual is able to induce 

autophagy whereas mMA is not. Interestingly, glycosphingolipids that contain a sugar moiety 

linked to its sphingoid base are important inducers of Th1 immunity signalling through the 

CD1d receptor of NKT cells79. In this study we did not investigate the presence or absence of 

sugars among the sphingolipid species; nevertheless, it certainly would provide valuable 

information for future study regarding steering of immunity by the various MA classes.  

 

6. Conclusion 

Though recorded here for murine peritoneal macrophages as the experimental model, this 

study highlighted key aspects of the manifestation of TB following in vivo treatment with 

Mtb-derived chemically synthetic MAs. ESI-MS/MS measurement clearly showed that the 

naturally-occurring Mtb MA mixture induces substantial changes to PL and sphingolipid 

content in macrophage host cells. Whereas αMA treatment had negligible lipid synthesising 

activity, the oxygenated mMA and kMA divergently steered macrophage lipidomes. PC 

enrichment was associated with macrophages from the mMA treatment, which mainly 

induced Cer and SM species containing saturated fatty acyl chains. Macrophages from kMA 

treatment were rich in PC, PE and PS and primarily stimulated sphingolipids with unsaturated 

fatty acyls. Macrophage lipidomes from mMA and kMA treated mice firstly stimulated PL 

species likely containing AA, but with divergent PL head groups; and secondly were 
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significantly enriched in all measured lysoPC lipid species (even more so than the natural 

MA mixture). This may imply larger anaphylactic potential of the individual oxygenated 

MAs that is ameliorated when the oxygenated MA is partnered with αMA as they occur in 

nature. The differential induction by mMA and kMA of host PL species associated with 

respectively vacuole and LD containing granuloma cell phenotypes may be correlated with 

steering of pro- and anti-inflammatory modes, sustained by macrophage polarising signalling 

lipids like eicosanoid-derived leukotrienes and prostanoids. The lipidomics evidence 

provided in this study thus corroborates the genetic evidence of host/pathogen coevolution of 

Mtb80, wherein Mtb is shown to engage the immune response of the host for its survival. In 

this context, it is especially kMA that directs host cell lipid signalling for the sustenance and 

proliferation of Mtb. Selective secretion of various ratios of oxygenated MAs may thus steer 

innate immunity through the lipidome of macrophages to establish persistent TB. 

 

7. Supplemental data 

All supplemental data pertaining to this study have been compiled as an additional chapter, 

which is provided on a separate compact disc along with this thesis.  

 

7.1 List of supplemental data 

Table S1 | SIMPER and ANOSIM output of glycerophospholipid profiles 

Table S2 | SIMPER and ANOSIM output of lysophospholipid profiles 

Table S3 | SIMPER and ANOSIM output of ceramide and sphingomyelin profiles 

Figure S1 | Purity of F4/80+ murine peritoneal macrophages 

Figure S2-S5 | Profiles of phospholipid species of peritoneal macrophages from mice treated 
with various MAs 

Figure S6-S9 | Change in absolute abundance of glycerophospholipid species 
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Figure S10-S13 | Profiles of lysophospholipid species of peritoneal macrophages from mice 
treated with various MAs 

Figure S14-S17 | Change in absolute abundance of lysophospholipid species  

Figure S18-S19 | Profiles of sphingolipid species of peritoneal macrophages from mice 
treated with various MAs 

Figure S20-S21 | Change in absolute abundance of sphingolipid species 

 

7.2 Additional experiments 

Assessment of inflammation and foam cell traits following murine in vivo treatment with an 

acid sphingomyelinase inhibitor (Zoledronic acid) 

Figure S22 | Flow cytometry analysis of BAL fluid samples 

Figure S23 | Average total and differential BAL fluid cell counts 

Figure S24 | Cytokine response of bronchoalveolar infiltrate following treatment with 
zoledronic acid 

Figure S25 | Cytokine response of peritoneal macrophages after ZA treatment and LPS 
stimulation 

Figure S26 | Foam cell traits of murine peritoneal macrophages following ZA treatment and 
LPS stimulation 

Figure S27 | Confocal microscopy images of foam cell morphology after treatment with ZA 

Figure S28 | Confocal microscopy images of foam cell morphology after ZA treatment and 
LPS stimulation 
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1. General Discussion 

Paleopathological evidence classifies TB as arguably the oldest bacterial infectious disease of 

humans1. The signature trait of active TB is the tubercle, which represents the key localised 

focal point of the host-pathogen interaction. Following the initial uptake of Mtb bacilli, lung 

tubercles (or granulomas) develop, comprising structured aggregations of Mtb-infected and 

non-infected immune cells that surround a lipid-rich caseous centre harbouring extracellular 

mycobacteria and cellular debris2. The cell wall of Mtb contains abundant MA lipids that are 

not only essential for pathogenicity, but engage with the host innate immune system3-5 to 

elicit distinct inflammatory profiles6. Natural Mtb MAs comprise a complex mixture of 

unoxygenated (alpha) and oxygenated (methoxy and keto) homologues that each contains 

different meromycolic chain lengths7. Studying the effects of natural MA mixtures may 

conceal any potential activity or biological function of the individual components, thus 

highlighting the necessity for studying single MA molecules. We were privileged with such 

an opportunity by our collaboration with Professor Mark Baird from Bangor University 

(Gwynedd, UK) who recently achieved the synthesis and provision of pure chemically 

synthetic Mtb mycolates, each with a defined stereochemistry. Gaining insight into how Mtb 

manipulates the host cell is necessary for understanding the complex biochemical interaction 

inside the granuloma, and may thus aid in the development of novel TB therapies. To better 

understand the functional diversity of MAs in the manifestation of TB was the focus of this 

study; in particular, the contribution that examples of individual chemically synthetic 

mycolates from the major classes of Mtb MAs make towards foamy macrophage induction, 

intracellular cholesterol accumulation, mycobacterial proliferation and immune lipidomic 

steering. 
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MAs are primarily taken up by murine macrophages expressing the F4/80 membrane antigen 

marker including those from the peritoneal and alveolar lineages3, 8. As Mtb inhalation 

normally occurs via the pulmonary route, this raises the question of the relevance of studying 

peritoneal versus alveolar macrophage populations. The reasons are twofold. It firstly 

allowed for faster response times of foamy phenotype induction following intraperitoneal 

MA treatment3, relative to intratracheal instillation, which was important for conducting 

mycobacterial infection experiments. Secondly, larger cellular yields of adherent 

macrophages could be obtained from the total peritoneal exudate cells harvested, which was a 

requirement for lipidomics analyses. 

 

It is well known that the Mtb cell wall contains a complex MA organisation of the three main 

classes and that it not only provides an important lipid barrier, but is essential for survival9. 

Apart from distinct unoxygenated (αMA) versus oxygenated (mMA and kMA) signatures 

recorded here, the results from this investigation clearly distinguished two unique profiles to 

the oxygenated MAs. Yuan et al. showed that keto mycolates are predominantly produced 

during the Mtb logarithmic growth phase, in contrast to methoxy mycolates that dominate 

during persistence10. It is thus suggested that Mtb bacilli, through regulation of the 

proportional prevalence of the MA classes in cell membranes, are able to influence the host 

environment after infection, first to allow rapid pathogen proliferation and later to subside 

into a persistent, slow proliferating stage for a long period of active disease when the 

infection can spread to many new individual hosts.  

 

Foam cell formation strongly relates to a beneficial response for fast proliferating Mtb 

bacilli5, 11. We illustrated that kMA stimulates the host macrophage to a cholesteryl ester rich 

LD milieu for sustenance of mycobacterial proliferation. Lipidomics analyses provided 
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further evidence in support of the role of kMA in steering towards LD-mediated 

mycobacterial growth, with the generation of PL and LPL structural species that are 

functionally associated with LDs12, 13. Also, a propensity towards accumulation of lipid 

species with strong eicosanoid potential was stimulated by kMA in the macrophages. Neutral 

lipids are a major source of stored AA in macrophages and monocytes. Eicosanoid synthesis 

occurs within distinct subcellular domains, namely the nuclear membrane, ER, phagosomes 

and LDs14. Eicosanoids are transitory and synthesised de novo as required by the cell. By 

acting on arachidonyl-containing PLs or DAG, PLA2 mediated cleavage from the sn2 

position will liberate free AA that is further oxidised by the COX, LOX or CYP450 

enzymatic pathways14. This depends on the activation status or needs of the cell15. In addition 

to a direct ingestion of neutral LDs by mycobacteria through nutrition16, LD accumulation by 

leukocytes mediates inflammation, because important protein mediators for immune 

dissemination and lipid metabolising enzymes are housed within LDs17. Indeed, a strong link 

between intracellular LDs and the host-pathogen interaction has been established. For 

example, LDs are sites for eicosanoid/lipid biosynthesis leading to the generation of 

prostaglandin E2 and leukotriene B4, IFN-mediated effector assembly, antigen cross 

presentation and autophagy (reviewed in18). Keto mycolate-induced interference of host lipid 

machinery and cholesterol export for accumulation of lipid nutrients thus reflects a distinct 

functionality of MAs to drive macrophages towards inflammation and support of 

mycobacterial proliferation. Targeting of kMAs and its host target molecules may therefore 

present a new vision for the development of anti-TB therapeutics.  

  

The mMA oxygenated class did not induce LDs with esterified cholesterol nor facilitated the 

proliferation of mycobacteria. Macrophages from mice treated with mMA did exhibit a multi-

vacuolar phenotype and were enlarged relative to all other macrophage populations studied. 
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Multinucleated giant ‘Langhans’ cells (MGCs) are characteristic of the tuberculous 

granuloma and form as a result of monocyte/macrophage fusion19. A previous study 

illustrated that Mtb-induced giant cells do not support bacterial growth, due to a diminished 

expression of phagocytic receptors, but retain NADPH oxidase activity and mycobacterial 

antigen-presentation20. Mtb envelope glycolipids stimulate TLR-associated macrophage 

fusion machinery to form MGCs21, 22. Yet Mtb MAs are TLR2/4-independent PAMPs3, 

suggesting that the induction of multi-vacuolar giant cells observed after treatment with 

mMA occurs via an alternate route. Interestingly, Langhans giant cells elicited by 

inflammatory cytokine stimulation, for example granulocyte macrophage colony stimulating 

factor (GM-CSF), IL-6 and IFNγ, are representative of M1-polarised macrophages23. A 

precise biological function for MGCs in tuberculous granulomas remains obscure. Even so, it 

appears that the induction of these cells by methoxy mycolates orients towards an M1 mode, 

corroborating an earlier report on the involvement of Mtb MAs in Th1 immunity3. From a 

host cell perspective, the stimulation by mMA of enlarged multi-vacuolar cells signifies a 

microbe elimination response, since the production of NADPH oxidase-dependent ROS is 

more than 20-fold elevated in MGCs relative to unfused macrophages24. These cells robustly 

present microbial antigens to CD4+ T lymphocytes25. During the optimisation of the 

experimental conditions, comparable phagocytic uptake of Streptavidin microspheres (2-3 

beads per cell) and BCG bacilli (~1 bacillus per cell) was confirmed for macrophages from 

all MA treatment conditions (Appendix: Exploration of comparative ex vivo cellular 

technologies). mMA macrophages therefore are able to facilitate internalisation of 

mycobacteria, but clearly do not sustain their proliferation. From the pathogen viewpoint, it 

would be beneficial to not be taken up by these giant microbicidal cells before they mature in 

the granuloma, but rather effectively exploit the lipid-laden cells induced by kMA. This 

correlates with the prominent upregulation of the PC content relative to PE in mMA 



CHAPTER IV 
General Discussion 

126 

 

Ilke Vermeulen | PhD thesis | 2016 
 

stimulated macrophages, which reflects a mMA mechanism of induced change in cell 

membrane conformation. Optimal ratios of PC/PE are essential for maintaining flexibility and 

function, as the hydrated head region of PC amplifies rigidity and the cone-shaped PE 

facilitates fusion26. One may speculate that methoxy mycolates, by stimulating PC synthesis 

and/or PE degradation, would reduce the fluidity of host membranes. In this manner, Mtb 

bacilli may restrict the proportion of macrophages that differentiate into giant cells or 

manipulate their phagocytic capacity. Assessment of the expression of genes regulating the 

enzymatic synthesis or degradation of PC or PE may provide clarity on the pathway by which 

mMA alters the macrophage membrane composition, and warrants further study. The fact 

that methoxy mycolates become particularly important during the late persistent stage of 

active TB may be a strong indicator of the role of these Mtb lipids in steering host immunity 

to sustain infection and encumber microbial destruction.  

 

Understanding the role of MAs in the establishment of TB is important, but not the only 

application field of this study. While MAs are so cleverly active to manipulate the host 

immune response to benefit the pathogen, one may ask how this wisdom learnt from the 

millennia of host-pathogen coevolution in TB can be exploited for human benefit. Ten years 

ago, a student from our group published her findings on how the MA natural mixture 

practically “cured” experimental asthma in mice4, the illustration of which aimed to find 

fields of application for MAs as potential therapeutic agents against disease. This followed on 

an earlier finding that the natural MA mixture steered the murine immune system away from 

the Th2 mode of immunity3 that is associated with inflammatory diseases such as arthritis and 

asthma. Vander Beken et al. published results that bode well for the use of MAs as vaccine 

adjuvants for medical and veterinary use6. Last year, Dr Yolandy Lemmer, a previous 

graduate from our research team, reported their discovery that the natural mixture of MAs 
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acted as a targeting ligand to strongly facilitate uptake of nanoencapsulated anti-TB drugs 

into macrophages in vitro27; thereby illustrating how MAs could be used for much improved 

anti-TB drug delivery. It is not only in TB that a targeted drug transfer mechanism shows 

promise, but also for the supply of nano-medicines to other macrophage-borne disease. One 

example is HIV, which partially hides in monocyte/macrophage reservoirs in affected 

patients, from where they could hitherto not be eradicated28. These diverse potential 

applications for MAs in the medical and veterinary fields, learnt from the mechanism of 

action of MAs in TB, pose the important question on what MAs may do to the body in terms 

of undesirable side-effects, while effecting their benefits to the humans or animals 

undergoing treatment.  

 

From this thesis, potential risks can be identified that may result from MA administration for 

vaccination or therapeutic purposes. These require careful testing in future animal 

experiments to determine safety of MA administration and to instruct the design of 

pharmaceutical delivery strategies to avoid malefaction. In the discussion that follows, the 

risks are considered, but also how these may be mitigated in cases where benefaction may be 

gained from particular MA preparations of which the MA class composition is designed to 

reduce the risk.    

 

The prominent feature of the induction of lipid-filled foamy cells among murine alveolar or 

peritoneal macrophage populations following administration of the natural MA mixture3 was 

shown in this thesis to be ascribed solely to the mycolates from the keto oxygenation class. 

Catabolism of cholesteryl esters in LDs is a process mediated by autophagy in macrophage 

foam cells29. Even if autophagy is typically a microbicidal function30, reports exist that 

intracellular bacteria may utilise autophagosomes as nutrient-rich replicative niches31. The 
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permissiveness of the natural MA mixture and kMA macrophages to facilitate BCG 

proliferation, relative to mMA which does not, queries the precise biochemical regulation of 

the macrophage state under each of these conditions. It will also be of interest to assess 

whether the striking induction of PC and PC metabolites by the methoxy MA class, manifests 

negatively in the body and if so, whether the keto class that steers away from PC towards PE 

and PS could improve therapeutic designs of host immunity steering using specific MA 

classes. Stimulating the macrophages within the body into a cholesterol-rich environment for 

mycobacteria that may exploit lipid resources, perhaps via an autophagous mechanism, poses 

a real health risk for therapy development. As we recorded that it is this foamy phenotype in 

particular that will sustain mycobacterial growth, it creates the possibility of inducing a 

period of TB susceptibility in patients treated with MA-containing therapies or vaccines.. 

Fortunately, the foam cell-inducing effect seems transient. The foamy cell population 

subsided by one third, two days after MA administration. The mice studied showed no 

outward indication of illness before euthanasia. Nevertheless, the potential danger of foamy 

phenotype induction can be bypassed by excluding keto and utilising methoxy mycolates in 

its place as long as this does not negatively affect the beneficent effect of the MA treatment. 

 

Through assessment of the lipidomes of the macrophage populations from differently MA 

treated mice, we also gained knowledge on the induction of AA-containing PL potential. 

Liberating membrane-bound AA stores will initiate the generation of eicosanoids that are 

lipid mediators critically involved in the fine regulation of inflammation and immunity32. 

This includes both anti- and proinflammatory pathways that in macrophages are primarily 

driven by their state of activation or differentiation, influenced by an extensive array of 

antigens and cytokines33. The natural MA mixture greatly induced eicosanoid potential. kMA 

exhibited stronger eicosanoid potential associated with lipid species from the PE, PI and PS 
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head group classes relative to mMA, for which some potential was recorded mainly in PC. 

Whether the particular AA-inducing responses associated with the methoxy or keto 

macrophages will manifest risk or beneficent outcomes for the host remains to be determined. 

Our measurements of BCG proliferation however, suggest that the intracellular milieus of the 

macrophages from the oxygenated MA treatments differ: mMA treatment prevented 

mycobacterial growth reflective of a proinflammatory state while kMA macrophages, which 

permitted mycobacterial replication, rather seem to support an environment of house-keeping 

or cellular repair. Nevertheless, the potential of kMA to stimulate an eicosanoid storm is 

worrisome, and an in-depth assessment of their potential effects in the body will thus have to 

be incorporated into future research.  

 

No significant LPL generation was observed for macrophages from the natural MA 

treatment. Macrophages from the oxygenated mycolates on the other hand exhibited reduced 

proportional abundances of unsaturated lysoPS, but strikingly elevated abundances of 

lysoPC. Should these pose risk, then it could in principle be mitigated by the addition of α-

MA. 

 

Natural MA-mixture generally steers towards a Th1 response, supported by lysoPC and 

lysoPS lipid mediators demonstrated here for treatments also with the two oxygenated MAs. 

This suggests induction of a broadly proinflammatory state, but in which more lysoPC is 

induced by mMA and more lysoPS induced by kMA. Cer lipid species were induced by the 

natural MA mixture as well as the individual oxygenated molecules. These may pose the risk 

for undue induction of apoptosis or autophagy. In particular mMA treatment was found to 

induce the highest Cer content of species associated with apoptosis. Natural MA mixture and 

kMA displayed comparable levels of sphingolipids and were the only treatments that 
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distinctly induced dihydroceramide backbones, proposing a role in autophagy. Differential 

induction of Cer and sphingolipids by the two oxygenated MAs may therefore allow for fine 

tuning the composition of MA-treatments to limit the potential risk.  

 

Any of the conceivable harmful effects induced by either of the MA classes could potentially 

be compensated for by altering the composition of that element in the drug or vaccine, 

permitting that it does not take away from the benefit these molecules could offer as 

therapeutic agents. The testing of new medicines via oral or injectable routes will therefore 

require the comprehensive evaluation of the macrophage populations and any plausible 

contraindications associated with MA therapy.  

 

MAs assign a unique fingerprint to mycobacteria and display diverse biological functions3, 4, 

6, 34-36. This work provided evidence for an improved understanding of the manifestation of 

TB. The keto and methoxy mycolates studied here, differentially interfere with host lipid 

homeostasis and materialisation of the TB disease phenotype. We clearly show that the type 

of oxygenated distal group of the meromycolic moiety influences foamy macrophage 

regulation, cholesterol accumulation and mycobacterial growth facilitation through the 

lipidome of its host cell. These are crucial findings, as the Mtb cell envelope displays 

significant structural variation in MA oxygenation class and proximal cyclopropane 

configuration7, which is continuously remodelled in response to growth needs10, 37, 38. We 

show here that kMA transforms the macrophage to a lipidome phenotype that accumulates 

cholesterol and sustains mycobacterial proliferation, whereby autophagy and eicosanoids 

potentially play a significant role. The humorally antigenic mMA in contrast, displays strong 

immune steering capability through the generation of lipid species associated with reduced 

membrane fluidity and apoptosis, which we reported do not stimulate cholesterol 
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accumulation or uphold mycobacterial growth. A major lead provided here is the 

identification of the involvement of the keto class in facilitating BCG growth. While this 

effect appears transient, keto mycolates pose a risk of modulating host immunity to benefit 

the mycobacteria; evidently a highly undesirable outcome of TB treatment. Nonetheless, even 

as considering the risk factors are vitally important for therapeutic design, some of these may 

be overestimated and should be explicitly tested. Collectively this study provides a molecular 

basis by which the safety and mechanism of MA biolipids as plausible therapeutic agents 

may be assessed, and so to provide a starting-point for planning risk assessments for future 

development of nanomedicines for targeted drug delivery against macrophage borne 

infectious diseases, asthma and vaccine adjuvants.  
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1. Supplemental data 
 
 
Table S1 | Sequential Sidak pairwise comparisons showing within- and between-group differences in the 
proportion of enlarged vacuole-positive (V+) cells induced by mycolic acid (MA). In the GLM, treatment 
and time point were the independent predictors while the proportion of enlarged V+ cells was the dependent 
variable (GLM: Wald Chi-Square = 753.924, P < 0.001, df = 14, n = 5 per time point). Results were significant 
at P < 0.05 (bolded).  
 

PBS Lipo αMA mMA kMA 
0h 24h 48h 0h 24h 48h 0h 24h 48h 0h 24h 48h 0h 24h 48h 
0h 1.000 1.000 0.999 0.999 0.954 1.000 1.000 1.000 <0.001 <0.001 <0.001 <0.001 <0.01 1.000 

 24h 0.948 1.000 1.000 1.000 0.990 0.999 1.000 <0.001 <0.001 <0.001 <0.01 <0.01 1.000 
  48h 1.000 1.000 1.000 1.000 1.000 1.000 <0.001 <0.001 <0.001 <0.001 <0.01 0.999 
   0h 1.000 1.000 0.904 0.983 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 0.983 
    24h 1.000 0.904 0.983 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 0.983 
     48h 0.589 0.825 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 0.825 
      0h 1.000 0.990 <0.001 <0.001 <0.001 <0.01 <0.05 1.000 
       24h 0.999 <0.001 <0.001 <0.001 <0.01 <0.05 1.000 
        48h <0.001 <0.001 <0.001 <0.001 <0.01 1.000 
         0h 0.087 0.997 <0.001 <0.001 <0.001 
          24h 0.952 <0.001 <0.001 <0.001 
           48h <0.001 <0.001 <0.001 
            0h 1.000 <0.01 
             24h <0.05 
              48h 
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Table S2 | Sequential Sidak pairwise comparisons showing within- and between-group differences in the 
induction of lipid droplets (LDs) by mycolic acid (MA). In the GLM, treatment and time point were the 
independent predictors while the number of LDs per 100 cells was the dependent variable (GLM: Wald Chi-
Square = 353.662, P < 0.001, df =14, n = 5 per time point). Results were significant at P < 0.05 (bolded).  
 

PBS Lipo αMA mMA kMA 
0h 24 h 48h 0h 24h 48h 0h 24h 48h 0h 24h 48h 0h 24h 48h 
0h 0.979 1.000 0.971 0.078 1.000 1.000 0.378 1.000 1.000 0.999 1.000 <0.001 <0.001 <0.001 

 24h 0.875 1.000 0.995 0.999 0.964 1.000 1.000 1.000 1.000 0.757 <0.001 <0.001 <0.01 
  48h 0.847 <0.05 1.000 1.000 0.179 0.999 0.997 0.986 1.000 <0.001 <0.001 <0.001 
   0h 0.996 0.998 0.955 1.000 1.000 1.000 1.000 0.725 <0.001 <0.001 <0.05 
    24h 1.000 0.060 1.000 0.684 0.815 0.933 <0.05 <0.001 <0.001 <0.01 
     48h 1.000 0.734 1.000 1.000 1.000 1.000 <0.001 <0.001 <0.001 
      0h 0.313 1.000 1.000 0.997 1.000 <0.001 <0.001 <0.001 
       24h 1.000 0.995 0.999 0.109 <0.001 <0.001 <0.05 
        48h 1.000 1.000 0.997 <0.001 <0.001 <0.001 
         0h 1.000 0.989 <0.001 <0.001 <0.01 
          24h 0.952 <0.001 <0.001 <0.01 
           48h <0.001 <0.001 <0.001 
            0h 1.000 <0.05 
             24h <0.01 
              48h 
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Table S3 | Cellular cholesterol levels of murine peritoneal macrophages. Cellular cholesterol content of 
primary peritoneal murine macrophages was determined using the Calbiochem® cholesterol/cholesteryl ester 
quantitation kit. The concentration of esterified cholesterol was determined by subtracting the free cholesterol 
from the total cholesterol, and the ratios of esterified-to-free cholesterol by dividing the values of esterified with 
free cholesterol. Values represent the total, free and esterified cholesterol reported as µg/106 cells (mean ± SEM; 
n = 12 mice). 
 
 

 Placebo  MA-treated  LXR 
 PBS  αMA mMA kMA  WT KO 

Total cholesterol 16.2 ± 3.2  12.1 ± 1.1 13.0 ± 3.3 18.1 ± 3.5  14.6 ± 3.4 49.4 ± 3.7 
Free cholesterol 11.8 ± 1.1  9.1 ± 0.9 10.2 ± 3.3 4.1 ± 0.7  12.8 ± 6.1 6.2 ± 1.0 
Cholesterol ester 4.4 ± 1.6  2.9 ± 0.1 3.6 ± 2.8 14.0 ± 3.7  3.4 ± 0.6 43.8 ± 8.6 
Ratio (ester:free) 0.4 ± 0.1  0.4 ± 0.1 0.4 ± 0.1 3.8 ± 1.6  0.3 ± 0.0 7.6 ± 0.9 
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Table S4 | Sequential Sidak pairwise comparisons showing differences among treatments in lipid droplet 
(LD) induction and mycobacterial replication of murine peritoneal macrophages. In the GLM, treatment 
was the independent predictor while LDs (GLM: Wald Chi-Square = 219.619, P < 0.001, df = 5, n = 5 confocal 
images) and BCG-dsRed bacilli (GLM: Wald Chi-Square = 54.723, P < 0.001, df = 5, n = 5 confocal images) 
were the dependent variables. Results were significant at P < 0.05 (bolded). Mock, macrophages from placebo 
(PBS) treated mice that were mock-infected with a PBS solution containing no BCG-dsRed. Macrophages from 
all other treatments were ex vivo infected with BCG-dsRed (MOI: 1). 
 
 

Predictor  LDs  Mycobacteria 
Treatment  df P  df P 

Mock PBS  1 0.631  1 <0.001 
 MA mix  1 <0.001  1 <0.001 
 αMA  1 0.518  1 <0.001 
 mMA  1 0.518  1 <0.001 
 kMA  1 <0.001  1 <0.001 
PBS MA mix  1 <0.001  1 <0.05 
 αMA  1 0.277  1 0.853 
 mMA  1 0.631  1 0.234 
 kMA  1 <0.001  1 0.114 
MA mix αMA  1 <0.001  1 <0.05 
 mMA  1 <0.001  1 <0.001 
 kMA  1 <0.05  1 0.799 
αMA mMA  1 <0.05  1 0.259 
 kMA  1 <0.001  1 0.087 
mMA kMA  1 <0.001  1 <0.01 
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Table S5 | Sequential Sidak pairwise comparisons showing within- and between-group differences in lipid 
droplet (LD) induction and mycobacterial replication of murine peritoneal macrophages. In the GLM, 
treatment and time point were the independent predictors while LDs (GLM: Wald Chi-Square = 636.496, P < 
0.001, df = 17, n = 5 per time point) and BCG-dsRed bacilli (GLM: Wald Chi-Square = 250.303, P < 0.001, df = 
17, n = 5 per time point) were the dependent variables. Results were significant at P < 0.05 (bolded). Mock, 
macrophages from placebo (PBS) treated mice that were mock-infected with a PBS solution containing no 
BCG-dsRed. Macrophages from all other treatments were ex vivo infected with BCG-dsRed (MOI: 1). 
 
 
Lipid droplets 

Mock PBS MA mix αMA mMA kMA 
0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 
0h 0.992 0.993 1.000 0.992 0.644 <0.05 <0.001 <0.001 1.000 1.000 1.000 1.000 1.000 <0.01 0.947 <0.001 <0.001 

 48h 1.000 0.997 1.000 1.000 0.984 <0.001 <0.001 0.977 1.000 0.997 1.000 0.998 0.221 1.000 <0.001 <0.01 
  96h 0.997 1.000 1.000 0.981 <0.001 <0.001 0.980 1.000 0.997 1.000 0.998 0.208 1.000 <0.001 <0.001 
   0h 0.997 0.741 0.057 <0.001 <0.001 1.000 1.000 1.000 1.000 1.000 <0.01 0.977 <0.001 <0.001 
    48h 1.000 0.984 <0.001 <0.001 0.977 1.000 0.997 1.000 0.998 0.220 1.000 <0.001 <0.001 
     96h 1.000 <0.001 <0.001 0.484 1.000 0.736 1.000 0.800 0.823 1.000 <0.001 <0.001 
      0h <0.01 <0.001 <0.05 <0.05 <0.05 <0.05 <0.05 1.000 <0.05 <0.001 <0.001 
       48h <0.05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.05 <0.001 <0.001 <0.001 
        96h <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.120 <0.001 
         0h 1.000 1.000 0.999 1.000 <0.001 <0.05 <0.001 <0.001 
          48h 1.000 1.000 1.000 <0.05 <0.05 <0.001 <0.001 
           96h 1.000 1.000 <0.01 <0.05 <0.001 <0.001 
            0h 1.000 0.059 <0.05 <0.001 <0.001 
             48h 0.051 <0.05 <0.001 <0.001 
              96h 0.429 <0.001 <0.001 
               0h <0.001 <0.001 
                48h <0.001 
                 96h 

 

 

Mycobacteria 
Mock PBS MA mix αMA mMA kMA 

0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 
0h - - - - - - - - - - - - - - - - - 

 48h - - - - - - - - - - - - - - - - 
  96h - - - - - - - - - - - - - - - 
   0h 1.000 1.000 1.000 0.803 <0.001 1.000 1.000 1.000 1.000 1.000 1.000 0.974 <0.05 <0.001 
    48h 1.000 1.000 1.000 <0.001 1.000 1.000 1.000 0.995 0.926 1.000 <0.05 0.950 <0.001 
     96h 1.000 1.000 <0.01 1.000 1.000 1.000 0.974 0.812 1.000 <0.05 0.214 <0.001 
      0h 0.947 <0.001 1.000 1.000 1.000 1.000 1.000 1.000 <0.05 <0.05 <0.001 
       48h <0.05 0.967 0.974 1.000 0.448 0.199 0.998 <0.05 1.000 <0.001 
        96h <0.001 <0.001 <0.01 <0.001 <0.001 <0.001 <0.001 <0.01 <0.001 
         0h 1.000 1.000 1.000 1.000 1.000 0.817 <0.05 <0.001 
          48h 1.000 1.000 1.000 1.000 0.812 <0.05 <0.001 
           96h 0.982 0.831 1.000 <0.05 0.837 <0.001 
            0h 1.000 1.000 1.000 <0.05 <0.001 
             48h 0.994 1.000 <0.05 <0.001 
              96h 0.580 <0.05 <0.001 
               0h <0.01 <0.001 
                48h <0.001 
                 96h 
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Table S6 | Sequential Sidak pairwise comparisons showing differences in lipid droplet (LD) induction and 
mycobacterial growth at various MOIs of WT and LXR-deficient mouse macrophages. In the GLM, 
treatment and MOI were the independent predictors while LDs (Wald Chi-Square = 601.675, P < 0.001, df = 5; 
n = 6 per MOI) and mycobacteria (Wald Chi-Square = 517.150, P < 0.001, df = 5; n = 6 per MOI) were the 
dependent variables. Results were significant at P < 0.05 (bolded).  
 
 

Predictors  LDs  Mycobacteria 
Treatment*MOI Treatment*MOI  df P  df P 
WT, 0.25 WT, 0.5  1 0.637  1 <0.01 
 WT, 1  1 0.637  1 <0.001 
 KO, 0.25  1 <0.001  1 <0.001 
 KO, 0.5  1 <0.001  1 <0.001 
 KO, 1  1 <0.001  1 <0.001 
WT, 0.5 WT, 1  1 0.791  1 <0.001 
 KO, 0.25  1 <0.001  1 <0.001 
 KO, 0.5  1 <0.001  1 <0.001 
 KO, 1  1 <0.001  1 <0.001 
WT, 1 KO, 0.25  1 <0.001  1 <0.001 
 KO, 0.5  1 <0.001  1 0.259 
 KO, 1  1 <0.001  1 <0.001 
KO, 0.25 KO, 0.5  1 0.115  1 <0.001 
 KO, 1  1 0.637  1 <0.001 
KO, 0.5 KO, 1  1 <0.01  1 <0.001 
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Table S7 | Sequential Sidak pairwise comparisons depicting within- and between-group differences in 
mycobacterial MOI over time for WT and LXR-deficient macrophages. In the GLM treatment, MOI and 
time point were the independent predictors while BCG-dsRed bacilli was the dependent variable (Wald Chi-
Square = 576.689, P < 0.001, df = 17; n = 6 per MOI per time point). Results were significant at P < 0.05 
(bolded). 
 
 

WT KO 
0.25 0.5 1 0.25 0.5 1 

0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 0h 48h 96h 
0h 0.999 0.986 0.910 0.521 <0.05 <0.01 <0.001 <0.001 0.809 <0.05 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 48h 1.000 0.998 0.968 0.286 <0.01 <0.001 <0.001 0.996 0.172 <0.05 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 
  96h 1.000 0.997 0.694 <0.05 <0.01 <0.001 1.000 0.521 0.138 <0.05 <0.001 <0.001 <0.001 <0.001 <0.001 
   0h 1.000 0.909 0.101 <0.01 <0.001 1.000 0.809 0.332 0.119 <0.001 <0.001 <0.001 <0.001 <0.001 
    48h 0.996 0.410 <0.05 <0.01 1.000 0.988 0.809 0.484 <0.001 <0.001 <0.001 <0.001 <0.001 
     96h 0.983 0.575 0.093 0.972 1.000 0.999 0.993 <0.001 <0.001 <0.001 <0.001 <0.001 
      0h 1.000 0.982 0.176 0.994 1.000 1.000 0.809 <0.05 <0.001 <0.001 <0.001 
       48h 1.000 <0.05 0.754 0.980 0.997 0.996 0.356 <0.01 <0.001 <0.001 
        96h <0.01 0.161 0.553 0.842 1.000 0.899 <0.05 <0.001 <0.001 
         0h 0.910 0.509 0.209 <0.001 <0.001 <0.001 <0.001 <0.001 
          48h 1.000 0.997 <0.05 <0.001 <0.001 <0.001 <0.001 
           96h 1.000 0.127 <0.001 <0.001 <0.001 <0.001 
            0h 0.358 <0.01 <0.001 <0.001 <0.001 
             48h 0.966 <0.01 <0.001 <0.001 
              96h 0.553 <0.01 <0.001 
               0h 0.988 <0.05 
                48h 0.803 
                 96h 
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Figure S1 | Schematic overview of the experimental design of the foam cell and mycobacterial models. 
Two days prior to harvesting of the peritoneal exudate cells (PECs), mice were treated intraperitoneally (i.p.) 
with PBS, empty liposome carrier or either of various MAs (25 µg/100 µL/mouse). Mice were sacrificed on D0 
and PECs collected through peritoneal lavage with 10 mL ice cold PBS. Cells were seeded into µ-Slide 8-well 
microscopy plates (ibidi®) and macrophages selected for with an overnight adherence step. A, Foam cell model. 
Macrophages were incubated for a further three days. On each day, live cells were fluorescently labelled for 30 
min at 37°C then fixed for 15 min each in 2% then 4% paraformaldehyde (PFA). Fixed cells were immediately 
imaged by laser-scanning-confocal microscopy (Z-stacked images of 0.42 µm slices). All images were 
processed and analysed for quantification of intracellular markers with the use of Volocity 3D Image Analysis 
Software. B, Mycobacterial model. Following overnight adherence, macrophages were infected for 6 h with M. 
bovis BCG-dsRed at an MOI of 1:1 (100 µg/10 µL). After infection, cells were washed three times in 
endotoxin-free PBS and either stained and imaged (phagocytic uptake) or cultured for up to five days 
(replication). 
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Figure S2 | Fluorescently-labelled macrophages from WT and LXR-deficient mice after five days of 
culture. Laser-scanning-confocal microscopy was used to measure intracellular LDs and mycobacterial growth 
(BCG-dsRed bacilli MOI: 1) in macrophages from WT and LXRα-/-β-/- KO mice. Neutral LDs were 
fluorescently labelled with Bodipy®493/503 and cytoplasm with CellTrackerTMBlue. Scale bar: 24 µm. 
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2. Additional experiments 

 

2.1 Screen for LXR target genes and ER stress markers in MA-treated macrophages 

 

Materials and methods 

C57BL/6 mice were treated intraperitoneally (i.p.) with liposome-formulated MAs (Mtb 

mixture; Sigma) and peritoneal exudate cells (PECs) isolated at specific time points (4, 12, 

24, 48 and 96 h). Primary macrophages were enriched through magnetic cell sorting with 

biotin-labelled F4/80 antibody (clone CI:A3-1, AbD Serotec) and anti-biotin microbeads 

(Miltenyi Biotec), used according to the manufacturer’s instructions. Flow cytometry was 

used to assess purity of the F4/80-enriched samples (~60 %). The RNeasy Mini Kit (Qiagen) 

was used to extract total RNA and complementary DNA was prepared with Superscript II 

(Invitrogen). Quantitative PCR (qPCR) was performed with a SYBRGreen mixture (GC 

Biotech) on a Roche LightCycler 480 system (Applied Biosystems). The sequences of the 

primers used were as follows: 

 

Liver X receptor (LXR) target genes 

mLXRα (fwd): 5’-TCATGCTTCTGGAGACGT-3’ 

mLXRα (rvse): 5’-CTCAGCATCATTGAGTTGC-3’ 

mAbcg1 (fwd): 5’-GGCAGGCTCCTCCCAGACTTC-3’ 

mAbcg1 (rvse): 5’-GGCAGGCTCCTCCCAGACTTC-3’ 

mAbca1 (fwd): 5’-CGCAAGCATATGCCTCAT-3’ 

mAbca1 (rvse): 5’-CCCATTACATAACACATGGCT-3’ 

mScd1 (fwd): 5’-TGGGGCTGCTAATCTCTGGGTGTA-3’ 

mScd1 (rvse): 5’-GGCTTTATCTCTGGGGTGGGTTTG-3’ 
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Endoplasmic reticulum (ER) stress markers 

mPerk (fwd): 5’-GTAGCCACGACCTTCATCG-3’ 

mPerk (rvse): 5’-TTTCAGTCTGGCACTGAGTTTC-3’ 

mIre1 (fwd): 5’-GACATGGCTACCATTATCCTGAG-3’ 

mIre1 (rvse): 5’-CTGACGCTGCTGATGCAC-3’ 

mAtf6a (fwd): 5’-CCACCAGAAGTATGGGTTCG-3’ 

mAtf6a (rvse): 5’-CAGACTCTCGGTTCTTTATCATCC-3’ 

mGrp78/mBiP (fwd): 5’-ATGAGGCTGTAGCCTATGGTG-3’ 

mGrp78/mBiP (rvse): 5’-GGGGACAAACATCAAGCAG-3’ 

mChop (fwd): 5’-CCACCACACCTGAAAGCAG-3’ 

mChop (rvse): 5’-TCCTGCAGATCCTCATACCAG-3’ 

mGADD34 (fwd): 5’-TTCCTCTAAAAGCTCGGAAGG-3’ 

mGADD34 (rvse): 5’-CAAAGCGGCTTCGATCTC-3’ 

mGrp94 (fwd): 5’-CAGTATGGATGGTCTGGCAAC-3’ 

mGrp94 (rvse): 5’-ACGTTTTCTTTTGACTGGCATAG-3’ 

mCalr (fwd): 5’-TGGCAAATTTGTCCTCAGTTC-3’ 

mCalr (rvse): 5’-TGCGTAAAATCGGGCATC-3’ 

mXbp1 unspliced (fwd): 5’-CACGCTTGGGAATGGACACGCT-3’ 

mXbp1 unspliced (rvse): 5’-TGCACATAGTCTGAGTGCTGCGC-3’ 

mXbp1 spliced (fwd): 5’-CACGCTTGGGAATGGACACGCT-3’ 

mXbp1 spliced (rvse): 5’-GCCTGCACCTGCTGCGGACTC-3’ 

 

 

 

 



CHAPTER II 
Supplemental data 

13 

 

Ilke Vermeulen | PhD thesis | 2016 
 

Results and discussion 

(A) LXR target genes 

 

In comparison to a control treatment of liposomes containing no MA, a 4-fold induction of 

relative mRNA expression was recorded for the murine nuclear receptor Lxrα in F4/80+ 

macrophages from two days of treatment with the Mtb MA mixture (Fig. S3). Though a 

marked down-regulation in relative mRNA expression was recorded for the cellular 

cholesterol export genes Abcg1 and Abca1 after one day, there was no distinct expression 

pattern recorded in F4/80+ macrophages at the other time points. The gene encoding stearoyl-

CoA desaturase-1 (Scd1), a key enzyme of fatty acid metabolism producing monounsaturated 

from saturated fatty acid species1, was downregulated by Mtb MAs (Fig. S3). 

 

 

 

Figure S3 | LXR target genes. Mouse peritoneal exudate cells harvested after two days of treatment with 
empty liposome carrier containing no MA (dotted line) or MA-liposomes (Mtb mixture, Sigma Aldrich), were 
enriched for F4/80+ macrophages with magnetic cell sorting. RNA was extracted from F4/80+ macrophages and 
LXR target genes analysed by qPCR. Lxrα, liver X receptor alpha; Abcg1 and Abca1, ATP-binding cassette 
transporters G1 and A1; SCD1, stearoyl-CoA desaturase-1.  
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The LXRs are key transcriptional regulators of cellular cholesterol balance2-4. Upon 

activation by oxysterol ligands, LXRs induce an array of genes involved in cholesterol 

transport5. The ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) are crucial 

in maintenance of sterol homeostasis through the efflux of excess cholesterol to lipid-poor 

apolipoproteins or high density lipoproteins3. A strong induction of the nuclear receptor Lxrα 

following treatment with Mtb MA mixture (that should induce abundant LDs) was not 

mirrored by the cellular cholesterol exporters Abcg1 and Abca1, which should be upregulated 

following abundant lipid loading. The gene encoding the key enzyme involved in the 

desaturation of stearic acid to oleic acid (Scd1) was also downregulated in cells from Mtb 

MA-treated mice. SCD1 activity is important in cellular cholesterol metabolism as it provides 

the monounsaturated fatty acids needed for synthesis of cholesteryl esters6, while also 

maintaining membrane lipid content and fluidity7. SCD1 has been shown to inhibit ABCA1-

mediated cholesterol efflux (through membrane domain reorganisation) and to be a source of 

fatty acyl-CoAs that could be easily incorporated into phospholipids8. This strategy of 

preventing LD export and utilising host SCD1-derived acyl-CoAs would surely benefit 

mycobacteria. Though Scd1 was not upregulated following Mtb MA treatment, neither were 

the cholesterol transporters. This hints towards a plausible inhibition by Mtb of host 

cholesterol export, and warranted further investigation. As a result of time constraints we 

were unable to assess the expression of cholesterol-associated target genes following 

treatment with the oxygenated MAs or BCG.   
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(B) ER stress markers 

 

No major mRNA expression patterns were observed in ER stress markers in F4/80+ murine 

macrophages. Our results did show that Mtb MAs decreased the expression of the integral ER 

membrane protein Perk (protein kinase R-like ER kinase) from two days of MA treatment 

(Fig. S4). On day two following Mtb MA treatment, thus coinciding with the distinct 

induction of cellular vacuoles and LDs, Ire1 mRNA was reduced by 50% while Grp78 and 

Calr mRNA was ~50% upregulated (yet followed no clear expression pattern). The 

ubiquitously expressed unspliced isoform of Xbp1 was 50% upregulated after four hours of 

Mtb MA treatment, but was followed by a gradual downregulation (Fig. S4).  
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Figure S4 | ER stress markers. Mice were treated with empty liposome carrier containing no MA (dotted line) 
or MA-liposomes (Mtb mixture, Sigma Aldrich) for 48 h and peritoneal exudate cells enriched for F4/80+ 
macrophages with magnetic cell sorting. RNA was extracted and LXR target genes analysed by qPCR. Perk, 
protein kinase R (PKR)-like ER kinase; Ire1, inositol-requiring enzyme-1; Atf6a, activating transcription factor-
6; Grp78 (BiP), 78 kDa glucose-related protein (binding immunoglobulin protein); Chop, CCAAT/enhancer-
binding protein (C/EBP) homologous protein; GADD34, 34 kDa growth arrest and DNA damage-inducible 
protein; Grp94, 94 kDa glucose-related protein; Calr, calreticulin; Xbp1, X-box binding protein-1 (ubiquitously 
expressed unspliced and Ire1-mediated spliced isoforms).  
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The ER lumen regulates folding of proteins and acts as a quality-control checkpoint to ensure 

only properly folded proteins are secreted or delivered to transmembrane locations9, 10. ER 

stress can result from exogenous or endogenous stimuli thus activating the unfolded protein 

response (UPR) to restore balance to the ER machinery11. First, through expression of ER 

transmembrane proteins (IRE1 and ATF) to stimulate molecular chaperones and protein 

folding enzymes to raise ER folding capacity (Grp78, Grp94, Calr); and second by activation 

of the resident ER transmembrane protein PERK (PKR-like ER kinase) to reduce the 

unfolded protein load by preventing protein synthesis10. The Mtb MA mixture did not bring 

about a significant UPR in murine F4/80+ macrophages. Mtb infection, however, elicits ER 

stress in macrophages from mouse and human tuberculous granulomas and effects ER stress-

induced apoptosis12, 13. Considering the intricacy of Mtb entry into host cells and the vast 

array of mediators involved in the resultant immune response, our model of using only the 

MA mixture to replicate the complex TB environment may not have been sufficient to elicit 

an ER stress response. In this study we reported on progress of the functional diversity of 

Mtb MAs, and showed that each of the major classes of Mtb MAs elicits distinct foam cell 

responses that either facilitated or prevented mycobacterial growth. The lack of ER stress 

induction by the combined MA mixture in this experiment may thus reflect the compositions 

of the three major MA classes as they occur in nature. The inflammatory neutral alpha-MA 

(~53% of total MAs) being the dominant constituent, whereas the bioactive oxygenated 

methoxy and keto MAs (totalling ~47%) make up the other portion14. Due to time constraints 

we were unable to further investigate ER stress in mycobacteria-infected foam cells from 

mice treated with the individual MA classes. Future study may therefore enable a better 

understanding of the underlying mechanisms involved in TB-induced ER stressors.     
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1. Supplemental data 
 

Table S1 | SIMPER and ANOSIM output of glycerophospholipid profiles. Glycerophospholipid profiles: 
SIMPER analyses identified global and between-group average dissimilarity (%). For pairwise comparisons, 
one-way ANOSIM output of quantitative data (nmol/µg DNA) is reported as an R value from one (dissimilar) to 
zero (similar) with an associated significance value (brackets: P ≤ 0.05, bolded). The global significance and R 
value are also reported for each ANOSIM test. The number of phospholipid species included in each analysis is 
indicated. Influential lipid species: SIMPER identified the influential phospholipid species contributing at least 
75% to global cumulative group dissimilarity (all treatments). Influential lipid species responsible for significant 
pairwise differences (as identified by ANOSIM) are given to highlight the effect of natural MA treatment (PBS 
vs. MA mix) or differences between the oxygenated MAs (kMA vs. mMA). PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine.  
 
 

Glycerophospholipid profiles 

 PC  PE  PI  PS 

Lipid species analysed 56  50  50  47 
Total n 504  450  450  423 
Global dissimilarity 34.1%  38.3%  34.5%  35.9% 
Global R value 0.4688  0.6406  0.6719  0.4375 
Global significance (P) 0.00604**  0.00259**  0.00223**  0.00118** 

PBS/MA mix 55.7% | 1(<0.01)  62.3% | 1 (<0.01)  51.1% | 1 (<0.01)  50.1% | 0.75 (0.01) 
PBS/αMA 20.2% | -1 (0.66)  28.4% | 0.25 (0.32)  32.7% | 1 (<0.01)  22.1% | 0 (0.62) 
PBS/kMA 51.2% | 1 (<0.01)  55.1% | 1 (<0.01)  46.4% | 1 (<0.01)  51.5% | 1 (<0.01) 
PBS/mMA 55.2% | 0.75 (<0.01)  21.4% | 0 (0.67)  29.1% | 0.25 (<0.01)  29.5% | 0 (0.07) 
MA mix/αMA 46.0% | 1 (<0.01)  42.9% | 1 (<0.01)  35.5% | 1 (<0.01)  37.2% | 1 (<0.01) 
MA mix/kMA 7.2% | 0.5 (<0.01)  11.2% | 0.5 (<0.05)  11.7% | 0.5 (<0.01)  12.4% | 0 (<0.01) 
MA mix/mMA 13.8% | -0.25 (0.11)  51.6% | 1 (<0.01)  39.5% | 0.75 (<0.01)  40.6% | 0.5 (<0.01) 
αMA/kMA 40.8% | 1 (<0.01)  33.4% | 1 (<0.05)  30.5% | 1 (<0.01)  38.6% | 1 (<0.01) 
αMA/mMA 45.9% | 0.75 (<0.01)  18.9% | 0 (0.07)  28.0% | -1 (0.67)  27.6% | -1 (0.17) 
kMA/mMA 13.4% | 0.5 (<0.05)  43.3% | 1 (<0.01)  34.6% | 0.5 (<0.01)  40.6% | 0.5 (<0.01) 

 

Influential lipid species  
 Glycerophospholipid species (% cumulative contribution to dissimilarity) | contribution factor 

 PC  PE  PI  PS 

All treatments 36:1 (19.1%) | 6.6  38:4 (31.3%) | 12.2  38:4 (41.6%) | 14.4  36:2 (16.4%) | 5.9 
*global dissimilarity  36:4 (32.9%) | 4.8  36:2 (41.0%) | 3.8  36:4 (49.1%) | 2.6  38:4 (31.8%) | 5.5 
 36:2 (45.0%) | 4.2  36:1 (49.2%) | 3.2  38:3 (55.9%) | 2.3  36:1 (46.9%) | 5.4 
 32:0 (56.8%) | 4.1  40:4 (56.3%) | 2.8  36:2 (62.3%) | 2.2  40:4 (59.9%) | 4.7 
 38:4 (65.9%) | 3.2  36:4 (62.4%) | 2.4  40:4 (66.6%) | 1.5  38:3 (67.2%) | 2.6 
 36:3 (72.3%) | 2.2  40:6 (67.6%) | 2.0  38:5 (70.6%) | 1.4  40:6 (71.9%) | 1.7 
 38:5 (75.6%) | 1.2  34:1 (71.5%) | 1.5  36:3 (73.2%) | 0.9  40:5 (76.2%) | 1.5 
   40:5 (75.1%) | 1.4  36:1 (75.8%) | 0.9   

PBS/MA mix 36:1 (19.1%) | 10.6  38:4 (32.1%) | 20.0  38:4 (45.9%) | 23.4  36:2 (18.6%) | 9.3 
*effect of natural MA 32:0 (33.0%) | 7.7  36:2 (42.9%) | 6.7  38:3 (53.7%) | 4.0  36:1 (32.7%) | 7.0 
treatment 36:4 (46.0%) | 7.3  36:1 (51.2%) | 5.2  36:2 (61.4%) | 3.9  38:4 (46.6%) | 6.9 
 36:2 (57.8%) | 6.6  40:4 (58.4%) | 4.5  36:4 (68.8%) | 3.8  40:4 (59.3%) | 6.4 
 38:4 (66.6%) | 4.9  36:4 (64.9%) | 4.1  40:4 (73.4%) | 2.4  38:3 (66.5%) | 3.6 
 36:3 (73.1%) | 3.6  40:6 (69.9%) | 3.1  38:5 (77.8%) | 2.3  34:1 (71.3%) | 2.4 
 38:5 (76.2%) | 1.8  34:1 (74.1%) | 2.6    40:5 (75.9%) | 2.3 
   38:5 (77.7%) | 2.2     

kMA/mMA 36:4 (15.6%) | 2.1  38:4 (33.6%) | 14.5  38:4 (44.6%) | 15.4  38:4 (%) | 7.4 
*effect of oxygenated MA 36:2 (31.1%) | 2.1  36:1 (41.9%) | 3.6  36:4 (53.6%) | 3.1  36:2 (%) | 6.5 
treatment 36:1 (45.1%) | 2.0  40:4 (50.0%) | 3.5  38:3 (59.5%) | 2.1  40:4 (%) | 6.0 
 38:4 (55.8%) | 1.8  36:2 (57.9%) | 3.4  40:4 (63.9%) | 1.5  36:1 (%) | 5.6 
 32:0 (63.5%) | 1.5  36:4 (63.3%) | 2.5  36:2 (68.3%) | 1.5  38:3 (%) | 3.1 
 36:3 (70.1%) | 1.3  40:6 (69.1%) | 2.4  38:5 (72.1%) | 1.3  40:6 (%) | 2.4 
 38:5 (74.2%) | 0.8  40:5 (73.0%) | 1.6  36:3 (75.1%) | 1.0   
 34:1 (77.9%) | 0.4  38:3 (76.5%) | 1.5     
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Table S2 | SIMPER and ANOSIM output of lysophospholipid profiles. Lysophospholipid profiles: SIMPER 
analyses identified global and between-group average dissimilarity (%). For pairwise comparisons, one-way 
ANOSIM output of quantitative data (nmol/µg DNA) is reported as an R value from one (dissimilar) to zero 
(similar) with an associated significance value (brackets: P ≤ 0.05, bolded). The global significance and R value 
are also reported for each ANOSIM test. The number of lysophospholipid species included in each analysis is 
indicated. Influential lipid species: SIMPER identified the influential lysophospholipid species contributing at 
least 75% to global cumulative group dissimilarity (all treatments). Influential lipid species responsible for 
significant pairwise differences (as identified by ANOSIM) are given to highlight the effect of natural MA 
treatment (PBS vs. MA mix) or differences between the oxygenated MAs (kMA vs. mMA). lysoPC, 
lysophosphatidylcholine; lysoPE, lysophosphatidylethanolamine; lysoPI, lysophosphatidylinositol; lysoPS, 
lysophosphatidylserine; n.s., not significant.  
 
 

Lysophospholipid profiles 

 lysoPC  lysoPE  lysoPI  lysoPS 

Lipid species analysed 27  13  23  22 
Total n 243  117  207  198 
Global dissimilarity 30.6%  31.5%  24.5%  14.7% 
Global R value 0.4219  0.5469  0.3594  0.6094 
Global significance (P) 0.01038*  0.00464**  0.01364*  0.00272** 

PBS/MA mix 21.5% | 0.5 (<0.05)  22.6% | 0.5 (<0.01)  22.4% | 0 (0.67)  15.0% | 1 (<0.01) 
PBS/αMA 22.7% | 0 (<0.05)  24.0% | -1 (0.051)  28.7% | 0 (0.63)  9.9% | 0 (<0.01) 
PBS/kMA 47.1% | 1 (<0.01)  29.2% | 0.5 (<0.01)  21.5% | 0 (0.63)  20.5% | 1 (<0.01) 
PBS/mMA 51.4% | 1 (<0.01)  29.4% | 0.25 (<0.01)  26.5% | 0. 5 (<0.01)  7.7% | -0.5 (0.11)  
MA mix/αMA 10.5% | -1 (0.31)  39.6% | 1 (<0.01)  31.3% | 1 (<0.05)  9.9% | 1 (<0.01) 
MA mix/kMA 31.2% | 1 (<0.01)  10.3% | 0.25 (0.07)  10.6% | -0.5 (0.69)  7.4% | 0.25 (0.33) 
MA mix/mMA 36.2% | 1 (<0.01)  46.6% | 1 (<0.01)  26.8% | 1 (<0.01)  18.8% | 1 (<0.01) 
αMA/kMA 27.8% | 1 (<0.01)  46.4% | 1 (<0.01)  33.4% | 1 (<0.01)  14.7% | 1 (<0.01) 
αMA/mMA 32.9% | 1 (<0.01)  11.9% | 0 (<0.01)  19.3% | 0.25 (<0.01)  13.2% | 1 (<0.01) 
kMA/mMA 10.6% | 0.25 (<0.05)  53.0% | 1 (<0.01)  27.9% | 1 (<0.01)  24.1% | 1 (<0.01) 

 
Influential lipid species 

 Lysophospholipid species (% cumulative contribution to dissimilarity) | contribution factor 

 lysoPC  lysoPE  lysoPI  lysoPS 

All treatments 16:0 (29.9%) | 10.2  18:0 (39.8%) | 12.5  18:0 (24.2%) | 6.5  18:0 (44.0%) | 6.5 
*global dissimilarity 18:1 (46.3%) | 5.6  20:4 (53.0%) | 4.1  20:4 (48.0%) | 5.8  18:1 (55.7%) | 1.7 
 18:2 (61.8%) | 5.3  16:0 (64.8%) | 3.7  14:4 (55.0%) | 3.7  18:2 (62.8%) | 1.0 
 20:4 (73.8%) | 4.1  18:1 (74.4%) | 3.0  20:0 (63.3%) | 2.6  16:0 (69.4%) | 1.0 
 18:0 (84.4%) | 3.6  22:4 (83.1%) | 2.8  22:4 (66.6%) | 1.2  14:1 (75.7%) | 0.9 
     20:3 (69.1%) | 1.2   
     16:0 (73.1%) | 1.1   
     18:1 (76.7%) | 1.0   

PBS/MA mix 16:0 (27.7%) | 5.9  18:0 (34.9%) | 7.9    18:0 (49.5%) | 7.4 
*effect of natural MA 18:1 (47.9%) | 4.3  16:0 (51.8%) | 3.8    18:2 (59.7%) | 1.5 
treatment 18:2 (65.6%) | 3.8  18:1 (65.4%) | 3.1                n.s.  18:1 (69.9%) | 1.5 
 20:4 (77.7%) | 2.6  20:4 (74.1%) | 2.0    16:0 (77.7%) | 1.2 
   18:2 (82.6%) | 1.9     

kMA/mMA 18:2 (29.8%) | 3.2  18:0 (43.0%) | 22.8  18:0 (29.3%) | 8.2  18:0 (47.0%) | 11.3 
*effect of oxygenated MA 16:0 (45.7%) | 1.7  20:4 (56.0%) | 6.9  20:4 (57.3%) | 7.8  18:1 (60.3%) | 3.2 
treatment 18:1 (59.9%) | 1.5  16:0 (67.6%) | 6.1  20:0 (62.4%) | 1.4  16:0 (66.8%) | 1.6 
 20:4 (70.6%) | 1.1  18:1 (76.8%) | 4.9  18:1 (67.3%) | 1.4  20:4 (73.0%) | 1.5 
 18:0 (80.6%) | 1.1    16:0 (72.2%) | 1.4  18:2 (79.0%) | 1.4 
     20:3 (76.1%) | 1.1   
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Table S3 | SIMPER and ANOSIM output of ceramide and sphingomyelin profiles. Sphingolipid profiles: 
SIMPER analyses identified global and between-group average dissimilarity (%). For pairwise comparisons, 
one-way ANOSIM output of quantitative data (nmol/µg DNA) is reported as an R value from one (dissimilar) to 
zero (similar) with an associated significance value (brackets: P ≤ 0.05, bolded). The global significance and R 
value are also reported for each ANOSIM test. The number of lipid species included in each analysis is 
indicated. Influential lipid species: SIMPER identified the influential sphingolipid species contributing at least 
75% to global cumulative group dissimilarity (all treatments). Influential lipid species responsible for significant 
pairwise differences (as identified by ANOSIM) are given to highlight the effect of natural MA treatment (PBS 
vs. MA mix) or differences between the oxygenated MAs (kMA vs. mMA). Cer, ceramide; SM, sphingomyelin.  
 
 

 Sphingolipid profiles    

 Cer  SM  

Lipid species analysed 38  21  

Total n 342  189  

Global dissimilarity 25.6%  19.8%  

Global R value 0.7656  0.4688  

Global significance (P) 0.00125**  0.00315**  

PBS/MA mix 27.9% | 1 (<0.01)  26.0% | 0.5 (<0.01)  
PBS/αMA 12.6% | 1 (<0.01)  12.6% | 0 (0.06)  

PBS/kMA 30.2% | 0.75 (<0.01)  26.7% | 0.5 (<0.01)  

PBS/mMA 40.0% | 1 (<0.01)  32.9% | 1 (<0.01)  

MA mix/αMA 25.3% | 1 (<0.05)  19.2% | 1 (<0.01)  

MA mix/kMA 8.7% | -0.25 (0.065)  4.5% | 0 (<0.01)  

MA mix/mMA 22.9% | 1 (<0.01)  16.2% | 0.75 (<0.01)  

αMA/kMA 28.1% | 1 (<0.01)  19.9% | 1 (<0.01)  

αMA/mMA 34.7% | 1 (<0.01)  25.9% | 1 (<0.01)  

kMA/mMA 24.8% | 1 (<0.01)  13.7% | 0. 5 (<0.01)  

 
Influential lipid species 

Sphingolipid species (% cumulative contribution to dissimilarity) | contribution factor 

 Cer  SM  

All treatments 18:1/16:0 (40.0%) | 10.2  18:1/16:0 (61.4%) | 15.9  

*global dissimilarity 18:1/24:1(15Z) (53.8%) | 3.5  18:1/24:1(15Z) (70.9%) | 2.5  

 18:1/16:2 (67.0%) | 3.4  18:2/24:1(15Z) (76.2%) | 1.4  

 18:1/24:0 (78.8%) | 3.0     

PBS/MA mix 18:1/16:0 (39.6%) | 11.6  18:1/16:0 (54.3%) | 14.1  

*effect of natural MA 18:1/24:1(15Z) (62.2%) | 6.7  18:1/24:1(15Z) (63.0%) | 2.3  

treatment 18:1/16:2 (71.7%) | 2.8  18:0/20:0 (70.2%) | 1.8  

 18:1/24:0 (78.7%) | 2.1  18:2/24:1(15Z) (76.1%) | 1.5   

kMA/mMA 18:1/16:0 (31.2%) | 8.0  18:1/16:0 (44.5%) | 6.1  

*effect of oxygenated MA 18:1/24:0 (47.6%) | 4.2  18:1/24:1(15Z) (63.4%) | 2.6  

treatment 18:1/16:2 (62.2%) | 3.8  18:1/24:0 (69.3%) | 0.8  

 18:1/24:1(15Z) (74.3%) | 3.1  18:2/22:1 (73.7%) | 0.6  

 18:1/24:2 (85.5%) | 2.9  18:1/22:1 (77.9%) | 0.6  
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Figure S1 | Purity of F4/80+ murine peritoneal macrophages. Murine F4/80+ macrophages were isolated 
using MACS magnetic cell sorting and the purity of magnetically labelled cells assessed by flow cytometry. 
Flow cytometry output represents the pre- and post-sorting fractions of F4/80+ macrophages in murine PECs for 
the (a) PBS and (b) kMA treatments. Single cells were gated by forward and side scatter and F4/80+ 
macrophages identified by staining with anti-F4/80-APC (eBiosciences, clone BM8).  
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 Figure S2 | Phosphatidylcholine lipid species profiles of peritoneal m

acrophages from
 m

ice treated w
ith various M

A
s. The absolute levels (nm

ol/µg D
N

A
) are given 

for the phosphatidylcholine fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or the oxygenated 

kM
A

 or m
M

A
. V

alues are expressed as m
ean ± SEM

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 m
ultiple m

ice (n 
= 10).  
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 Figure S3 | Phosphatidylethanolam

ine lipid species profiles of peritoneal m
acrophages from

 m
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ith various M
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s. The absolute levels (nm
ol/µg D

N
A

) are 
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ine fatty acid species of F4/80
+ m
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 m

ice treated w
ith PB

S (-control), M
A
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A
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 or m
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ean ± SEM
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 Figure S4 | Phosphatidylinositol lipid species profiles of peritoneal m

acrophages from
 m

ice treated w
ith various M

A
s. The absolute levels (nm

ol/µg D
N

A
) are given 

for the phosphatidylinositol fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or the oxygenated 

kM
A

 or m
M

A
. V

alues are expressed as m
ean ± SEM

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 m
ultiple m

ice (n 
= 10).  
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 Figure S5 | Phosphatidylserine lipid species profiles of peritoneal m

acrophages from
 m

ice treated w
ith various M

A
s. The absolute levels (nm

ol/µg D
N

A
) are given for 

the phosphatidylserine fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or the oxygenated kM

A
 or 
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M

A
. V

alues are expressed as m
ean ± SEM
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ata are from
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o independent experim

ents (n = 2) each com
prising pooled F4/80
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 m
ultiple m

ice (n = 10).  
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Figure S6 | C
hange in absolute abundance of phosphatidylcholine lipid species. The change in phosphatidylcholine com

position is given for F4/80
+ m

acrophages from
 

m
ice treated w

ith the oxygenated m
M

A
 or kM

A
. Q

uantitative fatty acid values (nm
ol/µg D

N
A

) are expressed as a ratio (log
2 ) of m

M
A

 or kM
A

 over control unoxygenated 
αM

A
. D

ata are from
 tw

o independent experim
ents (n = 2) each com

prising pooled F4/80
+ m

acrophages from
 m

ultiple m
ice (n = 10). 
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Figure S7 | C
hange in absolute abundance of phosphatidylethanolam

ine lipid species. The change in phosphatidylethanolam
ine com

position is given for F4/80
+ 

m
acrophages from
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ice treated w

ith the oxygenated m
M

A
 or kM

A
. Q

uantitative fatty acid values (nm
ol/µg D

N
A

) are expressed as a ratio (log
2 ) of m
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A
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A

 over 
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A
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ata are from
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Figure S8 | C
hange in absolute abundance of phosphatidylinositol lipid species. The change in phosphatidylinositol com

position is given for F4/80
+ m

acrophages from
 

m
ice treated w

ith the oxygenated m
M

A
 or kM

A
. Q

uantitative fatty acid values (nm
ol/µg D

N
A

) are expressed as a ratio (log
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A
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A
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A
. D
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ents (n = 2) each com
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ice (n = 10). 
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Figure S9 | C
hange in absolute abundance of phosphatidylserine lipid species. The change in phosphatidylserine com

position is given for F4/80
+ m

acrophages from
 m

ice 
treated w

ith the oxygenated m
M

A
 or kM

A
. Q

uantitative fatty acid values (nm
ol/µg D

N
A

) are expressed as a ratio (log
2 ) of m

M
A

 or kM
A

 over control unoxygenated αM
A

. 
D

ata are from
 tw

o independent experim
ents (n = 2) each com

prising pooled F4/80
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ultiple m
ice (n = 10). 
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 Figure S10 | Lysophosphatidylcholine fatty acid profiles of peritoneal m

acrophages from
 m

ice treated w
ith various M

A
s. The absolute levels (nm

ol/µg D
N

A
) are 

given for the lysophosphatidylcholine fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or the 

oxygenated kM
A

 or m
M

A
. V

alues are expressed as m
ean ± SEM

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 
m

ultiple m
ice (n = 10).  
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 Figure S11 | Lysophosphatidylethanolam

ine fatty acid profiles of peritoneal m
acrophages from

 m
ice treated w

ith various M
A

s. The absolute levels (nm
ol/µg D

N
A

) 
are given for the lysophosphatidylethanolam

ine fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or 

the oxygenated kM
A

 or m
M

A
. V

alues are expressed as m
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. D
ata are from
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ultiple m
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  Figure S12 | Lysophosphatidylinositol fatty acid profiles of peritoneal m

acrophages from
 m

ice treated w
ith various M

A
s. The absolute levels (nm

ol/µg D
N

A
) are 

given for the lysophosphatidylinositol fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or the 

oxygenated kM
A

 or m
M

A
. V

alues are expressed as m
ean ± SEM

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 
m

ultiple m
ice (n = 10).  
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  Figure S13 | Lysophosphatidylserine fatty acid profiles of peritoneal m

acrophages from
 m

ice treated w
ith various M

A
s. The absolute levels (nm

ol/µg D
N

A
) are given 

for the lysophosphatidylserine fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or the oxygenated 

kM
A

 or m
M

A
. V

alues are expressed as m
ean ± SEM

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 m
ultiple m

ice (n 
= 10).  
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 Figure S14 | C

hange in absolute abundance of lysophosphatidylcholine fatty acid species. The change in lysophosphatidylcholine com
position is given for F4/80

+ 
m

acrophages from
 m

ice treated w
ith the oxygenated m

M
A

 or kM
A

. Q
uantitative fatty acid values (nm

ol/µg D
N

A
) are expressed as a ratio (log

2 ) of m
M

A
 or kM

A
 over 

control unoxygenated αM
A

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 m
ultiple m

ice (n = 10). 
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Figure S15 | C
hange in absolute abundance of lysophosphatidylethanolam

ine fatty acid species. The change in lysophosphatidylethanolam
ine com

position is given for 
F4/80

+ m
acrophages from

 m
ice treated w

ith the oxygenated m
M

A
 or kM

A
. Q

uantitative fatty acid values (nm
ol/µg D

N
A

) are expressed as a ratio (log
2 ) of m

M
A

 or kM
A

 
over control unoxygenated αM

A
. D

ata are from
 tw

o independent experim
ents (n = 2) each com

prising pooled F4/80
+ m

acrophages from
 m

ultiple m
ice (n = 10). 
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 Figure S16 | C

hange in absolute abundance of lysophosphatidylinositol fatty acid species. The change in lysophosphatidylinositol com
position is given for F4/80

+ 
m

acrophages from
 m

ice treated w
ith the oxygenated m

M
A

 or kM
A

. Q
uantitative fatty acid values (nm

ol/µg D
N

A
) are expressed as a ratio (log

2 ) of m
M

A
 or kM

A
 over 

control unoxygenated αM
A

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 m
ultiple m

ice (n = 10). 
 

Lysophosphatidylinositol
L16:0

L18:0

L20:0

L14:1

L16:1

L18:1

L20:1

L22:1

L14:2

L16:2

L18:2

L20:2

L22:2

L14:3

L18:3

L20:3

L14:4

L20:4

L22:4

L14:5

L16:5

L18:5

L22:5

-4 -2 0 2 4

M
ethoxy

Keto
vs.D

M
A

Change in absolute
abundance (log2)



C
H

A
PTER

 III 
Supplem

ental data 
21 

 

Ilke V
erm

eulen | PhD
 thesis | 2016 

 

 

 Figure S17 | C
hange in absolute abundance of lysophosphatidylserine fatty acid species. The change in lysophosphatidylserine com

position is given for F4/80
+ 

m
acrophages from

 m
ice treated w

ith the oxygenated m
M

A
 or kM

A
. Q

uantitative fatty acid values (nm
ol/µg D

N
A

) are expressed as a ratio (log
2 ) of m

M
A

 or kM
A

 over 
control unoxygenated αM

A
. D

ata are from
 tw

o independent experim
ents (n = 2) each com

prising pooled F4/80
+ m

acrophages from
 m

ultiple m
ice (n = 10). 
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 Figure S18 | C

eram
ide lipid species profiles of peritoneal m

acrophages from
 m

ice treated w
ith various M

A
s. The absolute levels (nm

ol/µg D
N

A
) are given for the 

ceram
ide fatty acid species of F4/80

+ m
acrophages from

 m
ice treated w

ith PB
S (-control), M

A
 m

ix (+control), unoxygenated αM
A

, or the oxygenated kM
A

 or m
M

A
. V

alues 
are expressed as m

ean ± SEM
. D

ata are from
 tw

o independent experim
ents (n = 2) each com

prising pooled F4/80
+ m

acrophages from
 m

ultiple m
ice (n = 10).  
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 Figure S19 | Sphingom

yelin lipid species profiles of peritoneal m
acrophages from

 m
ice treated w

ith various M
A

s. The absolute levels (nm
ol/µg D

N
A

) are given for the 
sphingom

yelin fatty acid species of F4/80
+ m

acrophages from
 m

ice treated w
ith PB

S (-control), M
A

 m
ix (+control), unoxygenated αM

A
, or the oxygenated kM

A
 or m

M
A

. 
V

alues are expressed as m
ean ± SEM

. D
ata are from

 tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 m
ultiple m

ice (n = 10).  
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 Figure S20 | C

hange in absolute abundance of ceram
ide lipid species. The change in ceram

ide com
position is given for F4/80

+ m
acrophages from

 m
ice treated w

ith the 
oxygenated m

M
A

 or kM
A

. Q
uantitative fatty acid values (nm

ol/µg D
N

A
) are expressed as a ratio (log

2 ) of m
M

A
 or kM

A
 over control unoxygenated αM

A
. D

ata are from
 

tw
o independent experim

ents (n = 2) each com
prising pooled F4/80

+ m
acrophages from

 m
ultiple m

ice (n = 10). 
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Figure S21 | C
hange in absolute abundance of sphingom

yelin lipid species. The change in sphingom
yelin com

position is given for F4/80
+ m

acrophages from
 m

ice treated 
w

ith the oxygenated m
M

A
 or kM

A
. Q

uantitative fatty acid values (nm
ol/µg D

N
A

) are expressed as a ratio (log
2 ) of m

M
A

 or kM
A

 over control unoxygenated αM
A

. D
ata are 

from
 tw

o independent experim
ents (n = 2) each com

prising pooled F4/80
+ m

acrophages from
 m

ultiple m
ice (n = 10). 
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2. Additional experiments 

 

2.1 Assessment of inflammation and foam cell traits following murine in vivo treatment with 

an acid sphingomyelinase inhibitor (Zoledronic acid) 

 

Zoledronic acid (ZA) is a potent nitrogen-containing bisphosphonate generally used to treat 

malignant hypercalcaemia, osteoporosis and bone-related cancers1. Bisphosphonates like ZA 

also display strong inhibition of acid sphingomyelinase (aSMase)2, a key phosphodiesterase 

in the catabolism of sphingomyelin (SM) to ceramide  (Cer) and phosphorylcholine3. Cer 

form integral structural components of cellular membranes and are important signalling lipids 

that regulate cell function4. Our lipidomics data showed that Cer species significantly 

contributed to the lipid composition of macrophages from mice treated with the natural MA 

mixture (Chapter III: Fig. 5). This Cer enrichment was mimicked by the individual 

oxygenated MA classes with macrophages from kMA-treated mice recording levels 

comparable to the MA mix, but mMA inducing even higher levels of total Cer, as well as 

C16 and C24 fatty acid species, relative to the MA mixture. Several intracellular bacterial 

pathogens manipulate Cer metabolism to uphold virulence. For example, through generation 

of plasma membrane Cer-enriched platforms to gain entry into host cells5-7 or by scavenging 

and incorporation of host sphingolipids to evade detection after infection8. The bioactive lipid 

messenger, sphingosine-1-phosphate (S1P), is involved in regulation of Ca2+ levels in 

activated macrophages after phagocytosis of opsonised organisms, a strategy employed to 

allow maturation of lysosomal compartments9. Mycobacterium tuberculosis (Mtb) can 

suppress the rise in Ca2+ through inhibition of sphingosine kinase translocation, which 

mediates sphingosine phosphorylation, thus decreasing S1P and preventing acidification of 

host phagolysosomes10. Identification of the molecular mechanisms employed by Mtb to 
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manipulate host sphingolipids would aid in the understanding of its pathogenesis and allow 

for the development of novel anti-TB drugs. We postulated that mMA from Mtb triggers 

aSMase to generate Cer, thus leading to enhanced inflammation. To address this hypothesis, 

we investigated the involvement of aSMase in the induction of inflammation by mMA. We 

used different modes of MA and ZA treatment (i.e. intratracheal and intraperitoneal) and 

assessed bronchoalveolar lavage fluid (BALF) and lipopolysaccharide (LPS) stimulated 

culture supernatant for inflammatory cytokines. LPS stimulated macrophages were also 

investigated by confocal microscopy to measure foam cell traits following MA and/or ZA 

treatment.   

 

Materials and methods 

ZA [1-Hydroxy-2-(1H-imidazol-1-yl)ethane-1,1-diyl]bis(phosphonic acid) was purchased as 

a hydrated disodium salt (Enzo Life Sciences). ZA stock solution was prepared in calcium- 

and endotoxin-free PBS (1 mg/mL, pH 7.4; Lonza) and aliquots filter-sterilised prior to use. 

C57BL/6 mice (n = 5 per experimental condition) were sedated intraperitoneally (i.p.) with 

150 µL anaesthetic solution consisting of ketamine (100 mg/kg) and xylazine (10 mg/kg). 

Sedated mice were then instilled intratracheally (i.t.) with a lipid backbone control (MA-bb) 

or the cis-isomer of methoxy-MA (mMA; 25 µg/mouse) with or without ZA (2.5 µg/mouse). 

Mice were terminally sedated after 48 h with Nembutal (sodium pentobarbital; 50 mg/kg) and 

cells harvested by bronchoalveolar lavage (BAL). Cell supernatant was stored for multiplex 

assay while pellets were resuspended in 100 µL PBS containing purified anti-mouse 

CD16/CD32 (blocks high-affinity Fcγ receptors; BD Biosciences), the live/dead marker 

Sytox red (eBiosciences) and selected fluorescent surface markers for 30 min at 4°C. Cell 

surface markers were purchased from BD Biosciences and comprised MHC II (I-A, eFluor® 

450), CD3ε (Alexa Fluor® 488), Siglec-F (PE), CD11c (PE-Texas red), CD8a (PE-Cyanine7), 
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CD4 (PerCP), and CD11b (APC-eFluor® 780; eBiosciences). BAL extruded cells were 

counted and cell type composition analysed by flow cytometry (LSRII flow cytometer, BD 

Biosciences). Analyses were performed with BD FACS Diva or FlowJo software.    

 

Mice were treated i.p. as described above for assessment of cytokine levels and macrophage 

morphology (25 µg MA-bb or mMA, +/- ZA). Peritoneal exudate cells (PEC) were harvested 

after two days by peritoneal lavage and cells seeded into 96-well plates for multiplex assay 

(1x105 cells/well) and 8-well ibidi® plates for confocal microscopy (5x105 cells/well). 

Peritoneal macrophages were enriched by an overnight adherence then treated with or 

without Escherichia coli LPS-containing medium for 24 h (0.1 µg/mL; LPS 0111:B4, Sigma-

Aldrich). Culture supernatants were removed and centrifuged, and aliquots stored at -80°C or 

processed for multiplex assay as described below. Cells for confocal analyses (+/-LPS) were 

fluorescently labelled with CellTrackerTMViolet (10 mM stock, 1:1000) and Bodipy 493/503.  

Supernatant from BAL extruded cells and LPS-treated peritoneal macrophages were 

processed for multiplex assay measurement of cytokines using the Bio-Plex ProTM kit (Bio-

Rad). In brief, 100 µL assay buffer was used to pre-wet wells of a 96-well filter plate and 50 

µL magnetic beads mixture added of detection antibodies against the mouse cytokines IL-6, 

KC, MCP-1 and TNFα (Grp1, Bio-Rad; 2.5 µL/bead/well). Wells were washed with wash 

buffer (2x 200 µL) and 50 µL added of standard, control or treatment sample. Sample and 

beads were briefly resuspended on a shaking platform (1000 rpm) then covered and incubated 

for 30 min by rotation at room temperature (300 rpm). After washing (3x 200 µL) 25 µL of 

detection antibody mixture was added and the plate incubated by rotation for 30 min (1.25 

µL/antibody/well). Wells were washed (3x 200 µL) and 50 µL streptavidin-PE/assay buffer 

solution added (0.25 µL streptavidin-PE/well). Following a 10 min rotation and wash (3x 200 
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µL), wells were resuspended in 125 µL assay buffer and immediately measured using a Bio-

Plex® 200 System with Luminex xMap Technology (Bio-Rad). 

 

Results and discussion 

Following murine i.t. instillation with control MA-bb or mMA solutions (+/-ZA), the 

inflammatory BAL infiltrate was assessed by flow cytometry analysis (Fig. S22). Higher total 

cell numbers were recorded in BALF from mMA treated lungs (Fig. S23, insert). Resident 

alveolar macrophages (rAMs) and neutrophils constituted the main components of 

inflammatory infiltrate in lungs from both MA-bb and mMA treated mice (Fig. S23, upper 

panel). Recruitment of neutrophils was substantially elevated in the bronchoalveolar lumen of 

mMA treated lungs with an approximate 30-fold elevation compared to the MA-bb treatment. 

ZA pretreatment did not significantly change alveolar recruitment of rAMs, dendritic cells 

(DCs), recruited monocytes and eosinophils (Fig. S23, lower panel). Yet T lymphocytes and 

neutrophils were reduced in lungs that collectively received ZA and mMA. BALF isolated 

from mMA treated lungs also contained some infiltration of monocytic myeloid cells (non-

rAMs) and eosinophils (Fig. S23). 

 

Cytokine responses of bronchoalveolar infiltrate following MA-bb or mMA instillation and 

concomitant ZA priming showed a distinct difference for mMA treated lungs (Fig. S24). 

Though higher for mMA than MA-bb, cytokine levels of IL-6, MCP-1 and TNFα were 

generally low (<20 pg/mL). Compared to MA-bb, KC levels from lungs of mMA treated 

mice was significantly elevated (>75 pg/mL). ZA did not have a major effect on cytokine 

expression though an almost 2-fold reduction in MCP-1 levels was recorded in BALF from 

mMA (+ZA) treated lungs (Fig. S24).  
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Figure S22 | Flow cytometry analysis of BAL fluid samples. Representation of the flow cytometry analysis of 
gated leukocyte populations from lungs of mice instilled intratracheally with 25 µg MA-bb or cis-mMA 
solutions with or without zoledronic acid (+/-ZA). Living cells stained negative for Sytox red and distinguished 
T lymphocytes (CD3ε+) from those of the monocytic myeloid lineage (CD11c+). As a result of failure of the 
anti-CD4 (PerCP) antibody, no distinction could be made between CD4 (PerCP+) and CD8 (PE-Cy7+) T cells. 
Within the myeloid cell population rAMs (CD11c+, Siglec-F+, MHC II+), dendritic cells (CD11c+, CD11b+, 
MHC II+) and recruited monocytes (CD11c+, CD11b+, MHC II-) were distinguished. The granulocytes 
(CD11c-) comprised the neutrophils (Siglec-F-, CD11b+) and eosinophils (Siglec-F+, CD11b+).   
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Figure S23 | Average total and differential BAL fluid cell counts. Mice were instilled intratracheally with 25 
µg MA-bb or mMA solutions with or without zoledronic acid (+/-ZA). Cells were collected after 48 h by 
bronchoalveolar lavage (BAL) and total (insert) and differential cell counts measured in BAL fluid by flow 
cytometry (mean ± SEM). Cell surface markers are shown in green. rAMs, resident alveolar macrophages.   
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Figure S24 | Cytokine response of bronchoalveolar infiltrate following treatment with zoledronic acid. 
Mice were treated intratracheally with 25 µg MA-bb or mMA solutions (+/- 2.5 µg ZA). Cells were collected 
after 48 h by bronchoalveolar lavage and assessed for cytokines (murine IL-6, KC, MCP-1, TNFα) by multiplex 
immunoassay using a Bio-Plex® 200 system with Luminex xMap Technology (n = 5 mice). Statistical 
differences were assessed by an independent samples Kruskal-Wallis test for mIL-6 (H = 16.915, P < 0.01, df = 
3) mKC (H = 15.754, P < 0.01, df = 3), mMCP-1 (H = 17.196, P < 0.01, df = 3) and mTNFα (H = 14.238, P < 
0.01, df = 3).   
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Peritoneal macrophages from mice harvested after i.p. ZA treatment and ex vivo stimulation 

with LPS, exhibited different cytokine responses to bronchoalveolar cells. In peritoneal 

macrophages from mice that received the control MA-bb treatment no distinct pattern in 

cytokine expression was recorded between LPS groups, but ZA pretreatment significantly 

increased levels of all measured cytokines (Dunn’s ranked sum multiple comparisons P < 

0.01; Fig. S25). ZA treatment noticeably elevated IL-6, KC and TNFα cytokine expression in 

peritoneal macrophages from mice treated with mMA. Whereas LPS stimulation resulted in 

decreased MCP-1 levels in cells from mice that received mMA in vivo, this effect was 

reversed with higher levels of MCP-1 in LPS-stimulated cells following ZA treatment (Fig. 

S25). Bronchoalveolar and peritoneal cells from mice that received mMA exhibited elevated 

expression of IL-6 and diverse effects on MCP-1 levels in response to ZA treatment (Fig. 

S24-S25). 

 

Peritoneal macrophages were next assessed by laser scanning confocal microscopy for 

differences in foam cell traits after differential treatment with MA, ZA and LPS (Fig. S26). In 

macrophages from MA-bb and mMA treated mice that were not exposed to LPS, ZA 

treatment induced LD accumulation yet had no effect on the proportion of enlarged V+ cells 

(Fig. S27). Exposure of the macrophages (from both treatments) to LPS in culture led to a 

significant reduction in the proportion of enlarged V+ cells (Fig. S28). Interestingly, in LPS-

activated macrophages from the mMA treatment LD accumulation decreased following ZA 

treatment.  
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Figure S25 | Cytokine response of peritoneal macrophages after zoledronic acid treatment and LPS 
stimulation. Mice were treated intraperitoneally with 25 µg MA-bb or mMA solutions (+/- 2.5 µg ZA). Cells 
were collected after 48 h by peritoneal lavage and stimulated with or without E.coli LPS (0.1 µg/mL). Cytokines 
(murine IL-6, KC, MCP-1, TNFα) were assessed by multiplex immunoassay using a Bio-Plex® 200 system with 
Luminex xMap Technology (n = 5 mice). Significant differences were assessed with an independent-samples 
Kruskal-Wallis test for mIL-6 (H = 33.254, P < 0.001, df = 7), mKC (H = 32.885, P < 0.001, df = 7), mMCP-1 
(H = 31.097, P < 0.001, df = 7) and mTNFα (H = 32.821, P < 0.001, df = 7). Dunn’s ranked sum multiple 
comparisons recorded a significant rise in cytokine levels in peritoneal macrophages following ZA treatment 
(indicated by grey bolded asterisks at bottom of graph; P < 0.001***). 
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Figure S26 | Foam cell traits of murine peritoneal macrophages following zoledronic acid treatment and 
LPS stimulation. Mice were treated intraperitoneally with 25 µg MA-bb or mMA (+/- 2.5 µg ZA). Cells were 
collected after 48 h by peritoneal lavage and stimulated with or without E.coli LPS (0.1 µg/mL). Intracellular 
foam cell traits, namely the accumulation of LDs and vacuoles, were assessed by laser-scanning-confocal 
microscopy and quantified using Volocity 3D Image Analysis software (mean ± SEM; n = 5 mice). Statistical 
differences were analysed by independent samples Kruskal-Wallis tests for enlarged V+ cells (H = 36.954, P < 
0.001, df = 7) and LDs (H = 48.308, P < 0.001, df = 7). 
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Figure S27 | Confocal microscopy images of foam cell morphology after treatment with zoledronic acid. 
Mice (n = 5) were treated intraperitoneally with 25 µg MA-bb or mMA (+/- 2.5 µg ZA) for 48 h. PECs were 
harvested and peritoneal macrophages enriched by overnight adherence. Peritoneal macrophages were mock-
treated with PBS containing no E. coli LPS for 24 h and intracellular foam cell traits assessed by laser-scanning-
confocal microscopy. Whole cells were fluorescently labelled with CellTrackerTMViolet and neutral LDs with 
Bodpiy 493/503. Control cells were stained with the nucleic acid marker Hoechst® only (auto-fluorescence 
control). Scale bar: 24 µm.  
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Figure S28 | Confocal microscopy images of foam cell morphology after zoledronic acid treatment and 
LPS stimulation. Mice (n = 5) were treated intraperitoneal with 25 µg MA-bb or mMA (+/- 2.5 µg ZA) for 48 
h. PECs were harvested and peritoneal macrophages enriched by overnight adherence. Peritoneal macrophages 
were treated ex vivo with E. coli LPS (0.1 µg/mL) for 24 h and intracellular foam cell traits assessed by laser-
scanning-confocal microscopy. Whole cells were fluorescently labelled with CellTrackerTMViolet and neutral 
LDs with Bodpiy 493/503. Control cells were stained with the nucleic acid marker Hoechst® only (auto-
fluorescence control). Scale bar: 24 µm.  
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Average total and differential cell counts of neutrophils and monocytic cells are similar to a 

previous report from our group11. The reduction in T lymphocytes, neutrophils, and MCP-1 

cytokine levels in the BALF from mMA-exposed lungs after ZA treatment is surely 

interesting. In LPS-stimulated cells a strong rise in cytokine levels was observed for 

macrophages from mice that were treated with MA-bb and mMA after ZA treatment, though 

IL-6, KC and TNFα remained lower in cells from the mMA treatment than those recorded for 

MA-bb control cells. Varied reports on the role of aSMase in inflammation exist. While ZA 

treatment can down-modulate inflammation by lowering migration towards, or expression of, 

various chemokine receptors12, ZA can distinctly elevate proinflammatory activity in LPS-

stimulated macrophages by enhancing NF-κB and reducing negative regulators of MyD88-

signalling13. A general reduction in proinflammatory markers following aSMase inhibition in 

cells from mice that received mMA identified an involvement of this enzyme during 

inflammatory signalling, though further investigation is needed. It would have been 

interesting to assess aSMase cell surface exposure in unoxygenated (alpha) and oxygenated 

(keto and methoxy) MA treated cells after aSMase stimulation. Measurement of aSMase 

translocation from intracellular to plasma membrane compartments could have been assessed 

by flow cytometry and immunofluorescence following labelling of cells with anti-aSMase 

primary antibody and conjugated secondary Alexa Fluor antibodies. However, as a result of 

time constraints we were not able to further directly explore aSMase activity. 
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1. Chapter aims 

This chapter provides detailed information on the experimental techniques that were 

explored throughout this study. Considering the complex and diverse nature of 

immunological reactions and the need for experimental animals to simulate mammalian 

immune response models, for example mycobacterial infection, widespread optimisation 

of experimental conditions and protocols had to be completed. Here we describe these 

optimisation conditions and resultant findings, which led to our eventual working 

experimental models. 

 

For all exploratory experiments the mycolic acids (MAs), animals, experimental design, 

preparation of injectable solutions and macrophage isolation, cell harvesting and culture, 

mycobacterial culture and infection with Mycobacterium bovis bacille Calmette-Guérin 

(BCG), and microscopy were as described (Chapter II: Materials and methods). Treatment 

groups consisted of placebo (PBS), empty liposome carrier (Lipo), MA lipid backbone 

(MA-bb), cis-alpha MA (αMA),  natural Mtb MA mixture (MA mix; Sigma), methoxy 

MA (cis- and trans-mMA), or keto MA (cis- epimeric, trans-, and cis-monomeric-kMA). 

Standard fluorescence microscopy was conducted using a CellM Olympus BX61 upright 

microscope with DIC, equipped with halogen light (brightfield) and 100 W mercury lamp 

(fluorescence). Variation to any of the described protocols is summarised in each section.  

 

2. Visualisation of mycobacteria in the absence of MA co-staining 

2.1 Aim of technology 

The aim of the technologies explored in this section was to enable visualisation of 

mycobacterial bacilli in infected primary murine macrophages, and tracking of bacillary 

replication over time. Staining conditions had to be optimised to ensure that mycobacteria 
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from the infection were discernible, and that the Mtb-associated natural and synthetic free 

MAs used to treat mice in vivo did not interfere with bacillary quantification.  

 

2.2 Auramine-Rhodamine T staining  

 

Materials and methods 

Control groups were PBS and Lipo while the treatment group was the natural Mtb MA 

mix (Sigma). Mice were terminated and PECs harvested after 24 h of treatment. PECs 

were seeded at a final concentration of 1x106 cells in 1 ml complete medium without 

phenol red in 24-well plates. Cells were incubated at 37°C and 5% CO2 and the 

macrophage fraction selected for by 2 h adherence. Following adherence, cells were 

washed three times in endotoxin-free PBS (Lonza) and either remained unfixed or were 

fixed in 2% then 4% paraformaldehyde for 15 min each at room temperature. For 

mycobacteria detection, cells were infected at a multiplicity of infection (MOI) of 10:1 (10 

bacilli to 1 cell) for 4 h at a final concentration of 400 µg/10 µl (40 mg/ml). The remainder 

of the infection protocol was as described (Chapter II: Mycobacterial culture and 

infection). 

 

The TB Fluorescent Stain Kit T (TB Auramine-Rhodamine T; Cat. no 212515, Becton 

Dickinson) was used to stain cells ex vivo for detection of free MAs or mycobacteria. Cells 

(unfixed and fixed) were stained with Auramine-Rhodamine T (1:20) for 25 min, then 

washed twice with endotoxin-free PBS. Cells were decolourised for 2-3 min (TB 

Decolorizer), washed twice and counterstained for 4-5 min (TB potassium permanganate). 

Following PBS washes, nuclei were stained with Hoechst® (1:1000) for 15 min at room 

temperature and mounting medium added (anti-fade agent; KPL). Cells were immediately 

viewed with a standard fluorescent microscope.  
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Results and discussion 

No Auramine-Rhodamine fluorescence was detected in any of the MA treatments from 

both cell fixation conditions (Fig. 1 and 2). Fixed cells were clearly more visible than 

unfixed cells, but intracellular free MAs did not stain yellow-red with Auramine-

Rhodamine T. Mycobacteria stained positive with Auramine-Rhodamine T, yet cell 

viability was fatally affected (Fig. 3). Replication could therefore not be quantitatively 

measured. Macrophages underwent necrosis after staining with Auramine-Rhodamine T.    

 

Our initial optimisation experiments for ex vivo detection of intracellular free MAs and 

mycobacteria in murine macrophages illustrated that Auramine-Rhodamine T stain is not a 

suitable application. Auramine O or basic yellow 2 is a diarylmethane dye and is soluble in 

water and ethanol (460/550 nm) while Rhodamine B or basic violet 10 is a chemical 

compound and laser dye (540/625 nm)1. Auramine O and Rhodamine B bind 

mycobacterial MAs2 and our initial thinking was that we could use this staining technique 

to detect MAs in vitro. TB Stain Kits (Becton Dickinson) contain harsh reagents most 

commonly applied to specimen smears and cultures for tubercle bacillus detection during 

presumptive diagnosis of mycobacterial infection3. We established that Auramine-

Rhodamine T stain can successfully distinguish acid-fast mycobacteria, yet is not suitable 

for staining live cells in vitro. This method was therefore not selected for further 

mycobacterial detection in this study. It was also observed that mycobacterial infection at 

an MOI of 10 was far exceeding physiological capacity of murine host cells and caused 

severe necrosis. The mycobacterial MOI was subsequently optimised and these results will 

be discussed later in this chapter (6. Optimisation of mycobacterial MOI).   
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Figure 1 | Auramine-Rhodamine T staining for detection of free MAs in unfixed macrophages. 
Peritoneal macrophages harvested 24 h after in vivo murine control (PBS, Lipo) or MA treatment were left 
unfixed then stained with Auramine-Rhodamine T. Cells were viewed by standard fluorescence microscopy 
for detection of intracellular free MAs. Objective: 20x. Scale bar: 20 µm 
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Figure 2 | Auramine-Rhodamine T staining for detection of free MAs in fixed macrophages. Peritoneal 
macrophages harvested 24 h after in vivo murine control (PBS, Lipo) or MA treatment were fixed in 4% 
paraformaldehyde (PFA) then stained with Auramine-Rhodamine T. Cells were viewed by standard 
fluorescence microscopy for detection of intracellular free MAs. Objective: 20x. Scale bar: 20 µm 
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Figure 3 | Auramine-Rhodamine T staining for detection of intracellular mycobacteria. Murine primary 
peritoneal macrophages were infected ex vivo with BCG (MOI: 10) for 4 h then fixed in 4% 
paraformaldehyde (PFA) and stained with Auramine-Rhodamine T. Red arrows, necrotic macrophages; 
white arrows, mycobacteria staining bright red with Auramine-Rhodamine T. Cells were viewed and imaged 
with a standard fluorescent microscope. Objective: 40x. Scale bar: 10 µm 
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2.3 Mycobacterial nucleic acid staining 

 

Materials and methods 

Mice (n = 5 per experimental group) were injected with control (PBS, Lipo or MA-bb) or 

MA solutions at 25 µg per 100 µl per mouse (αMA, mMA and kMA isomers). Cells were 

harvested after 48 h and seeded into µ-Slide 8-well microscopy plates (ibidi®; 5x105 

cells/well). After overnight adherence, cells were infected with BCG for 6 h (MOI: 1), 

washed three times with endotoxin-free PBS and incubated 48 h prior to fluorescent 

labelling with Hoechst®, CellTrackerTMRed and Bodipy 493/503 as described (Chapter II: 

Light and laser-scanning-confocal microscopy). In order to detect intracellular bacilli, cells 

were first stained with Hoechst® for 30 min at 37°C to allow nucleic acid labelling of BCG 

bacilli prior to staining with other fluorescent dyes. Bacilli were analysed by adjustment of 

the ultraviolet (UV) laser of the confocal microscope. As morphology assessment control, 

cells from untreated mice were infected with PBS (mock, no BCG) or BCG and cultured 

for five days. 

 

Results and discussion 

Mock- and BCG-infected control cells remained viable and morphologically intact over 

the five days of culture though some cell death was observed in the BCG-infected cells 

(Fig. 4). We labelled mycobacterial nucleic acids by staining with Hoechst®, the same 

fluorescent probe used to stain cellular nuclei. We confirmed that mycobacteria were 

stained by excitation of the ~405 nm UV laser at 90%, which was substantially higher than 

the standard excitation at 3-5% UV for detection of nucleic acids (Fig. 5). Bacilli were 

visible in BCG-infected macrophages, yet were not easily quantifiable from background 

UV (Fig. 6). Whilst it was possible to recognise fluorescently-labelled bacterial nucleic 

acids at 90% UV, measuring individual bacilli at 20, 25 and 30% UV was not successful 
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(Fig. 6). As a consequence, individual mycobacteria could not be sufficiently exposed in 

macrophages for quantification and hence only merged images are shown for all 

conditions (Fig. 7 and 8).  

 

The bisbenzamide derivative Hoechst® is a DNA-specific fluorochrome widely applied to 

determining abundances of bacteria using various fluorescence microscopy techniques4. 

We attempted to fluorescently label mycobacterial nucleic acids with Hoechst® stain to 

assess replication by laser-scanning-confocal microscopy. This staining technique, 

however, did not work well as individual bacilli could not be clearly distinguished or 

counted using Volocity 3D Image Analysis software.  
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Figure 4 | Comparison of control and BCG-infected cells after five days of culture. Murine peritoneal 
macrophages were infected ex vivo with (a) mock PBS or (b) BCG (MOI: 1) and cultured for five days. Cells 
were fluorescently labelled with Hoechst®, CellTrackerTMRed and Bodipy 493/503 and assessed by laser-
scanning-confocal microscopy. Panels depict separate fluorescent dyes and combined (merge) images. Scale 
bar: 10 µm. 
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Figure 5 | Optimisation of mycobacterial detection. Top panel images (63x) depict standard excitation of 
the ~405 nm UV laser at 3% and 5% by laser-scanning-confocal microscopy. Lower panel images (zoom) 
show brightfield/UV overlays of mock- and BCG-infected peritoneal macrophages assessed for the presence 
of mycobacteria at 90% excitation. Arrows indicate bacilli. Objective: 63x (2.65x zoom). Scale bar: 5 µm.  
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Figure 6 | Detection of mycobacteria by UV laser. Ex vivo mock- and BCG-infected murine peritoneal 
macrophages were stained with the nucleic acid dye Hoechst® and assessed for intracellular bacilli by 
excitation of the ~405 nm UV laser at 20, 25 and 30%. Arrows indicate fluorescently-labelled yet faintly 
visible BCG bacilli. Objective: 63x. Scale bar: 10 µm. 
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Figure 7 | Detection of mycobacteria through nucleic acid labelling. Mice were treated with placebo 
(PBS), control (Lipo, MA-bb) or MA solutions and cells harvested and seeded after 48 h. Peritoneal 
macrophages were infected ex vivo with BCG for 6 h (MOI: 1) and analysed by laser-scanning-confocal 
microscopy after two days of culture. Cells were labelled with the fluorescent dyes Hoechst®, 
CellTrackerTMRed and Bodipy 493/503. Merge images are shown. Objective: 63x. Scale  bar: 10 µm. 
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Figure 8 | Detection of mycobacteria through nucleic acid labelling (continued). Mice were treated with 
MA solutions and cells harvested and seeded after 48 h. Peritoneal macrophages were infected ex vivo with 
BCG for 6 h (MOI: 1) and analysed by laser-scanning-confocal microscopy after two days of culture. Cells 
were labelled with the fluorescent dyes Hoechst®, CellTrackerTMRed and Bodipy 493/503. Merge images are 
shown. Objective: 63x. Scale  bar: 10 µm. 
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2.4 Bodipy 493/503 lipophilic dye 

 

Materials and methods 

In order to assess whether intracellular BCG bacilli that have lipid-rich cell envelopes stain 

positive with the green fluorescent lipophilic dye Bodipy 493/503, murine peritoneal 

macrophages were harvested and seeded into µ-Slide 8-well microscopy plates (ibidi®; 

5x105 cells/well). Cells were infected the next day for 6 h with BCG at a high MOI of 10 

(to have abundant bacilli for staining) and were cultured overnight prior to fluorescent 

labelling (Chapter II: Light and laser-scanning-confocal microscopy). Cells were first 

stained with Bodipy 493/503 for 30 min at 37°C followed by Hoechst® stain for 15 min. 

Cells were immediately viewed by laser-scanning-confocal microscopy.   

 

Results and discussion 

Upon overexposure of the confocal microscope’s yellow-green (543 nm) laser, it was 

shown that BCG bacilli stained bright green with the lipophilic dye Bodipy 493/503 (Fig. 

9). The Mtb cell envelope comprises multiple layers of distinct and diverse lipids and 

lipoproteins5-8. It was important for this study to visualise countable bacilli for growth 

measurements in MA-treated macrophages. However, quantification of individual foam 

cell traits like lipid droplets (LDs) and vacuoles were also essential aims of this study. LDs 

are packed with sterol esters and triacylglycerol that are hydrophobic neutral lipids lacking 

charged groups9. As the neutral lipid dye Bodipy 493/503 was the ideal stain for 

identification of intracellular LDs with the 543 nm laser, we selected an alternative BCG 

strain for our mycobacterial experimental model. This BCG strain contained a reporter 

gene expressing a red fluorescent protein (BCG-dsRed), which allowed us to identify 

intracellular bacilli with the red (633 nm) laser (2.5 BCG-dsRed).  
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Figure 9 | Mycobacteria stain green with the lipophilic dye Bodipy 493/503. Murine peritoneal 
macrophages were infected ex vivo for 6 h with BCG (MOI: 10) and assessed by laser-scanning-confocal 
microscopy for detection of fluorescently-labelled mycobacteria. BCG bacilli stained bright green with the 
lipophilic dye Bodipy 493/503, which was clearly visible upon overexposure of the 488 nm laser. Objective: 
63x. Scale  bar: 10 µm. 
 

 

 

 

 

 

 

MOI: 1 MOI: 2Hoechst

Brightfield

Bodipy 493/503

Merge



APPENDIX 
Exploration of comparative ex vivo cellular technologies 

17 

 

 Ilke Vermeulen | PhD thesis | 2016 
 

2.5 BCG-dsRed 

 

Materials and methods 

BCG-dsRed with red fluorescent reporter gene was a gift from Dr Erica Houthuys from the 

Unit of Medical Biotechnology (Inflammation Research Center, Ghent, Belgium). To 

investigate whether red fluorescent BCG bacilli can be detected in macrophages with 

normal morphology and foam cells brought about by MA exposure, mice were treated with 

placebo (PBS) or Mtb MA (Sigma) two days prior to harvesting of PECs. After an 

overnight adherence step, peritoneal macrophages were infected for 6 h with BCG-dsRed 

(MOI: 1) and cultured overnight prior to fluorescent staining with Hoechst® or 

CellTrackerTMBlue and Bodipy 493/503 (Chapter II: Light and laser-scanning-confocal 

microscopy). Cells were immediately viewed by laser-scanning-confocal microscopy.   

 

Results and discussion 

BCG-dsRed bacilli were clearly detectable by laser-scanning-confocal microscopy in 

peritoneal macrophages from mice treated with PBS and thus having a normal 

morphology, as well as in foam cells containing intracellular LDs and vacuoles from Mtb 

MA-treated mice (Fig. 10). We therefore used the BCG strain with reporter gene 

expressing a red fluorescent protein for all subsequent experimental work.  
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Figure 10 | Detection of BCG-dsRed bacilli by laser-scanning-confocal microscopy. Murine peritoneal 
macrophages from mice treated with (a) placebo PBS or (b) Mtb MA (Sigma) were infected ex vivo for 6 h 
with BCG-dsRed (MOI: 1). Cells were stained with the fluorescent probes Hoechst® or CellTrackerTMBlue 
and Bodipy 493/503. Assessment by laser-scanning-confocal microscopy detected macrophages (405 nm 
laser), LDs (543 nm laser) and red fluorescent bacilli (633 nm laser). Arrows indicate red fluorescent BCG 
bacilli. Objective: 63x. Scale bar: (a) 2.5 µm and (b) 10 µm. 
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3. Visualisation of intracellular neutral lipids 

3.1 Aim of technology 

Foam cells, a key macrophage population of Mtb-associated granulomas, are characterised 

by the presence of intracellular LDs and vacuoles. In order to quantify these foam cell 

traits separately in macrophages brought about by the diverse MA treatments, the aim of 

this technology was to optimise the staining conditions for detection of intracellular neutral 

LDs by laser-scanning-confocal microscopy. 

 

3.2 Nile red and Bodipy 493/503 

 

Materials and methods 

Cells from untreated mice were harvested and processed as described (Chapter II: 

Injectable solutions and macrophage isolation) and seeded into 96-well (1.6x105 cells/well) 

and 24-well plates (1x106 cells/well). Macrophages were stained with Hoechst® and either 

of the lipophilic fluorescent dyes used to detect intracellular neutral LDs: Nile Red (9-

diethylamino-5-benzo[α]phenoxazinone; Sigma) or Bodipy 493/503 (8-Bromomethyl-4,4-

Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Incacene; Molecular Probes). Stock 

solutions of Nile Red (1 mg/ml in acetone) and Bodipy 493/503 (1 mg/ml in DMSO) were 

tested in serial dilution (1:62.5 to 1:1000) and examined by standard fluorescent and laser-

scanning-confocal microscopy. 

 

Results and discussion 

No marked differences in standard fluorescence were observed in the tested serial dilutions 

(1:62.5 to 1:250) of the neutral lipid stains Nile Red and Bodipy 493/503 (Fig. 11). The 

lower concentrations (1:500 and 1:1000) of lipid stains were faint when viewed by a 

standard fluorescence microscope (Fig. 11). The 1:125 lipid dye dilution was the most 
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suited for assessment of intracellular neutral LDs by laser-scanning-confocal microscopy 

(Fig. 12). It was also observed that whereas the red fluorochrome (Nile Red) immediately 

bleached upon confocal emission, this was not the case for the bright green fluorophore 

(Bodipy 493/503).  

 

LDs are dynamic cell organelles with important physiological attributes10, 11. Their 

biogenesis and catabolism are strongly regulated with key functions in cellular lipid 

metabolism, homeostasis and inter-membrane lipid trafficking12-15. Intracellular pathogens 

like Mtb modify the host cell lipidome for its own benefit by, for example, inducing lipid 

loading in macrophages16. It was thus of key importance to select a suitable fluorescent 

probe for intracellular assessment of neutral lipids by laser-scanning-confocal microscopy. 

Compared to the commonly used Nile Red stain, the green fluorophore Bodipy 493/503 

was identified as the preferred probe. Bodipy-stained LDs fluoresced bright green, were 

clearly distinct from cell background and did not bleach when viewed by laser-scanning-

confocal microscopy. This is in accordance with previous reports that Bodipy dyes can be 

used for quantitative analysis of lipids17. For our work we applied Bodipy 493/503 at a 

concentration of 1:125 from 1 mg/ml stock solution.  
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Figure 11 | Optimisation of lipophilic stain concentrations by standard fluorescence microscopy. 
Murine peritoneal macrophages were stained with Hoechst® and serial dilutions of Nile Red and Bodipy 
493/503 lipid dyes (from 1 mg/ml stock) and assessed with a standard fluorescent microscope. Objective: 
20x. 
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Figure 12 | Optimisation of lipophilic stain concentrations by laser-scanning-confocal microscopy. 
Murine peritoneal macrophages were stained with serial dilutions of (a) Nile Red and (b) Bodipy 493/503 
lipid dyes 503 (from 1 mg/ml stock) and assessed by laser-scanning-confocal microscopy. Arrows indicate 
intracellular neutral LDs. Objective: 63x (2.65x zoom). 
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4. Assessment of vacuole formation following MA treatment 

4.1 Aim of technology 

The aim of this technology was to optimise detection of the second foam cell trait brought 

about by in vivo murine treatment with various MAs, namely the induction of multiple 

intracellular vacuoles, by laser-scanning-confocal microscopy.  

 

4.2 Vacuole counterstaining with CellTrackerTM 

 

Materials and methods 

Mice were treated with control solutions (PBS, Lipo) or Mtb MA (Sigma). Peritoneal 

macrophages were harvested, cultured and stained with Hoechst, CellTrackerTMRed and 

Bodipy 493/503 as described (Chapter II: Injectable solutions and macrophage isolation). 

Cell size measurements were taken from laser-scanning-confocal microscopy images using 

Volocity 3D Image Analysis software. Size measurement was used to determine the 

threshold value for macrophages with a normal morphology (PBS treated mice) as 

compared to enlarged vacuole positive cells (V+; induced by treatment with MA). Once 

the threshold size for enlarged V+ macrophages was established, mice were treated with 

100 or 400 µl endotoxin-free PBS or liposome carrier, while those treated with Mtb MA 

received 25 µg (standard) or 100 µg MA per mouse. Cells were stained with 

CellTrackerTMBlue and Bodipy 493/503 and assessed by laser-scanning-confocal 

microscopy for the induction of enlarged V+ cells.  

 

Results and discussion 

The size of macrophages from placebo treated mice that have a normal morphology ranged 

from 8-15 µm (Fig. 13A). Macrophages containing abundant intracellular vacuoles 

induced by treatment of mice with Mtb MA were 24 µm or larger (Fig. 13B). The 
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threshold value for quantifying enlarged V+ cells was therefore set at ≥24 µm. The 

induction of enlarged V+ cells from mice treated with Mtb MA was distinct from those of 

PBS or Lipo treated mice (Fig. 14A). Mice injected with different volumes of PBS or 

liposome carrier concentrations exhibited a morphology that remained a normal rounded 

shape with negligible enlarged V+ cells. Macrophages from mice treated with Mtb MA 

exhibited a dose-dependent induction of V+ cells (Fig. 14B). 

 

Our assessment of intracellular vacuoles showed that macrophages from Mtb MA-treated 

mice effected prominent induction of enlarged cells containing multiple vacuoles when 

compared to control PBS or Lipo treatments. In addition, these MA-induced intracellular 

vacuoles were deficient in lipid and protein as they did not stain with either of the 

respective fluorescent probes, namely Bodipy 493/503 or CellTrackerTM. Our group 

previously demonstrated that Mtb MAs induce vacuole formation in host macrophages18, a 

hallmark trait of foam cell formation during Mtb infection19. The induction of distinct 

morphological features by MA in host cells affirmed our initial findings and thus allowed 

us to exploit, in addition to the feature of LD accumulation, the formation of intracellular 

vacuoles as quantitative foam cell traits for this study.  
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Figure 13 | Determination of threshold value for enlarged V+ macrophages. Mice were treated with (a) 
placebo (PBS) or (b) Mtb MA (25 µg/mouse) and peritoneal macrophages fluorescently labelled ex vivo with 
Hoechst®, CellTrackerTMRed and Bodipy 493/503. Laser-scanning-confocal microscopy images showing (a) 
macrophages with a normal morphology (~12 µm) and negligible enlarged V+ cells, and (b) enlarged V+ 
macrophages (≥24 µm). Objective: 63x. Scale bars: (a) 12 µm and (b) 24 µm.  
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Figure 14 | Assessment of enlarged V+ macrophages following MA treatment. Mice were treated with 
PBS or Lipo (100 or 400 µl) or Mtb MA (25 or 100 µg/mouse). Peritoneal macrophages were fluorescently 
labelled ex vivo with CellTrackerTMBlue and Bodipy 493/503. (a) Brightfield images depicting absence or 
presence of enlarged V+ cells (red arrows) in peritoneal macrophage populations from mice treated with 
PBS, Lipo or MA. (b) Laser-scanning-confocal microscopy images showing distinct macrophage populations 
from variously treated mice and enlarged V+ cells induced by Mtb MA (red arrows). Objective: (a) 40x 
brightfield and (b) 63x. Scale bar: 12 µm. 
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5. Correlated quantification of multiple morphological foam cell traits 

5.1 Aim of technology 

During active TB, granulomas are characterised by large cell aggregates of which lipid-

filled foam cells and those containing multiple vacuoles form key macrophage 

populations. MA is the dominant constituent of the Mtb cell envelope and induces a 

macrophage foam phenotype in mice similar to that observed in TB lung granulomas. 

Though it is not exactly clear which MAs contribute to the differentiation of macrophages 

into lipid-loaded and vacuolar cells, it possibly reflects a perturbation of host cell lipid 

homeostasis to support the infection. To further explore the contribution of each of the 

main MA classes to the induction of distinct granuloma cell populations, we explored in 

this section two technologies that could be applied for visualisation and quantification of 

macrophage foam cell traits. 

 

5.2 High-content imaging analysis and laser-scanning-confocal microscopy 

 

Materials and methods 

Mice (n = 3 per experimental group) were treated intraperitoneally (i.p.) with PBS, Lipo, 

MA-bb, αMA, MA mix (Sigma), mMA (cis- and trans-), or kMA (cis- epimeric, trans-, 

and cis-monomeric-). Mice received either 400 µl PBS, 100 or 400 µl Lipo, or 25 or 100 

µg MA/100 µl injection. Cells were harvested after 24 h and prepared in black 96-well 

plates (5x105 cells/well in 200 µl). Fluorescent probes were CellTrackerTMBlue and 

Bodipy 493/503. Whole cells were analysed by high-content (wide-field) imaging using a 

BD Pathway 435 benchtop system equipped with mercury halide lamp for capture of 

brightfield images (360-700 nm). Images were divided into regions of interest (ROI) using 

the BD Pathway Object Counting Tool for analysis of sub-cellular organelles through 

segmentation. Key measurements included fluorescence intensity and sub-object counts of 
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LDs and vacuoles. The proportions of >2 vacuoles and >3 LDs per cell, and the total area 

of vacuoles (µm) in each treatment were quantified using BD AttoVision Software 

(Version 1.7; BD Biosciences). Foam cell morphology was simultaneously assessed by 

laser-scanning-confocal microscopy using Volocity 3D Image Analysis Software 

(PerkinElmer Inc.; described in Chapter II: Statistical analyses). Gaussian distribution was 

checked with a Shapiro-Wilk test. Independent samples Kruskal-Wallis tests were used to 

assess differences in fluorescence intensity of whole cells and neutral LDs, vacuole total 

area in µm, and the number of LDs per 100 cells. Generalised linear models (GLM) with 

sequential Sidak pairwise comparisons analysed variation in the proportion of cells 

containing >2 vacuoles or >3 LDs per cell, and sub-object counts of vacuoles and LDs. 

Statistics were performed with SPSS 23 (IBM, Chicago IL, USA) or GraphPad Prism 5 

(GraphPad Software, La Jolla CA, USA) and differences were significant at P < 0.05.  

 

Results and discussion 

For high-content imaging analyses with the BD Pathway, whole cells were stained with the 

fluorescent probe CellTrackerTMBlue (CTB) to identify the ROI. Segmentation then 

discerned among neutral LDs and unstained vacuoles within the ROI (Fig. 15). The 

λmaxemission fluorescence intensity of whole cells (CTB) was comparable among treatments 

(Fig. 16). The λmaxemission fluorescence intensity of neutral LDs (Bodipy) was significantly 

lower in cells from mice treated with Lipo (100 µl), MA mix (100 µg), and mMA (25 and 

100 µg; Fig. 16). A significant dose-response in the proportions of cells with >2 vacuoles 

was recorded for the MA-bb, αMA, MA mix, cis-kMA (epi) and trans-kMA treatments 

(Fig. 17). Macrophages from mice that received mMA treatment had distinctly more cells 

with >2 vacuoles in comparison to cells from mice that received kMA treatment. Cells 

from the oxygenated MA treatments significantly differed in their proportion of cells 

containing LDs as compared to macrophages from mice treated with PBS, Lipo, MA-bb, 
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αMA and MA mix (Fig. 17). Vacuole counts distinguished PBS and Lipo control solutions 

from cis-kMA (mono) and all remaining MA treatments (Fig. 18). Cells from the kMA 

treatments contained significantly more LDs than those from other treatments (Fig. 18). 

The total area of vacuoles fluctuated among treatments (Fig. 19). While a dose-response in 

vacuole total area was discernible in cells from mice treated with various MAs, values 

from the PBS and Lipo controls (45-50 µm) were comparable to the 25 µg αMA and kMA 

treatments (45-65 µm). Of the 25 µg MA treatments, macrophages from mice treated with 

MA mix and cis-mMA contained the highest vacuole total area (~84 µm) whereas cells 

from the trans-mMA treatment had significantly less vacuoles (~46 µm). The highest 

vacuole total area was recorded for the 100 µg treatment of cis-mMA (115-127 µm) 

followed by the MA mix (85-99 µm) and all other MA treatments (66-82 µm; Fig. 19). We 

identified a limitation in the segmentation of sub-cellular organelles for analysis by the BD 

AttoVision software as it failed to successfully separate all touching cells and 

consequently underestimated the number of cells analysed (Fig. 20). 

 

Foam cell traits were also analysed by laser-scanning-confocal microscopy (Fig. 21 to 24). 

Cells from mice treated with cis-epimeric and trans-kMA contained distinctly more LDs 

(circa 700 per 100 cells) followed by cells from the MA mix (circa 600 per 100 cells) and 

those from all other treatments (circa <400 per 100 cells; Fig. 25, upper panel). MA dose 

did not have an effect on the number of cytosolic LDs. Macrophages from mice that 

received MA mix and mMA treatments contained significantly more enlarged V+ cells 

(~25%) in comparison  to all other treatments (<11%; Fig. 25, lower panel). MA dose 

significantly increased the number of V+ cells in the MA mix and cis-mMA treatments 

(Fig. 22 and 25).  
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High-content image analyses recorded similar whole cell fluorescence among treatments 

while neutral LD fluorescence varied among groups. Though these findings were as 

expected, the mean λmaxemission fluorescence intensity of Bodipy 493/503 from the PBS 

and Lipo control cells was comparable to the fluorescence of the αMA and kMA 

treatments. This finding did not match actual data as confocal images clearly distinguished 

the kMA treatments in their number of LDs from all other groups. Sub-object counts from 

high-content imaging and confocal microscopy identified kMA as a significant inducer of 

LDs with 2- to 3-fold more LDs per 100 cells versus other treatments. Analyses of cellular 

vacuoles by high-content imaging (~25% cells with >2 vacuoles) and confocal microscopy 

(~25% V+ cells) identified mMA as a significant inducer of vacuoles. The vacuole results 

from the diverse imaging methods, however, did not entirely correlate. No dose-response 

was recorded for the mMA treatments in their proportions of cells containing >2 vacuoles 

while the confocal images showed a small, yet significant, increase in V+ cells from the 

100 µg MA mix and cis-mMA groups. A strange result from high-content imaging was a 

dose-response for cells from mice treated with MA-bb or αMA (Fig. 17) with higher 

proportions of cells containing vacuoles relative to other control treatments (confocal 

microscopy did not corroborate these findings). In addition, sub-object counts recorded 

weak group differences in the number of cellular vacuoles and remarkably did not discern 

mMA as an inducer of vacuoles (Fig. 18). We subsequently quantified the total area of 

vacuoles from all cells within each treatment and recorded a significantly larger vacuole 

total area for cells from cis-mMA treated mice.  

 

High-content imaging and confocal microscopy are powerful tools for a wide range of 

fluorescence intensity and morphological measurements of live or fixed cells using 

superior image quality processing20. Our results showed that high-content image analysis 

may be useful for measuring the number of neutral LDs, but not cellular vacuoles as 
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distinct discrepancies were recorded that did not correlate with data from the confocal 

images. This may partly be as a result of disproportionate number of total cells measured 

through segmentation by high-content imaging, which did not always precisely separate 

neighbouring cells (Fig. 20). While the discrepancy with segmentation also affected the 

proportion of cells with >3 LDs as it did not distinguish kMA from mMA groups (Fig. 17), 

the main concern was that vacuoles were not fluorescently stained and thus challenging to 

measure using software programmes. Laser-scanning-confocal microscopy allowed clear 

visual distinction among treatment groups and illustrated that kMA induces LD 

accumulation while mMA effects vacuole formation. The Volocity software analysis 

programme could effortlessly measure the total number of cells and cytosolic LDs, and 

high quality stacked images allowed precise (manual) counting of V+ cells using the 

predetermined size parameters. Cells were classified as enlarged V+ when their size was 

≥24 µm and they contained abundant vacuoles. For these reasons, we consequently 

selected laser-scanning-confocal microscopy analyses to investigate foam cell 

morphological traits throughout this study.  
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Figure 15 | Representation of high-content image analysis of sub-cellular organelles. (a) Brightfield 
image of murine peritoneal macrophages. (b) Segmented brightfield image (red squares) showing vacuoles 
(light blue) and LDs (magenta). Cells were fluorescently labelled with CellTrackerTMBlue to capture the 
ROI. Neutral LDs were stained with Bodipy 493/503 and vacuoles identified by unstained voids within the 
ROI. Both sub-cellular organelles were discernible through segmentation. Scale bar: 10 µm. 
 

 

 

 

 
Figure 16 | Fluorescence intensity of mycolic acid-treated murine macrophages. Primary peritoneal 
macrophages were stained with CellTrackerTMBlue and the green lipophilic dye Bodipy 493/503, and 
fluorescence measured by high-content image analysis. Data represent λmaxemission fluorescence intensity 
(mean ± SEM) of macrophages from three individual mice per treatment and were analysed with an 
independent samples Kruskal-Wallis test (CTB: H = 19.588, n = 146, df = 16, P = 0.239; Bodipy: H = 
32.612, n = 146, df = 16, P < 0.01).   
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Figure 17 | Assessment of cytosolic vacuoles and LDs. Mice were treated with different volumes of control 
solutions (100 or 400 µl) or two concentrations of MA (25 or 100 µg), and cytosolic vacuoles and LDs 
quantified by high-content image analysis. Significant differences among treatments were determined with 
GLM analyses for cells containing >2 vacuoles (Wald Chi-Square = 835.502, n = 187, df = 18, P < 0.001) or 
>3 LDs (Wald Chi-Square = 86.991, n = 187, df = 18, P < 0.001). Data represent the proportion (%) of 
murine macrophages containing >2 vacuoles or >3 LDs per cell (mean ± SEM; n = 3 mice). 
 
 

 

 
Figure 18 | Sub-object counts of LDs and vacuoles. Mice were treated with control solutions or various 
MAs and fluorescently labelled ex vivo with CellTrackerTMBlue and Bodipy 493/503. Sub-objects were 
measured by high-content image analysis and the number of LDs and vacuoles (mean ± SEM) determined 
through ROI segmentation using BD AttoVision software (BD Biosciences). Significant differences among 
treatments were determined with GLM analyses for LDs (Wald Chi-Square = 540.811, n = 148, df = 16, P < 
0.001) or vacuoles (Wald Chi-Square = 129.452, n = 148, df = 16, P < 0.001).  
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Figure 19 | Total area of intracellular vacuoles. Murine macrophages were injected with different volumes 
of control solutions: 400 µl PBS; 100 µl (white bar) or 400 µl (black bar) Lipo; and either of two 
concentrations of MA (25 or 100 µg). Through addition of all vacuole sub-objects from each treatment, 
differences in the total area (µm; mean ± SEM) of intracellular vacuoles were determined using the BD 
Pathway high-content image analyser. Significant variation among treatments were determined with a 
Kruskal-Wallis test (H = 150.855, n = 270, df = 16, P < 0.001).  
 

 

 

 

 

 

 
 
Figure 20 | Segmentation reference image. (a) Brightfield image of murine peritoneal macrophages. (b) 
Segmented image showing bordering cells (red squares) measured by BD AttoVision software as a single 
cell. Scale bar: 10 µm.  
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Figure 21 | Assessment of macrophage foam cells by laser-scanning-confocal microscopy. Mice were 
treated with 100 or 400 µl control solutions (PBS and Lipo), or received a 25 or 100 µg MA/100 µl i.p. 
injection. No distinct differences were recorded in volumes or MA concentration for these groups therefore 
only the larger volume or concentration is shown. Peritoneal macrophages were then analysed for vacuoles 
and LDs by laser-scanning-confocal microscopy. Fluorescent probes were CellTrackerTMBlue (whole cells) 
and Bodipy 493/503 (neutral LDs). Objective: 63x (2.65x zoom). Scale bar: 10 µm.  
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Figure 22 | Assessment of macrophage foam cells by laser-scanning-confocal microscopy. Mice received 
a 25 or 100 µg MA/100 µl i.p. injection. Peritoneal macrophages were then analysed for vacuoles and LDs 
by laser-scanning-confocal microscopy. Fluorescent probes were CellTrackerTMBlue (whole cells) and 
Bodipy 493/503 (neutral LDs). Objective: 63x (2.65x zoom). Scale bar: 10 µm. 
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Figure 23 | Assessment of macrophage foam cells by laser-scanning-confocal microscopy. Mice received 
a 25 or 100 µg MA/100 µl i.p. injection. Peritoneal macrophages were then analysed for vacuoles and LDs 
by laser-scanning-confocal microscopy. Fluorescent probes were CellTrackerTMBlue (whole cells) and 
Bodipy 493/503 (neutral LDs). Objective: 63x (2.65x zoom). Scale bar: 10 µm. 
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Figure 24 | Assessment of macrophage foam cells by laser-scanning-confocal microscopy. Mice received 
a 25 or 100 µg MA/100 µl i.p. injection. Peritoneal macrophages were then analysed for vacuoles and LDs 
by laser-scanning-confocal microscopy. Fluorescent probes were CellTrackerTMBlue (whole cells) and 
Bodipy 493/503 (neutral LDs). Objective: 63x (2.65x zoom). Scale bar: 10 µm. 
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Figure 25 | Measurement of LDs and enlarged V+ cells by laser-scanning-confocal microscopy. Murine 
peritoneal macrophages were harvested and seeded after 24 h of treatment with placebo, control or various 
MAs. Following a 2 hour adherence, cells were stained with CellTrackerTMBlue and Bodipy 493/503. 
Neutral LDs (green lipophilic dye) and the proportion of enlarged V+ cells (≥24 µm) were analysed by laser-
scanning-confocal microscopy. Significant differences among treatments were determined with independent 
Kruskal-Wallis tests for LDs (H = 36.833, n = 48, df = 33, P < 0.05 ) or enlarged V+ cells (H = 45.577, n = 
48, df = 33, P < 0.05). 
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6. Optimisation of mycobacterial multiplicity of infection 

6.1 Aim of technology 

We aimed here to optimise the ideal mycobacterial MOI for ex vivo infection of murine 

primary peritoneal macrophages. This was optimised to ensure that cell viability, 

reproducibility and experimental integrity were maintained.  

 

6.2 BCG MOI of peritoneal macrophage cultures  

 

Materials and methods 

Murine peritoneal macrophages were seeded into 24-well plates (0.2x106 to 0.5x106 cells 

per well) for infection at MOI of 1, 3, 5 and 10 (25-400 µg/10 µl). Following overnight 

adherence, cells were infected with PBS (mock) or BCG for 6 h then cultured a further 60 

h. Cells were labelled with the fluorescent probes Hoechst® (nucleic acids), 

CellTrackerTMRed (cytoplasm) and Bodipy 493/503 (LDs) and assessed by laser-scanning-

confocal microscopy. The proportion of live versus dead cells was calculated by 

subtracting the total number of cells measured at 60 h after mycobacterial infection from 

the total cells at time point 0 h (just prior infection). Normality and significant differences 

were respectively assessed by Shapiro-Wilk and Kruskal-Wallis tests. 

 

Results and discussion 

Laser-scanning-confocal microscopy confirmed that BCG infection causes cell death in a 

dose-dependent manner with increasing MOI (Fig. 26). Macrophages without BCG (93.4% 

live cells) and those infected with 1 bacterium per cell (78.2% live cells) remained viable. 

Viability was distinctly decreased in cells infected with three (57.3% live cells), five 

(24.8% live cells) or ten bacilli per cell (5% live cells) after 60 h of mycobacterial 

infection (Fig. 26). It was an aim to measure differences in cytosolic vacuole and LD 
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formation, but as a result of substantial cytolysis in treatments above an MOI of 1, this was 

not feasible.  

 

Avirulent or attenuated mycobacterial strains differ in their bacterial regulation of host cell 

apoptosis21, 22. Naive macrophages are resistant to tumour necrosis factor (TNF)-mediated 

cytotoxicity unless infected with avirulent of attenuated Mtb, which primes cells for TNF 

death signals involving caspases23, 24. Virulence-associated apoptosis suppression relates to 

interference of TNFα signalling via the TNF-receptor25. At high bacillary load (MOI ≥25), 

virulent Mtb causes strong apoptosis that upholds bacterial viability as a means of 

dissemination into host tissues21. Virulent mycobacteria do not, however, induce strong 

apoptosis at MOI ≤10 though avirulent or attenuated strains (like BCG) initiate substantial 

cell death23, reflecting a host innate immune defence to bacterial invasion. Numerous 

authors have reported on the manner of induced apoptotic cell death (rather than necrosis) 

in host macrophages by mycobacteria21-23, 25, 26. As a result we did not measure apoptosis 

directly (i.e. using propidium iodide staining of dead cells), but used time course variation 

in total cell number as quantitative measure of BCG-associated cell death. Our data 

strongly reflect previous findings that BCG-treated macrophages undergo cytotoxicity at 

an MOI of 5 to 10 within three days of infection23. As cells infected with 1 mycobacterium 

remained viable over time and foam cell traits could be well distinguished, the highest 

MOI used for mycobacterial experiments in this study was 1 bacillus to 1 cell.  
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Figure 26 | Cell viability after 2.5 days of mycobacterial infection with different MOI. Peritoneal 
macrophages were infected ex vivo with PBS (mock) or BCG for 6 h at various MOIs. Cells were 
fluorescently labelled with Hoechst®, CellTrackerTMRed and Bodipy 493/503. Laser-scanning-confocal 
images show differences in cell viability after infection with mycobacteria with resultant cytolysis in 
treatments above an MOI of 1. Objective: 40x. Scale bar: 12 µm. The number of live versus dead cells was 
assessed by difference in total cells at the 0 h (following overnight adherence) and 60 h (2.5 days of culture) 
time points. Data are from three independent confocal images and have been normalised to the number of 
total cells before BCG infection for each treatment (mean ± SEM). Significance was determined by an 
independent samples Kruskal-Wallis test (H = 13.115, n = 15, df = 4, *P < 0.05).  
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7. Phagocytic uptake assessment of murine peritoneal macrophages 

7.1 Aim of technology 

To ensure that following murine i.p. injection peritoneal macrophages exhibited 

comparable in vivo phagocytic uptake of liposome formulations containing either control 

compounds or the various MAs, it was necessary to assess the phagocytic capacity of these 

cells ex vivo using fluorescent microspheres. Similarly, to warrant consistency of 

mycobacterial uptake among peritoneal macrophages harvested from variously treated 

mice, ex vivo cultured peritoneal macrophages were assessed for BCG bacilli uptake.  

 

7.2 Uptake of Streptavidin FluoresbriteTM YG+ microspheres and BCG-dsRed by ex vivo 

cultured peritoneal macrophages 

 

Materials and methods 

Primary macrophages, harvested from mice after treatment with placebo (PBS), Lipo 

carrier or various MAs, were cultured ex vivo with Fluoresbrite® fluorescent microspheres 

(10 beads per cell; Polysciences) or BCG-dsRed (MOI: 1) for 6 h at 37°C. Immediately 

after three consecutive endotoxin-free PBS washes, cells were imaged by laser-scanning-

confocal microscopy. The amount of beads or bacilli per cell and the proportions of 

fluorescent bead-positive (fb+) or BCG+ cells were quantified using Volocity 3D Image 

Analysis Software. Significance was assessed with independent-samples Kruskal-Wallis 

tests (P < 0.05).  

 

Results and discussion 

No less than half of the peritoneal macrophages from all treatments contained fluorescent 

microspheres (50-75% fb+ cells; Fig. 27A). Cells from all treatments displayed 

comparable phagocytic uptake of 2-3 beads per cell (Fig. 27A and 28). For the ex vivo 
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mycobacterial experiments, phagocytic uptake was determined after a 6 h infection with 

BCG-dsRed. For all treatments but PBS (<35 %), at least half of the peritoneal 

macrophages contained mycobacteria (49-65 % BCG+ cells; Figure 27B). Peritoneal 

macrophages exhibited equivalent phagocytic uptake of ~1 bacillus per cell, which was 

representative of the MOI. We thus concluded with confidence that the results obtained for 

the murine peritoneal macrophages used throughout this study, were not confounded by 

treatment and could be compared among the different groups.  

 
 

 
 
Figure 27 | Phagocytic capacity of murine peritoneal macrophages. The phagocytic capacity of peritoneal 
macrophages harvested from mice treated with placebo (PBS), liposome carrier (Lipo) or various MAs was 
determined ex vivo after a (A) 6 h incubation with Streptavidin FluoresbriteTM YG+ fluorescent microspheres 
(10 beads per cell, broken line) or (B) 6 h infection with BCG-dsRed (MOI: 1, broken line). Values represent 
mean ± SEM. Left axis, number of beads or bacilli per cell. Right axis, the proportion of fluorescent bead 
positive (fb+) or bacilli positive (BCG+) cells (grey bars). Significance was assessed with an independent-
samples Kruskal-Wallis test for phagocytic uptake of microspheres (n = 5 confocal images; Kruskal-Wallis: 
H = 10.823, P = 0.147, df = 7) or BCG bacilli (n = 5 confocal images; Kruskal-Wallis: H = 13.499, P = 
0.061, df = 7).  
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Figure 28 | Phagocytic uptake of fluorescent microspheres by murine peritoneal macrophages. Laser-
scanning-confocal microscopy images depicting CellTrackerTMRed-stained macrophages with intracellular 
Streptavidin FluoresbriteTM YG+ microspheres. Scale bar: 20 µm.  
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8. Conclusion 

Like for all research undertakings, intensive optimisation of experimental conditions had 

to be completed. These included optimising the fluorescent probes used for visualisation of 

intracellular (1) mycobacteria in the absence of MA co-staining, (2) neutral LDs, and (3) 

vacuoles following MA treatment. The most appropriate technology for (4) quantifying 

multiple morphological foam cell traits was also established; while the (5) ideal MOI was 

optimised to ensure cell viability in all experiments and the (6) phagocytic capacity 

assessed to guarantee liposome formulations consistently reached target cells in vivo and 

BCG uptake of murine macrophages from variously treated mice was comparable among 

treatments.  

 

We had initially planned to use quick and simple staining techniques of mycobacteria for 

quantification assays. Incompatibility of harsh reagents with live cell analyses and weak 

detection of bacterial nucleic acids using the DNA-fluorescent probe Hoechst® 

necessitated the acquirement of a BCG bacterial strain with a red fluorescent reporter gene. 

This therefore allowed direct visualisation of mycobacteria without the need for using 

toxic cellular staining techniques. High-content image analysis is a powerful technique for 

probing multiple morphological traits on a large scale. However, results from the 

exploratory experiments identified limitations in using this technique to quantify cytosolic 

LDs and vacuoles. Though laser-scanning-confocal microscopy is more laborious than 

high-content image analysis, it provided clear displays of cellular morphology. Volocity 

3D Image Analysis software thus enabled fluorescent detection and quantification of sub-

cellular organelles (i.e. LDs, vacuoles and mycobacteria) during assessment of 

macrophage foam cell morphology, lipid homeostasis, and mycobacterial infection.  

 

 



APPENDIX 
Exploration of comparative ex vivo cellular technologies 

47 

 

 Ilke Vermeulen | PhD thesis | 2016 
 

9. References 
1. Becton-Dickinson. 2014. BD TB Stain Kits and Reagents. Becton, Dickinson and Company, Sparks, USA. 
pp 42 

2. Finegold, S. M., E. J. Baron and W. R. Bailey. 1990. Bailey and Scott's Diagnostic Microbiology, Mosby, 
St. Louis, MO. pp 861. 

3. Nolte, F. S. and B. Metcheck. 1995. Manual of Clinical Microbiology, Sixth ed., American Society for 
Microbiology Press, Washington. pp 400-436. 

4. Monger, B. C. and M. R. Landry. 1993. Flow cytometric analysis of marine bacteria with Hoechst 33342. 
Appl. Environ. Microbiol. 59: 905-911. 

5. Brennan, P. J. 2003. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. 
Tuberculosis 83: 91-97. 

6. Riley, L. W. 2006. Of mice, men and elephants: Mycobacterium tuberculosis cell envelope lipids and 
pathogenesis. J. Clin. Invest. 116: 1475-1478. 

7. Jankute, M., J. A. Cox, J. Harrison and G. S. Besra. 2015. Assembly of the mycobacterial cell wall. Annu. 
Rev. Microbiol. 69: 405-423. 

8. Sartain, M. J., D. L. Dick, C. D. Rithner, D. C. Crick and J. T. Belisle. 2011. Lipidomic analyses of 
Mycobacterium tuberculosis based on accurate mass measurements and the novel "Mtb LipidDB". J. Lipid 
Res. 52: 861-872. 

9. Guo, Y., K. R. Cordes, R. V. Farese, Jr. and T. C. Walther. 2009. Lipid droplets at a glance. J. Cell Sci. 
122: 749-752. 

10. Gao, Q. and J. M. Goodman. 2015. The lipid droplet-a well-connected organelle. Front Cell Dev Biol 3: 
49. 

11. Olofsson, S. O., P. Bostrom, L. Andersson, M. Rutberg, J. Perman and J. Boren. 2009. Lipid droplets as 
dynamic organelles connecting storage and efflux of lipids. Biochim. Biophys. Acta 1791: 448-458. 

12. Ouimet, M. and Y. L. Marcel. 2012. Regulation of lipid droplet cholesterol efflux from macrophage foam 
cells. Arterioscler. Thromb. Vasc. Biol. 32: 575-581. 

13. Walther, T. C. and R. V. Farese, Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. 
Biochem. 81: 687-714. 

14. Penno, A., G. Hackenbroich and C. Thiele. 2013. Phospholipids and lipid droplets. Biochim. Biophys. 
Acta 1831: 589-594. 

15. Zehmer, J. K., Y. Huang, G. Peng, J. Pu, R. G. Anderson and P. Liu. 2009. A role for lipid droplets in 
inter-membrane lipid traffic. Proteomics 9: 914-921. 

16. Daniel, J., H. Maamar, C. Deb, T. D. Sirakova and P. E. Kolattukudy. 2011. Mycobacterium tuberculosis 
uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded 
macrophages. PLoS Pathog. 7: doi:10.1371/journal.ppat.1002093. 

17. Ranall, M. V., B. G. Gabrielli and T. J. Gonda. 2011. High-content imaging of neutral lipid droplets with 
1,6-diphenylhexatriene. Biotechniques 51: 35-36, 38-42. 

18. Korf, J., A. Stoltz, J. Verschoor, P. De Baetselier and J. Grooten. 2005. The Mycobacterium tuberculosis 
cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur. J. 
Immunol. 35: 890-900. 



APPENDIX 
Exploration of comparative ex vivo cellular technologies 

48 

 

 Ilke Vermeulen | PhD thesis | 2016 
 

19. Singh, V., S. Jamwal, R. Jain, P. Verma, R. Gokhale and K. V. Rao. 2012. Mycobacterium tuberculosis-
driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host 
Microbe 12: 669-681. 

20. Becton-Dickinson. (2009) BD Pathway Bioimaging Systems. BD Biosciences, San Jose, CA. 

21. Keane, J., H. G. Remold and H. Kornfeld. 2000. Virulent Mycobacterium tuberculosis Strains Evade 
Apoptosis of Infected Alveolar Macrophages. J. Immunol. 164: 2016-2020. 

22. Lee, J., H. G. Remold, M. H. Ieong and H. Kornfeld. 2006. Macrophage Apoptosis in Response to High 
Intracellular Burden of Mycobacterium tuberculosis Is Mediated by a Novel Caspase-Independent Pathway. 
J. Immunol. 176: 4267-4274. 

23. Riendeau, C. J. and H. Kornfeld. 2003. THP-1 Cell Apoptosis in Response to Mycobacterial Infection. 
Infect. Immun. 71: 254-259. 

24. Jayaraman, P., I. Sada-Ovalle, T. Nishimura, A. C. Anderson, V. K. Kuchroo, H. G. Remold and S. M. 
Behar. 2013. IL-1beta promotes antimicrobial immunity in macrophages by regulating TNFR signaling and 
caspase-3 activation. J. Immunol. 190: 4196-4204. 

25. Spira, A., J. D. Carrol, G. Lui, Z. Aziz, V. Shah, H. Kornfeld and J. Keane. 2003. Apoptosis genes in 
human alveolar macrophages infected with virulent or attenuated Mycobacterium tuberculosis. Am. J. Respir. 
Cell Mol. Biol. 29: 545-551. 

26. Keane, J., M. K. Balcewics-Sablinska, H. G. Remold, G. L. Chupp, B. B. Meek, M. J. Fenton and H. 
Kornfeld. 1997. Infection by Mycobacterium tuberculosis Promotes Human Alveolar Macrophage 
Apoptosis. Infect. Immun. 65: 298-304. 

 

 


	Ilke Vermeulen - PhD Biochemistry_thesis.pdf-2
	6. Thesis - SUPPLEMENTAL data_Chapter II.pdf
	7. Thesis - SUPPLEMENTAL data_Chapter III.pdf
	8. Thesis - APPENDIX (optimisation).pdf

