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Abstract

High-fidelity models capturing the dynamical behavior can be engaged for the
analysis of complex mechatronic systems. Determining the optimal control
parameters and design characteristics of such systems necessitates solving mul-
tiple interconnected models acting on their respective physical domains and
time scales. In this paper, high-fidelity physics-based models are constructed
for several electrical subsystems. Loss mechanisms in the various components
are inferred because these are key when performing optimal design and con-
trol in terms of energy-efficient conversion from power source to actuation.
The complexity of the analyzed models is then reduced by introducing convex
approximations for the occurring dissipation during power transfers, allowing
abstracting the complicated dynamic behavior into a tractable convex formula-
tion, specifically suited for time-efficient numerical simulation. The effective-
ness of the strategy is demonstrated on a case study originating from the field
of all-electric vehicles, embodying a series interconnection of a battery stack,
a buck-boost converter, a voltage source inverter, and an asynchronous electric
motor. Results show that the dynamic simulation of the proposed system, com-
posed of multiple time scales, can be reliably computed using the composed
convex mappings, hereby reducing the computational time approximately by
a factor 461, compromising only 1.8% accuracy regarding energy consumption
assessment. The introduced convex formulation can therefore constitute the
foundation for optimal control and design of complex mechatronic drives.
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1 INTRODUCTION

In recent years, the undeniable evidence for global warming became broadly accepted. Confining the detrimental effect on
climate change for future generations subsequently turned into a central topic on the global scientific agenda. An impor-
tant player regarding atmospheric pollution is the car and public transportation industry, that combined are responsible
for approximately 23% of the world CO2-emissions. The vast increase of transportation emissions has always been driven
by road transportation, indicated by a 68% increase in emissions since 1990.1 As we can expect based on the contempo-
rary evolution, future legislation will become even more demanding towards the manufacturers, while classical internal
combustion–based propulsion is reaching its physical boundary in terms of energy efficiency. One can anticipate a trend
towards better integration of electrical drivelines.
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FIGURE 1 Overview of the electric drivetrain for vehicle propulsion. The induction motor is supplied by a 3-phase voltage source inverter

Electric drives for vehicle propulsion, and more generally electric power systems, introduce specific particularities, orig-
inating from the interaction between the different components on various time scales and physical domains. In this paper,
a specific case study is introduced, demonstrated by the driveline in Figure 1, to propose a commonly applicable model-
ing strategy in electromechanical engineering. The proposed topology consists of a series connection of a battery stack2

to accommodate for the energy buffer, a buck-boost converter3 providing a controllable output direct current (DC)-level
and a voltage source inverter4 that converts the DC-voltage to an appropriate 3-phase voltage system at the input of the
induction motor.5

High-fidelity models for the various subsystems can be composed, including the dynamic behavior of the isolated
components at the fastest time scale, hereby providing an accurate representation of the evolution during operation
but necessitating small simulation time steps. Subsystems incorporating power electronic switches can be modeled by
hybrid automata6 to fuse discrete events, ie, switching instants, and continuous dynamics, ie, internal state evolution,
in a single modeling formalism. Furthermore, not all parts in electric drives can be represented by linear state space
models and impose the need of local linearization procedures7 for each time instant, increasing the computational
load. These characteristics render the dynamic simulation of electrical systems into a challenging and computationally
expensive problem.

To reduce the appearing complexity of the problem, several approaches coexist.8 An appealing procedure introduces
the power variables as the dynamic states of the system, abstracting the details and control protocols on the compo-
nent level into their resulting power transfers. Power losses, assessed by high-fidelity simulations, are casted into an
appropriate mapping. Within this approach, convex formulations prove to be useful.9 Convexity is however not assumed
in advance but emerges as a consequence of the physical modeling procedure. The dissipation is casted into a convex
regression model, and the general formulation of a convex problem statement 1 is attained with the matrices Aeq and
Beq representing the governing equality constraints, gj(·) ( j = 1, … ,m) denoting m convex boundaries, and P the vec-
tor of the power flow variables in the system. The introduced inequality constraints originate from a relaxation of the
corresponding equality relations, allowing the problem to be tackled by numerical convex solvers. The solution of the con-
sidered problem statement will naturally coincide with the boundary of the convex regions, hereby fulfilling the original
equality constraints. {

AeqP = Beq
gj(P) ⩽ 0 for j = 1, … ,m. (1)

The energy efficiency of drivetrains remains a focal point in both control and design applications. The introduced con-
vex formulation can be directly engaged for optimal energy management,9 because of its time efficiency and reliability.
Furthermore, it can constitute the basis for effective design methodologies, rendering the design of complex electronic
systems tractable.

2 COMPONENT LEVEL SIMULATION OF THE ELECTRIC DRIVETRAIN

Modeling of the different components is performed in state space representation, as to include most physical and dynam-
ical particularities. Operation of the distinct components by their dedicated controllers is sketched. We consider the
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TABLE 1 Overview of the physical parameters in the drivetrain

Quantity Value

Battery
e0 1.2848 V
Q 6.5 Ah
Ri 0.0002 Ω
K1 0.01875 V
K2 0.144 V
K3 2.3077 (Ah)−1

n 300
Buck-boost
L 130 𝜇H
C 5 mF
RL 0.0096 Ω
RC 0.005 Ω
Voltage source inverter
RCE 0.005 Ω
Induction motor
Np 2
Rs 0.03552 Ω
Rr 0.02092 Ω
Ls 15.435 mH
Lr 15.435 mH
Lm 15.100 mH
Jm 0.75 kgm2

Vehicle
m 1485 kg
Jd 1.2 kgm2

Jw 9.44 kgm2

ie 1.47:1

Numerical values for the battery and induction motor are based on Tremblay
et al11 and Tabbache et al.21

FIGURE 2 Information transfer between interconnected subcomponents for simulation of the drivetrain is based on their respective input
and output ports

controllers as being distributed throughout the drivetrain, whereas their structure is fixed and dedicated for a certain
component. As the work is focused on assessing the energy efficiency of the electric drivetrain, and thus the dissipation,
the appropriate loss mechanisms in each subassembly are furthermore specified. The numerical values of the character-
istic parameters of all components are provided in Table 1. A reviewed representation is depicted in Figure 2, focusing on
the transfer of physical quantities between the distinct subsystems and denoting all incorporated notations.

2.1 Battery
As a first approximation, a battery can be regarded in its ideal form as an ideal voltage source in series with a resistance in
an electrical circuit. One of the major downsides of this method is that the dependency of the output voltage on the actual
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state of charge of the energy buffer is not modeled. The voltage–state-of-charge relation shows to be highly nonlinear
for charging over around 80% of the maximum capacity or discharging under approximately 20% of the highest possible
charge to be held by the battery. In Shepherd,10 these nonlinear sections are expressed as exponential curves added to the
approximately linear voltage-discharge relation. For a known evolution of the current through the battery (ibatt) in time
(t), this leads to

e(t) = e0 − K1 ·
Q

Q − ∫ t
0 ibatt(𝜏)d𝜏

+ K2 · e−K3·∫
t
0

ibatt(𝜏)d𝜏 . (2)

In this equation, e(t) denotes the internal voltage of the battery cell with maximal charge Q and corresponding voltage
level e0. The parameters K1, K2, and K3 in the proposed expression can be deduced from data provided by the manufactur-
ers. Incorporating the internal resistance Ri, which is often nonnegligible and introduces dissipation, leads to an output
voltage reduced by the corresponding voltage drop.

2.2 DC-DC converter
One cannot suppose the output voltage of the battery to be constant. Current variations will induce a variable volt-
age drop over the internal resistance, which alters the voltage at the input of our system.11 Combined with the effect
of falling voltage as the battery depletes during operation, one should anticipate these changes and allow to compen-
sate them. As electrical motors operate more efficient at a constant voltage, a DC-DC converter (see Figure 3A with
switches Si, i = 1, … , 4 and parasitic resistances RC and RL, capacitance C, and inductance L) should be considered
in the proposed circuit. To deal with a broad range of voltage levels to the electric motor, a converter suited for both
step-down ([S1, S̄2, S3, S̄4] ↔ [S̄1, S2, S3, S̄4]) and step-up ([S1, S̄2, S3, S̄4] ↔ [S1, S̄2, S̄3, S4]) conversions, buck and boost
mode, respectively, is preferred.

A state space representation for a converter fed by a constant but variable voltage source at the input and connected
to a variable current source at the output is derived, as illustrated in Figure 3. An approach that enables feasible assess-
ment of the dynamic behavior constitutes of constructing an averaged dynamic model, spanning exactly one period. This
concept can be implemented by approximating the state derivatives by the weighted sum of the state space representa-
tions belonging to the switching states, hence called the mean value model. The Boolean input to the system denoting the
actual switching state is now replaced by the duty ratio 𝛿. Figure 3B illustrates the accuracy of the mean value model for
the internal states (inductor current iL and capacitor voltage vC) compared with the model simulating the full dynamics
with inputs being the Boolean inputs representing the state of the distinct power electronic elements.

The proposed methodology results in an analytical representation of the converter in boost-operation:

x =
[

iL
vC

]
;u =

[
vbatt
iBB

]
; y =

[
ibatt
vBB

]
;

A =

[
−RL

L
+ 𝛿 RC

L
−𝛿 1

L
𝛿

1
C

0

]
;B =

[
1
L
𝛿

RC
L

0 − 1
C

]
;C =

[
1 0
𝛿RC 1

]
;D =

[
0 0
0 −RC

]
. (3)

FIGURE 3 Physics-based implementation of the buck-boost converter
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FIGURE 4 Comparison of the dynamic responses of the converter's voltage output in boost mode with and without
proportional-integral-derivative (PID) control, with vset the voltage set point, vbatt the voltage of the battery stack, vBB the voltage at the direct
current–bus, and vPID denoting the improved characteristic due to PID-control

With these matrices, the dynamic behavior of the converter is represented by the governing set of state space equations:

ẋ = Ax + Bu
y = Cx + Du.

(4)

Equations for buck-mode can be deduced in a similar way. To control the transient behavior of the converter in a favor-
able manner and eliminate the steady-state error on the output voltage, a basic proportional integral derivative–control
loop is implemented on the voltage vBB with respect to an operational set point vset. The corresponding gain factors can
be determined by application of the Ziegler-Nichols design methodology.12 Remarkable improvements in the dynami-
cal evolution of the DC-bus voltage can be observed in Figure 4. Both overshoot and settling time are reduced, while
the steady-state error is eliminated. In the remainder of this work, a set point of 400 V (vset = 400 V) is assumed and
the transient corresponding to a sudden step in the voltage reference is neglected. The incorporated control justifies the
assumption of a constant voltage level at the DC-bus, as no step changes should be anticipated and the transient behavior
is improved. Neglecting deviations from the ideal set point will nevertheless result in minor discrepancies at start-up of the
electrical drive.

Note that the power electronic components introduce additional losses in the system, as the swift transition between
states cannot be considered as a standard loss, called switching and conduction losses.13,14 Conduction losses are intro-
duced by dissipation in an equivalent collector-emitter resistance RCE, determined by the power electronic elements.
Switching loss phenomena are captured by means of empirical models, given in Nicolai and Wintrich.15

2.3 Voltage source inverter
The previously discussed DC-DC converter offers the system the possibility to operate at the most appropriate voltage
level based on the actual operating conditions. In our work, we consider electric propulsion generated by a 3-phase
alternating current (AC) motor, and therefore, the supplied DC voltage should be transformed to an appropriate rotat-
ing voltage system suited for the motor. Distinct possibilities coexist to satisfy this requirement, but the 3-phase voltage
source inverter is elected with the torque control of the induction machine in perspective. The corresponding topology is
represented in Figure 5. The output is constructed by passing the voltage to the proper phases using the provided switches.
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(A) (B)

FIGURE 5 An external controller supplies the gates of the insulated-gate bipolar transistors with the proper switching signals. Freewheel
diodes allow for reverse currents. Depending on the switching state, distinct phases are supplied. When all switches are in the same state, no
voltage difference is observed in the motor frame

As the rapid transients can be considered hard to capture, the inverter will be modeled as an ideal conversion of a
DC-voltage level into a 3-phase supply. Nevertheless, the losses in the power electronic components are evaluated and
translated towards an equivalent voltage drop at the outlet.

2.4 Induction motor
The driving component of our electrical system is chosen to be a standard AC induction machine. For the ease of simula-
tion, a state space representation of the dynamics is derived. The dynamics of the induction machine are represented in
a general way as follows:

vi = Ri ii + d
dt
[Li(𝜃) ii]. (5)

With vi and ii, i = 1, … , 6 representing the stator and rotor phase systems, being the voltage vector and current vec-
tor for all 3 phases, respectively, Ri the resistance matrix, and Li(𝜃) the angle (𝜃) dependent inductance matrix of the
asynchronous motor. The off-diagonal elements of the matrix Li(𝜃) represent the respective mutual inductances between
stator and rotor phases, while the diagonal entries denote the stator and rotor inductances. Starting from the provided
set of differential equations, the dynamics of an induction machine can be converted into state space format by using the
appropriate transformations and performing proper mathematical manipulations.16

M ẋ = A(�̇�) x + B u. (6)

In problems dealing with stator control (eg, direct torque control), one usually adopts a stationary reference frame.
Stator currents and fluxes make up the set of state variables x, while the input vector u constitutes of the voltages in the
proposed reference frame. The distinct matrices M, A, and B denote the state matrices of the global system, characterized
by the physical stator and rotor resistances Rs and Rr, and inductances Ls, Lr, and Lm, representing respectively the stator,
rotor, and mutual inductance. The number of pole pairs is denoted by Np, while Jm represents the motor inertia. All
numerical values can be found in Table 1. To deliver the required torque within a reasonable region of accuracy, the direct
torque control algorithm is implemented.17 Based on the current state of the phase angle and the magnitude of the flux,
the most desirable input vector vi is supplied to the electric motor. As the inverter contains 3 pairs of switches, 8 different
combinations can be constructed, see Figure 5. The flux 𝜓 is ought to evolve in the direction of the voltage vector, and in
this way, the output torque and flux magnitude can be regulated to be confined in a limited hysteresis region around the
set point. The desired magnitude of the flux is here nevertheless fixed at 1.0 Wb.

2.5 Vehicle dynamics
To propel the vehicle, different dynamic mechanical resistances have to be overcome, resulting in a counteracting torque.
One can categorize 2 main components in the required torque, being the rolling, drag, and inclination resistances imposed
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by the environment and the acceleration torque caused by the inertia of the vehicle. Based on the desired acceleration,
the internal control system can deduce the torque required to accelerate at a given rate, while the road dynamics impose
the different counteracting forces. The considered vehicle is characterized by an inertia for the wheels (Jw), a drive inertia
(Jd), and a total mass (m). The final reduction in the driveline is abbreviated as ie and is fixed. For further information,
one can consult Gillespie.18

3 CONVEX MAPPING FORMULATION

The previously elaborated state space formulations allow to simulate the drivetrain design with a high accuracy and
reliability but at the cost of an extensive need of computational resources and time. A more efficient representation
of the interconnected system is strongly desired and the included models need to be casted in an appropriate format.
Nevertheless, transient behavior is ought to be incorporated in the proposed abstraction.

3.1 Convex loss models
Convex reformulations of existing problems provide a helpful means in the pursuit of time-effective simulation of power
flow–based systems as this enables efficient solution algorithms and thereby elevated computational gains.8 The focal
point of most electrical drives consists of improved energy management of the accommodated energy buffers as to max-
imize the energy efficiency in operation. Intuitively, one could expect a convex behavior of the dissipated power when
deviations from optimal operation occur, as losses need to increase in both directions. This mindset constitutes the foun-
dation for the introduced abstractions in Egardt et al.9 In this paper, convexity is not assumed a priori but intervenes as a
consequence of the physical behavior of the distinct components on the level of power transfers.

If one considers the dynamic evolution of the buck-boost converter 3 combined with the constitutional law of the battery
stack and its internal resistance, the desired convexity of the dissipated power flows can be mathematically derived. For
regime conditions, which corresponds to a fixed state trajectory and thus no deviations in state variables over time (ẋ = 0),
the following set of equations is deduced:

⎧⎪⎪⎨⎪⎪⎩

𝛿ibatt = iBB
vC = −RL

𝛿
iL + RCiL + vbatt

𝛿
+ RCiBB

ibatt = iL
vBB = 𝛿RCiL + vC − RCiBB
vbatt = E0 − Riibatt

. (7)

The total internal voltage E0 is uniquely defined by the number of battery cells n, and the internal voltage of a single
battery e0 as a series connection within the buffer pack is assumed.

E0 = n e0. (8)

After some mathematical manipulations, expressions for the power flows are obtained, which appear to be functions
of E0, iBB, and ibatt. {

Pin = E0ibatt
Pout = iBBvBB = RCi2

BB + RCiBBibatt − (Ri + RL)i2
batt + E0ibatt

. (9)

The different currents can be interpreted as being averaged values over a prolonged time interval. In the actual deter-
mination of the loss models, the power flow variables are nevertheless calculated by considering the instantaneous values
for the underlying physical quantities and averaging the corresponding power losses. Note that averaging the instanta-
neous state variables results in a slight underestimation of the power losses in the components. This approximation will
however constitute as a valid base for validating the convexity of the dissipated power as a function of the output power.
The internal components, eg, the DC-bus capacitance C, are designed such that the relevant state variables have a rela-
tively low variability in the span of one duty cycle. Considering the case of the DC-bus capacitance, its value is chosen
such that the DC-bus voltage vBB can be roughly considered constant. For the dissipated power follows
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Pd = Pin − Pout = −RCi2
BB − RCiBBibatt + (Ri + RL)i2

batt. (10)

Referring to the flows depicted in Figure 2, one can consider the quantity iBB as an external factor, imposed by the
remainder of the complete system. Furthermore, deviations in E0 are generally negligible with respect to the other
parameters, given that the time constant of depletion is much larger than the duration of the electrical transients. These
parameters are therefore regarded as instantaneously constant quantities. A sufficient condition to ensure the convexity
of the power losses Pd, originating in both the battery stack and the converter, as a function of the output power Pout is
formulated as

d2Pd

dP2
out

⩾ 0. (11)

In the considered case, this leads to

dPd

dPout
= dPd

dibatt
· dibatt

dPout

= 2(Ri + RL)ibatt − RCiBB

−2(Ri + RL)ibatt + RCiBB + E0
.

(12)

For the second derivative with respect to Pout, one gets

d2Pd

dP2
out

= 2E0(Ri + RL)
(−2(Ri + RL)ibatt + RCiBB + E0)3 (13)

and consequently, given that the resistances and internal voltage are all positive real numbers,

ibatt ⩽
RCiBB + E0

2(Ri + RL)
≈ E0

2(Ri + RL)
. (14)

To prove the asserted convexity property, it suffices to note that the occurring parasitic resistances are commonly very
small in realistic scenarios (Ri, RL, RC∼ mΩ), while the internal voltage adds up to values in the order of 300 V, because
all battery cells are connected in series. Taking these considerations into account, the validity of the condition 14 can be
guaranteed in practical circumstances, as current is limited because of heating effects. Additionally, the battery contains
an important energy buffer, which cannot be neglected in power flow evaluations and introduces an additional degree of
freedom for the loss mapping.

Based on the previous discussion, a steady-state representation of the battery and DC-DC converter can be casted in a
convex format. By including the dynamical behavior in this mapping procedure, these metamodels, ie, regression mod-
els that are based on physics-based models, are directly engaged in the analysis of the interconnected drivetrain. Power
electronic losses, both conduction and switching losses, are assessed by introducing a resistance for the current flow and
empirical formulations for the dissipated energy during switching events. The convexity of the system is not disturbed
by the presence of switching elements, as the losses remain constrained. Fitting a parabolic regression model to the data
obtained by numerical simulations of the high-fidelity loss models results in the convex surface shown in Figure 6A for a
battery stack consisting of 300 cells.

Dissipation in the propelling mechanisms of the drivetrain, namely, the asynchronous motor and its 3-phase supply,
can be treated equivalently. Drawing the analogy with bond graph representation, the mapping needs to be constructed
for a constant flow input, corresponding to the rotational speed of the motor axle. As no significant mechanical means of
energy storage are present in the considered case study, no additional dimension needs to be included. In the proposed
case study, an induction motor with a rated power of 75 kW is casted into its representative loss formulation, which is
demonstrated in Figure 6B. It is important to stress that the convex behavior is only observed in the Pout,IM-direction, as
is required to fulfill the conditions of the convex problem formulation.
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(A) (B)

FIGURE 6 Convex regression models for the power dissipation in the distinct subsystems within the drivetrain. DC, direct current; VSI,
voltage source inverter

3.2 Convexification of the vehicle dynamics
We reconsider the vehicle dynamics, consisting of the rolling resistance, drag force, road inclination, and acceleration
torque, and format them into an accessible shape within our convex framework. Taking a fixed road and speed profile into
account, all required forces can be readily deduced. Therefore, the vehicle is split up in 2 modules: the rotating driveline
and the vehicle body, as schematically represented in Figure 7. This way the driveline efficiency and the losses by forces
acting on the outside of the vehicle are easily derived and split up in an intuitive fashion.

The rotational kinetic energy stored in the drivetrain is obtained as follows, based on the rotational speed 𝜔 of the shaft
demonstrated in Figure 2:

Ekin,drive =
1
2

J𝜔2. (15)

With J being the rotational inertia of the driveline components translated to an equivalent inertia at the wheel axle,

J = Jw + i2
e Jd + i2

e Jm (16)

where ie is the gear ratio of the rear differential and Jm, Jd, and Jw the inertia of the motor, the driveline, and the wheels,
respectively.

A generally acceptable approach is to assume a fixed efficiency of the driveline, eg, 𝜂 = 90%. In the case that the
wheels are driven by the motor, mechanical power is transferred to the wheels and part of the motoring power is lost in
the driveline.

Pd,drive = Pin,drive − Pout,drive = (1 − 𝜂)Pin,drive. (17)

When motoring, the input and output powers are positive by sign convention. Equivalently, when kinetic mechanical
energy is recovered and the induction motor (IM) is employed as a generator unit, both input and output power flows of
the driveline are negative, resulting in the following expression for driveline losses:

FIGURE 7 Schematic overview of the power flows in the drivetrain. Power variables marked by * are uniquely determined by the speed
profile of the driving cycle. IM, induction motor; VSI, voltage source inverter
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Pd,drive = Pin,drive − Pout,drive =
(

1 − 1
𝜂

)
Pin,drive. (18)

As a general expression for the transmission losses, we state

Pd,drive = max
(
(1 − 𝜂)Pin,drive,

(
1 − 1

𝜂

)
Pin,drive

)
. (19)

One is now free to consider the external loss functions, rolling resistance and drag force, as a fixed loss or output power
flow. Note that there is no optimization needed in this module of the vehicle assembly. All power flows and buffer states
result directly from the road profile. The input power flow for the driveline is a result of the 2 sets of equations following
from the conservation of energy for power flows passing through both mechanical sections.

3.3 Convex problem formulation
The power flows in the system are schematically visualized in Figure 7, hereby engaging the previously discussed convex-
ification of the energy dissipation of the components (as described in Section 2) in the electric drivetrain. Interconnection
between the different electrical subsystems is governed by equality constraints, representing a physical connection or the
power balance for a single component.

The general power node equation is written as

Pin + Ė = Pout + Pd. (20)

Herein, the input, output, and dissipated powers are represented by Pin, Pout, and Pd, respectively, while the notation Ė
symbolizes the change in internally stored energy. To translate the considered problem into a suitable format matching 1,
this last class of equality constraints 20 is relaxed to obtain the appropriate convex inequality constraints. Figure 7 shows
that this abstraction is equivalent for all components in which energy is dissipated. For the other system components, the
proposed relaxation is not necessary as only 2 power flow state variables are to be determined and can be connected by a
linear equality constraint, satisfying the convex optimization structure. In the case of the assembly containing the battery
and the converter, this consequently leads to

Ė ⩾ Pout + Pd, (21)
and for the electrical motor and its drive, in which the energy buffer does not depend on the dynamic power flow variables,
one can write

Pin ⩾ Pout + Pd. (22)

Assume P̃in to be the optimal solution for Pin coinciding with the convex inequality constraint and another solution Pin
satisfying the inequality constraint 22:

Pin = 𝛾 + Pd(Pin) + Pout

= 𝛾 + Pd(P̃in + 𝛾) + Pout

= 𝛾 + Pd(P̃in) + ΔPd + Pout.

(23)

With 𝛾 a nonnegative real-valued slack variable and thus

Pin = P̃in + 𝛾 + ΔPd. (24)

For which P̃in is optimal if 𝛾 + 𝛥Pd ⩾ 0 and consequently the relaxed convex problem conversion results in a solution
coinciding with the inequality constraint and thus satisfying the original equality constraint.

It can easily be shown that

ΔPd ⩽ 𝛾

[
𝜕Pd

𝜕Pin

]
max

. (25)

A sufficient condition for the applicability of the aforementioned relaxation is that−1 ⩽ 𝜕Pd
𝜕Pin

⩽ 1 for the whole operating
range of the system. This condition is intuitively weak, as it would be of no use to increase the transferred mechanical
power if it results in an added dissipation greater than the added mechanical power.
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Extrapolating the proposed relaxation theorem to all assemblies within the series connection, a convex formulation of
the dynamical problem introduced by the state space modeling is obtained, satisfying the requirements of 1. The occurring
power variables constitute the state vector P at each time instant tk (k = 1, … ,N).

P =
[
Ebatt Pout,batt Pd,batt … Pin,trans Pout,trans Pd,trans

]
. (26)

Based on the known time evolution of the demanded power at the wheels Pout,work and Pout,drag, which follows from
solving the problem concerning vehicle dynamics, all power flows can be determined by solving the following set of
equations, with 𝛥t representing the employed simulation time step:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pin,IM(k) − Pout,batt(k) = 0
Pin,drive(k) − Pout,IM(k) = 0
Pin,trans(k) − Pout,drive(k) = 0
Pin,vehicle(k) − Pout,trans(k) = 0
Pin,vehicle(k) = Pout,work(k) + Pout,drag(k) − Ėkin,vehicle(k)
Pin,drive(k) − Pout,drive(k) = −Ėkin,drive(k)
Pd,batt

(
Ebatt(k),Pout,batt(k), k

)
+ Pout,batt(k) −

Ebatt(k)−Ebatt(k−1)
Δt

⩽ 0
Pd,IM

(
Pout,IM(k), k

)
+ Pout,IM(k) − Pin,IM(k) ⩽ 0

Pd,trans
(

Pout,trans(k), k
)
+ Pout,trans(k) − Pin,trans(k) ⩽ 0

. (27)

With the introduction of the appropriate matrices, 27 can be translated into a completely equivalent formulation as in
1. The elements of the matrix P are arranged in the left-hand side of the equality constraints in 1, while the inequality
constraints introduce the previously constructed convex loss relations.

4 RESULTS AND DISCUSSION

The derived convex formulation of the electrical drivetrain copes with the dynamical evolution of the interconnected sys-
tem by validating all power equations, governing the transfer between different assemblies within the total configuration.
The validity of the proposed abstractions needs to be assessed in a dynamical context before it is used in a reliable man-
ner as a valuable substitute in the dynamical power flow simulation of electromechanical drives. Its applications do not
remain limited to simulation purposes solely, as the considered strategy can constitute the basis for time-effective optimal
design problems, which are not tractable for standard contemporary solvers in a numerical environment.

The complete drivetrain of Figure 1 is simulated for a prolonged time horizon, based on the interconnection of the
separate subsystems. All dynamic particularities are introduced by considering the physical state space representations.
As the switching frequency of the buck-boost converter is arbitrarily chosen to be 20 kHz, the minimal time step is fixed
at 50 𝜇s (𝛥t = 50𝜇s). Torque and speed references are provided by the urban driving cycle,19 a standardized cycle within
European legislation to evaluate the energy consumption of passenger cars in urban areas. The imposed trajectory is
visualized in Figure 8.

As the drivetrain is implemented in a discrete computational environment, the continuous-time state space formula-
tions of 4 and 6 are replaced by their respective approximations in first-order forward differencing 28. The stability of this
approach is further discussed in Benigni and Monti.20

xk+ 1 = (In + Δt · A)xk + Δt · Bu. (28)

The same problem statement is solved by using the convex formulation obtained in 27. A much coarser simulation is
now possible as all control protocols are abstracted in the metamodel and one does not have to account directly for the
separate switching events. All dynamical details are included in the appropriate convex loss mappings, combining the
distinct time scales from the original problem into a single formulation. The main trade-off consists of determining the
optimal approximation, as a more extensive convex basis than in Figure 6 allows for close approximations but necessitates
a higher evaluation time.

To validate the reliability of the proposed methodology, one can compare the response with respect to the energy losses
in the distinct electrical systems. Practical applications of the power flow convexification can be found in both optimal
control and design problems, which are possibly heavily interconnected. The main optimization objective will then deal
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FIGURE 8 Velocity profile of the reference driving cycle (urban driving cycle)

with the energy consumption of the complete topology, as this will determine the operational range of the all-electric vehi-
cle and define its economical viability. Therefore, special focus is devoted to the evolution of the battery charge over time.
A comparison between the high-fidelity simulation, based on the physical representations, and the convex approxima-
tions for a time step of 1 second is provided in Figure 9A. Execution of the physical model requires 30 minutes 5 seconds
of CPU-time, whereas 3.91 seconds was needed when using the convex approximations of the power flows, giving rise to
an acceleration of 461 in computational efficiency. Computations were performed on a standard computer equipped with
an Intel Core i7-6600U processor and a 64-bit operating system. Furthermore, a modeling accuracy of 98.2% is still main-
tained. Denoting the values obtained by the regression model at time instant k with a hat, ie, Êbatt(k) for k = 1, … ,N, the
modeling accuracy is defined as

Accuracy(%) = 100

(
1 − 1

N

N∑
k=1

|Ebatt(k) − Êbatt(k)||Ebatt(k) − Ebatt(0)|
)
. (29)

To increase the truthfulness of the simulation, one can opt to decrease the simulation step size in the convex framework.
The influence of this parameter is depicted in Figure 9B. As in the convex mappings, the impact of the lowest order
time scale is abstracted by averaging the losses over a representative time horizon; the upper limit to the accuracy of the
methodology is not imposed by the magnitude of the time step in the convex framework but rather by the accuracy of
the empirical loss estimation. The quality of the energy assessment procedure is therefore only slightly dependent on the
incorporated time step as can be observed by the nonmonotonic behavior of the curve in Figure 9B.

A strong resemblance between both curves of Figure 9A regarding the energy buffer within the configuration can be
observed. More accurate models can be readily constructed by introducing convex terms with a higher complexity, but
at the cost of increased computational needs. The respective loss approximations for the battery stack and asynchronous
drive are highlighted in Figure 10. As the transient behavior is not considered in the convex approximations, swift dynamic
transitions are not predicted into detail by the proposed methodology. The evolution of the power flow variables is there-
fore smoothened throughout time, and the power peaks observed in the high-fidelity simulation are discarded. The overall
trend is nevertheless clearly incorporated in both time-efficient loss models.

For general design problems, the obtained accuracy suffices and the gain in calculation time to evaluate the effectiveness
of a single design considerably outweighs the minor loss in accuracy. Furthermore, the number of variables in power flow
optimization rises exponentially with both numbers of components and considered time interval, rendering the design
problem intractable for classical algorithms. Casting the monitored problem into a convex alternative thus proves to be a
useful tool in the design of more complex systems, embodying several electrical and mechanical subsystems interacting
on their respective time scales.
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(A) (B)

FIGURE 9 Accuracy of the convex approximations for the battery charge in the buffer

(A) (B)

FIGURE 10 Evolution of the dissipated power in the battery stack and asynchronous drive over time

5 CONCLUSION

Numerical simulation of electrical drivelines proves to be extremely time-consuming, especially in the presence of power
electronic elements acting on a very short time scale. Abstracting the individual switching instants and reducing the
complexity by focusing on the power transfers within the system allow to reduce the need of computational resources
drastically and embed the different time scales in a single representation. The behavior of different electrical components
concerning dissipation mechanisms appears to be convex, rendering quadratic, and in general convex, approximations
into an appealing modeling alternative. Starting from high-fidelity physics-based models of the various components, cap-
turing all dynamical data concerning the transient behavior, the different loss mechanisms are assessed as these constitute
the basis for energy-based calculations and energy management strategies. Both standard losses, ie, dissipation in resistors
and parasitic resistances, and power electronic losses, originating from the instantaneous switching events, are taken into
consideration. To reduce the complexity of the interconnected system, the interacting information transfer is reduced to
power flow representations, for which convex regression models are constructed. For the proposed case study, a reduction
in calculation time with a factor 461 is observed, while an accuracy of 98.2% regarding the assessment of the energy buffer
is achieved. The presented convexification procedure copes with the increasing need for computational resources in the
simulation of electrical drivetrains and enables complex design problems to become tractable by a proper translation into
a convex problem statement. The presented formulation can be directly engaged for energy optimization purposes. The
applicability of the proposed methodology is not restricted to vehicle technology solely but can be extended towards a
more general notion of mechatronic systems incorporating interacting power transfers.
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