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Thank you! 

Performing this PhD can be compared to riding an intensive cycling tour. It takes a great amount of 

courage and perseverance and one cannot do it alone. For a kick-start, a great amount of enthusiasm 

and optimism was necessary. 175 kilometers and ain’t no mountain high enough, Bart! To be able to 

continue for quite some time, a strict schedule and a critical but fair voice to help keeping course was 

crucial. It must be said, Katleen was a natural. When the kilometers were passing by, Els sacrificed to 

keep focus as a true guardian of accuracy with a great, absurd sense of humor. Domien and Nathalie 

generated the necessary slipstream to relieve the legs from time to time without slowing down. After 

2 massive cols, one started to wonder about the exact reason of this insane course. Then, Marc came 

in the picture with a pep-talk and enormous amount of confidence and trust in the good result. 90 

kilometers to go. To divert one’s mind from sore legs, I could recommend Marjolein. With her 

exceptional level of activity and her (almost ever-lasting) happiness, she is just one indispensable 

element to complete the course. In order to stay focused, hold a regular pace and see how others are 

coping with the hard work. Here, the laboratory staff led the way, thank you all! Far over half way and 

still standing. This must be the result of regular food injections and confidence boosts. Keep up the 

good work, Grietje & Roger! “Are you under stress?”, “Do you think you can make it?”, “How do you 

estimate your chance of winning?”. If not yet the case, one would become stressed. The only way to 

cope with this was to remain calm and have faith. All of this, coated with a good portion of “joy de 

vivre” was kindly provided by Guido and Lutje. The last 50 kilometers and doing great. Let’s think about 

something else. Ward, Marie, Julie, Jan, Jelke, Myriam, Lise, Laura, Hanne, Melissa, Jessie, Nele, Julie, 

Lien, Valerie and Jo are all aboard to divert one’s mind. Now, it’s all about holding the line. One last 

esthetic discussion with Jana and a final critical assessment of the final kilometers with Julie L. Along 

comes my loyal, stubborn helper to complete those last and toughest kilometers. Jonas is blessed with 

an extremely regular climbing pace, the capacity to take an extraordinary amount of mood swings, a 

motivational tongue and an indispensable strategic perspective. There he is, the finish, on top of the 

mountain. Hurray, we made it, all together!! Het is gebeurd! Thank you all!! 
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Summary 

Both from an economic as well as from an environmental and social perspective, efficient reutilization 

of horticultural byproducts is necessary. This is in accordance with the vision of the circular economy 

that strongly encourages the food supply chain, amonst others, to upgrade their low-quality 

byproducts. Whereas this concept holds strong in theory, its translation in practice is hampered today. 

The aim in this dissertation was to facilitate and optimize this valorization. 

In Chapter 1, horticultural byproducts were classified and their amounts estimated. This was coupled 

to literature data to identify their potential. Major conclusions are: (i) horticultural byproducts occur 

from many different crops under many different forms at different stages in the supply chain, (ii) based 

on their composition, they have great potential to be used in various industries but (iii) there are some 

traits hindering their practical valorization such as high moisture content, geographical and seasonal 

occurrence, difficult collectability and lack of purity. The choice for a specific type or source of 

byproduct can already partly alleviate some of these traits thus increasing the chances for successful 

valorization. For example, byproducts generated at the produce auctions and during food processing 

are characterized by a lower geographical spread, less collectability issues and little lack of purity. 

Therefore, in the first part of this dissertation (Chapter 2, 3 and 4), tomato surplus products occurring 

at the produce auctions were chosen as model crop to investigate valorization. Some other traits are 

however inherently present in almost all horticultural byproducts and still pose practical challenges for 

valorization, requiring a processing strategy appropriately tuned on these traits. Hence, a processing 

technology was proposed and evaluated for its suitability for valorizing horticultural byproducts.  

Horticultural byproducts are characterized by a high moisture content, making them susceptible to a 

rapid deterioration. Therefore, a pressing technology was proposed to process the moist byproducts 

in liquid (juice) and solid (press residue) fractions and hence allow for their subsequent valorization. 

This is in accordance with the biorefinery principle, aiming for the entire biomass use and avoiding the 

production of residues. Furthermore, three additional constraints were imposed on this pressing 

technology in order to increase the chances of successful valorization towards food, which was 

primarily targeted, in line with the cascade principle (OVAM, 2012b; 2015). Firstly, the nature of 

horticultural byproducts, i.e. their relatively small and geographically dispersed volumes and the 

seasonality of their production can obstruct the feasibility of the valorization process. Therefore, a 

technology, flexible towards type and amount of input byproducts is necessary (Budzianowski & 

Postawa, 2016; Fava et al., 2015; Lin et al., 2014; Matharu et al., 2016). Secondly, consumers 

increasingly demand attractive products (i.e. products with attractive color, appearance and taste) 
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which thirdly, maximally retain the naturalness of the fruits and vegetables. Hence, a technology with 

a low process impact that is able to meet these demands is expected to generate products that are 

competitive and lead to a successful valorization of horticultural byproducts. Based on these 

characteristics, the spiral-filter press was proposed and evaluated in the first part of this dissertation 

for its ability to process horticultural byproducts (Chapters 2, 3 and 4). 

I. Process optimization (Chapter 2) 

Using surplus tomatoes as a feedstock, insight in the working principle of the spiral-filter press was 

gained by changing the process parameters and evaluating their effect on the process performance 

and juice characteristics. A high juice yield was used as a primary criterion to optimize the solid-liquid 

separation (further also denoted by filtration or pressing). The results indicated that in case of soft 

berry-like matrices such as tomato, this juice yield could be maximized by using a high spiral and high 

vacuum frequency, whereas for more liquid products (e.g. after thermal pretreatment), it was found 

crucial to use a spiral with less steep channels. In addition to the juice yield, also the turbidity and the 

precipitate weight ratio were studied, allowing tuning of the process parameters in function of the 

output products. It was found that the production of cloudy juices with a large concentration of solid 

particles were promoted by the use of large screen sizes and high vacuum pump frequencies. Besides 

changing the process parameters, the introduction of a thermal pretreatment was found to further 

augment the juice yield and thus the separation of solid and liquid fractions. This resulted in a press 

residue almost only consisting of seeds and skins, which could be separated from each other, thereby 

increasing the valorization potential of both fractions. These observations were coupled to physical 

insights to improve understanding of the working principle of the technology and allow to tune the 

process parameters in function of different input streams. 

 

II. Process impact on physical characteristics of the output products (Chapter 3) 

Focusing on the liquid tomato juice resulting from the optimized process in Chapter 2, the physical 

juice stability and related quality attributes were investigated in Chapter 3. Stable juices are highly 

demanded by consumers but are often difficult to obtain in practice. It was investigated whether a 

stable juice could be produced using the spiral-filter press and how different process parameters 

influence the water-insoluble solid characteristics known to influence this stability. The results showed 

that fast processing with a large filter size and maximum vacuum allowed the production of a tomato 

juice, stable for over 170 days. However, using exactly the same processing conditions on another 

variety rendered the juice unstable, illustrating that changing the process parameters alone is not 

sufficient to control juice stability. In order to fully understand the influence of process variables and 



Summary 

iii 
 

variety on the physical stability, this issue should be subjected to further investigation for example via 

the measurement of enzymatic activity or investigation of the particle interactions.  

 

III. Process impact on chemical characteristics of the output products (Chapter 4) 

In Chapter 2, the antioxidative capacity was found to be preserved throughout processing which 

suggested a low process impact of the spiral-filter press. However, a more detailed investigation was 

necessary to determine the fate of the individual phenolic compounds, carotenoids and ascorbic acid 

content. These results are described in Chapter 4. The results showed that the ascorbic acid content 

was retained during spiral-filter processing. The weighed retention efficiency of the phenolic 

compounds and carotenoids was 88 % ± 8 % and 122 % ± 15 % respectively, confirming a low process 

impact of the spiral-filter press and illustrating its potential to maintain the native constitution of the 

tomatoes to a high extent. The distribution of compounds in the different fractions was also 

investigated, showing an enrichment of both phenolic compounds (on average 5 times) and 

carotenoids (on average 2.5 times) in the press residue compared to the mashed tomato. During 

thermal downstream processing of the tomato juice, the carotenoid content significantly decreased. 

Future research efforts should thus investigate (i) coupling the spiral-filter press to alternative, 

innovative mild processing technologies to conserve the high-quality of the spiral-filter-processed 

products as well as (ii) the valorization opportunities of the press residue, as the higher concentration 

of phytochemicals in this fraction was clearly shown.  

Besides practical characteristics such as the high moisture content and the seasonal occurrence, 

hindering the valorization of horticultural byproducts, another aspect was found to impede their large 

scale valorization, i.e. the lack of knowledge on the composition of some horticultural byproducts. This 

was investigated in the second part of this dissertation (Chapter 5). This issue was addressed for forced 

Belgian endive roots (Cichorium intybus L. var. foliosum). Approximately 36,000 tonnes of these roots 

occur yearly in Belgium during the production of Belgian endive chicons. This byproduct is most often 

locally used as feed, however investigating their composition can lead to higher added-value 

applications in products such as food, pharmaceuticals of biocides. 

IV. Profiling of forced Belgian endive roots (Chapter 5) 

Insight in the composition of forced Belgian endive roots was obtained by investigating their content 

of sesquiterpene lactones (bitter compounds) and phenolic compounds as well as their antioxidative 

capacity and elemental composition. The composition of 5 different Belgian endive cultivars and 

industrial chicory (Cichorium intybus L. var. sativum) was compared and forced roots were compared 

to non-forced roots, stored roots and chicons. The results indicate that the forced roots are enriched 

in sesquiterpene lactones compared to the non-forced roots and the chicons. The major phenolic 
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compound (chlorogenic acid) was present in levels about twice as high in the roots compared to the 

chicons and the antioxidative capacity significantly increased upon forcing. Finally, the forced roots 

were found to contain predominantly K, P, Cl and Ca and appear to contain sufficient amounts of Fe 

and Cu to meet the requirements for the food label ‘source of’. These findings illustrate the potential 

of forced Belgian endive roots for further valorization. However, a large variability of type and 

concentration of the measured phytochemicals was found in function of different cultivars. This should 

be taken into account when using this knowledge as a basis for further investigation of potential 

valorizations. Future research should focus on investigating the functionality and also the toxicity of 

the derived extracts or products as well as on the pilot-scale valorization of these roots. 

In conclusion, efficient reutilization of horticultural byproducts is necessary, but the translation in 

practice is being hampered today. Two aspects that hinder this translation were identified i.e. (i) the 

need to cope with moist byproducts, occurring scattered, both in time and space and (ii) the lack of 

knowledge on the composition of some byproducts. These issues are addressed by two different 

approaches on two different model crops. As a result, the spiral-filter press was found suitable to 

valorize horticultural byproducts as it was able to process different types of moist byproducts with a 

low process impact on their phytochemical content. In future research, the downstream processing 

should be optimized in function of maintaining this low process impact throughout the whole process 

line. The forced Belgian endive roots were investigated to tackle the second issue concerning the lack 

of knowledge on the composition of byproducts. These roots were shown to be enriched in 

sesquiterpene lactones and phenolic compounds and based on literature, these compounds appear to 

be promising for application in the food, pharmaceutical and biocide sector. This detailed 

characterization of the composition can thus be used as starting point for further product 

development. The results are discussed in a bioeconomy context and critically discussed from a 

broader technical and socio-economic perspective in the reflective discussion (Chapter 6).  

This dissertation thus clearly shows the possibilities of horticultural byproducts and accordingly the 

opportunities for their valorization. On the other hand, it indicates the complexity of valorizing 

horticultural byproducts and the necessity for transdisciplinary approaches. Today, we are only at the 

beginning and much work is still to be done. However, the interest keeps growing and the route is 

being paved. 
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Samenvatting 

Efficiënte valorisatie van tuinbouwreststromen is cruciaal vanuit economisch, ecologisch en sociaal 

perspectief. Dit komt overeen met de visie van de circulaire economie die onder meer de valorisatie 

van reststromen uit de voedingsketen stimuleert. Ondanks het feit dat dit concept in theorie mooi 

klinkt, blijkt de praktische vertaling moeilijk op de dag van vandaag. De doelstelling in dit doctoraat is 

om deze valorisatie te faciliteren en te optimaliseren. 

In Hoofdstuk 1 werden tuinbouwreststromen geclassificeerd en werden hun hoeveelheden geschat. 

Dit werd gekoppeld aan literatuurdata om hun potentiële meerwaarde te identificeren. De 

voornaamste conclusies waren: (i) tuinbouwreststromen ontstaan bij verschillende gewassen onder 

diverse vormen doorheen verschillende stadia in de supply chain, (ii) hun samenstelling wijst op hun 

potentieel om gevaloriseerd te worden in diverse industrieën, maar (iii) ze worden gekarakteriseerd 

door een aantal eigenschappen die de praktische valorisatie verhinderen zoals hoge vochtinhoud, 

verspreide en seizoenale beschikbaarheid, moeilijke inzameling en gebrek aan zuiverheid. De keuze 

voor een specifieke reststroom of voor een specifiek type reststromen kan sommige van deze 

eigenschappen reeds deels wegnemen en dus de kansen voor succesvolle valorisatie verhogen. 

Bijvoorbeeld, reststromen die voorkomen op de veilingen en in voedselverwerkende bedrijven worden 

gekenmerkt door een kleinere geografische spreiding en minder problemen met inzameling en gebrek 

aan zuiverheid. Daarom werden in dit doctoraat de surplus tomaten op de veilingen gekozen als 

modelgewas om valorisatie te onderzoeken. Sommige eigenschappen zijn echter aanwezig in alle 

reststromen en vormen dus praktische uitdagingen voor valorisatie. Dit vereist een strategie die goed 

afgestemd is op deze eigenschappen. In dit doctoraat werd bijgevolg een veelbelovende technologie 

voorgesteld welke geëvalueerd werd op zijn capaciteit om tuinbouwreststromen te valoriseren. 

Tuinbouwreststromen worden gekenmerkt door een hoog vochtgehalte, wat hen gevoelig maakt voor 

rottingsverschijnselen. Daarom werd een perstechnologie voorgesteld die vochtige reststromen perst 

in vloeibare (sap) en vaste (persresidu) fracties en hun verdere valorisatie mogelijk maakt. Dit past in 

het bioraffinage principe waarin gestreefd wordt om de volledige biomassa te gebruiken en de 

productie van reststromen te minimaliseren. Verder werden drie extra voorwaarden opgelegd aan 

deze perstechnologie om de kansen op succesvolle valorisatie richting voeding te verhogen, in lijn met 

het cascade principe (OVAM, 2012b; 2015). Ten eerste kunnen de relatief kleine hoeveelheden die 

geografisch verspreid zijn en seizoenaal voorkomen, de haalbaarheid van het valorisatieproces van 

tuinbouwreststromen bemoeilijken. Daarom is een technologie nodig die diverse types en 

hoeveelheden aan biomassa kan verwerken (Budzianowski & Postawa, 2016; Fava et al., 2015; Lin et 
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al., 2014; Matharu et al., 2016). Ten tweede vragen consumenten steeds meer naar aantrekkelijke 

producten (i.e. producten met een aantrekkelijk kleur, uitzicht en smaak) welke ten derde de 

natuurlijkheid van de groenten en fruit maximaal bewaren. Daarom is een technologie nodig met een 

beperkte procesimpact die competitieve producten kan genereren en tot een succesvolle valorisatie 

van tuinbouwreststromen kan leiden. Op basis van deze eigenschappen werd de spiraalfilterpers 

voorgesteld, welke geëvalueerd werd op zijn capaciteit om tuinbouwreststromen te valoriseren. 

I. Procesoptimalisatie (Hoofdstuk 2) 

Gebruik makend van surplus tomaten werd inzicht in het werkingsprincipe van de spiraalfilterpers 

verkregen door het aanpassen van procesparameters en het evalueren van hun effect op de 

performantie van het proces en de eigenschappen van het sap. Een groot saprendement werd gebruikt 

als primair criterium om de fasescheiding in vloeibare en vaste fracties te optimaliseren. De resultaten 

geven aan dat in het geval van zachte bes-achtige structuren zoals tomaat, dit saprendement 

gemaximaliseerd kon worden door het gebruik van een hoge spiraal- en vacuümfrequentie, terwijl het 

voor meer vloeibare producten (vb. na thermische behandeling) belangrijker is om een spiraal te 

gebruiken met minder steile kanalen. Naast het saprendement werden ook de turbiditeit en de partikel 

massa ratio gemeten, wat toeliet om de procesparameters aan te passen in functie van de 

eindproducten. De productie van troebele sappen met een grote concentratie aan vaste deeltjes bleek 

bevorderd te worden door het gebruik van grote zeefporiën en hoge vacuüm frequenties. Naast het 

veranderen van de procesparameters bleek het gebruik van een thermische voorbehandeling het 

saprendement te verhogen, wat overeenkomt met een betere scheiding van vaste en vloeibare 

fracties. Dit resulteerde in een persresidu dat bijna uitsluitend bestond uit tomatenpitten en –schillen 

die gemakkelijk van elkaar konden worden gescheiden, wat het valorisatiepotentieel van beide fracties 

verhoogt. Deze waarnemingen werden gekoppeld aan fysische inzichten in het werkingsprincipe van 

de technologie zodat procesparameters konden aangepast worden in functie van verschillende input 

stromen. 

II. Procesimpact op de fysische eigenschappen van de resulterende producten (Hoofdstuk 3) 

Met de focus op de vloeibare tomatenfractie die resulteerde uit het proces dat geoptimaliseerd werd 

in Hoofdstuk 2, werd in Hoofdstuk 3 de fysische stabiliteit en gerelateerde eigenschappen van de 

sappen onderzocht. Stabiele sappen zijn gegeerd bij consumenten maar zijn vaak moeilijk om te 

verkrijgen in de praktijk. Hier werd onderzocht of stabiele sappen verkregen konden worden door 

gebruik te maken van de spiraalfilterpers en hoe de verschillende procesparameters de eigenschappen 

van de water-onoplosbare deeltjes beïnvloeden, welke op hun beurt de stabiliteit beïnvloeden. De 

resultaten gaven aan dat een snelle procesvoering met een grote filterporiegrootte en een maximum 
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vacuüm de productie van een tomatensap mogelijk maakten, dat stabiel is voor meer dan 170 dagen. 

Echter, wanneer exact dezelfde procescondities gebruikt werden op een andere variëteit, werd het 

sap onstabiel. Dit illustreert dat enkel het veranderen van de procesparameters niet volstond om de 

sapstabiliteit te controleren. Om de invloed van zowel procesvariabelen en variëteit op de stabiliteit 

volledig te verstaan, moet verder onderzoek uitgevoerd worden waarin bijvoorbeeld enzymatische 

activiteit of partikel interacties onderzocht worden.  

III. Procesimpact op de chemische eigenschappen van de resulterende producten (Hoofdstuk 4) 

In Hoofdstuk 2 werd aangetoond dat de antioxidantcapaciteit behouden bleef doorheen de 

procesvoering, wat suggereerde dat de spiraalfilterpers een beperkte procesimpact heeft. Echter, een 

meer gedetailleerde aanpak was nodig om de procesimpact op die individuele fenolische 

componenten, carotenoïden en ascorbinezuur concentratie na te gaan. Deze resultaten werden 

beschreven in Hoofdstuk 4 en tonen aan dat de ascorbinezuurconcentratie behouden bleef doorheen 

persing met de spiraalfilterpers. De gewogen retentie efficiëntie van de fenolische componenten en 

carotenoïden was 88 % ± 8 % en 122 % ± 15 %, respectievelijk, wat de beperkte procesimpact van de 

spiraalfilterpers bevestigt en zijn potentieel illustreert om de natuurlijke samenstelling van de tomaten 

te behouden. De verdeling van de componenten in de verschillende fracties werd ook onderzocht, 

waarin een aanrijking in het persresidu van zowel fenolische componenten (gemiddeld 5 keer) als 

carotenoïden (gemiddeld 2.5 keer) werd aangetoond. Doorheen de daaropvolgende thermische 

behandeling van het tomatensap daalde de concentratie aan carotenoïden significant. Verder 

onderzoek zou dus moeten focussen op (i) het koppelen van de spiraalfilterpers met alternatieve, 

innovatieve en milde technologieën alsook (ii) de valorisatie van het persresidu, gezien de aanrijking 

van de onderzochte componenten duidelijk aangetoond is. 

Naast praktische eigenschappen die de valorisatie van tuinbouwreststromen verhinderen zoals hun 

hoge vochtinhoud en seizoenale voorkomen, werd een ander aspect geïdentificeerd dat hun 

grootschalige valorisatie bemoeilijkt, meer bepaald het gebrek aan kennis rond de samenstelling van 

bepaalde tuinbouwreststromen. Dit werd onderzocht in het tweede deel van dit doctoraat voor 

geforceerde witloofwortels (Cichorium intybus L. var. foliosum). Ongeveer 36,000 ton geforceerde 

witloofwortels ontstaan jaarlijks in België tijdens de productie van witloofkroppen (chicons). Deze 

reststroom wordt momenteel voornamelijk lokaal gebruikt als voeder. Echter, een beter inzicht in hun 

samenstelling kan leiden tot eindproducten met een hogere toegevoegde waarde zoals voeding, 

farmaceutica en biociden.  
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IV. Profilering van geforceerde witloofwortels (Hoofdstuk 5) 

Inzicht in de samenstelling van geforceerde witloofwortels werd verkregen door het onderzoeken van 

de aanwezigheid van sesquiterpeenlactonen (bittere componenten) en fenolische componenten, 

alsook hun antioxidantcapaciteit en elementaire samenstelling. Zowel de samenstelling van 5 

verschillende witloofcultivars en cichorei (Cichorium intybus L. var. Sativum) werd vergeleken als deze 

van de geforceerde wortels met niet geforceerde wortels, bewaarde wortels en chicons. De resultaten 

gaven aan dat geforceerde wortels verrijkt waren met sesquiterpeen lactonen in vergelijking met niet 

geforceerde wortels en chicons. De voornaamste fenolische component (chlorogeenzuur) was 

aanwezig in de wortels in een concentratie ongeveer dubbel zo hoog vergeleken met de chicons en de 

antioxidantcapaciteit steeg significant na forcering. Ten slotte bleek dat de geforceerde wortels 

voornamelijk K, P, Cl en Ca bevatten en dat hun gehaltes aan Fe en Cu aan de voorwaarden voor het 

voedingslabel ‘bron van’ voldoen. Deze bevindingen illustreren het potentieel van de geforceerde 

witloofwortels voor verdere valorisatie. Echter, er bleek een grote variabiliteit te zijn in type en 

concentratie van de gemeten componenten in functie van de verschillende cultivars. Hiermee moet 

rekening gehouden worden wanneer deze resultaten als basis voor verder onderzoek rond potentiële 

valorisatie gebruikt worden. Verder onderzoek moet focussen op het onderzoeken van de 

functionaliteit en de toxiciteit van de verkregen extracten of producten alsook op het testen van de 

valorisatie op pilootschaal.  

Concluderend kan gesteld worden dat efficiënt gebruik van tuinbouwreststromen nodig is, maar dat 

de vertaling in de praktijk niet altijd even vlot verloopt. Twee aspecten die aan de oorzaak kunnen 

liggen, werden geïdentificeerd, namelijk (i) vochtige reststromen die seizoenaal en in beperkte 

hoeveelheden verspreid voorkomen en (ii) het gebrek aan kennis rond de samenstelling van bepaalde 

reststromen. Deze aspecten werden onderzocht aan de hand van twee verschillende aanpakken op 

twee modelgewassen. Uit de resultaten bleek dat de spiraalfilterpers geschikt was om 

tuinbouwreststromen te valoriseren aangezien deze verschillende types reststromen kon verwerken 

met een beperkte procesimpact. In verder onderzoek moeten de downstream technologieën 

onderzocht worden in functie van het behouden van de beperkte procesimpact doorheen het hele 

proces. Om het tweede aspect betreffende het gebrek aan kennis van de samenstelling van 

reststromen aan te pakken werden geforceerde witloofwortels onderzocht. Deze wortels bleken 

verrijkt te zijn in sesquiterpeenlactonen en fenolische componenten welke, gebaseerd op de literatuur, 

beloftevol zijn voor toepassing in de voeding, farmaceutische en biocidale sector. Deze gedetailleerde 

karakterisatie kan dus gebruikt worden als een startpunt voor verdere productontwikkeling. De 

resultaten worden beschreven in de context van de bioeconomie en kritisch besproken vanuit een 

breder technisch en socio-economisch perspectief in Hoofdstuk 6. 
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Het doctoraat geeft dus duidelijk de mogelijkheden aan voor het valoriseren van 

tuinbouwreststromen. Anderzijds wijst het op de complexiteit en de nood voor een transdisciplinaire 

en veelzijdige aanpak. We staan momenteel slechts aan het begin van dit verhaal, maar de interesse 

groeit en er worden stappen voorwaarts gezet.  
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Abbreviations 

% EJNT 

% EPR 

% R 

ΔE 

a* 

AA 

AOC 

b* 

BX 

C 

C1 

C2 

CH 

CHCH 

DHdoLAC 

DHdoLACglyc 

DHdoLACox 

DHLAC 

DHLACglyc 

DHLACox 

DHLCP 

DHLCPox 

doLAC 

doLACglyc 

doLACox 

DOSS 

DPI 

F 

F1 

F2 

juice extraction efficiency 

press residue extraction efficiency 

retention efficiency 

total color difference 

green (-a) to red (+a) in CIELAB color space 
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I. Research context and objectives 

i. Context 

a. From the 2030 Agenda to the circular economy and the bioeconomy  

In September 2015, the United Nations released the 2030 Agenda which represents an integrated 

approach to sustainable development, summarized in 17 sustainable development goals (SDGs) 

covering five different areas: people, planet, profit, peace and partnership (Gregersen et al., 2016). 

This strategy is introduced by the European Commission in response to the current challenges such as 

unemployment, price and supply risks, poverty, gender inequality, health, natural resource depletion 

and climate change (United Nations, 2015). It is believed that the circular economy can contribute to 

reaching these SDGs, and in particular goal 12 aiming at ensuring sustainable consumption and 

production patterns. This strives for a transition towards an economy where the value of products, 

materials and resources is maximally maintained and the generation of waste is minimized (European 

Commission, 2015c). The EU has assigned various priority areas in the circular economy that need to 

be addressed in a targeted way including plastic recycling, recovery of critical raw materials and 

recycling of construction and demolition material. Two other priority areas, particularly important for 

this dissertation are (i) food waste and (ii) biomass and biobased products (European Commission, 

2015c). To address these topics, the bioeconomy can play a crucial role. Thus, whereas the circular 

economy principle is applicable in different areas, the bioeconomy focuses on biomass in particular 

(European Commission, 2015c).  

b. From the bioeconomy to biorefineries and the cascade principle 

This bioeconomy is conceived as a key element in the Europe 2020 strategy for smart and green 

growth. It implies “the production of renewable biological resources and the conversion of these 

resources and waste streams into value-added products, such as food, feed, biobased products and 

bioenergy” (European Commission, 2012). Sectors that can be considered to be active in this 

bioeconomy are (i) primary producers of biomass, e.g. agriculture, forestry, fisheries and aquaculture, 

(ii) sectors traditionally using biomass as feedstock, e.g. food, feed and paper production and (iii) 

sectors that conventionally rely on fossil resources but can shift to biomass inputs, e.g. chemical, 

biotechnological and energy industries (European Commission, 2012). The latter group is sometimes 

classified as biobased economy, and hence seen as a subdivision of the bioeconomy (IWG BE, 2013; 

Koop et al., 2014). 
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No consensus on an exact definition of the term bioeconomy has been reached yet, hence various 

specifications with different nuances (such as requirement of biotechnology, focus on renewable 

feedstock or concentration on sustainability) are adopted by different instances (Brugge, Hansen & 

Klitkou, 2016; European Commission, 2012; IWG BE, 2013). Aspects predominantly agreed upon are (i) 

the use of biomass as feedstock (Brugge, Hansen & Klitkou, 2016; Pfau et al., 2014), (ii) the operation 

in a sustainable and eco-efficient way, thereby minimizing waste and maintaining the circular 

productions chains (European Commission, 2012; IWG BE, 2013) and (iii) the use of biorefineries to 

realize the biomass conversion, which are expected to follow a cascade principle in order to maximally 

valorize the available biomass (de Besi & McCormick, 2015; European Commission, 2012; McCormick 

& Kautto, 2013).  

c. The cascade principle and biorefineries 

The cascade principle is proposed in order to optimally use biomass and byproducts (Girotto et al, 

2015). It concerns a priority order with high-value applications on top followed by lower value 

applications, entailing systematic exploitation of biomass for higher-added-value products, before 

using it as an energy source (Keegan & Kretschmer, 2013). The definition of high and low value can be 

based on economic, social or ecologic criteria or a combination hereof (IWG BE, 2013; Mourad, 2016).  

Depending on the adopted criteria and the priorities, different cascades exist for using biomass and 

biomass byproducts. They all agree on the use of materials over energy (Carus et al., 2015; de Besi & 

McCormick, 2015). Some focus on the economic added value of the biomass and prioritize health and 

lifestyle products (such as pharmaceuticals and fine chemicals) over food (WBBE, 2011; WTC-BBE, 

2011). However, from an integrated perspective, taking into account the economic, social and ecologic 

criteria, food is often placed on top, together with feed as this indirectly leads to food. This comes 

forth out of the rationale that food security is of primordial importance and the development of the 

bioeconomy should not come at the expense of food security. Furthermore, the byproducts originate 

from the food producing sector and thus should flow back there in first instance. Therefore, 

valorization of biomass towards food is most often perceived as the highest integral added-value 

application and the predominant part of the cascades agree on food as a top priority (de Besi & 

McKormick, 2015; Girotto et al., 2015; IWG BE, 2013; Maciulevičius, 2016; OVAM, 2012; 2015b; SCAR, 

2014). Applied on byproducts from the agricultural sector (IWG BE, 2013; OVAM, 2012; OVAM, 2015b) 

and more specifically food waste (Girotto et al., 2015; Keulemans et al., 2015), this rationale can be 

translated in a hierarchy as follows: food, feed, biobased products (including chemical compounds, 
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materials, pharmaceuticals), energy production and composting followed by incineration, which is the 

least desirable option (Figure I.1).  

The main principle of the cascading thus lies in the optimal biomass valorization by stepwise utilizing 

the energy and material content of the biomass in such a way that all parts of the plant are optimally 

exploited, generating viable opportunities in different sectors. It is believed that this can be realized 

using strongly integrated biorefinery concepts, able to process biomass in different fractions, leading 

to a spectrum of marketable products (food, feed, materials and/or chemicals) and energy (fuels, 

power and/or heat) (IEA, 2012; McKormick & Kautto, 2013; Odegard, Croezen & Bergsma, 2012).  

  

 

Figure I.1 Hierarchy for valorizing agricultural byproducts and food waste in the bioeconomy (Figure based on Girotto et al., 
2015; IWG BE, 2013; Keulemans et al., 2015; OVAM, 2012; 2015b). 

d. Bioeconomy implementation remains challenging 

It is generally acknowledged that the bioeconomy is currently still in its infancy (Golembiewski et al., 

2014). Existing publications originate predominantly from governmental institutions and primarily 

concern strategic agendas, rather than identification of challenges and measures to allow 

implementation of the bioeconomy (Golembiewski et al., 2014). Hence, although the idea of 

developing and unfolding the bioeconomy is increasingly being adopted by nations, translating 

strategic objectives into industrial reality appears challenging and complex (Kircher, 2012).  

In this regard, both research and innovation in the bioeconomy sector are considered crucial (FP7-

framework, Horizon 2020 program) (European Commission, 2012; Golembiewski et al., 2015; IWG BE, 

2013; OVAM, 2015b). Such research can be performed from several perspectives. A socio-economic 

perspective can consist of investigating economic aspects (e.g. price of substitutes, market potential, 

market acceptance, investment cost, added value), logistic aspects (e.g. transport, seasonal 

occurrence, storage) or legislative aspects (e.g. waste legislation, product safety, claims). Besides 

Food 
(food ingredients, functional foods, bulk food) 

Feed 
(feed ingredients, bulk feed) 

Biobased products 
(pharma, materials, chemicals, fertilizer) 

Energy & Composting 

Incineration 
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studying socio-economic aspects, bioeconomy research can also be performed from a technical 

perspective as often a limited knowledge, technical unavailability of required processes or immaturity 

of novel technologies (e.g. lab scale, limited efficiency) obstruct the development of biorefineries 

(Golembiewski et al., 2014).  

The research conducted in this doctoral dissertation, draws further on this lack of technical knowledge 

and the need for technologies that can biorefine biomass in order to stimulate the development of the 

bioeconomy. More specifically, this doctoral dissertation addresses the issue of horticultural 

byproducts that are not used to their full potential, although this is being strongly stimulated by the 

Flemish government (OVAM, 2015).  

ii. Aim, objectives and outline 

The aim of this study is to facilitate the valorization of horticultural byproducts. Chapter 1 gives the 

reader an overview of the state of the art of horticultural byproducts, in which their occurrence in 

Flanders and Europe is described, complemented with their current use and their valorization 

potential. Cooperation with different stakeholders complemented with literature research allowed us 

to identify different aspects currently obstructing the large scale valorization of these byproducts. Two 

of such hindering aspects are tackled in this study i.e. (i) the need to cope with moist byproducts 

occurring scattered, both in time and space and (ii) the lack of knowledge on the composition of some 

byproducts. These aspects are addressed by two different approaches for two different model crops 

(Figure I.2).  

a. Research line 1 

The high moisture content (> 80 %) is a common denominator of almost all horticultural byproducts, 

leading to problems during storage. A pressing technology, able to perform a separation of liquid and 

solid fractions, can cope with this high moisture content, thereby optimally utilizing all fractions and 

generating a minimal amount of waste. Furthermore, three additional constraints were imposed on 

this pressing technology in order to increase the chances of successful valorization towards food, which 

was primarily targeted, in line with the cascade principle (OVAM, 2012b; 2015). Firstly, the relatively 

small and geographically dispersed volumes of byproducts and the seasonality of their production are 

characteristics that are inherently present in almost all horticultural byproducts and can obstruct the 

feasibility of the valorization process. This can be tackled by choosing a technology flexible in type of 

input product and thus able to process different byproducts throughout the year (Budzianowski & 
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Postawa, 2016; Fava et al., 2015; Lin et al., 2014; Matharu et al., 2016). Secondly, consumers 

increasingly demand attractive products (i.e. products with attractive color, appearance and taste) 

which thirdly, maximally retain the naturalness of the fruits and vegetables. Therefore, a technology 

that is able to meet these demands is expected to generate products that are competitive with the 

current ones available and may thus be able to lead to a successful valorization of horticultural 

byproducts. In this regard, the spiral-filter press is introduced as a promising technology that can cope 

with these aspects and perfectly fits within a biorefining strategy. The suitability of the spiral-filter 

press to biorefine horticultural byproducts is technically investigated based on these constraints in 

Chapters 2, 3 and 4 on surplus tomatoes (Solanum lycopersicum L.) present at the Flemish produce 

auctions. Byproducts occurring at the auctions have major advantages in terms of product quality, 

purity and concentrated occurrence. These aspects can be considered crucial for developing high-

added-value applications such as food products (Budzianowski & Postawa, 2016; Ghatak, 2011; Hennig 

et al., 2016; KTN, 2016; OVAM, 2014; 2015b; Poltronieri & D’Urso, 2016; Sweet et al., 2016; Van 

Buggenhout et al., 2016). The choice of tomato surplus products originates from the fact that (i) these 

are one of the largest byproducts occurring at the produce auctions and (ii) they are very perishable 

thus in need of rapid processing. The processing of this tomato crop can be used as a model for other 

soft horticultural products. Furthermore, the experiments are performed on pilot scale to increase the 

industrial relevance and overcome the issues often encountered at extrapolating lab-scale results to 

industrial scale. 

Consequently, the first objective of this study is to investigate how this technology can be utilized for 

refining soft horticultural byproducts containing a high moisture content into valuable products. This 

objective can be translated into the following research questions: 

1/ How can the spiral-filter press be used to biorefine a soft biomass matrix?  

Hereto, a stepwise optimization of a pilot-scale spiral-filter press refinery process is performed in 

Chapter 2, starting from a simple system towards a more complex formation, thereby maximizing the 

juice yield. Generally applicable insights in the effect of different process parameters are offered. 

These insights are complemented with an evaluation of the antioxidative capacity of the resulting 

products.  

2/ How can the physical stability of the resulting juice be influenced by the process parameters of 

the spiral-filter press? 

The juices resulting from the optimized process in Chapter 2 were investigated in Chapter 3 for their 

juice stability and related quality attributes by evaluating how different process parameters influence 

the water-insoluble solid characteristics known to influence this juice stability. 
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3/ Does the spiral-filter press retain the bioactive compounds present in the feedstock biomass 

throughout processing?  

The process impact of the spiral-filter press on the fate of three different phytochemicals present in 

tomato (phenolic compounds, carotenoids and ascorbic acid) is investigated in Chapter 4. 

b. Research line 2 

The second research focus relates to the necessary knowledge about the composition of the 

byproducts as a basis for designing promising valorization pathways. Although an increasing body of 

evidence is being built in the scientific literature about the composition of a wide range of byproducts, 

some compound groups and byproducts have been left under the radar, for which knowledge on the 

composition is necessary to explore their valorization options. This is exemplified by the forced Belgian 

endive roots (Cichorium intybus L. var. foliosum). To produce the commonly known ‘witloof’ chicons, 

Belgian endive roots are forced in the absence of light. The 36,000 tonnes of forced roots, remaining 

after forcing of the chicons are not used for human consumption and are currently predominantly used 

as feed for local cattle (Department of Agriculture and Fisheries, 2014). These byproducts have a large 

valorization potential based on their large amounts and logistic advantages compared to other 

horticultural byproducts (e.g. continuous occurrence throughout the year, geographical concentration, 

available in pure and collectable form, limited susceptibility to microbial degradation during storage). 

Furthermore, bitter compounds (i.e sesquiterpene lactones) and phenolic compounds were found to 

be prevalent in the Cichorium intybus L. species (de Kraker, 2002; Jurgoński, et al., 2011; Milala et al., 

2009; Sessa et al., 2000; Sinkovič et al., 2014; 2015). These compounds have been attributed with 

multiple bioactivities which could lead to an added value of the derived products (Azay-Milhau et al., 

2013; Bischoff et al., 2004; Chadwick et al., 2013; Chaturvedi, 2011; Ghantous et al., 2010; Milala et 

al., 2009; Padilla-Gonzalez et al., 2016; Picman, 1986; Prakash & Gaikwad, 2012). However, in literature 

no specific information regarding the content of the forced Belgian endive roots is present. The 

predominant part of the literature available focused on (i) the species Cichorium intybus L. in general, 

to which the Belgian endives belong or (ii) the industrial root Cichorium intybus L. var. sativum. 

Although some reports on the composition of Cichorium intybus L. var. foliosum are present, they 

predominantly focus on the edible parts. Information on the roots and specifically the forced roots of 

Belgian endives has been found to be very scarce. Even though the information regarding the 

composition of the general Cichorium intybus L. species can be used to give an indication of the 

composition of the forced Belgian endive roots, translating this information to the case of forced 

Belgian endive roots and using it as a basis for designing a specific valorization pathway or target a 
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specific market or derived end product, can be misleading. Therefore, the focus in this dissertation lies 

on gaining a better insight in the composition of forced Belgian endive roots to facilitate their 

valorization. This second objective can be further converted into the following research questions: 

4/ What is the sesquiterpene lactone profile in forced Belgian endive roots? 

5/ What is the phenolic content and the related antioxidative capacity of the forced Belgian endive 

roots? 

6/ How does the composition change in function of cultivar, variety, matrix, forcing and storage? 

The composition of the currently underutilized forced Belgian endive roots is investigated in Chapter 

5. The focus lies on the sesquiterpene lactones. Additionally, the phenolic content, the antioxidative 

capacity and the elemental composition are investigated to gain a broader insight into their 

composition. The analysis of the forced roots is complemented with other samples enabling an 

investigation of the effect of cultivar, variety, matrix, forcing and storage. 

The insights obtained in these research chapters are put in a broader perspective in the general 

discussion in Chapter 6. 

The following pages briefly elaborate on the adopted research approach.  
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II. Research approach 

This doctoral dissertation was performed in the context of a research project called GeNeSys, in which 

three doctoral researchers investigated the technical valorization of horticultural byproducts, fishery-

byproducts and valorization through composting, respectively. A fourth researcher investigated the 

management of innovation processes in the bioeconomy and developed a set of guiding principles 

(Van Lancker et al., 2016). The three technical cases attempted to follow the strategy thus proposed 

in order to develop innovative solutions, maximally responding to the opportunities and threats of the 

developing bioeconomy. 

The followed research methodology was based on three important characteristics: (i) transdisciplinary, 

(ii) iterative and (iii) open to collaboration (Van Lancker et al., 2016). In order to generate the necessary 

knowledge from a variety of sectors and sciences, a transdisciplinary approach was advocated to 

successfully develop new ideas and assess their viability, set up integrated biorefineries, alter the 

required supply chains and identify obstructing legislation (European Commission, 2012; 

Golembiewski et al., 2015; Kircher, 2012). An iterative approach was proposed in order to create 

learning cycles, distinguish viable from less viable ideas and adjust the strategy for unforeseen 

developments and mistakes (Caraça et al., 2009; Golembiewski et al., 2015; Hadorn et al., 2006; Kroon 

et al., 2008). Finally, innovation processes open to collaboration within a network of diverse 

stakeholders such as governmental institutions, academics, competitors, suppliers and retailers were 

promoted as they are expected to contribute to an improved adaptation to the dynamic market, to a 

decreased time to market and to an increased identification of valuable opportunities and possibilities 

to expand to new markets (Chesbrough, 2012; Du et al., 2014).  

This methodology defines three main phases within the innovation process: (i) the idea development 

phase, (ii) the invention phase and (iii) the commercialization phase (Figure I.3) (Van Lancker et al., 

2016). This approach was predominantly adopted in the first idea development phase. Through 

cooperation with over 50 stakeholders from groups of different origin (research institutes, primary 

sector, food industry, government, sector associations) insights were gained in the different aspects, 

important for valorizing biomass. Based on this knowledge, ideas were generated and selected which 

lead us to identify promising research avenues and formulate research questions.  
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 Figure I.3 Schematic representation of the innovation process in the bioeconomy context (Van Lancker et al., 2016). 
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Chapter 1: Horticultural byproducts: state of the art 

Both from an economic as well as from an environmental and social perspective, efficient utilization 

of horticultural byproducts is needed. This is in accordance with the circular economy policy that 

strongly encourages the food supply chain to valorize their byproducts (European Commission, 2015c). 

Insight in the yearly available amounts of byproducts is often perceived as one of the prerequisites for 

successful valorizations (Hennig et al., 2016; Mirabella et al., 2014; Östergren et al., 2014; OVAM, 2014; 

2015b). However, before these data can be collected and interpreted, a transparent terminology 

framework must be adopted (part 1.1). Many terms and definitions concerning byproducts, waste and 

losses circulate. While it is not within the scope of this study to give an exhaustive overview of these 

terms or judge their value, it is important to (i) make a comprehensive overview of the terminology, 

clearly defining the terms that will be used in this dissertation (part 1.1.1) and (ii) explicitly compare 

them to the terms adopted in other recently published reports (part 1.1.2). Based on the stage in which 

the byproducts occur throughout the food value chain, they are classified in three groups. In the 

subsequent part (1.2), an estimation is made of the amounts of byproducts occurring in each of these 

three groups, both in Flanders and in Europe. The third part (1.3) gives an overview of the current and 

potential applications of the horticultural byproducts, primarily focusing on food and feed as these 

applications are on top of the valorization cascade. It is not aimed to provide an exhaustive list of all 

current applications and research, rather it aims to illustrate the potential of these byproducts and 

give an insight in the focus and scale of the current research. 

1.1 Defining and classifying horticultural byproducts 

1.1.1 Terminology 

A product is defined as a material that is deliberately created in a production process (European 

Commission, 2007). Materials that are not the main objective of a production process are product 

residues. These can either be byproducts or wastes, differing in the fact that the former are considered 

non-waste whereas the latter should be treated as waste (European Commission, 2007).  

Applied to the agricultural production and food chain, food is the product. Byproducts in this context 

can be considered as unavoidable and inedible products such as skins, seeds, peels and hulls (Lipinski 

et al., 2013). This is however not only confined to byproducts derived from horticultural products (also 

animal-derived products, dairy, fats, etc.). Besides inedible byproducts, also (traditionally considered) 

edible biomass is lost throughout the production chain (edible byproducts). The term food loss is often 
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used to refer to this edible material that is intended for human consumption but ultimately not 

consumed by people. Instead it is lost, discarded, degraded or diverted intentionally from human food 

into other applications such as animal feed. These food losses typically occur at the production, 

storage, processing and distribution stages of the food supply chain. When considering the later stages 

of the food chain (retail and consumption), food losses are often referred to as food waste (Gustavsson 

et al., 2011; Lipinski et al., 2013; Parfitt et al., 2010). As the focus in this dissertation lies on horticultural 

byproducts, the terms edible and inedible horticultural byproducts will be used. This is in line with the 

current trend to change the term waste into byproduct, to stress their valorization potential, yet 

indicating that they are not the primary goal of the production process (Galanakis, 2012). Figure 1.1 

schematically illustrates the different terms. 

 

Figure 1.1 Schematic overview of the different terms related to products and product residues in the food supply chain. 

1.1.2 How is the adopted terminology related to other reports?  

Several recent projects and documents have been launched in the last decade to estimate the amount 

of food related byproducts (e.g. EU-FP7-projects FUSIONS1, NOSHAN2 and REFRESH3, Interreg project 

ARBOR4, EUBIS Cost action5, IWT project CINBIOS6, and a study to be published in 2017 by the 

                                                           
1 http://www.eu-fusions.org/ 
2 http://www.noshan.eu/index.php/en/ 
3 http://eu-refresh.org/ 
4 http://pomwvl.be/arbor 
5 http://costeubis.org/mapping 
6 http://cinbios.be/ 

http://costeubis.org/mapping
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Department of Agriculture and Fisheries). These differ in the type of product studied (e.g. agricultural 

byproducts, horticultural byproducts, food losses), region (Flanders, Europe, world) and to some 

extent in the terminology adopted. This reduces the transparency of the data. Therefore, it is 

important to explicitly address these differences.  

In the FUSIONS project, a definion framework and quantification manual have been developed to 

define and quantify food waste. This framework will be used to highlight some differences in the 

approach adopted in this dissertation with that used in several other reports.  

 In the FUSIONS project, food waste is defined as “any food and inedible parts of food, removed from 

the food supply chain to be recovered or disposed of (including composting, crops ploughed in/not 

harvested, anaerobic digestion, bioenergy production, co-generation, incineration, disposal to sewer, 

landfill or discarded to sea)” (Östergren et al., 2014). Our definitions and quantification differ from the 

proposed FUSIONS framework in two aspects, (i) the system boundaries of the food supply chain and 

(ii) the use of the final destination in the definition.  

First, the start of the food supply chain considered in this dissertation differs from the one in the 

FUSIONS project. In this dissertation, the inedible parts that are typically removed during harvesting 

or that are not harvested at all, are considered as inedible byproducts (i.e. foliage and stems) as they 

have potential to be valorized. Consequently they are included in the database. The FUSIONS definition 

does not include these parts of the plants as they are not intended for consumption and do not enter 

the food chain. On the other hand, the inedible parts that are harvested and enter the food chain (e.g. 

olive pits), are considered as food waste according to FUSIONS (Tostivint et al., 2016). From the 

perspective of food waste, this FUSIONS rationale can be understood. Hence, this approach is often 

adopted in studies targeting food waste such as the study of the Department of Agriculture and 

Fisheries, to be published in 2017 (Roels, 2017) and the projects EUBIS, NOSHAN and REFRESH. 

However, in this dissertation, we are mapping the horticultural byproducts in order to valorize them. 

Therefore, all fractions related to horticultural production are included. This is in accordance with the 

approach used in the CINBIOS and ARBOR projects. 

The second difference originates form the fact that the FUSION definition implies that the final 

destination defines whether or not a product is considered as food waste. Only products used for 

composting, plough-in, anaerobic digestion, bioenergy, cogeneration, incineration, sewer, landfill and 

discards are defined as food waste. Food and inedible parts diverted to animal feed or biobased 

materials are consequently not referred to as food waste but are termed ‘valorization and conversion’ 

(Östergren et al., 2014). In this dissertation, a stricter definition is adopted where all potentially 

valuable biomass produced along the fruit and vegetable supply chain that is not consumed nor 
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industrially utilized is considered as a byproduct. Hence the final destinations per se do not define the 

biomass to be a byproduct or not. This is in accordance with the approach used in the projects CINBIOS 

and ARBOR as well as in the study of Roels (2017). To what extent the FUSIONS definition is 

implemented in the other projects is less clear. However since the definitional framework has only 

been launched recently (2014), most of the data circulating today are expected not to be tuned yet 

with the FUSIONS framework.  

1.1.3 Three different classes of byproducts 

Based on the stage during which the byproducts occur throughout the food value chain, three different 

types of byproducts can be distinguished (Figure 1.2). The primary production is the first step in the 

supply chain. In a second step, the produced biomass can be commercialized, either directly from the 

producer to the market or via the produce auctions. A third option consists of processing the biomass 

before commercialization. Based on this simplified supply chain, three different categories of 

byproducts can be distinguished, characterized by different characteristics: (i) harvesting byproducts 

(e.g. not harvested biomass, discarded biomass failing to meet quality standards), (ii) byproducts 

resulting from the auctions (e.g. surplus products, products failing to meet quality standards) and (iii) 

food processing byproducts (e.g. process interruptions, products generated during processing such as 

press residues and skins, accidental spillage, products failing to meet quality standards, surplus 

products) (Girotto et al., 2015).  

 

Figure 1.2 Schematic food supply chain leading to three categories of byproducts: (i) harvesting byproducts, (ii) byproducts 
occurring at the produce auctions and (iii) processing byproducts. 

In this chapter, the focus will thus be on these three classes of byproducts as these have been shown 

to be the predominant sources of byproducts in Flanders (IWG BE, 2012). Losses occurring at the retail, 

during transport and at consumption stage will not be specifically addressed. Reducing food losses at 
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the consumer stage is however perceived to be very important. It is influenced by a series of factors, 

mainly socio-demographic characteristics of the household, consumption behavior and food patterns 

(Girotto et al., 2015). Hereto, a change in attitude for example via education of consumers is often 

proposed, which is stressed and addressed in other studies (e.g. OVAM, 2012; 2015a; Van Geffen et 

al., 2016). 

1.2 Amount of horticultural byproducts in Flanders and the EU  

1.2.1 Amount of horticultural byproducts in Flanders  

The horticultural sector is of major importance in Flanders. Although occupying only 7.5 % of the arable 

acreage, the horticultural sector is characterized by high production rates leading to high revenues, 

responsible for 20 % of the total value of Flemish agricultural production (Platteau et al., 2016). 

Whereas the relative economic importance of agriculture in the Flemish economy is limited (0.9 %), 

the relative share of the vegetable sector is greater than the mean in the EU (Platteau et al., 2014). In 

2014, approximately 74 % of the produced vegetables were outdoor vegetables (63 % of the 

horticultural acreage) whereas only 26 % were greenhouse vegetables (Platteau et al., 2016). Beans, 

leek, cauliflower, carrots, peas, Brussels sprouts, Belgian endive roots and spinach are the vegetables 

predominantly cultivated outdoors (based on the covered area), whereas tomatoes and lettuce are 

the main greenhouse vegetables (Platteau et al., 2012; Roels & Van Gijseghem, 2011). The fruit sector 

is smaller (37 % of the horticultural acreage) and predominantly concerns outdoor cultivation of apples 

and pears. The floriculture is also a part of the horticultural sector, however these data will not be 

included in this dissertation. Hence, whenever referred to the horticultural sector or to horticultural 

byproducts, this solely applies to fruit and vegetables.  

Besides the primary production, the food industry is of major importance in Belgium, with a large and 

increasing share of export of frozen vegetables, potato-based products and pome fruit. Approximately 

65 % of the horticultural production is used for food processing, which is primarily located in regional 

clusters in Flanders (80 %) (Platteau, et al., 2012; 2014; 2016).  

It is thus obvious that the horticultural sector and related food industry are important assets of 

Flanders. Therefore, in light of the current evolution towards more sustainability, valorization of the 

according byproducts is of major importance for the competitiveness of Flanders. 
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1.2.1.1 Harvesting byproducts in Flanders  

The harvesting byproducts can be considered as losses during harvest. Limited processing towards 

marketable products at the farm is also included. Examples are separating edible and inedible biomass 

parts, washing, sorting, drying, storing or packing. The harvesting byproducts can consist of both edible 

and inedible biomass (Roels & Van Gijseghem, 2011). Depending on factors such as the type of crop, 

the degree of spoilage, cosmetic defects and purity (remaining on the field or collected during 

harvesting), the edible byproducts are to a greater or lesser extent suitable for further valorization 

towards food (Sweet et al., 2016). Irrespective of their condition, these will be denoted as edible 

byproducts hereafter, to make the distinction with the inedible biomass such as foliage and stems.  

In Table 1.1, the areas, primary production volumes and related byproducts are given for the 

predominant (based on production volume) outdoor vegetables, greenhouse vegetables and fruit in 

Flanders. The data collection was performed in collaboration with the Department of Agriculture and 

Fisheries and in interaction with experts (listed in the heading of Table 1.1). The selected crops 

represent approximately 80 % and 89 % of the production volume of the outdoor vegetables and 

greenhouse vegetables, respectively. The data are shown in fresh biomass weight since the high 

moisture content is characteristic for horticultural (by-)products. The moisture content depends on 

the biomass and byproduct type, but is in most of the cases between 80 % - 90 % (Mirabella et al., 

2014). The fractions of edible and inedible byproducts are calculated relative to the primary 

production, based on two different calculation methods. The first method is used to calculate the 

percentage of edible byproduct. This can be considered as lost primary production. Therefore, the 

reported primary production figure does not represent the entire production. This can be illustrated 

by using a fictive example. Suppose a marketable production of 1,000 tonnes is characterized by a loss 

of 10 % byproduct. This means that the 1,000 tonnes is only 90 % of the primary production and the 

real production is 1,111 tonnes. Consequently, the byproduct fraction (10 %) is 111 tonnes in absolute 

amounts, which is slightly larger compared to 100 tonnes (10 % of 1,000 tonnes) (Roels & Van 

Gijseghem, 2011). Hence, the byproduct fraction can be calculated based on the sum of (i) primary 

production and (ii) the amount of byproduct. In contrast, the inedible byproduct cannot be considered 

as lost primary production. Therefore, its fraction is determined by using a second calculation method, 

relative to the primary production. For example, a byproduct mass of 100 tonnes on a primary 

production of 1,000 tonnes represents a 10 % fraction (Roels & Van Gijseghem, 2011). 

a. Fractions of edible and inedible byproducts 

Edible byproducts can occur due to different causes, which can be classified in three categories, (i) 

prerequisites set by fresh market, (ii) size requirements set by industrial processors and (iii) preliminary 

preparation for industrial processors. 
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Table 1.1 Vegetables, greenhouse vegetables and fruit with their related byproducts occurring during harvesting and 
subsequent preparation for fresh market or industry in Flanders. In cooperation with Roels (2017). Sources based on personal 
communication with [1] National estimations, translated for Flanders (2015) [2] ARBOR (2015), [3] Debussche (2016), [4] 
Holmstock (2010), [5] ILVO (2016), [6] National Chicory Research Center (2016), [7] Department of Agricultural and Fisheries 
(2014), [8] VeGeBe (2016), [9] Ongena (2016), [10] SUNNIVA (2016), [11] Leenknegt (2016), [12] Wittemans (2016), [13] 
Mertens (2016], [14] Roels & Van Gijseghem (2011), [15] Van Hemelrijck (2016). 

Primary product Byproduct 

Type Destination Area (ha) 

Primary 
production 

(103 
tonnes) 

Main type of byproduct 
Yield 

(tonnes/ha) 

Total 
amount 

(10³ tonnes) 

Edible 
fraction 

Inedible 
fraction 

Outdoor vegetables                     

Beans Industry 3,566 [1] 48.1 [1] 
Foliage  10-30 [2] 71  148 % 

Beans (remaining on field) 0.5 [3] 2 3.6 %   

Belgian 
endive Fresh 

 -   35.4 [1] 
Outer leaves and low quality 

chicons 
 -  [6] 10 23 %   

& roots 1,212 [7] 36.4 [1] Forced roots 30 [6] 36  100 % 

Brussels 
sprouts 

Industry 2,371 [1] 54.5 [1] 

Foliage 50-70 [2] 142   261 % 

Oversized and low quality 
sprouts 

3 [3] 6 10 %   

Cabbage 
(white, 

green and 
red) 

Industry & 
fresh 

1,044 [1] 62.4 [1] 

Foliage 36 [2] 38  61 % 

Outer cabbage leaves 14 [10] 14 19 %   

Carrots 

Industry 2,727 [1] 177.2 [1] 
Foliage 20-30 [2] 68  38 % 

Carrot tops  5 - 7 [3] 16 8.5 %  

Fresh 662 [1] 39.7 [1] 
Foliage 20-30 [2] 17  42 % 

Undersized carrots  0.9 [3] 0.6 1.5 %   

Cauliflower 

Industry 3,856 [1] 84.5 [1] 
Foliage and stems 30 - 50 [4] 154   182 % 

Cauliflower hearts 3.5 - 5 [5] 16 16 %  

Fresh 386 [1] 8.5 [1] 
Foliage and stems 30 - 50 [4] 15   182 % 

Undersized and low quality 
product 

1 [3] 0.4 5.0 %   

Leek 
Industry 711 [1] 35.6 [1] 

Upper green parts, outer 
leaves, roots 

20 - 30  [2] 18 33 %   

Fresh 3,811 [1] 152.4 [1] 
Upper green parts, outer 

leaves 
20 - 30  [2] 95 38 %   

Onions  Industry 1,554 [1] 77.7 [1] 

Foliage 1.5 [9] 2   3.0 % 

Undersized and low quality 
onions 

1.5 [9] 2 2.9 %   

Peels and outer parts 20 [3] 31 29 %   

Spinach Industry 3,188 [1] 79.7 [1] Unharvested spinach leaves  6 [8] 19 20 %   

Greenhouse vegetables                   

Bell pepper Fresh 89 [1] 25.0 [1] 
Foliage 25 [12] 2   8.9 % 

Low quality bell peper 6 [12] 0.5 2.0 %   

Lettuce Fresh 939 [1] 42.1 [1] Low quality lettuce 11 [11] 11 20 %   

Mushroom Fresh  -    30.4 [1] 
Stems  -  [13] 3 8.0 %   

Low quality mushrooms  -  [13] 0.8 2.5 %   

Tomato Fresh 505 [1] 247.5 [1] 
Foliage 30 [12] 15   6.1 % 

Low quality tomatoes 10 [12] 5 2.0 %   

 Fruit                     

Apple Fresh 7,106 [1] 264.4 [1] Low quality apples 2.0 [14] 14 5.0 %   

Pear Fresh 9,287 [1] 322.0 [1] Low quality pears 1.8 [14] 17 5.0 %   

Strawberry Fresh 1,442 [1] 34.9 [1] Low quality strawberries 1.3 [15] 2 5.0 %   
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Firstly, the fresh market demands products of a certain size and appearance. Hence, the outer leaves 

of Belgian endive chicons for example are often manually removed to make the chicons fit in certain 

size classes (23 % byproduct). The same goes for leaves of cabbages (19 % byproduct). Also the outer 

leaves and part of the green top of the leek are cut in order to fit the quality prescriptions of the fresh 

market (38 % byproduct). Greenhouse vegetables generate byproducts in this category in the order of 

2 %. This is in accordance with figures from the Netherlands reporting approximately 2.5 % edible 

byproducts for greenhouse vegetables (VMT, 2010). In most cases, these losses are caused by (partial) 

spoilage and cosmetic defects such as skin spots, odd shapes and colors. As lettuce is a leafy vegetable, 

it is more susceptible to spoilage and damage (20 %). Finally, on average 5 % of the fruits are not 

commercialized due to spoilage, parasites, climate and physiological damage (Roels & Van Gijseshem, 

2011). 

Secondly, also the industry demands a certain size and appearance. Undersized, oversized or low 

quality products are sorted during harvesting or at the agricultural company and become byproducts. 

This is for example the case for beans (4 % byproduct), Brussels sprouts (10 % byproduct), cauliflower 

(5 % byproduct) and onions (2.9 % byproduct).  

A preliminary preparation before the industrial processing can give rise to a third category of edible 

byproducts. Examples are the cauliflower hearts (16 % byproduct) which are mechanically removed at 

the field and onions, pealed before supplied to the freezing industry, which leads to 29 % of byproduct. 

Also the carrot tops are removed when supplied to industrial processors (8.5 % byproduct). 

Besides edible byproducts, large masses of inevitable and inedible biomass (crop residues) also occur 

during harvest, for example in case of cabbages as these are cut out of the plant, leaving the remainder 

on the field. Sprouts are harvested from the stems, after which the latter are milled and left on the 

field. These harvesting practices thus result in biomass such as foliage, leaves and stems. The masses 

of these crop residues are sometimes even larger than the actual primary (edible) production, with for 

example 148 % for bean foliage, 261 % for Brussels sprouts and 182 % for cauliflower foliage.  

b. Absolute amounts 

Analogous to the aforementioned fractions of byproducts, the absolute amounts of inedible 

byproducts are largest for cauliflower foliage (154 10³ tonnes) and Brussels sprouts foliage (142 10³ 

tonnes), followed by bean foliage (71 10³ tonnes) and carrot foliage (68 10³ tonnes). 

The absolute amount of edible byproducts is the highest for outdoor vegetables, predominantly green 

parts of leek (95 10³ tonnes) and onion peels (31 10³ tonnes), followed by unharvested spinach (19 10³ 

tonnes), low quality pears (17 10³ tonnes), carrot tops and cauliflower hearts (both 16 10³ tonnes) and 

low quality apples and outer cabbage leaves (both 14 10³ tonnes). 
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Besides total amount, also the byproduct yield is important, especially regarding valorization as high 

yields imply concentrated occurrence, which may offer logistic advantages (Budzianowski & Postawa, 

2016; Ghatak, 2011; Hennig et al., 2016; OVAM, 2014; Poltronieri & D’Urso, 2016; Sweet et al., 2016). 

Edible byproducts such as leek (20 – 30 tonnes/ha), onion peels (20 tonnes/ha), cabbage outer leaves 

(14 tonnes/ha), lettuce (11 tonnes/ha) and tomato (10 tonnes/ha) score high. Also the yields of the 

inedible byproducts of Brussels sprouts (50 – 70 tonnes/ha), cauliflower (30 – 50 tonnes/ha), cabbage 

(36 tonnes/ha), tomato (30 tonnes/ha) and carrot (20 – 30 tonnes/ha) are high. 

1.2.1.2 Byproducts occurring at the produce auctions in Flanders 

In Flanders, selling vegetables and fruit predominantly occurs at the produce auctions. In order to avoid 

market destabilization, the auctions agree upon a minimum price per product. Products that are not 

sold at this price are removed from the circuit and considered surplus products. This is regulated at 

the European level by Regulation (EC) No 1234/007 and Commission Implementing Regulation (EU) No 

543/2011. These surplus products thus consist of perfectly consumable vegetables and fruit (often 

lowest quality segment) as they have gone through the same quality control as the commercially sold 

products and are thus of high quality. They can be classified under the term food loss (edible 

horticultural byproduct) as determined in section 1.1.1. The food loss category is however larger and 

comprises also edible byproducts occurring for example at the farm, through transportation, in the 

shop or at the consumers plate. Besides these surplus products, also goods damaged during transport 

or storage occur at the auctions. 

Collective data from six produce auctions in 2015 show a non-sold vegetable and fruit share of 1.5 % 

(e.g. surplus product, damage during transport) equaling 16 10³ tonnes (VBT, 2015). The relative 

contribution of the different crops is deduced from crop-specific data of three of the largest auctions 

in Flanders (Table 1.2). The largest amounts of byproducts in 2015 occur from apples (4,299 tonnes), 

tomatoes (3,110 tonnes), lettuce (2,666 tonnes) and pears (1,117 tonnes), followed by Belgian endives 

(807 tonnes) and bell peppers (768 tonnes).  

It can be seen that the occurrence of byproducts strongly fluctuates between different years. This can 

be explained by factors such as temperature and rain, simultaneous ripening of different cultivars and 

external factors such as the EHEC crisis in 2011 and the Russia boycott established since 2014. Variation 

during the year is also present. In Figure 1.3, the surplus production for tomato from one auction is 

shown throughout two consecutive years.  
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Table 1.2 Amounts of vegetable and fruit byproducts occurring at the three major produce auctions in Flanders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Surplus production of tomato at a produce auction in Flanders for two consecutive years. 

 
 

Byproduct (tonnes) 

2013 2014 2015 

Vegetables    

Asparagus 42 0 38 

Beans 0 2 8 

Belgian endive 1,233 954 807 

Bell pepper 456 793 768 

Broccoli 19 4 6 

Brussels sprouts 6 17 53 

Cabbage 103 75 141 

Carrot 0 0 1 

Cauliflower 900 616 418 

Celeriac 34 41 33 

Celery 111 61 108 

Cucumber 189 240 86 

Eggplant 9 6 4 

Endive 34 39 65 

Fennel 16 10 28 

Leek 155 695 114 

Lettuce 985 738 2,666 

Radish 3 26 1 

Tomato 4,884 6,381 3,110 

Zucchini 666 358 517 

Fruit    

Apple 0 13,239 4,299 

Pear 0 1,108 1,117 

Strawberry 25 59 173 
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1.2.1.3 Food processing byproducts in Belgium 

The processing industry for fruit and vegetables is strongly developed in Belgium. In general, 

approximately 65 % of the outdoor vegetable production is used for industrial processing. Especially 

the Belgian production of frozen vegetables has a leading position worldwide (Platteau et al., 2012; 

Roels & Van Gijseghem, 2011). 

During processing of fruit and vegetables, an array of different byproducts are generated, depending 

on the end product and the technology used (e.g. biomass unfit for processing, peels, seeds, but also 

oils, wastewater, etc.). Due to its importance in Flanders, more specific figures were collected for the 

frozen vegetable processing sector, consisting of peeling and production losses (e.g. suboptimal 

processing conditions, low quality vegetables unfit for processing due to color, shape, etc.) (Table 1.3). 

These processing byproducts are often clean, homogeneous and still qualitative. The collected figures 

apply to Belgium, but as processing of fruit and vegetables is predominantly located in Flanders, these 

figures can be considered highly relevant for Flanders. Since the processing industry also utilizes 

imported crops (predominantly coming from the Netherlands (18.5 %), France (11.7 %), Spain (8.5 %) 

and Germany (6.8 %)), estimations of the import production volumes were also included in Table 1.3 

(Platteau et al., 2016). The data were obtained from the ‘Union of the Belgian vegetables processing 

sector and the trade in vegetables for processing’ (VeGeBe). 

Table 1.3 Primary products used and byproducts generated in the processing industry of frozen vegetables in Belgium. 
Sources: personal communication VeGeBe (2013) and Elst & Gheyskens (2013). 

 Primary product Byproduct 

Type 
Primary Belgian 

production  
(10³ tonnes/year) 

Total amount of primary 
product processed in Belgium  

(10³ tonnes/year) 

Fraction 
 (%) 

Amount  
(10³ tonnes) 

Beans 78 107 20 21 

Carrot 233 306 5 15 

Cauliflower 73 76 5 4 

Leek, Brussels sprouts, 
zucchini 

94 34 5 2 

Peas 67 130 18 23 

Spinach 86 96 5 5 

 

From Table 1.3, it can be seen that great differences in relative and absolute amounts of processing 

byproducts exist. Freezing of beans and peas is associated with the greatest relative production loss 

(18 % - 20 %). In absolute amounts, the peas and beans are joined by the carrot byproducts (15 – 23 

10³ tonnes/year).  

Besides frozen vegetables, there is also one large canned vegetables producer in Flanders. They report 

byproducts for carrots of 5.1 10³ tonnes of sorted raw and blanched carrots per year (19 %). For beans, 
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about 3.3 10³ sorted raw and blanched beans occur per year (19 %). Black salsify, an important crop 

for the canning industry generates 3.0 10³ tonnes (13 %).  In absolute amounts, the amounts of 

byproducts in the canning industry are thus in the lower range compared to the frozen vegetables, but 

the fractions of byproducts are similar for beans and larger for carrots (Personal communication 

Lambrechts, 2016). The order of magnitude and the trends in these data are in agreement with the 

processing industry from France (personal communication in light of Sunniva project, November 2015).  

1.2.2 Byproducts occurring throughout the supply chain in the EU 

On a European level, the fruit and vegetable byproducts occurring throughout the whole production 

chain are shown in Table 1.4. These results were adapted from unpublished results of the FP7-project 

Noshan. They give an overview of the byproducts associated with important crops that are sold either 

raw to the fresh market or under a processed form. Beside the European scale and the inclusion of a 

larger amount of crop types, the added value of these figures lies in the fact that they give an indication 

of the different shares of the supply chain. 

In absolute amounts, the predominant byproducts occurring throughout the supply chain in the EU are 

tomatoes (raw, 18 106 tonnes), grapes (fruit and stalks, 8 106 tonnes), onions (raw, 7.2 106 tonnes), 

apples (raw, 5.9 106 tonnes), cabbage (raw, 5.7 106 tonnes), oranges (raw, 3.8 106 tonnes) and olives 

(raw, 3.07 106 tonnes).  

The raw marketed products are generally characterized by a 20 % loss at cultivation stage (i.e. 

harvesting losses). A limited processing towards a marketable raw product is often necessary and is 

associated with an extra loss ranging from 2 % (cauliflower, watermelon) to 50 % (peas). For these raw 

products, the data derived from the sum of the cultivation and processing stages, can be compared to 

the Flemish data on the ‘edible harvesting byproducts’, as reported in Part 1.2.1.1. A general 

comparison of these European and Flemish data shows that the European data are characterized by 

larger losses for both vegetables and fruit. On average about 30 %, 25 % and 20 % of byproducts are 

reported by Europe during harvesting and preliminary processing of outdoor vegetables, greenhouse 

vegetables and fruits, respectively. In comparison, the Flemish data of the same categories show 16 %, 

7 % and 5 %, respectively. This comparison can be partly biased due to the fact that more crop types 

are included in the European database. However, a crop-wise comparison between both spreadsheets 

shows an analogous trend. Factors related to different measurement methodologies (e.g. differing 

assumptions), inaccurate estimations and different practices in other countries (e.g. different 

cultivation techniques) can lie at the basis of these differences. 
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Table 1.4 Horticultural byproducts in the EU. Stage 1, cultivation; stage 2, transport & storage; stage 3, processing; stage 4, 
transport, storage & distribution to population; stage 5, consumption. Adapted from FP7-project Noshan (unpublished). 

Primary product Byproduct 

Type Primary product Main type of byproduct 
Supply chain stages 

106 tonnes 

1 2 3 4 5 

Outdoor vegetables               

Asparagus 
Raw Raw asparagus 20% 5% 12% 10% 19% 0.16 

Processed (preserved) Asparagus, peels,…  -   -  51% 10% 19% 0.05 

Cabbage Raw Cabbage (raw) 20 - 40% 5% 40% 10% 19% 5.74 

Carrots and 
turnips 

Raw Carrot (raw) 20% 9%  -  7% 17% 2.98 

Processed (juice, frozen) Pomace & frozen carrot  -   -  20% - 65% 7% 17% 0.29 

Cauliflowers/ 
broccoli 

Raw Cauliflower 20% 5% 2% 10% 19% 1.13 

Processed (frozen) Frozen cauliflower  -   -  48% 10% 19% 0.43 

Leek 
Raw Leek  20% 9%  -   -   -  2.38 

Processed (frozen) Leek (processed)  -   -  15% 7% 17% 2.41 

Olive 
Raw Olives 3% 5% 24% 0% 19% 3.07 

Processed (olive oil) Olive pomace 3% 5% 77% 0% 50% 1.56 

Onions 
Raw Entire onion 20% 5%  -  10% 19% 7.22 

Processed (sliced, frozen) Onion peels  -   -  35% 10% 19% 0.13 

Peas 

Raw Pea cobs 10% 1% 54% 1% 4% 0.34 

Processed (prepared and 
preserved) 

Peas, hulls  -   -  10% 1% 4% 0.05 

Pumpkins & 
squash  

Raw Pumpkins 20% 5%  -  10% 19% 0.82 

Greenhouse vegetables               

Peppers and 
bell peppers 

Raw Peppers and bell peppers 20% 5%  -  10% 19% 1.04 

Processed (prepared and 
preserved) 

Processed bell peppers  -   -  10% 10% 19% 0.89 

Cucumbers Raw Cucumbers 20% 5% 2% 10% 19% 2.38 

Lettuce Raw Lettuce 20% 5%  -  10% 19% 1.76 

Mushrooms 
and truffles 

Raw Whole with roots 21% 5%  -  10% 19% 0.75 

Processed (canned) Prepared mushrooms  -   -  40% 10% 19% 0.24 

Tomato 

Raw Entire tomatoes 49% 5%  -  5% 19% 18.29 

Processed (canned, juice, 
peeled, puree) 

Tomato retails, peel, paste, 
puree 

 -   -  
4% (juice) - 

22,5% (canned) 
5% 19% 3.10 

Fruits                 

Apples 

Raw Entire apples 20% 5%  -  10% 19% 5.91 

Processed (dried, puree, 
compote juice) 

Apple peels, seeds, pulp  -   -  
16% (pulp) - 35% 

(peels) 
10% 19% 1.44 

Apricots and 
cherries 

Raw Apricots and cherries 20% 5%  -  10% 19% 0.70 

Processed (dried, juice, jam, 
frozen) 

Processed products, pit, peals  -   -  
8% (juice) - 14% 

(frozen) 
10% 19% 0.29 

Grapes 

Raw Grape fruit and stalks 20% 5% 10% 10% 10% 8.03 

Processed (dried, juice, wine) 
Stems, seeds, skins, pomace, 

mashed pulp 
 -   -  

4%(dried) - 38% 
(pomace) 

10% 19% 6.05 

Lemons and 
limes 

Raw Lemon (fresh) 20% 5%  -  10% 19% 0.73 

Processed (juice & jam) Peel and jam  -   -  
25% (jam) - 50% 

(juice) 
10% 19% 0.09 

Oranges 

Raw Orange fruit 20% 5%  -  10% 19% 3.82 

Processed (juice, jam) Peel, juice, jam  -   -  
25% (jam) - 
50%(juice)  

10% 19% 5.64 

Peaches and 
nectarines 

Raw Peach  20% 5%  -  10% 19% 2.06 

Processed (canned, juice) Peach canned, dried peels  -   -  25% 10% 19% 0.60 

Pears 

Raw Pears 20% 5%  -  10% 19% 1.47 

Processed (dried, canned, juice) 
Dried pears, canned pears, 

pear pomace 
 -   -  34% 10% 19% 0.79 

Plums and 
sloes 

Raw Plum (fresh) 20% 5%  -  10% 19% 0.79 

Processed (purées, dried) Plum cake, pits  -   -  10% 10% 19% 0.09 

Tangerines, 
mandarins 

Raw Tangerines 20% 5%  -  10% 19% 1.68 

Processed (canned, juice) Canned mandarines, peel  -   -  
39% (canned) - 

50% (peel) 
10% 19% 0.52 

Watermelon Watermelon (from harvesting) 
Watermelon (from 

harvesting) 
20% 5% 2% 10% 19% 2.36 
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In contrast to the raw marketed products, the processing stage (e.g. juiced, sliced, frozen) in the 

processed products contributes to a larger extent to the formation of byproducts. In case of outdoor 

vegetables, these amounts range from 10 % (prepared peas) to 77 % (olive oil). During the processing 

of greenhouse vegetables, about 4 % (tomato juice) to 40 % (prepared mushrooms) are converted to  

byproducts whereas in case of fruit this ranges from 8 % (cherry juice and jam) to 50 % (lemon juice). 

In most cases, processing of fruit and vegetables thus leads to the greatest amount of byproducts, 

although the specific amounts are very process specific. Consequently, a comparison with the Flemish 

data in section 1.2.1.3 cannot be made as it only represents the byproducts occurring in the freezing 

industry. 

Finally, about 15 % of the raw and processed fruit and vegetable products are converted to byproducts 

during transport and 20 % during consumption. Unfortunatly, no crop-specific data were found for the 

relative share of this distribution and consumption stage. However, when studying the edible and 

inedible byproducts occurring in Europe in the food industry in general, the overall trend showing a 

large contribution of consumption in the generation of byproducts is confirmed. Expressed on the total 

amount of byproducts (instead of relative to the primary production), households are reported to 

generate about 53 % of byproducts and distribution about 17 % (Monier et al., 2010; Stenmark et al., 

2016).  

1.3 Potential for using horticultural byproducts in the bioeconomy  

It becomes clear that there are a myriad of fruit and vegetable byproducts available. From an 

economic, environmental and social point of view, their valorization is necessary. Current applications 

predominantly include feed and ploughing in the field, complemented by food and anaerobic digestion 

(Braekevelt & Schelfhout, 2012; Fava et al., 2015; Kips & Van Droogenbroeck, 2014; VBT, 2015). 

However, other applications with a higher added value are promising. To illustrate the potential of 

these horticultural byproducts, an overview of the current applications and research of horticultural 

byproducts is given below, categorized per sector. The goal is not to give an exhaustive list of all 

nutrients present in byproducts and their possible valorizations, but rather to demonstrate the 

potential of the horticultural byproducts and illustrate some of the current practices. The main focus 

lies on food (and feed) valorization in accordance with the cascade principle for valorization, adopted 

in Flanders and the EU (European Commission, 2015c; IWG BE, 2013; Flemish government, 2015). 

Special attention will be given to the different levels at which the valorization actions are operating, 

varying from lab scale to pilot scale and industrial implementation.  
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1.3.1 Food  

A balanced diet providing the required amounts of micro- and macronutrients is essential in view of a 

healthy life style. An increased awareness and interest in these balanced diets can be observed 

nowadays with focus on a diet rich in fruit and vegetables and ingredients from natural sources (O’Shea 

et al., 2012; WHO, 2002; WHO, 2015a). Besides the primary products resulting from horticultural 

production and processing industry, byproducts can also be considered as promising sources of 

compounds to produce these high-quality, nutritious food products (Galanakis, 2012; Mirabella et al., 

2014; O’Shea et al., 2012; Schieber et al., 2001; Sharma et al., 2016). 

1.3.1.1 Current applications of horticultural byproducts in food 

The current applications of byproducts in the food industry can be classified in three categories, (i) 

whole byproducts directly used for food purposes, (ii) whole byproducts used for food purposes after 

limited processing and (iii) refined ingredients derived from byproducts.  

The direct use of whole byproducts occurs for example via social charity initiatives, offering surplus 

byproducts or products unfit for commercialization or processing to people in need. This donation is 

the most straightforward way of byproduct valorization and is believed to be the most appropriate 

response to surplus products (OVAM, 2012; EC, 2008; Mourad, 2016). The Flemish produce auctions 

donate on average 8 % of their surplus products to charity, varying from 0.3 % to 10 % depending on 

the policy of the auction (personal communication auctions, 2016; VBT, 2015). Recently, this donation 

was facilitated by the Belgian federal government by adapting the fiscal policy. Furthermore, an online 

platform was founded to assist in the interaction process of supply (agricultural farms, supermarkets, 

processing industries) and demand (charities and social organizations) of these byproducts 

(Schenkingsbeurs7). An analogous initiative has been launched at the European level for biomass in 

general (Biocontact8). Byproducts that are processed to a limited extent into meals can also be 

classified in this first category of directly using whole byproducts, as often the service is targeted 

instead of specific end products. Such activities are performed for example by catering companies or 

environmental organizations (e.g. Soepcarrousel in Belgium, Culinary Misfits in Germany, Feed the 

5000 from Feedback in the UK). Another example are the supermarkets providing ‘ugly’ fruit and 

vegetables (e.g. Albert Hein, Delhaize). Analogous concepts are adopted in other European countries 

(e.g. Intermarché in France and the ‘Outletsupermarkt’ in the Netherlands).  

                                                           
7 https://www.schenkingsbeurs.be/ 
8 https://www.biocontact.eu 
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A second category can be distinguished in which preservation technologies are used to process whole 

byproducts into commercial food products. Culinary processes used to produce soups, juices and 

smoothies are a first example. In contrast to the above, the end products are targeted here, rather 

than the service. Provalor and the Greenery produce vegetable juices from byproducts derived from 

the vegetable processing industry. ‘Overlekker’ and ‘Barstensvol’ are two Dutch brands of soups 

produced in the Verspillingsfabriek using surplus horticultural products. Kromkommer is an analogous 

Dutch initiative selling soup, which is based on surplus vegetables. Besides culinary processes, also 

industrial drying technologies are often used for preserving and valorizing horticultural byproducts and 

transforming them into flavorings and colorants. An example is FoPo (Food Powder9), an initiative that 

dries fruit and vegetable byproducts into powders to add into food products. Another example is 

Scelta, a company that cooks, presses and dries or concentrates mushroom stems into flavorings for 

soups and sauces (Soethoudt & Timmermans, 2013).  

Refining byproducts into ingredients for the food industry is a last category of current byproduct 

applications. A well-established example is the use of citrus peels and apple pomace for the production 

of pectin, which is suited for a range of food products such as jams, dairy products, beverages, pastries 

and confectioneries (CIR, 2015; Lario et al., 2004; May, 1990). Citrus peels and grape seeds are also 

used to produce oils and sweeteners, which are ‘Generally Recognized as Safe’ (GRAS) for intended 

use in foods for human consumption (CIR, 2014; Deng et al., 2011; Galanakis, 2012; Wadhwa & Bakshi, 

2013). Also seed oils from a range of fruits are allowed in food formulation. Ecotreasures for example 

presses a variety of fruit seeds to oil for the food (and cosmetic) industry. Deriving food ingredients 

with specific health-beneficial properties from byproducts is less widespread. There are some existing 

commercial products with a registered health claim, based on bioactive compounds that are also 

present in fruit and vegetable byproducts. Examples are (i) hydroxytyrosol from olives (HytoliveTM), 

contributing to the protection of blood lipids from oxidative stress (Ciriminna et al., 2016), (ii) cocoa 

flavanols (ActicoaTM) which help maintain the elasticity of blood vessels, thereby contributing to normal 

blood flow (Tallon, 2015) and (iii) tomato phenolic compounds (in combination with nucleoside 

derivatives in FruitflowR) which lead to natural cardio-protective effects (O’Kennedy et al., 2016). 

1.3.1.2 Current research on the application of horticultural byproducts in food 

Due to the increased awareness of the problems related to the occurrence of these horticultural 

byproducts, a lot of research is being performed on their potential use as food ingredients. Generally, 

this research can be classified in four different groups according to the subject and level of detail: (i) 

elucidating the composition of byproducts, (ii) optimizing stabilization and extraction of byproducts to 

                                                           
9 http://www.hellofopo.com/ 
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food ingredients, (iii) evaluating the technical functions of horticultural-byproduct-derived ingredients 

and (iv) evaluating the health-promoting attributes of byproducts and derived food products. 

a. Research focused on elucidating the composition of the byproducts 

Many studies focus on characterizing the byproducts. A myriad of byproducts have been analyzed in 

this way, especially recently due to the increased interest in the value of recycling and integral 

exploitation of agro-food products (Galanakis, 2012; Mirabella et al., 2014; O’Shea et al., 2012; Russ & 

Meyer-Pittroff, 2004; Schieber et al., 2001; Sharma et al., 2016). This information is used to 

demonstrate the high nutritional value of byproducts and is often used as a means to screen and 

explore the opportunities of the byproducts. 

It has been found that in general phytochemicals are predominantly present in higher levels in the 

peels and seeds of the fruit compared to the actual flesh (Kalt, 2005). Hence, press residues from 

industrial juice processing are often investigated. Examples are apple pomace, grape pomace, citrus 

pomace, mango peel, carrot pomace, cauliflower florets and stems, onion skins, tomato pomace and 

olive pomace (Mirabella et al., 2014; Panouillé et al., 2007; Schieber et al., 2001). Compounds most 

often investigated are dietary fibers and phytochemicals such as phenolic compounds, carotenoids and 

glucosinolates (Galanakis, 2012; Larrauri, 1999; Mirabella et al., 2014; O’Shea et al., 2012; Schieber et 

al., 2001).  

The approach adopted in the aforementioned studies determines the level of detail of the composition 

that is obtained. On the one hand, screening the content is often performed using general, rapid and 

easy-to-use assays, for example spectrophotometric assays detecting specific groups of chemically 

similar reactive compounds, thereby not specifying between the different individual compounds 

(Tarbart et al., 2009). An example is the spectrophotometric assay for estimating the total phenolic 

content (Folin-Ciocalteu) by measuring the absorbance at a certain wavelength (Tarbat et al., 2009; 

Ignat et al., 2011). However, due to its lack of selectivity, this is reported to overestimate the phenolic 

content (Escarpa & González, 2001). On the other hand, more specific analytical methods such as for 

example liquid chromatography coupled to mass spectrometry, enables one to separate, identify and 

quantify the individual compounds (Ignat et al., 2011; Tabart et al., 2009). For multiple byproducts, a 

wide range of compositional information is thus present with different levels of detail.  

b. Research focused on the stabilization of horticultural byproducts and extraction of specific 

compounds as food ingredients or end products 

A lot of research focuses on methods for stabilizing byproducts and extraction and recovery of specific 

compounds (Galanakis, 2012). Stabilization technologies are generally used to reduce the moisture 

content of the product, to stop enzymatic activity and/or to improve permeability of the tissues 
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(Galanakis, 2012). These predominantly consist of size reduction, concentrating, pressing, drying, 

centrifuging, fermentation and microfiltration (Galanakis, 2012; Laufenberg et al., 2003; O’Shea et al., 

2012). These technologies are well-established as they have been used in the food industry for many 

decades (Galanakis, 2013). Also novel technologies are being investigated such as radiation treatments 

(UV light, high-intensity light pulses, γ-irradiation), electrical treatments (pulsed electric fields, 

radiofrequency electric fields, microwave heating, ohmic heating), ultrasound treatment, high 

hydrostatic pressure, inert gas treatments (supercritical carbon dioxide, ozonation) and combinations 

thereof (Barrett & Lloyd, 2012; Jiménez-Sánchez et al., 2017a; 2017b; Pereira & Vicente, 2010; Turk et 

al., 2012). Besides pretreatment, a large body of literature focuses on the optimization of the 

extraction and recovery of bioactive compounds from the byproducts. Attention is often given to 

environmentally friendly methods such as pressurized solvent extraction, enzyme-assisted extraction, 

supercritical fluid extraction, membrane separation, microwave-assisted extraction, ultrasound-

assisted extraction, high hydrostatic pressure pretreatment, pulsed electric fields and combinations of 

these extraction technologies such as supercritical fluid extraction with ultrasound, enzymatic of high 

pressure solvents (Ferrentino et al., 2016; Galanakis, 2012; Gil-Chávez et al., 2013). Both optimization 

of technical parameters (such as type of solvent, time, temperature, pressure, power, extraction steps 

depending on the extraction method) and the effect of the utilized technology on the concentration 

and nature of the targeted compounds are often studied. Despite increasing scientific research 

generating promising results, the industrial implementation of these technologies is still limited.  

These novel technologies are however often only tested at lab scale. Furthermore, a lack of 

standardization in operation conditions make comparisons between different studies difficult. More 

research on their performance on pilot and industrial scale is necessary to allow for broad industrial 

applications, thereby investigating the performance and stability of the resulting extracts (Ferrentino 

et al., 2016; Jiménez-Sánchez et al., 2017a; Gañan et al., 2015). 

c. Research focused on evaluating the technical functions of horticultural-byproduct-derived ingredients  

Gathering information about the composition, stabilization and/or extraction is often followed by tests 

incorporating the byproduct-derived ingredients in food products and evaluating their technical 

functions in the food product. 

These studies predominantly investigate the addition of stabilized fractions (e.g. dried powders 

derived from apple pomace, grape pomace, carrot peels, cauliflower stems and stalks, onion skins) or 

to a lesser extent fresh fractions (e.g. pastes) to products such as juices, meat products and bakery 

products. They are predominantly investigated for the technical effect of their fiber content to the 

food products. Fiber addition to food products can enable a partial replacement of the flour, fat or 
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sugar content and improve the viscosity, texture, sensory characteristics and shelf-life of food products 

(Elleuch et al., 2011; Quiles et al., 2016; Sharma et al., 2016). The aspects predominantly studied in this 

regard are sensory traits (color, taste, texture, viscosity) and technological characteristics (water 

holding capacity, oil holding capacity, gelling properties, antioxidative properties) of the formulated 

products (Elleuch et al., 2011; Laufenberg et al., 2003; Mirabella et al., 2014; O’Shea et al., 2012; 

Schieber et al., 2001; Sharma et al., 2016). Besides fiber, also the function of other byproduct-derived 

ingredients such as antioxidants (preventing browning and lipid oxidation), antimicrobials, colorants, 

flavorings and thickener agents have been investigated (Ayala-Zavala et al., 2011; Balasundram et al., 

2006; Moure et al., 2001; Schieber et al., 2001; Shahidi & Ambigaipalan, 2015). 

d. Research focused on evaluating the health-promoting attributes of byproducts and derived food 

products 

Related to the search for more naturalness in food is the trend for health-promoting food attributes in 

products such as functional foods and nutraceuticals. Multiple studies on horticultural byproduct 

valorization in food respond to this trend (Kammerer et al., 2014; Mirabella et al., 2014; O’Shea et al., 

2012; Schieber et al., 2001). However, actual measurements of the specific health-promoting 

attributes of these byproduct-derived foods in the human body are scarce in these studies. They can 

be split into two major groups, i.e. (i) the studies that solely rely on literature evidence to explore the 

potential health-benefits of the byproducts and (ii) the studies that use in vitro tests to actually test 

the health-beneficial effects.  

The first group of studies are confined to investigating the composition of the byproduct without 

actually testing the functionality. Therefore, they rely solely on literature to link the composition to 

compound-specific health-beneficial effects. Accordingly, the potential of byproducts as novel sources 

of these compounds is stressed as well as the opportunities of using the byproducts as food ingredients 

to obtain functional foods. Research for dietary fiber content for example, often relates to their 

beneficial effects in reducing the risk of cancer and coronary heart disease (Larrauri, 1999; O’Shea et 

al., 2012; Panouillé et al., 2007). Investigation of the presence of phenolic compounds in byproducts is 

another example that is often complemented with literature information regarding their strong 

antioxidative potential, their potential reduction of inflammation and cardiovascular diseases, cancer 

and coronary heart diseases (Balasundram et al., 2006; Mirabella et al., 2014; O’Shea et al., 2012; 

Panouillé et al., 2007; Schieber et al., 2001; Wadhwa & Bakshi, 2013).  

Actually testing the potential health-beneficial effects of byproduct-derived ingredients is performed 

to a lesser extent. There are some studies that screen the phytochemical and pharmacological profiles 

of phytochemicals and gain insight in their mechanisms of action using in vitro tests (e.g. Babbar et al., 
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2015; Kabuki et al., 2000; Obied et al., 2009; Ramos et al., 2013; Sanz-Puig et al., 2006; Yanagida et al., 

2000), whereas examples of human in vivo tests using horticultural-byproduct-derived foods are very 

scarce (D’Archivio et al., 2010; Dillard & German, 2000; Moran et al., 2013; Moure et al., 2001; Schieber 

et al., 2000). Rather the in vivo effect of specific plant-derived compounds (not necessarily derived 

from byproducts) have been shown in clinical studies of which the knowledge is often used in studies 

on byproducts, serving as a basis for suggesting the potential of a byproduct containing the specific 

compound, as also mentioned above. 

1.3.2 Feed 

In light of the global challenge to ensure the food production, valorization towards feed applications 

is another important aspect that can indirectly contribute to this objective. 

1.3.2.1 Current applications of horticultural byproducts in feed 

Traditionally, horticultural byproducts have been used directly, as a whole, in feed without extensive 

processing (Fava et al., 2015; Braekevelt & Schelfhout, 2012; OVAM, 2014). This often arises from the 

economic, environmental and legal restrictions associated with disposal of the byproducts (Russ & 

Mayer-Pitroff, 2004). Instead of technical processing features, practical aspects such as variability in 

nutritional levels, seasonal availability, logistics, storage and legislation are more important to address 

to realize these valorization pathways (Kusch et al., 2014).  

For example, edible harvesting byproducts, whether or not after a preservation process, are often 

valorized towards feed (e.g. carrots, peas, bell pepper, beans, chicory roots, Belgian endive roots and 

surplus rebut apples) (Kips & Van Droogenbroeck, 2014; VBT, 2015). Also (conventionally considered) 

inedible harvesting byproducts are sometimes directed to feed. For example forced Belgian endive 

roots generate about € 10 - € 15 per tonne when valorized as feed (Kips & Van Droogenbroeck, 2014). 

Many auctions also divert their byproducts to feed purposes. This varies from 0 % - 100 % depending 

on the policy of the auction (personal communication auctions, 2016). Finally, processing byproducts 

are mainly reused as feed within Flanders and abroad (e.g. apple pomace, orange peel, tomato 

pomace, edible parts of carrots, peas, beans, red cabbage, salsify and turnip rooted celery) (Sweet et 

al., 2016; personal communication industrial processor Flanders, 2016; unpublished results FP7-

project Noshan). These types of valorization predominantly occur in local set-ups, aiming to close the 

resource cycle at the farm or at a regional level. 
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1.3.2.2 Current research on the application of horticultural byproducts in feed 

In order to meet the nutrient requirements of livestock and sustain their productivity and profitability, 

feed resources are increasingly being explored. Therefore, a broad array of fruit and vegetable 

byproducts have been investigated. The focus often lies on high voluminous byproducts such as apple, 

grape, tomato, olive and citrus pomace.  

As was the case in food valorization, the composition is often the starting point of research in this 

domain. This compositional information is widespread and does not specifically differ when targeting 

valorization towards feed instead of food (Gowe, 2015; Kasapidou et al., 2015; O’Shea et al., 2012; 

Schieber et al., 2001; Wadhwa & Bakshi, 2013).  

Horticultural byproducts are often investigated for their use as a main feed ingredient providing 

energy, fibers and proteins, for which they are used as a whole, either fresh or after limited processing 

such as drying or ensiling (Angulo et al., 2012; Bampidis & Robinson, 2006; Kasapidou et al., 2015; 

Mirzaei-Aghsaghali & Maheri-Sis, 2008; Wadhwa & Bakshi, 2013). No extraction nor complex 

conversion processes are thus required. 

In contrast to using them as a whole for main feed ingredients, horticultural byproducts can also be 

used as a source of phytochemicals. These natural-derived functional feed ingredients comply with 

consumer requests for the production of clean label animal-derived products (Kasapidou et al., 2015). 

The research for these novel feedstocks is predominantly focused on their effect on animal 

performance (e.g. growth performance, organ size, protein, fat digestibility, resistance to infections, 

digestibility, palatability, performance) and the derived food products (e.g. meat oxidative stability, 

meat discoloration, meat shelf-life, lipid profile in milk, color of egg yolk) (e.g. Brenes et al., 2008; 

Centre of Expertise for Plant compounds, 2016; Gladine et al., 2007; Vasta & Luciano, 2011). 

1.3.3 Biobased products 

1.3.3.1 Pharmaceuticals and cosmetics  

Horticultural products and byproducts contain a wide variety of compounds that can be interesting for 

the pharmaceutical and/or cosmetic industry. Various products (extracts, powders, juices and oils) 

from different byproducts (resulting from fruit, bark, flower, leaf, peal or pulp of apple, citrus, tomato, 

grape, olive, cucumber, pumpkin, strawberry, apricot and peach) have been reported as safe and are 

being used in cosmetics (CIR, 2011; 2015; 2016; Fiume et al., 2014). Examples of byproduct-derived 

phytochemicals used in pharmaceuticals are less present.  
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The research into pharmaceutical and cosmetic uses of horticultural byproducts is growing. A myriad 

of scientific studies (Deng et al., 2012; Korthout & van der Meulen, 2012; Peschel et al., 2006; Schieber 

et al., 2001; Wadhwa & Bakshi, 2013) and various databases (Dr. Dukes phytochemical and 

ethnobotanical database10, Extractenbibliotheek11 and Napralert12) list the present compounds in 

plants (often including byproducts of fruit and vegetables) and their potential functionality in various 

markets such as cosmetics and pharmaceuticals. As the health-promoting attributes of vegetable and 

fruit byproducts are also of importance for the food industry (e.g. functional food, nutraceuticals), a 

parallel structure (as in part 1.3.1.2. d) with often overlapping results is present in the research for the 

cosmetic and pharmaceutical activities with varying levels of specificity (e.g. showing the presence of 

a certain compound and linking it to literature knowledge on specific activities vs. human tests).  

1.3.3.2 Materials  

Also within the material sector, there are possibilities for horticultural byproducts serving as 

sustainable and qualitative substitutes for fossil-based materials. Ligno-cellulosic byproducts can for 

example be used for natural materials such as paper and cardboard. An example is the production of 

cardboard based on fibrous pulp from tomato leaves or tomato stems (OVAM, 2014; Center of 

Expertise for Plant Compounds, 2016a). They can also be used for the production of biobased 

polymers. Today, polymers and plastics are almost entirely based on fossil sources. Only 1 % of the 

existing polymers is biobased, however interest is growing and various renewable resources can be 

used for this purpose (Dietrich et al., 2016; Keegan & Kretschmer, 2013; Voevodina & Kržan, 2011). 

These biobased plastics can be divided into three classes: (i) modification of natural polymers (e.g. 

cellulose acetate, thermoplastic starch), (ii) direct production in plants (e.g. polyhydroxyalkanoates 

(PHAs) accumulated in bacteria that can be fed with byproducts) and (iii) two-step biomass conversion 

(e.g. biopolyethylene, biopolypropylene, polylactic acid) (Fava et al., 2015; Follonier et al., 2015; 

Girotto et al., 2015; Naranjo et al. 2014; Storz & Vorlop, 2013; Voevodina & Kržan, 2011). 

Currently, the majority of the biobased materials are based on agricultural crops rich in carbohydrates, 

otherwise used as food or feed (so called 1st generation bioresources). However, in order not to 

compromise life-sustaining production, non-food and non-feed crops are increasingly being explored 

(often called the 2nd generation bioresources) such as ligno-cellulosic resources, agricultural waste and 

food waste (Girotto et al., 2015; Storz & Vorlop, 2013; Voevodina & Kržan, 2011). Some examples of 

(predominantly agricultural) byproducts used for production of materials are maize byproducts 

                                                           
10 https://phytochem.nal.usda.gov/phytochem/search 
11 http://plantenstoffen.nl/extractenbibliotheek/ 
12 https://www.napralert.org/ 
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(Futerro, NatureWorks, Novamont) and potato byproducts (Rodenburg biopolymers, Avebe, Biotec) 

(Bos & van Rees, 2004; Bolck et al., 2012).  

1.3.3.3 Biopesticides and biostimulantia  

According to the European definition, pesticides are used to prevent, destroy or control harmful 

organisms or diseases or to protect plants during production, storage and transport. Examples are 

herbicides, fungicides, insecticides and biocides. This term is often used interchangeably with the term 

plant protection products, which is used specifically for plants. The indiscriminate use of synthetic 

pesticides has given rise to many problems including genetic resistance, toxic residues, hazards from 

handling and environmental pollution (Adeyemi, 2010; Burketova et al., 2015). This has increased the 

interest in biopesticides, i.e. pesticides of natural origin, derived from animals, plants, bacteria or 

minerals (Chojnaka et al., 2015; European Commission, 2016a; O’Brien et al., 2009; Schuurbiers et al., 

2013). While biopesticides protect against biotic stress (e.g. attack by pests), biostimulants are used to 

protect the plant against abiotic stress and to stimulate natural processes enhancing the plants 

nutrient uptake, nutrient efficiency and crop quality (Chojnaka et al., 2015; European Biostimulants 

Industry Council, 2016). Although the added value of these biobased products is generally recognized 

from a human and environmental hazard perspective and even though they have been investigated 

for more than 50 years, only 0.1 % of the developed formulations have been put on the market, due 

to a variety of factors such as high development costs and complex elucidation of working mechanisms 

(Chojnaka et al., 2015; O’Brien et al., 2009). 

Scientific literature shows many examples of the efficacy of biobased agricultural products (Adeyemi, 

2010; Chojnaka et al., 2015; Seiber et al., 2014). Copping & Duke (2007) give an overview of plant-

derived products, going from fungicides and bactericides to herbicides and insecticides. Analogously, 

plant-derived byproducts could form an alternative feedstock for biopesticides. Tomato and paprika 

stems and leaves are being investigated for example for their potential action against various molds 

and mildew (Schuurbiers et al., 2013).  

1.4 In conclusion 

The aim of this introduction was to give more insight in three issues related to valorizing horticultural 

byproducts, i.e. (i) the adopted terminology and classification of byproducts, (ii) the amounts of 

horticultural byproducts and (iii) the current applications and potential valorizations of horticultural 

byproducts.  
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Firstly, a transparent terminology framework is necessary for generating qualitative data on 

horticultural byproducts and enabling comparison with other countries or measurement of evolutions 

throughout time. The terms edible and inedible horticultural byproducts are used in this dissertation. 

These include non-consumed horticultural products occurring throughout the supply chain. Based on 

the stage during which they occur throughout the supply chain, they have been grouped in three 

categories: (i) harvesting byproducts, (ii) byproducts resulting from the produce auctions and (iii) food 

processing byproducts.  

Secondly, horticultural byproducts occur throughout the supply chain in different amounts and under 

different forms. The total amounts of edible byproducts occurring in Flanders were largest for the 

harvesting byproducts (274 10³ tonnes), followed by processing byproducts (70 10³ tonnes) and losses 

at the auctions (16 10³ tonnes). The inedible byproducts occur predominantly during harvesting and 

preliminary processing (562 10³ tonnes), with the largest amounts for the foliage and leaves of the 

Brussels sprouts and cauliflower. The largest edible byproducts are the harvesting byproducts of leek, 

onion peels and the processing byproducts of peas and beans.  

Valorization of these horticultural byproducts in Flanders today consists predominantly of feed 

applications and ploughing in the field. According to the cascade principle, other applications are 

possible that can create a higher added value. The current and potential valorizations were illustrated 

in the third part of this introduction. Based on the immense amount of scientific studies and small scale 

projects, it can be seen that awareness has been raised regarding the potential added value of 

converting fruit and vegetable byproducts to food, feed and functional material products. However, 

despite this recognition, the actual successful implementations are scarce and scientific studies do not 

equally lead to practical implementations. For food and feed purposes, a different stage of adoption 

can be seen for valorizing the byproducts as a whole versus refining them in ingredients with specific 

functionalities. Whereas the former is already commercialized under different forms and on different 

scales, the latter remains predominantly in the research stage, “despite the omnipresence of 

hypothetic scenarios, high quality studies and patented methodologies” as stated by Galanakis (2012). 

This can also be seen for biobased products, where the possibilities, cited in scientific literature are 

often not converted to actual industrial applications.  

On the one hand, this has been related to the technical execution of scientific research, consisting 

predominantly of specific lab-scale studies with only few cases containing technical feasibility on pilot 

or industrial scale (Mirabella et al., 2014; Peschel et al., 2006). Practical aspects such as extraction 

efficiency, recovery efficiency, performance, variable composition of the feedstock (induced by origin, 

storage and processing conditions), stability of the derived products, functionality, bioavailability, 
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bioactivity and toxiology are often not (yet) investigated. Furthermore, more generally, a unilateral 

techno-scientific approach is often adopted when investigating the development of the bioeconomy 

(Golembiewski et al. 2015; Pfau et al., 2014). Hence, research is often driven by and focused on the 

byproduct itself, based on the available amounts or other attractive characteristics, without 

incorporating socio-economic issues. Although the impact of these economic (e.g. price of substitutes, 

market potential, market acceptance investment cost, added value), logistic (e.g. transport, seasonal 

occurrence, storage) and legislative aspects (e.g. waste legislation, product safety, claims) as 

prerequisites for successful implementations are being increasingly recognized (Ayala-Zavala et al., 

2011; Galanakis, 2012; Peschel et al., 2006), their investigation at the start of the research phase is 

limited. Hence, research is often still focused on technical aspects. Integral, transdisciplinary studies 

are thus key in order to secure industrial exploitation of horticultural byproducts. These aspects are 

further elaborated upon in the reflective discussion (Chapter 6). 
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Chapter 2: Using a novel spiral-filter press technology to biorefine 

horticultural byproducts: the case of tomato. Part I: process 

optimization and evaluation of the process impact on the 

antioxidative capacity 

Redrafted from 

Kips, L., De Paepe, D., Bernaert, N., Van Pamel, E., De Loose, M., Raes, K. & Van Droogenbroeck, B. 
(2016). Using a novel spiral-filter press technology to biorefine horticultural by-products: the case of 
tomato. Part I: process optimization and evaluation of the process impact on the antioxidative 
capacity. Innovative Food Science and Emerging Technologies, 38, 198 – 205. 

2.1 Abstract  

With tomato as a model crop, the use of a novel, low-oxygen spiral-filter press technology for juice 

production was demonstrated on pilot scale. The results showed that a robust process could be 

developed with a juice yield of 82.5 % which can be increased to 97.0 % with an additional mild thermal 

pretreatment (40 °C for 3 minutes). A comprehensive insight was gained in the underlying mechanisms 

through which process parameters can affect juice yield and juice quality parameters such as turbidity 

and precipitate weight ratio. Additionally, the antioxidative capacity (AOC) was investigated, showing 

a preservation of antioxidants during pressing (102 % ± 12 %) which may be attributed to the low-

oxygen processing. Finally, also an insight was gained in the antioxidative distribution of the resulting 

fractions, demonstrating the potential of the press residue and confirming the relevance of designing 

a biorefinery system where all fractions are valorized.  
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2.2 Introduction  

Globally, one third of the edible food is lost (1.3 106 tonnes.year-1) (Gustavsson et al., 2011). The fruit 

and vegetable processing sector, with losses of 40 % – 60 % in their production process (e.g. 

overproduction, edible and inedible processing byproducts and waste fractions), is a sector where one 

of the largest quantities of healthy and potentially high-value biomass remains unused (Bos-Brouwers 

et al., 2012; Gustavsson et al., 2011). Conversely, biomass plays a key role in the emerging bioeconomy 

where it is used as input for the production of a wide range of products. It is conceived that in this 

more sustainable economy, products are produced via biorefineries, following a cascade principle in 

order to maximally valorize the available biomass (Flemish government, 2013; McCormick & Kautto, 

2013). Combining both factors, i.e. using food losses in the bioeconomy through a biorefinery process, 

would thus convert a problem into an opportunity for the emerging bioeconomy. 

However, there are a number of factors currently impeding the valorization of fruit and vegetable 

byproducts. A literature screening (e.g. HLPE, 2014; Schieber et al., 2001) and interviews with 

stakeholders show that their valorization is currently mainly impeded by their high moisture content 

(often > 90 %) and corresponding fast decay, their relatively small and geographically dispersed 

volumes and the seasonality of their production. The combination of these factors makes their 

collection, conservation and processing a major challenge (OVAM, 2014). 

In this chapter, the capability of a novel low-oxygen spiral-filter press to biorefine fruit and vegetable 

biomass is evaluated. Due to its flexibility and modular design, this spiral-filter press seems to be able 

to tackle the above mentioned impeding factors, making it a promising technology. Firstly, using a 

pressing technology in general for valorizing fruit and vegetable byproducts optimally addresses the 

first challenge mentioned, namely the high moisture content. Instead of stabilizing the biomass by 

using expensive or quality-reducing drying techniques such as hot air drying (Jangam, 2011), juice 

pressing extracts a large part of the liquid content that subsequently can be valorized as fruit or 

vegetable juice or related products. Secondly, the spiral-filter press can deal with the seasonality and 

variable volumes of horticultural byproducts. Preliminary experiments have shown that the press is 

able to process a range of volumes (300 – 28,000 kg.h-1) as well as handle a multitude of different 

textures (e.g. apples, berries, corn, carrots, nuts,… ), due to its modular nature and its flexible process 

parameters (Siewert, 2013). Hence, multiple biomass streams can be processed in function of the 

harvesting season, which is not the case with some conventionally used presses such as the widely 

used belt-press which is only suitable for hard biomass matrices such as apples and pears or the Bucher 

horizontal piston press, working in batch mode (Beveridge & Rao, 1997; Barrett et al., 2005). Moreover, 

due to its flexibility, it can be used as a key technology in biorefineries, because it allows a further 
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unraveling and dissection of the resulting solid and liquid streams into multiple fractions, thereby 

creating a higher added value compared to the direct use of the whole byproduct as such (Baiano, 

2014; Bos-Brouwers et al., 2012). An important attribute of the spiral-filter press is its ability to 

generate premium, cloudy juices, in contrast to the Bucher horizontal piston press and the decanter 

centrifuge generating rather clarified juices with low soluble solids content (Barrett et al., 2005; De 

Paepe et al., 2015a; 2015b) (further investigated in Chapter 3). This creates diversity in the different 

types of juices in the market. Each type of press has its own value and typical end product which 

provides the consumer with a choice in a variety of juices.   

Finally, it has been reported that the spiral-filter press can conserve the phenolic composition of the 

input biomass throughout processing, which can be attributed to the juice extraction under low-

oxygen atmosphere, preventing oxidation from taking place (De Paepe et al., 2015a; 2015b) (further 

investigated in Chapter 4). In general, conventional presses such as the belt-press and the Bucher 

horizontal piston press work open to the atmosphere, allowing oxidation and subsequent product 

degradation. For apples, a comparison of the performance of the spiral-filter press with the belt-press 

has been performed, showing (i) a higher juice yield, (ii) a higher juice turbidity and (iii) a higher 

retention of phenolic compounds during downstream processing steps and storage for the former (De 

Paepe et al., 2015b). Also the juice extraction process used for tomato juice processing using pulper 

and finisher to separate the peels and seeds from the juice, is characterized by a high rate of oxygen 

absorption caused by a high rotation speed open to the atmosphere (Noomhorm & Tansakul, 1992). 

However, oxidation is not always disastrous as this can generate aroma components which are typical 

for certain juices. Many of the aliphatic esters, alcohols, acids and carbonyls, which are important 

aroma compounds found in fruits are formed by (i) oxidative degradation of fatty acids or (ii) via the 

lipoxygenase pathway (El Hadi et al., 2013). In apple juice for example, the temperatures which are 

used to activate pectinases seemed to activate other enzymes like lipoxygenase, which oxidized the 

lipids in apple juice and produced flavor compounds such as hexanal and trans-2-hexenal (Su & Wiley, 

1998). In tomato, this lipoxygenase pathway is also reported to catalyze the production of typical 

tomato flavors (Barrett et al., 2010; Rodrigo et al., 2007). However, also rancid off-flavors can be 

produced. Thus, as mentioned above, each press has its own characteristics and typical juices, suitable 

for different niche markets. 

The spiral-filter press thus seems to have the potential to serve in small and medium size enterprises 

(SME) context to produce premium juices derived from multiple biomass feedstocks and byproducts. 

Even though being flexible towards the nature of the starting material, biomass processing with the 

spiral-filter press does require an optimization per matrix and comprehensive insights in the working 

principle of the press are needed in order to exploit its broad working range. To date, only limited 
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scientific studies have evaluated the performance of the spiral-filter press, focusing on the processing 

of apple, pear and strawberry (De Paepe et al., 2015a; 2015b; Possner et al., 2015). As a result, detailed 

process parameters and knowledge about the press’ working principle, that are broadly applicable to 

other matrices, are particularly uncommon. This chapter offers a comprehensive insight in these 

aspects by using underutilized tomatoes (e.g. surplus product, low quality tomatoes) as a model crop 

to investigate the use of the spiral-filter press to biorefine and valorize horticultural byproducts. In 

2015, over 3,000 tonnes of healthy tomatoes remained unsold at the produce auctions in Belgium, 

leaving high-value valorization options unused (personal communication, Belgian produce auctions). 

In addition, the conventional tomato processing industry (i.e. washing, sorting, crushing, preheating 

(hot/cold break), pulping/finishing using screens and evaporation) in Belgium is absent, impeding a 

potential valorization of these tomatoes (Hayes et al., 1998; Heutink, 1986). Furthermore, in contrast 

to apples and pears, it is a soft matrix which implies that other technical processing challenges have to 

be addressed, which are in their turn applicable for similar berry-like matrices. The focus in this chapter 

thus lies in understanding the underlying mechanisms of the spiral-filter press through which process 

parameters affect juice yield and juice quality when processing soft matrices, by comparing different 

pilot-scale experiments with different parameter sets. The antioxidative capacity of the resulting 

samples was related to the feedstock, in order to discern the impact of processing on the raw 

fruit/vegetable and achieve a relevant indication of the process impact. 

The approach adopted here consisted of a pilot-scale optimization of the parameters necessary for a 

basic solid-liquid separation using the spiral-filter press (Figure 2.1, dotted line). The resulting end 

products were analyzed for their antioxidative capacity in order to evaluate the process impact of the 

low-oxygen spiral-filter press on the oxidation of the biomass. In a second step, the optimized system 

was developed towards further refining the tomato biomass, using the insights gained in the first step 

(Figure 2.1, solid line). This was achieved by (ii) applying a thermal pretreatment (analogous to 

conventional tomato processing using cold/hot break) to produce a press residue, separable into 

whole seeds and peels and (iii) by performing a second solid-liquid separation of the juice obtained in 

the first phase, in order to isolate a firm tomato puree (tomato solids) from the tomato juice.  
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Figure 2.1 Visualization of the optimized biorefinery process. The processes are represented by white boxes and the resulting 
products by grey boxes. The optimizations for the different subprocesses are indicated by grouped boxes. The dotted lines 
represent the start of the optimization using a simplified process. 
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2.3 Materials and methods 

The optimization of the biorefinery process was performed in several steps (Figure 2.1). These steps 

will be subsequently covered hereafter. 

2.3.1 Optimization of the first solid-liquid separation  

The first step in the optimization process was to investigate if the juice yield obtained by the spiral-

filter press could be maximized without using an additional heat pretreatment. Therefore, the process 

depicted in Figure 2.1 was simplified and comprised only the milling step and the first solid-liquid 

separation (shown by the dotted line). 

2.3.1.1 Description of the machinery and the optimization process 

Intact tomato fruits, resulting from overproduction and consisting of a mixture of cultivars 

(predominantly Kanavaro flesh tomato), were provided by a Belgian produce auction (REO, Roeselare, 

Belgium) (Figure 2.2). The majority (  9̴5 %) of the tomatoes was at commercial maturity. A 

homogenized batch of 500 kg was collected in a water bath, filled with cold tap water until all tomatoes 

were submerged. Subsequently, they were transported by a conveyor into a mill, rotating at a constant 

angular speed (20 kg.h-1) (KWEM 1000, Kreuzmayr, Wallem, Germany). The mashed tomatoes were 

ejected into the buffer tank of the spiral-filter press, which was the central part in the biorefinery 

process (Figure 2.3). This system consists of a buffer tank, a screw pump (feed pump), an extraction 

cell, a spiral that rotates in a cylindrical sieve, a vacuum pump and two exits for liquid and solid 

fractions, respectively (De Paepe et al., 2015a; 2015b). 

 

Figure 2.2 Tomatoes used as feedstock, resulting from overproduction and consisting of a mixture of cultivars.   
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Figure 2.3 Schematic representation of the spiral-filter press with spiral frequency (S), pore size of the filter element (M), 
number of channels of the spiral (C) and vacuum pump frequency (V). 

The optimization process started with evaluating the system parameters for the first solid-liquid 

separation: feed pump frequency (F [Hz], 0-50 Hz), spiral frequency (S [Hz], 0-50 Hz), vacuum pump 

frequency (V [Hz], 0-50 Hz), pore size of the filter element (M [µm], 60, 100, 150 and 300 µm) and 

number of channels of the spiral (C [-], 3, 4 or 7). The shaft inclination angle was kept at 45°. 

Furthermore, due to practical considerations, a constant feed pump frequency F of 20 Hz was used in 

all experiments, leading to a system with four variable system parameters. The effect of varying these 

system parameters was evaluated on the juice yield (JY) and the moisture content of the press residue 

(MCPR). However, in order to get a better insight in the process, various other dependent variables 

were also recorded such as the moisture contents of the other fractions (moisture content of the 

mashed tomato, MCMT; moisture content of the juice filtered once, MCJFO), the total throughput (TH), 

the turbidity of the juice (TU) and the precipitate weight ratio (PWR). A total of sixteen combinations 

were tested according to a screening design configuration (Table 2.1). It has to be noted that the 

mentioned frequencies represent a rescaled value of the real rotation frequency. The correlations are 

as follows (De Paepe et al., 2015a): 

 Volumetric feed flow rate of the feed pump: 𝐹𝑣  [𝐿 . ℎ−1] =  25 x F [Hz]  

 Angular velocity of the spiral 𝑆𝑟 [𝑟𝑎𝑑. 𝑠−1] = 12 10−2 𝑥 𝑆 [𝐻𝑧]  

 Absolute underpressure in the extraction cell 𝑉𝑢[𝑏𝑎𝑟] = 3.0 10−4 𝑥 𝑉2 − 3.86 10−2 𝑥 𝑉 +

3.25 10−1  
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Table 2.1 Screening design used in the optimization of the first solid-liquid separation with the real (C, M, S, V) and the coded 
(c, m, s, v) independent variables. 

Experiment Number of 

channels [-] 

C (c) 

Pore size filter 

[µm] 

M (m) 

Spiral frequency 

[Hz] 

S (s) 

Vacuum pump 

frequency [Hz] 

V (v) 

Measured juice 

yield [%] 

JY 

1 7 (+1) 100 (-1) 10 (-1) 0 (-1) 24.1 

2 7 (+1) 100 (-1) 50 (+1) 0 (-1) 42.8 

3 7 (+1) 100 (-1) 10 (-1) 50 (+1) 20.3 

4 7 (+1) 100 (-1) 50 (+1) 50 (+1) 49.8 

5 7 (+1) 300 (+1) 10 (-1) 0 (-1) 30.5 

6 7 (+1) 300 (+1) 50 (+1) 0 (-1) 43.2 

7 7 (+1) 300 (+1) 10 (-1) 50 (+1) 30.3 

8 7 (+1) 300 (+1) 50 (+1) 50 (+1) 76.8 

9 4 (-1) 100 (-1) 10 (-1) 0 (-1) 23.9 

10 4 (-1) 100 (-1) 50 (+1) 0 (-1) 31.3 

11 4 (-1) 100 (-1) 10 (-1) 50 (+1) 24.7 

12 4 (-1) 100 (-1) 50 (+1) 50 (+1) 54.1 

13 4 (-1) 300 (+1) 10 (-1) 0 (-1) 25.2 

14 4 (-1) 300 (+1) 50 (+1) 0 (-1) 27.8 

15 4 (-1) 300 (+1) 10 (-1) 50 (+1) 59.1 

16 4 (-1) 300 (+1) 50 (+1) 50 (+1) 82.5 

 

2.3.1.2 Description of the sampling and recording of the dependent variables 

After each well-defined process step, samples were taken to investigate the process impact on the 

quality of the end products. These are represented by the grey boxes in Figure 2.1 and consist of 

mashed tomatoes (MT), juice filtered once (JFO) and press residue (PR) in the first solid-liquid 

separation process. The analyses of JY, MC, TU and PWR were performed on all freshly taken samples, 

whereas only the samples resulting from the conditions generating the highest JY were frozen at -

20 °C, freeze-dried (Epsilon 2-10 D LSC, Martin Christ, Osterode am Harz, Germany) and subsequently 

analyzed for their antioxidative capacity (AOC).  

The JY of the first solid-liquid separation process was determined by recording mass balances of the 

JFO and PR during the steady-state phase of the process. The JY was determined as 𝐽𝑌 =

𝑀𝐽𝐹𝑂

𝑀𝐽𝐹𝑂+𝑀𝑃𝑅
 𝑥 100 % with MJFO the net mass of the juice and MPR the net mass of the press residue 

(calculation in Appendix 1). The total TH was calculated analogously: 𝑇𝐻 =
𝑀𝐽𝐹𝑂+𝑀𝑃𝑅

𝑡
 with t the time 

during which both fractions were collected. 
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The MC measurements were performed in duplicate using a halogen moisture analyzer (HB43-S, 

Mettler Toledo, Schwerzenbach, Switserland). The TU was measured nephalopmetrically using a light 

scattering photometer (Micro1000 Laboratory Turbidity meter, HF scientific, Florida, USA). These TU 

measurements were performed three times on a homogeneous sample. PWR was measured 

gravimetrically (PB3002-S, Mettler-Toledo, Greifensee, Switzerland) by calculating the ratio of the 

mass of 30 g of juice (M0) and the net mass of sediment resulting after centrifugation (4200 g, 15 min) 

of the juice and subsequent decantation the supernatans (Mc) : 𝑃𝑊𝑅 =
𝑀𝑐

𝑀0
∗ 100 %.  

The AOC was determined by a modified oxygen radical absorbance capacity (ORAC) assay (Prior et al., 

2005), as described by Bernaert et al. (2013). Analysis was performed in triplicate (n=3) (Clariostar, 

BMG labtech, Ortenberg, Germany). Results were expressed in µmoles of Trolox equivalents per gram 

of dry weight (µmol TE.g-1 DW) and converted per gram of fresh weight (µmol TE.g-1 FW) (calculation 

in Appendix 2) using both the moisture contents of wet and dry products (Table 2.2). The impact of the 

spiral-filter press on the AOC was evaluated by calculating the retention efficiency (% R). This 

represents the ratio of the AOC present after the process and before the process and is calculated by 

dividing the yield-corrected-AOC in JFO and PR by the AOC in MT. Also the juice and press residue 

extraction efficiencies were calculated (% EJFO and % EPR) representing the percentage of the AOC that 

ends up in the juice fraction or the press residue, respectively (calculations in Appendix 2). 

Table 2.2 Moisture contents [%] of the three obtained fractions, i.e.mashed tomato (MT), juice filtered once (JFO) and press 
residue (PR) and with MCwet and MCdry the moisture contents of the fresh and the freeze-dried products, respectively. 

 MT [%] JFO [%] PR [%] 

MCwet 

MCdry 

95.0 ± 0.2 

11.8 ± 0.03 

96.1 ± 0.02 

14.7 ± 0.03 

90.1 ± 0.2 

5.9 ± 0.02 

 

Based on the generated knowledge and the resulting products, it was concluded that even under 

optimal conditions, no complete solid-liquid separation between juice on the one hand and peel and 

seeds on the other hand was achieved. This led to the investigation of an additional thermal 

pretreatment step. 

2.3.2 Optimization of the thermal pretreatment 

In order to obtain a better solid-liquid separation, a thermal pretreatment step was included in the 

biorefinery process (Figure 2.1). From this point onwards, the optimization process was executed 

stepwise using 75 kg of tomatoes per treatment. After each solid-liquid separation, an evaluation of 
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the JY and the MCPR was performed and a corresponding decision for the next set of conditions was 

taken. 

A thermal pretreatment was performed by a mix/homogenize/emulgate system (UMSK 60 E, Stephan 

Food Service Equipment GmbH, Hamelin, Germany) wherein the mashed tomatoes were heated 

batchwise (35 kg.batch-1) and additionally milled under vacuum. This was performed in two steps. 

Initially, three temperatures were tested, based on cold and hot break used in conventional tomato 

processing (Goodman et al., 2002; Hayes et al., 1998; Heutink, 1986): 40 °C, 60 °C or 90 °C which were 

all applied for 3 or 6 minutes. Subsequently, the duration was varied (3, 6 or 9 minutes) for two 

temperature treatments (40 °C and 50 °C). The tomato mashes treated at 50 °C, 60 °C or 90 °C, were 

cooled down to 40 °C in order to generate a product with a constant temperature for subsequent 

application to the spiral-filter press. Subsequently, a solid-liquid separation of this thermally treated 

tomato mash (TT) was performed by means of the spiral-filter press using the same conditions as used 

in the optimized conditions in the first solid-liquid filtration (M, F, S, V) only varying the spirals (7-C 

(45°), 4- C (45°) and 4–C (38°)) in function of an optimal yield and a continuous operation. 

2.3.3 Optimization of the second solid-liquid separation 

In order to test the flexibility of het spiral-filter pres, a second solid-liquid separation was performed, 

using JFO as a feedstock, in order to obtain a tomato solids fraction (TS) and a less viscous juice filtered 

twice (JFT). Using JFO as an input stream means processing a very liquid product, conversely it was 

processed with the 3-C spiral (inclination angle 32°). The optimization included the testing of multiple 

filter sizes (100 µm, 80 µm and 60 µm) and multiple vacuum frequencies (0 Hz, 10 Hz and 50 Hz). F and 

S were kept constant at 15 Hz and 50 Hz, respectively.  

2.3.4 Statistical analysis 

A screening design was performed with four independent factors (S, V, M and C) to investigate their 

effect on the dependent variables JY, MCPR, TH, TU and PWR. A contrast analysis was conducted in 

which the main effects and the first order interaction effects were estimated by means of the following 

first order linear regression model: 

 y = b0 + b1.s + b2.v + b3.m + b4.c + b5.sv + b6.sm + b7.sc + b8.vm + b9.vc + b10.mc 

In this equation, the coefficients b14 represent the main effects of the corresponding factors, while 

the coefficients b510 describe the interaction effects of the factors. b0 is the intercept and represents 

the grand mean of the dependent variable y. The coefficients represent half of the effects that are 
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induced in the dependent variable upon changing the independent variable from a low to a high level. 

One-way analysis of variance (ANOVA) was conducted to identify effects with a level of significance of 

p < 0.05. Thereby, the best subset of independent variables was determined for each response function 

based on the Akaike information criterion (for finite sample sizes) which takes into account both model 

fit and complexity, obviating any overfitting problems. All statistical analyses of the optimization 

processes were performed with R 3.0.1 (R Foundation, Auckland, New Zealand). The AOC of the end 

products was statistically evaluated using ANOVA analysis followed by a Scheffé post-hoc test in SPSS 

Statistics 22 (p < 0.05). Sigmaplot 13 was used to visualize the data. 
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2.4 Results and discussion  

2.4.1 Understanding the process impact of the independent variables during the 

first solid-liquid separation 

Due to its economic importance at the processing plant, JY was used as a primary criterion to optimize 

the system. The higher the JY, the better the dewatering and the dryer the press residue. The JY-values, 

corresponding to the different experiments varied from 20.3 % (exp. 3, Table 2.1) to 82.5 % (exp. 16, 

Table 2.1), whereas reported tomato JY-values from a paddle or screw type extractor with hot break 

pretreatment range from 70 % to 95 % (Bates et al., 2001; Hayes et al., 1998; Min & Zhang, 2003). The 

large range in JY obtained throughout the experiment indicates a major effect of the system 

parameters. Figure 2.4 shows the main effects and the interaction effects influencing the JY.  

 

Figure 2.4 Visualization of the significance and the magnitude of the effects of different factors, i.e. spiral frequency (S), 
vacuum (V), filter pore size (M) and number of channels of the spiral (C) and their interactions on the juice yield. P-values are 
represented by black bars and shown on the primary y-axis. The dotted line represents a p-value of 0.05 (95 % significance 
level). The magnitudes of the effects are represented by grey bars and shown on the secondary y-axis. 

From this figure, it can be concluded that the factors S, V and M all exert a significant positive effect 

on JY (grey bars). The largest effects (smallest black bars) are ascribed to the spiral rotation frequency 

S. This positive effect can be explained by the tomato peel fraction that accumulates on the inner side 

of the sieve and blocks the pores. The rotating spiral can induce a scraping effect on the sieve thus 

removing the peel from the pores and increasing the juice extraction. It has to be noted that this effect 

is matrix dependent. In case of apples and pears for example, S exerts a negative influence on the JY 

as S is also negatively correlated with the biomass residence time in the extraction cell (De Paepe et 

al., 2015a). The positive effect of V on JY can be explained by an extra extraction force as V is correlated 
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with the underpressure in the extraction cell. Also M exerts a significantly positive effect on the JY, as 

increasing the pore size of the filter, allows juice to pass through the filter more easily within the 

residence time. The choice of M will also influence the turbidity in the juice as more and larger particles 

are allowed to pass (Figure 2.5), which will be discussed hereafter in more detail. Besides these three 

main effects, three significant interaction effects also were identified. The positive V-M effect implies 

that the effect of the vacuum is higher when the filter pore size is enlarged. An explanation could be 

that the vacuum exerts a larger driving force on the juice through larger pores, as there is more “open 

space” to pull the liquid through. At smaller M, the juice is already blocked by the smaller pores and 

an increase of the vacuum can only offer a limited added value. The positive interaction effect of V and 

S is of a similar nature. The higher the frequency of the spiral, the more effect of V on the JY. Indeed, 

the higher S, the more the filter is scraped, the better the filter pores remain unblocked by particulate 

matter, hence the more juice can be extracted by increasing V. The V-C interaction effect is negative, 

implying that an increase of V will lead to a less pronounced increase in JY when C is high. This can be 

explained by the larger compression forces that are exerted on the material in a 7-C spiral. Increasing 

V will only lead to a small extra driving force on the JY in this system, which is already characterized by 

a high compression.  

The JY can also be related to other dependent variables. The higher the JY, the better the solid-liquid 

separation and the lower the moisture content of the press residue. This inverse relation of MCPR with 

JY is also visible in the significantly negative effects of S, V and M on MCPR (results not shown). In each 

pressing system, the JY is related to the TH (Beveridge & Rao, 1997). In this experiment however, no 

significant factors nor interactions were found to influence TH. This could be caused by the soft tomato 

matrix for which only the feed pump frequency is determining the TH. As F is kept constant in this 

experiment, also constant TH values were found (475 – 498 kg.h-1). Increasing this F in regard to 

industrial scale systems, and maintaining the other process parameters might slightly decrease the JY 

but generally only in the order of 3 % – 4 %. This TH increase is limited however, as at a certain feed 

pump frequency, the system will “break-through”. In that case, a the parallel placement of identical 

extraction cells is needed. This implies a multiplication of TH by the number of extraction cells whereas 

the juice yield and juice quality remain constant, as also stated by De Paepe et al. (2015a). It has to be 

noted that the limiting technology to achieve higher TH is often the milling technology instead of the 

juice pressing technology. 

Values for TU varied from 3,310 ± 40 NTU to 6,965 ± 76 NTU in this experiment. These values are found 

to be only significantly influenced by the main effect of M and the interaction effect of V-C (Figure 

2.5A). M exerts a positive effect on the TU indicating that larger pore sizes yield a more turbid juice, 

confirming the results obtained in pear juice production (De Paepe et al., 2015a). The interaction effect 
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V-C has a negative origin, which means that using a vacuum has a larger effect on the TU when a 4-C 

spiral is used compared to a 7-C. This effect has also been seen on the JY and can be explained by the 

7-C spiral system that already exerts a high compression force on the mashed tomatoes, leading only 

to a small extra driving force of V for extracting juice and small particles out of the mash. The high TU 

values can be attributed to the extraction of soft tomato tissue which collapses easily under pressure, 

creating cloud particles that contribute to the turbidity. In other presses, these cloud particles can clog 

juice escape channels and reduce the JY. Earlier, press aids (such as rice hulls, ground wool pulp or 

shredded paper) have been used to avoid this clogging and thereby increase juice yield by (i) scraping 

the screen during pressing which prevents clogging, (ii) adding mass to the fruit mash to better transmit 

the pressing forces and (iii) providing juice escape channels to increase the juice yield (Beveridge & 

Rao, 1997; Roberts et al., 2004). Nowadays, the use of press aids is mostly replaced by enzymatic 

pretreatment, for example by using pectinases which break down the pectins, preventing the blockage 

of filters (Echavarría et al., 2011; Pagán, 2014; Urlaub, 2002). In the spiral-filter press however, cloudy 

particles cause no problems, as the rotating spiral scrapes the solid material away from the filter pores, 

clearing the juice extraction channels.    

 

Figure 2.5 Visualization of the significance and the magnitude of the effects of different factors, i.e. spiral frequency (S), 
vacuum (V), filter pore size (M) and number of channels of the spiral (C) and their interactions on A) the turbidity (TU) and B) 
the precipitate weight ratio (PWR). P-values are represented by black bars (primary y-axis). The dotted line represents a p-
value of 0,05 (95 % significance level). The magnitude of the effects are represented by grey bars and shown on the secondary 
y-axis. 

Finally, a last parameter evaluated throughout the experiments is the PWR, referring to the water 

insoluble solids comprised of intact cells, broken cell walls and middle lamella compounds. This 

parameter has been found to correlate to the physical stability of the juice, where a higher PWR leads 

to less sedimentation and serum separation. Hence, the PWR is an important quality parameter for 

tomato-derived products (Kaur et al., 2007). Experimental values varied between 20 % and 33 %, which 

are higher or at least within the same range compared to the values observed by Anthon & Barrett 

A B 
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(2010). Figure 2.5B shows that the PWR is significantly influenced by M, C and V. As can be expected, 

the larger the filter pore size, the more particles are found in the juice. The number of channels exerts 

a negative influence on PWR. In other words, the more channels present to compress the tomato 

mash, the more difficult particles are released to migrate to the juice fraction. Lastly, a significantly 

positive effect is found for the effect of V on PWR. Thus the higher the vacuum, the larger the driving 

force for juice extraction and the more particles are drawn into the liquid fraction.  

By means of the experimental screening experiment, it thus became clear that the studied parameters 

all show a JY optimum for a 4-C (45°) spiral operating with a large S, V and M, corresponding to 

experiment 16 (Table 2.1). These conditions were therefore chosen for the determination of the AOC 

of the end products.  

2.4.2 Antioxidative capacity of the end products resulting from the first solid-

liquid separation without thermal pretreatment 

The low-oxygen spiral-filter press has already shown to impede oxidative degradation in the 

production of apple and pear juice, which is in part allocated to its extraction under low oxygen levels 

(De Paepe et al., 2015a; 2015b). In order to evaluate the process impact of the spiral-filter press during 

tomato juice production, samples resulting from the optimized first solid-liquid separation (exp. 16, 

Table 2.1) were analyzed for their antioxidative capacity. The AOCs of the end products (JFO and PR) 

were therefore compared to the AOC of the input product (MT), in order to calculate the spiral-filter 

press process impact on the AOC. The ORAC-values of the three fractions resulting from the optimized 

solid-liquid separation are depicted on a fresh weight basis in Figure 2.6. Here, it is shown that there 

was no significant decrease in AOC in juice compared to fresh fruit. Furthermore, the PR was 

characterized by a significantly (p < 0.001) higher AOC compared to the other two fractions.  

Figure 2.6 ORAC-values (µmol TE/100g FW) of the different fractions obtained after solid-liquid separation (n= 3), i.e. mashed 

tomato (MT), juce filtered once (JFO) and press residue (PR). 

b 

a 
a 
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This is confirmed in Toor and Savage (2005) who separated tomatoes in different fractions (skin, pulp 

and seeds) and subsequently determined their individual AOC. The ORAC-values of MT were in the 

same order of magnitude compared to reported ORAC-values for raw tomatoes. The USDA database 

reports ORAC-values for raw tomato ranging between 216 and 457 µmol TE.100 g-1 FW (Haytowitz & 

Bhagwat, 2010). Also the results of Ou et al. (2002) and Zhou & Yu (2006) are within the same range. 

The large fluctuations in the reported ORAC-values can be ascribed to a dependency on variety, 

ripening stage, location and harvesting season (Ou et al., 2002). This stresses the importance of 

evaluating AOCs within the process relative to the input product, when evaluating process impact. The 

relative change of the AOC throughout processing was calculated by means of the retention efficiency 

(% R). An % R-value of 102 % ± 12 % showed that the ORAC-values of JFO and PR, expressed on the 

basis of their actual weight fraction, resulted in the ORAC-value of MT. This implies a conservation of 

the AOC which could be related to the use of the low-oxygen spiral-filter press, preventing oxidative 

degradation. Furthermore, an insight was also gained in the distribution of the AOC within the three 

products. Despite its small volume (17.5 %), the press residue was found to contribute 28 % ± 5 % to 

the total ORAC-value of the tomato. This shows the potential value of this so-called waste fraction and 

confirms the relevance of designing a biorefinery system where these fractions can also be valorized.  

These results however have to be interpreted carefully as the AOC does not reflect individual 

antioxidative compound shifts (Martínez-Valverde et al., 2002). Therefore, in order to gain more 

insight in the impact of the spiral-filter press on the chemical composition of the end products, a 

multifaceted approach is necessary where additional investigations of the individual antioxidative 

compounds are performed. Therefore, detailed investigation of the obtained fractions using LC-MS 

analysis for determination of phenolics and carotenoids and titrimetric measurements for 

determination of vitamin C are investigated in Chapter 4. 

2.4.3 Optimization of the pretreatment  

The best case in the previous optimization resulted in a 82.5 % juice yield and a press residue with a 

moisture content of 90.1 % ± 0.17 %. However, it was visually determined that the solid-liquid 

separation was not completely carried out as the press residue still contained tomato flesh and juice. 

An inherent consequence from this incomplete solid-liquid separation, was a press residue that was 

not separable in a homogeneous seeds and peel fraction. This was due to the tomato flesh fraction 

that interfered with a flotation-sedimentation process which was used to separate seeds and peel. As 

a result, biobased product development starting from pure seeds and/or peel fractions was hindered. 

The seeds have the potential to produce vegetable oil as an ingredient in food or cosmetic products 
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whereas the peels can serve as a feedstock for carotenoid extraction (Alvarez & Rodríguez, 2000; Eller 

et al., 2010; Schieber et al., 2001). This led to the conclusion that a thermal pretreatment was 

necessary, as often applied in industry (Hayes et al., 1998). 

In the first explorative thermal pretreatment experiment, three temperatures (40 °C, 60 °C and 90 °C) 

were tested for 3 and 6 minutes (results not shown). The two highest temperatures are often applied 

in industrial tomato processing using cold and hot break (Goodman et al., 2002). However, a lower 

temperature (40°C) was also included in the experiment as it is known that elevated temperatures can 

alter the flavor, color and nutritional quality of the juice (Min & Zhang, 2003; Sánchez-Moreno et al., 

2006). The choice of the spiral of the following solid-liquid separation was reconsidered since the 

consistency of the input material changed compared to the non-thermally treated tomato mash. 

Explorative experiments showed that a 7-C spiral performed better on thermally pretreated material. 

Solid-liquid separation (7-C (45°)) of these thermally pretreated mashes all resulted in juice yields 

significantly larger than 82.5 %, indicating that the introduction of a thermal treatment indeed led to 

a significant increase in the extent of solid-liquid separation. No significant differences were however 

observed in the JY and MCPR between the different combinations. Furthermore, an ad hoc sensory 

evaluation showed that the juices smelled and tasted more “cooked” at higher temperatures. 

Therefore, an additional experiment was conducted at two lower temperatures (40 °C and 50 °C) for 

3, 6 and 9 minutes, in order to investigate if a longer treatment could lead to a higher extent of solid-

liquid separation. The resulting JY and MCPR are shown in Table 2.3. Here, also the conditions leading 

to the highest yield in the non-thermally treated experiments were added as reference. 

Table 2.3 Time and temperature of the applied thermal pretreatments and the corresponding juice yields (JY) and moisture 
contents of the press residue (MCPR) using a 7-C (45°) spiral. 

Time (minutes) Temperature (°C) JY (%) MCPR (%) 

0 0 82.5 90.1 

3 40 98.2 70.5 

6 40 98.7 62.5 

9 40 98.7 60.4 

3 50 98.5 61.0 

6 50 98.5 69.5 

9 50 98.7 62.8 

 

From this experiment, it can be concluded that applying a thermal treatment led to a significant 

increase in JY and a significant decrease in MC (p < 0.001). However between the thermal treatments, 

no significant effect of temperature nor time was found. This implies that applying a heat treatment is 

sufficient to detach the peel from the flesh, independent of the duration or the temperature of the 



Chapter 2 

58 
 

heat treatment. Consequently, the minimum temperature-duration combination (40 °C – 3 min) was 

selected in order to affect the quality of the tomato product as little as possible, yet obtaining a 

thorough solid-liquid separation. However, due to the larger compression forces in the 7-C spiral, a 

compression build-up was often encountered, due to an increasingly dry press residue, which resulted 

in system blocking. Therefore, the 4-C spiral with inclination angle of 38° was selected for further 

operation. Although resulting in a slightly lower juice yield (97.0 %), it was able to work on a continuous 

basis. The choice of 38° instead of 45°, as optimized in the first-solid-liquid separation, can be explained 

by the fact that the more liquid products are less susceptible to compression, which consequently 

implies that an increased steepness of the channels (45° versus 38°) does not generate any extra 

driving force. What is more, less steep channels lead to an increased residence time of the tomato 

mash in the extraction cell, thereby improving the juice extraction (De Paepe et al., 2015a).  

Using the proposed thermal pretreatment enabled the production of a press residue that consisted 

solely out of peel and seeds, which allowed their further separation and valorization (Figure 2.7) 

 

Figure 2.7 Press residue obtained from the optimized spiral-filter process with thermal pretreatment. 

2.4.4 Optimization of the second solid-liquid separation  

In order to investigate the flexibility of the spiral-filter press, further refinement of the tomato was 

investigated by stripping the tomato solids (TS) fraction from the viscous JFO leading to a less viscous 

JFT and a TS fraction with a firm puree texture. The input stream JFO was more liquid compared to 

both input streams MT and TT from the previous experiments. In general, thermally treated mashes 

are difficult to process using conventional pressing technologies as they tend to slide through the press 

cloth or block the pores leading to very low juice yields, often less than 50 % (Beveridge & Rao, 1997). 

The spiral-filter press is however able to process these liquid streams and based on the conclusions 

drawn above on the low compressibility of the liquid biomass, a 3-C spiral with small inclination angle 

(32°) was used for optimal yield. Subsequently, vacuum and filter pore size were optimized. In the first 

experiment a filter pore size of 60 µm was used and three different vacuums were tested (0 Hz, 10 Hz 
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and 50 Hz). Here, it was concluded that a higher vacuum led to less TS fraction with a more solid 

structure. In the extreme condition of 50 Hz vacuum, even the whole input stream was pulled through 

the filter, exiting the system at the juice side. The vacuum thus exerted a too large extraction force. 

When applying no vacuum, the whole input stream tended to exit the system at the press residue side. 

A smaller vacuum (10 Hz) therefore appeared to be optimal. Finally, two filter sizes of 80 µm and 60 µm 

were compared. In the first case, almost no TS were extracted from JFO (TS yield 4.2 % ± 0.9 %). Due 

to the larger pore size, more small particles that otherwise would end up in the TS fraction, passed 

through the filter and ended up in the JFT fraction. Using the 60 µm filter led to more TS mass (TS yield 

8.9 % ± 0.9 %). On the one hand, this could be allocated to the fraction of small particles (theoretically 

between 60 µm and 80 µm) that were not allowed to pass the 60 µm filter and thus ended up in the 

TS fraction. On the other hand, it could be caused by a larger fraction of tomato juice, that could 

theoretically pass the filter pores, but of which the flow was obstructed by the small pore size. The 

choice of this filter should be made in function of the aimed application: smaller amounts of less liquid 

TS could be obtained using a 80 µm filter, whereas a 60 µm filter could generate a larger TS-mass with 

a slightly smaller dry weight content. Besides being flexible towards the biomass input, the spiral-filter 

press is thus also able to produce a variety of textures in its end products (juice, smoothie, puree). 
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2.5 Conclusion 

The spiral-filter press is proposed in the context of food losses as a promising technology, able to 

adequately refine a variety of biomass matrices, facilitating the valorization of all the obtained 

fractions. Using tomato as a model crop, a robust refinery process was developed, consisting of a light 

thermal pretreatment (40 °C, 3 minutes) followed by a spiral-filter pressing which proves to be flexible 

towards input biomass as well as adjustable in function of the desired generated end product (juice, 

smoothie, puree). Generally applicable insights in the working of the spiral-filter press were obtained 

by elucidating the effects of different process parameters on the juice yield and juice quality 

parameters (turbidity, precipitate weight ratio). These results are crucial for further product 

formulation and processing of biomass with a similar soft texture, and can be easily scaled to larger 

systems by increasing the feed pump frequency or parallel placement of identical extraction cells. 

Furthermore, the research suggests that the spiral-filter press is a qualitative technique, able to 

conserve the antioxidative potential of the raw tomato (102 % ± 12 %) during pressing. 
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Chapter 3: Using a novel spiral-filter press technology to biorefine 

horticultural byproducts: the case of tomato. Part II: evaluation of 

the process impact on the physical tomato juice quality 

Redrafted from 

Kips, L., De Paepe, D., Bernaert, N., Van Weyenberg, S., Van Pamel, E., De Loose, M., Raes, K. & Van 
Droogenbroeck, B. (2016). Using a novel spiral-filter press technology to biorefine horticultural by-
products: the case of tomato. Part II: evaluation of the process impact on the physical tomato juice 
quality. Innovative Food Science and Emerging Technologies, 38, 213 – 220. 

3.1 Abstract  

The spiral-filter press offers potential to minimize food losses by allowing the biorefinery of a multitude 

of food waste matrices into qualitative, healthy food products. This chapter focuses on the effect of 

different unit operations on the physical juice quality, which was illustrated for tomato biomass. Using 

optimized process conditions (derived from Chapter 2), a physically and microbiologically stable juice 

with a high juice yield (97.9 % ± 0.2 %) could be obtained. Thereby, the intense red color of the tomato 

was preserved throughout the process. Furthermore, by varying the filtration and pasteurization 

conditions juices of different turbidity and stability were produced, increasing insight in the processes 

underlying these phenomena. However, using exactly the same process conditions on another tomato 

cultivar generated an unstable juice, subject to sedimentation. This indicates that changing process 

parameters alone was not sufficient to control all the parameters that affect the juice stability and that 

more research is necessary to fully elucidate the phenomenon. 
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3.2 Introduction 

Currently, 40 – 60 % of the biomass in the fruit and vegetable processing sector is lost at different 

stages of the supply chain throughout the world, leading to large losses of healthy and potentially high-

value biomass (Gustavsson et al., 2011). Consequently, valorization of this food waste is listed high on 

the European agenda which translates into novel legislation and many related project calls expressing 

the need for technologies that allow stabilization and valorization of food waste (European 

Commission, 2013; 2015a; 2015b). Biorefining fruit and vegetable byproducts is a promising option 

that has the potential to result in different fractions with a high added value.  

In Chapter 2, such a biorefinery process was developed and optimized for surplus tomato fruit, which 

served as a model crop. The process consisted of separating the solid content from the liquid content 

using a novel low-oxygen spiral-filter press. Application of this novel technology on a soft vegetable 

like tomato was described there for the first time. Process parameters were optimized in order to 

obtain a robust process, characterized by a large juice yield and a press residue separable in pure seeds 

and peel, suitable for further valorization (Figure 3.1).  

Chapter 3 elaborates further on the optimized biorefinery process by studying the effect of adjustable 

process parameters on juice stability and related quality attributes. Due to the combination of 

compression forces and underpressure in the extraction cell, juices produced by the spiral-filter press 

are particularly turbid (De Paepe et al., 2015a; 2015b). This cloudiness is caused by a dispersion of 

insoluble macromolecules (e.g. pectins, proteins) in a serum, containing water-soluble components 

(Oszmianski et al., 2009). High intake of this fibrous fraction is associated with numerous health 

benefits, including reduced risk of coronary heart disease, diabetes, obesity and some forms of cancer 

(Elleuch et al., 2011). The production of cloudy, turbid juices by means of the spiral-filter press thus 

contributes to maintaining maximum health benefits from the unconsumed fruits or vegetables. 

However, producing a cloudy juice that is also physically stable remains difficult and is of particular 

importance in the food juice industry (Laratta et al., 1995). Often sedimentation of the fibrous fraction 

is provoked, leading to juices that are visually less attractive to the consumer (Sila et al., 2009). This 

juice stability is strongly influenced by the structural characteristics of the suspension (particle 

concentration, particle size and particle morphology), which are in their turn affected by the feedstock 

used and the processing operations (e.g. heating, mixing, sieving) (Moelants et al., 2014). 

Understanding the process impact on the structure of the tissue is thus crucial to control the stability 

of the juices produced by the spiral-filter press and to enable targeted product design. Therefore, the 

particle size distribution was investigated and followed through the different production steps as well 

as the related physical attributes, such as juice stability, turbidity and color.  
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Although process-induced changes in juice viscosity and rheology have been widely studied, there are 

only a few studies in the literature dealing with the stability of tomato juice as affected by processing, 

and none covering the novel spiral-filter press. Furthermore, the link with structural characteristics is 

often absent. This chapter provides knowledge for a better understanding of the structure and stability 

of the resulting juices and how these can be influenced by tomato cultivar and processing settings. 

Furthermore, insights gained in the case of tomato contribute to the necessary knowledge to process 

similar biomass feedstocks into stable juices by means of the spiral-filter press. 
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3.3 Materials and methods 

3.3.1 Description of the feedstock material  

Tomatoes at commercial maturity were purchased from a Belgian produce auction (Bel’Orta, Sint-

Katelijne-Waver, Belgium). The experiments were conducted with two different cultivars: Growdena 

and Merlice, a flesh type tomato and a truss type tomato, respectively. For each cultivar, 200 kg was 

used. Tomatoes were stored for four days at 4 °C before conducting the experiments. 

3.3.2 Pilot-scale machinery 

The biorefinery process consists of a sequence of pilot-scale batch processes. The experimental set-up 

is presented in Figure 3.1 and will be described stepwise below.  

 

Figure 3.1 Experimental setup of the biorefinery process investigated in Chapter 3 with the unit processes represented by 
white boxes and the resulting products by grey boxes. 

After manually removing the green stems, the tomato batches were washed in a water bath filled with 

cold tap water until all tomatoes were submerged. Subsequently, they were transported (20 kg.h-1 ) by 

a conveyor into a rasp mill (KWEM 1000, Kreuzmayr, Wallem, Germany). The mashed tomatoes (MT) 

were collected in plastic jars. These jars (35 kg.batch-1) were transferred batchwise to a 

mix/homogenize/emulgate system (UMSK 60 E, Stephan Food Service Equipment GmbH, Hamelin, 

Germany) where an additional heated milling was conducted under vacuum (3 min, 40 °C). The 

parameters used (batch size, temperature, holding time) were optimized in Chapter 2, in function of 

an optimal juice yield in the subsequent solid-liquid separation, with minimal energy input.  
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An innovative low-oxygen spiral-filter press (VaculIQ 1000, VaculIQ, Hamminkeln, Germany) was used 

to perform the solid-liquid separation of the thermally treated tomato fraction (TT) into a juice fraction 

(juice filtered once - JFO) and a press residue (PR). The process parameters are given in Table 3.1. 

Briefly, the TT was collected in a buffer tank, from where it was transferred to the extraction cell of the 

spiral-filter press by means of a feed pump. In the extraction cell, a plastic spiral rotates in a cylindrical 

filter element, carrying the mashed tomato biomass upwards. Due to the combination of compression 

forces exerted by both feed pump and spiral rotation and an underpressure acting on the mash 

through the filter element, the mash is dewatered resulting in two fractions leaving the system: JFO 

and PR. This solid-liquid separation will be further denoted as the first filtration. Part of the obtained 

juice fraction (JFO) was subsequently processed a second time by the spiral-filter press using adapted 

process parameters (Table 3.1) in order to separate the tomato solids (TS) from the remaining juice 

fraction (juice filtered twice - JFT). The parameters of both solid-liquid separations have been 

optimized in Chapter 2.  

Table 3.1 Spiral-filter press parameters used for the experiments in Chapter 3. 

 First filtration Second filtration 

Filter size 300 µm 60 µm 

Spiral (channels - inclination angle) #4 – 38 ° #3 – 32° 

Feed pump frequency 20 Hz 15 Hz 

Spiral frequency 30 Hz 40 Hz 

Vacuum pump frequency 50 Hz 10 Hz 

 

After production, both JFO and JFT were transferred immediately to a multipurpose UHT pilot 

equipment (APV SPP, SPX Corporation, Gatwick, United Kingdom) where they were subjected to a 

pasteurization treatment at 90 °C, applied for 30 s (mild heat pasteurization) or for 60 s (high heat 

pasteurization) as proposed by Odriozola-Serrano et al. (2009). These pasteurized juices will be further 

denoted as JFO30, JFO60, JFT30 and JFT60. Afterwards, they were cooled to 4 °C and cold-filled into 

bag-in-box aluminum laminate aseptic bags (Rapak Bag-in-Box, 2 L). 

3.3.3 Characterization of the semi-finished and finished products 

3.3.3.1 Sampling  

After each well-defined process step, samples were taken to investigate the process impact on multiple 

juice quality parameters (grey boxes in Figure 3.1). The sampling during the solid-liquid separation 

process was performed during the steady-state phase. Samples were taken for the measurement of 
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pH, moisture content, soluble solids content, color, turbidity, particle size distribution and physical 

stability. Furthermore, pasteurized juice samples were stored in fivefold at three different 

temperatures (4 °C, 20 °C and 30 °C) for a microbial analysis at 0 days, 15 days, 1 month, 4 months and 

6 months. 

3.3.3.2 Juice yield 

The juice yield of the solid-liquid separation process (JY) was determined by recording mass balances 

of the resulting fractions during the steady-state phase of the process: 𝐽𝑌 [%] =
𝑀𝑗

𝑀𝑗+𝑀𝑝
 𝑥 100 % , 

with Mj the net mass of the liquid fraction (JFO or JFT) and Mp the net mass of the solid fraction (PR or 

TF). Masses were recorded in fourfold both for the first filtration (JFO and PR) and for the second 

filtration (JFT and TF).  

3.3.3.3 Tomato feedstock characteristics and tomato juice quality parameters 

A texture analyzer equipped with a cylindrical 3.5 mm probe was used to measure the tomato firmness 

by means of recording the force necessary to penetrate the tomato for 3 cm (Personal communication, 

Flanders Centre of Postharvest Technology). This was performed on 20 whole tomatoes of each 

cultivar, randomly selected and measured at three points along the diameter.  

Color was measured spectrophotometrically (CM-5 spectrophotometer, Konica Minolta optics inc, 

Tokyo, Japan) reporting values of a CIEL*a*b* color system (illuminant D65, 10° standard observer, 

45°/0° geometry, reflection modus, automatic white calibration using an internal white calibration 

plate). The color measurements of the intact feedstock tomatoes were conducted for each cultivar on 

20 whole tomatoes at three points along the diameter. The color measurements of the liquid samples 

were conducted in triplicate and each sample was measured three times. From the standard L*, a* 

and b* parameters, a total color difference (∆E) between different samples could be calculated:  

∆𝐸 = √∆𝐿∗2 + ∆𝑎∗2 + ∆𝑏∗2 

The pH was measured with a pH-meter (S220 SevenCompactTM, Mettler Toledo, Schwerzenbach, 

Switserland) in triplicate. The moisture content (MC) was determined by means of a halogen moisture 

analyzer (HB43-S, Mettler Toledo, Schwerzenbach, Switserland) in duplicate. The amount of total solids 

(TS) can be calculated from the moisture content: 𝑇𝑆 = 100 − 𝑀𝐶 (Barrett et al., 1998). Soluble solids 

content (SS) was measured in triplicate by means of digital refractometry and expressed as °BX at 20 °C 

(RM 40, Mettler-Toledo, Greifensee, Switserland). The amount of water insoluble solids (WIS) can be 

calculated by subtracting the soluble solids content from the total solids content 𝑊𝐼𝑆 = 𝑇𝑆 – SS 

(Barrett et al., 1998).  
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Turbidity (TU) was measured nephalometrically using a light scattering photometer (Micro1000 

Laboratory Turbidity meter, HF scientific, Florida, USA). The turbidity measurements were only 

performed on the pasteurized juices and were repeated three times on one homogeneous sample. 

The particle size distribution (PSD) was analyzed by using a Malvern Mastersizer (Model 2000, Malvern 

Instruments Limited, Worcestershire, U.K.). The values for particle refractive index and particle 

absorption index were respectively 1.52 and 0.10 and an obscuration index around 8 % was pursued. 

The recorded parameters were the equivalent diameters d(0.1), d(0.5) and d(0.9) as well as the 

volume-based mean diameter d(4.3) and the area-based mean diameter d(3.2). Particle size analysis 

was performed in duplicate on all juice and tomato solids samples. 

Stability towards settling was measured using the Turbiscan LAB (Formulaction, L’union, France). 

Triplicates were analyzed over a period of 170 days. A Turbiscan Stability Index (TSI) was calculated 

using the Turbiscan software. This TSI-parameter evaluates the stability of dispersions by measuring 

variations in light intensity of a sample from the bottom to the top and is calculated as 𝑇𝑆𝐼 =

 ∑ |𝑠𝑐𝑎𝑛𝑟𝑒𝑓(ℎ𝑗) − 𝑠𝑐𝑎𝑛𝑖(ℎ𝑗)|𝑗  where scanref and scani are the initial backscattering value and the 

backscattering value at a given time respectively and hj is a given height in the measuring cell. 

3.3.4 Microbial juice parameters 

Total colony count at 30 °C was determined by a surface plating technique in accordance with the ISO 

4833 method, carried out in a BELAC-certified laboratory. This was performed for the juices after 0 

days, 15 days, 1 month, 4 months and 6 months of storage at different temperatures. Additionally, 

after 4 and 6 months, also yeast and mold counts were performed at 25°C conform the ISO 7954 

method. 

3.3.5 Statistical analysis 

Statistical analysis was carried out using SPSS Statistics 22. Treatments were compared using one-way 

analysis of variance (ANOVA) where appropriate two and three way interactions were used, followed 

by a Scheffé post-hoc test (significance level p < 0.05). The dependent variables were firmness, color 

(a*, b*, L* and a*/b*), JY, TU, particle size (d(0.1), d(0.5), d(0.9) and d(4.3)), pH, MC and BX. For the 

∆E-values, a one-sampled t-test was performed. Finally a nonlinear regression procedure (R 3.0.1, T 

Foundation, Auckland, New Zealand) was used to describe the TSI-data: 𝑇𝑆𝐼 = 𝑇𝑆𝐼𝑒𝑞 + (𝑇𝑆𝐼𝑖𝑛𝑖𝑡 −

𝑇𝑆𝐼𝑒𝑞). 𝑒−𝑘.𝑡 (Kubo et al., 2013) with estimated model parameters: TSIeq, the equilibrium TSI-value, 

TSIinit, the initial TSI-value and k, the reaction rate. Sigmaplot 12.5 was used to visualize the data.  
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3.4 Results  

3.4.1 Physical characterization of the feedstock  

The two used tomato cultivars belonged to the same caliber class (diameter 70-82 mm). The firmness 

of Growdena (flesh) and Merlice (truss) tomatoes did not differ significantly (6.95 ± 1.11 N). Growdena 

tomatoes were significantly lighter (p < 0.001) and less red (p < 0.001) compared to the batch of 

Merlice tomatoes, while no significant differences in b*-value were recorded (Table 3.2).  

3.4.2 Juice yield and throughput 

The JY in the first filtration was 97.9 ± 0.2 % and no significant differences were observed between 

cultivars. The JY in the second filtration was significantly lower for both cultivars compared to the first 

filtration, i.e. 94.7 ± 0.3 % for Growdena and 93.1 ± 0.7 % for Merlice. The corresponding juice 

throughput was 550 L.h-1 for the first filtration and 375 L.h-1 for the second filtration. 

3.4.3 Juice quality parameters 

3.4.3.1 Color  

Table 3.2 shows the mean L*, a* and b* values of each sample in the production process for both 

cultivars. Both Growdena and Merlice tomatoes underwent a significant increase in L* after milling 

and a significantly larger decrease in L* after thermal treatment. No additional significant differences 

in L* were observed further on. Milling led to a significant increase in a* and a significant decrease in 

b* of the samples, however throughout further processing (thermal treatment, filtration, 

pasteurization) both a* and b* remained constant. The overall redness, represented by the ratio a*/b* 

followed the same trend (data not shown).  

In Figure 3.2 , ∆E relative to the previous process step is shown. The data clearly show that the thermal 

treatment had the largest impact on the tomato color. In addition, the color of the tomato solids 

fraction obtained after the second filtration differed significantly from the juice color. The ∆E-value for 

both filtrations was approximately 3 for both cultivars, indicating a visually perceptible color difference 

upon filtration (Vervoort et al., 2012). The subsequent pasteurization processes were all characterized 

by a ∆E-value smaller than 3. 
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Table 3.2 Color parameters of the different samples, i.e. mashed tomato (MT), thermally treated tomato (TT), juice filtered 
once (JFO), juice filtered once and pasteurized for 30 sec (JFO30), juice filtered once and pasteurized for 60 sec (JFO60), juice 
filtered twice (JFT), juice filtered twice and pasteurized for 30 sec (JFT30), juice filtered twice and pasteurized for 60 sec 
(JFT60) and tomato solids (TS). Different letters in the same column for each color parameter indicate statistically significant 
differences (p<0.001). 

Processing 

condition 

Growdena Merlice 

L* a* b* L* a* b* 

Feedstock 43 ± 2 c 18 ± 4 a 30 ± 4 b 37 ± 2 c 24 ± 2 a 29 ± 2 b 

MT 48 ± 0.3 d 24 ± 0.4 b 22 ± 1 a 44 ± 2 d 30 ± 1 c 25 ± 1 a 

TT 36 ± 0.2 b 22 ± 0.3 a,b 20 ± 1 a 32 ± 1 b 28 ± 1 b,c 23 ± 2 a 

JFO 34 ± 1 a,b 22 ± 1 a,b 19 ± 1 a 30 ± 0.2 a,b 28 ± 1 b,c 23 ± 1 a 

JFO30 37 ± 1 b 21 ± 1 a,b 18 ± 1 a 31 ± 1 a,b 27 ± 1 b,c 23 ± 1 a 

JFO60 33 ± 0.2 a 22 ± 0.2 a,b 21 ± 0.4 a 30 ± 0.2 a,b 27 ± 0.1 b,c 24 ± 0.3 a 

JFT 32 ± 0.1 a 22 ± 0.1 a,b 18 ± 0.1 a 28 ± 0.1 a 27 ± 0.1 b,c 23 ± 0.2 a 

JFT30 33 ± 1 a 21 ± 0.3 a,b 19 ± 1 a 29 ± 0.2 a,b 27 ± 0.3 b,c 24 ± 0.4 a 

JFT60 32 ± 0.3 a 21 ± 0.3 a,b 20 ± 0.2 a 29 ± 0.3 a,b 27 ± 0.4 b,c 25 ± 0.4 a 

TS 46 ± 0.1 c,d 20 ± 0.1 a,b 19 ± 0.1 a 41 ± 0.2 d 26 ± 0.3 a,b 22 ± 0.2 a 

 

 

Figure 3.2 Total color difference (∆E) encountered through the production process, calculated relatively to the previous 
process step. The abbreviations JFO, JFT and TS denote juice filtered once, juice filtered twice and tomato solids respectively. 
The horizontal line (∆E=3) represents a color difference, perceptible by most people (Vervoort et al., 2012) and the asteriscs 
refer to values significantly smaller than 3. Vertical error bars represent the standard deviation. 

3.4.3.2 pH and total soluble solids  

The pH of the obtained tomato juices was 4.4 ± 0.03 and was not significantly affected by cultivar nor 

processing conditions (results not shown).  
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The SS-values of all the analyzed samples ranged between 3.4 °BX and 4.1 °BX (Table 3.3). The largest 

differences in soluble solids occurred between the cultivars, where the SS-values of the Merlice 

tomatoes were all significantly lower compared to Growdena tomatoes, ranging from 3.4 to 3.5 °BX 

and from 3.8 to 4.1°BX respectively. No consistent significant effects of filtration nor pasteurization 

duration were visible throughout the cultivars.  

Table 3.3 Moisture content (MC), total & soluble solids (TS and SS, respectively) and water insoluble solids (WIS) of the 
different samples, i.e. juice filtered once (JFO), juice filtered once and pasteurized for 30 sec (JFO30), juice filtered once and 
pasteurized for 60 sec (JFO60), juice filtered twice (JFT), juice filtered twice and pasteurized for 30 sec (JFT30) and juice filtered 
twice and pasteurized for 60 sec (JFT60). 

 Growdena Merlice 

Processing 

condition 
MC TS SS (BX) WIS MC TS SS (BX) WIS 

JFO 95 ± 0.1 4.5 ± 0.1 4.1 ± 0.04 0.40 ± 0.04 96 ± 0.01 3.9 ± 0.01 3.5 ± 0.01 0.40 ±0.01 

JFO30 96 ± 0.01 4.5 ± 0.01 4.0 ± 0.01 0.44 ± 0.01 96 ± 0.03 3.8 ± 0.03 3.5 ± 0.05 0.33 ± 0.05 

JFO60 96 ± 0.1 4.4 ± 0.1 4.0 ± 0.01 0.42 ± 0.01 96 ± 0.1 3.8 ± 0.1 3.5 ± 0.01 0.29 ± 0.01 

JFT 96 ± 0.01 4.0 ± 0.01 4.0 ± 0.01 0.03 ± 0.01 97 ± 0.01 3.5 ± 0.01 3.5 ± 0.01 0.07 ± 0.01 

JFT30 96 ± 0.1 4.0 ± 0.1 3.9 ± 0.01 0.10 ± 0.01 97 ± 0.1 3.5 ± 0.1 3.4 ± 0.01 0.08 ± 0.01 

JFT60 96 ± 0.01 3.9 ± 0.01 3.8 ± 0.01 0.10 ± 0.01 97 ± 0.1 3.5 ± 0.1 3.4 ± 0.01 0.08 ± 0.01 

 

3.4.3.3 Turbidity 

The TU-values of JFO ranged from 7,160 to 8,500 NTU depending on the cultivar and the pasteurization 

condition (data not shown). Increasing pasteurization time resulted in a significantly (p < 0.001) lower 

TU in both cultivars (14 % reduction in Growdena versus 5 % reduction in Merlice). JFT was 

characterized by a significantly (p < 0.001) lower TU compared with JFO, with values between 5,200 

and 5,400 NTU. No consistent effects of pasteurization duration nor cultivar were observed.  

3.4.3.4 Particle size distribution 

JFO was filtered a second time resulting in JFT and TS. In the PSD of these three fractions (Figure 3.3A), 

it is clear that the majority of the particles larger than 200 µm (intersection of both curves) moved to 

the TF fraction, where the JFT experienced an enrichment of smaller particles (< 200 µm). This is also 

visible in the particle diameters depicted in Table 3.4, which were reduced upon filtration. Moreover, 

the reduction after filtration in d(3.2) (85 % – 90 %) was larger compared to the reduction in d(4.3) 

(71 % – 77 %), indicating that the filtration predominantly affected the smaller suspended particles. 

After pasteurization (not pasteurized vs. 30 s/60 s), the particle size of both tomato juices, irrespective 

of the filtration condition, significantly decreased, indicating that more small(er) particles were present 

and the amount of modus-sized particles was reduced (Figure 3.3B and C). For the particles in the outer 
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Figure 3.3 Particle size distribution of Growdena tomato juice depicting (A) the effect of solid-liquid separation of juice filtered 
once (JFO) into juice filtered twice (JFT) and tomato solids (TS), (B) the effect of pasteurization duration (30s and 60s) on JFO 
and (C) the effect of pasteurization duration (30 s and 60 s) on JFT. 

right hand side of the distribution (d(0.9)), this trend is not visible for the JFO and even reversed for 

the JFT. Here, the pasteurized juices have a PSD shifted to larger particle sizes. Combined with the 

increase in small particles, this is translated in a broader PSD of pasteurized JFT. D(4.3) showed no 

distinct trend as the opposing trends visible in d(0.5) and d(0.9) are combined. The effect of a longer 

pasteurization duration (30 s vs. 60 s) is limited and differs between both filtration conditions. The 

abovementioned trends hold for the two tested cultivars, however their specific PSD’s differ. In case 
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of JFO, the Merlice juices are characterized by less small particles (larger d(0.1) and d(3.2)) and less 

large particles (smaller d(0.9) and d(4.3)) indicating a more narrow distribution compared to the 

Growdena juice (Table 3.4). The PSD of JFT showed larger differences between cultivars compared to 

JFO, where all particle sizes in Merlice JFT were shifted towards smaller values.  

Table 3.4 Particle size distribution (µm) in function of juice filtered once (JFO), juice filtered once and pasteurized for 30 sec 
(JFO30), juice filtered once and pasteurized for 60 sec (JFO60), juice filtered twice (JFT), juice filtered twice and pasteurized 
for 30 sec (JFT30), juice filtered twice and pasteurized for 60 sec (JFT60) and tomato solids (TF). The parameters d(0.1), d(0.5) 
and d(0.9) are the equivalent particle diameters for which respectively 10 %, 50 % and 90 % of the present particles are 
smaller. D(3.2) and d(4.3) are the surface weighed and the volume weighed particle diameter, respectively. Different letters 
in the same column of each particle size parameter indicate significant differences (p < 0.01). 

 Growdena Merlice 

Processing 

 condition 
d (0.1) d (0.5) d (0.9) d (3.2) d (4.3) d (0.1) d (0.5) d (0.9) d (3.2) d (4.3) 

JFO 234 ± 3 e 507 ± 3 e 890 ± 10 d,e 323 ± 5 e 535 ± 4 c 240 ± 2 e 487 ± 3e 854 ± 9 d 324 ± 5 e 517 ± 4 d 

JFO30 210 ± 1 c 493 ± 2 c 874 ± 2 c 253 ± 1 c 519 ± 1b 222 ± 3 d 478 ± 3 d 845 ± 6 c,d 305 ± 2 d 507 ± 3 c 

JFO60 214 ± 2 d 497 ± 3 d 882 ± 7 c,d 263 ± 5 d 524 ± 3 b 218 ± 3 c 473 ± 3 c 836 ± 5 c 280 ± 7 c 501 ± 3 c 

JFT 29.8 ± 0.4 b 131 ± 1 b 299 ± 5 a 47.7 ± 0.6 b 153 ± 2 a 16.1 ± 0.4 b 112 ± 1 b 232 ± 10a 32.7 ± 1.0 b 121 ± 3 b 

JFT30 10.5 ± 0.3 a 123 ± 1 a 332 ± 6 b 28.6 ± 0.4 a 152 ± 2 a 6.7 ± 0.1 a 89.2 ± 0.5 a 238 ± 4 a,b 19.1 ± 0.3 a 108 ± 2 a 

JFT60 10.3 ± 0.1 a 120 ± 1 a 343 ± 9 b 30.5 ± 0.2a 154 ± 3 a 7.2 ± 0.1 a 88.3 ± 0.8 a 250 ± 6 b 20.0 ± 0.3 a 113 ± 3 a 

TF 275 ± 2 f 527 ± 2 f 903 ± 8 e 397 ± 3 f 557 ± 3d 243 ± 1 e 494 ± 1 f 860 ± 6 d 342 ± 1f 523 ± 2 d 

 

3.4.3.5 Stability towards settling 

A graphical representation of the change in TSI with time at different processing conditions is 

illustrated in Figure 3.4. In Growdena JFO, there was no significant increase in TSI over 170 days for 

both pasteurization conditions, which is also visualized in low reaction rate values (Table 3.5). All other 

juices showed a similar TSI-kinetic profile with a distinctly steep period in the first 50 days, followed by 

a less steep or constant rate period leading to an equilibrium TSI-value. However, both the slope of the 

curve and the TSIeq-value differed in function of cultivar and processing condition. In JFT’s, the slope 

was higher and the TSI increased already after 24 hours, in contrast to the JFO’s. Also the TSIeq-values 

of JFT’s were significantly larger compared to JFO’s. Both higher k and TSIeq-value thus indicate less 

stable JFT’s. Between cultivars, Growdena juice was always characterized by significantly smaller 

TSIeq- values compared to Merlice juice for the same conditions. Furthermore, pasteurization duration 

did not yield significantly different stabilities, except for Merlice JFO where a pasteurization duration 

of 60 s resulted in a less stable tomato juice compared to 30 s (higher TSIeq).  
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Figure 3.4 The effect of filtration, i.e. juice filtered once (JFO) & juice filtered twice (JFT) and pasteurization conditions (30s & 
60s) on sedimentation behavior (TSI) in Growdena tomato juice (A) and Merlice tomato juice (B). Vertical bars represent the 
standard deviation (n=3) in each value and the dashed curves are the nonlinear regression models described in Table 3.5. 

Table 3.5 Mathematical modeling of the sedimentation process in both Growdena and Merlice tomato juices during 170 days 
of storage (4 °C) in function of both cultivar and processing condition with TSI the Turbiscan Stability Index, TSIeq the 
equilibrium TSI-value, TSIinit the initial TSI-value and k the reaction rate. The processing condition refers to samples, i.e. juice 
filtered once and pasteurized for 30 sec (JFO30), juice filtered once and pasteurized for 60 sec (JFO60), juice filtered twice 
and pasteurized for 30 sec (JFT30), juice filtered twice and pasteurized for 60 sec (JFT60).  

Cultivar Processing condition 
Model: TSI =TSIeq + (TSIinit – TSIeq) . e-k.t 

TSIeq TSIinit k (h-1) 

Growdena JFO30 2.12 ± 1.91 0.30 ± 0.04*** 0.003 ± 0.005 

 JFO60 1.51 ± 0.28*** 0.42 ± 0.06*** 0.007 ± 0.01 

 JFT30 28.7 ± 1.56*** -0.04 ± 0.52 0.04 ± 0.01*** 

 JFT60 30.8 ± 1.61*** 3.17± 0.94** 0.06 ± 0.01*** 

Merlice JFO30 6.81 ± 0.11*** -0.02 ± 0.02 0.03 ± 0.0009*** 

 JFO60 18.8 ± 0.62*** -0.02 ± 0.10 0.03 ± 0.002*** 

 JFT30 52.6 ± 1.40*** -0.72 ± 0.27* 0.03 ± 0.002*** 

 JFT60 50.5 ± 1.83*** -0.02 ± 0.34 0.03 ± 0.002*** 

Significance level: ****: 0.0001, ***:0.001, **:0.01, *:0.05, -: not significant 

3.4.4 Microbial juice parameters 

Results of the total aerobic plate count were lower than 100 CFU.mL-1 for all the samples. Yeast and 

mold count yielded values consistently lower than 1 CFU.mL-1.  
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3.5 Discussion  

The juice yields obtained are equivalent or higher compared to conventional industrial non-enzymatic 

tomato juicing practices (Bates et al., 2001; Hayes et al., 1998; Min & Zhang, 2003). The 

correspondance with the results obtained in Chapter 2 as well as the accordance between the two 

tested cultivars, indicates a robust performance of the system, capable of handling a varying feedstock.  

The European fruit juice association (AIJN) prescribes a minimum SS-content in tomato juice of 4.2 °BX 

(AIJN, 2016). The juices produced in Chapter 3 had consistently lower BX-values. As the SS-level in 

tomato juice consists approximately for 65 % of reducing sugars, low SS levels indicate a low sugar 

content in the tomatoes used (Yelle et al., 1988). There are two possible explanations for the low BX-

values observed here. Year-averaged data of both cultivars indicate a low SS-content of 4.30 °BX and 

4.05 °BX for Growdena and Merlice tomatoes, respectively (Pinxteren et al., 2014). Furthermore, the 

SS-level has also been reported to increase with color and maturity (Tigist et al., 2013). Following a 

comparison of the year-averaged color and texture data of the same cultivars in Belgium, it was found 

that the tomatoes used in the experiments in this chapter were light red with a yellow-green touch 

(classified as commonly marketed light red tomatoes) and slightly harder in texture compared to ripe 

tomatoes of both cultivars (Pinxteren et al., 2014). Hence, the not fully ripened tomatoes, used as 

feedstock here, match with the observed low SS-content. 

Color analysis throughout further processing was examined by following the same batch of tomatoes 

throughout the process, assuring that any changes observed, resulted from process conditions and not 

from tomato characteristics such as maturity, cultivar, etc. Based on the total color difference, almost 

each unit operation provoked a color difference perceptible by most people. However, the individual 

redness (a*) and yellowness (b*) were maintained from milling onwards throughout the process, 

whereas the lightness (L*) remained constant after thermal processing. The significant decrease in 

lightness caused by the thermal treatment can be attributed to a dark color formation due to non-

enzymatic or enzymatic browning reactions (De Paepe et al., 2015b; Min & Zhang, 2003). In acid media 

such as tomato juice, heat is often reported to induce the oxidation of ascorbic acid leading to brown 

color formation (Min & Zhang, 2003; Odriozola-Serrano et al., 2009). Enzymatic browning on the other 

hand can occur from the oxidative degradation of phenolic compounds by the enzymatic action of 

polyphenol oxidase by which the phenolic compounds are converted to o-quinones and further to 

brown colored pigments (Queiroz et al., 2008). Additionally, color changes during processing can also 

result from carotenoid degradation, mainly due to oxidation and isomerization of lycopene (Capanoglu 

et al., 2008; Chanforan et al., 2012; Shi & Le Maguer, 2000). Accordingly, the red color of tomato juice 

is commonly used as an indicator for lycopene concentration (Arias et al., 2000). The observed 
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conservation of the red color throughout the processing could thus imply a preservation of lycopene 

throughout the biorefinery process, illustrating the potential of the spiral-filter press in maintaining 

the initial quality of the biomass. In order to confirm this preservation, a more detailed chemical 

analysis is needed to further elucidate the fate of the phytochemicals (Chapter 4). 

Besides color, also the particle size of the cloudy juices has been determined. The particles constituting 

JFO were characterized by diameters ranging between ~40 µm and ~1,100 µm in a bimodal 

distribution. The average diameter of tomato cells has been estimated to range from 250 to 1,000 µm 

(Lopez-Sanchez et al., 2011a; Moelants et al., 2014; Redgwell et al., 2008). Based on the dimensions 

reported, JFO is thus expected to be constituted partly out of whole cells and partly out of cell 

fragments, disrupted by processing. This is in accordance with results from other studies where tomato 

material was already disrupted to the level of single cells (intact and broken) upon a simple blending 

without any heat input (Lopez-Sanchez et al., 2011b).  

As expected, further filtration with a smaller filter mesh size, shifts the particle sizes in JFT towards 

smaller particles, ranging from ~1 µm to ~600 µm. A redistribution of the particles, originally present 

in JFO, took place with an accumulation of smaller particles in JFT and a depletion of these smaller 

particles in TF. Interestingly, the maximum particle size of the juices was always larger than the filter 

pores, which has also been observed by Den Ouden & Van Vliet (1997). This can be explained by the 

highly deformable parenchyma cells, which constitute the major fraction of cells present in tomato 

juice and which are able to pass through the pores of a sieve that are significantly smaller than the size 

of the cell itself (Den Ouden & Van Vliet, 1997; Moelants et al., 2014). Additionally, the exerted vacuum 

is also expected to aid in pulling larger particles through the filter pores. By varying the filter mesh 

sizes, changes in the constitution of the obtained end products can thus be induced, going from very 

liquid juices to highly viscous purees. Pasteurization of tomato juice (not pasteurized vs. 30 s/60 s) led 

to a significant increase in small particles, visible in both filtration conditions but more pronounced in 

JFT. This decreasing particle size can be allocated to a partial detachment of the cell walls due to 

solubilization of pectin in the middle lamellae during heating (Zhang et al., 2015b). Similar effects of 

thermal treatment were found by others such as Lopez-Sanchez et al. (2011b). Interestingly, the larger 

particles on the right hand side of the distribution were hardly affected in both filtration cases (d(0.9), 

d(4.3)). Instead, the concentration of particles with a size around the modus of the PSD were mostly 

reduced upon pasteurization, yielding smaller particles. This can indicate a difference in susceptibility 

of modus-sized particles towards thermal degradation or it can represent merely a larger statistical 

chance of being broken down. The effect of prolonging the pasteurization duration (30 s vs. 60 s) 

exerted only minor effects on PSD’s of the obtained juices. Finally, it should be noted that besides the 

controllable filtration and pasteurization conditions, also the tomato cultivar and the underlying 
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differences such as growing conditions or ripening stage clearly influence the PSD of the resulting juices 

as shown in Table 3.4. 

From the same batch of tomatoes, both stable and unstable juices were produced. This can be partly 

explained by the enzymatic activity during processing. It is known that the enzyme PME (pectin methyl 

esterase) cleaves methylesters of the pectin, resulting in negatively charged pectin that can bind to 

naturally present divalent cations (e.g. Ca2+) (Fachin et al., 2002). This physico-chemical modification 

of the cloud particles in tomato juice can result in aggregate formation and consequent sedimentation 

leading to serum separation (Laratta et al., 1995; Sarr & Tsai, 2008; Schultz et al., 2014). Also PG 

(polygalacturonase) is present in large amounts in tomatoes causing depolymerization and 

solubilization of pectin, although its role in serum separation is not completely resolved (Laratta et al., 

1995; Moelants et al., 2014). In order to inactivate this pectinolytic activity (and to soften the tissue), 

the conventional tomato processing industry uses thermal pretreatments (hot break around 90°C and 

cold break around 70°C). It has been reported that this pectinolytic activity is not completely inhibited 

at temperatures below 82°C (Hayes et al., 1998). Interestingly, in this chapter, a stable Growdena JFO 

could be produced that did not undergo a serum separation throughout 170 days, despite the mild 

thermal pretreatment (< 82°C). Using the low-oxygen spiral-filter press in combination with a fast 

thermal pasteurization thus enabled the production of a stable Growdena tomato juice without the 

need for a hot break pretreatment. Related to this, the enzymatic content has been reported to be 

function of the cultivar and maturity of the fruit, which could explain the lower stability of the Merlice 

JFO which was produced using exactly the same process (Moelants et al., 2014). Also the thermal 

stability of the PME has been shown to differ depending on the cultivar (Aghajanzadeh et al., 2016; 

Laratta et al., 1995). This accords with the findings from tomato puree producers reporting that cloud 

instability seemed to depend more on tomato cultivar than on production technology utilized (Laratta 

et al., 1995). Besides the Merlice JFO, also the JFT’s underwent a serum separation within 24 hours. 

Consequently, this could be explained by the combination of (i) the mild thermal pretreatment and (ii) 

the longer time gap between juice pressing and thermal pasteurization in JFT due to an additional 

pressing step and the absence of in-line connected equipment. Therefore, JFT might have been 

subjected to more enzymatic activity, resulting in a faster serum separation.  

Various other parameters have been linked to this degree of serum separation (DOSS) and could help 

to further elucidate the observed differences in stability, such as the content of water insoluble solids 

(WIS). This WIS-content is represented by the cell wall and middle lamella components such as 

cellulose, hemicellulose and pectates and can be calculated by subtracting the SS from the TS (Barrett 

et al., 1998; Kaur et al., 2007). A higher WIS content was found to be negatively correlated with the 

DOSS, thus leading to more stable juices and ketchups (Kaur et al., 2007; Stoforos & Reid, 1992). This 
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was confirmed in Chapter 3 and can account for the observed differences in stability between 

Growdena juices and Merlice juices as well as for the higher instability of Merlice JFO60. Heutink (1986) 

has stated that indeed tomato variety and processing method (hot break, cold break, finishing type, 

finishing screen size) influence the amount of WIS. Not only the total amount, but also the particle size 

distribution of these WIS are reported to play a role in the DOSS (Kubo et al., 2013). According to 

Stokes’ hydrodynamic law, solutions with smaller particles are reported to form more stable solutions 

(Kubo et al., 2013; Thakur & Singh, 1994). However, the opposite seems to apply for the data obtained 

in this chapter, as the most unstable juices were always characterized by smaller particles. Accordingly, 

investigators have reported better consistency of tomato products when larger screen sizes of the 

finisher were used (Heutink, 1986; Kimball and Kertesz, 1952; Stoforos & Reid, 1992). A possible 

explanation may lie in the larger particle-particle interactions associated with small particles caused 

by their increased surface area, leading to larger aggregates which may result in faster sedimentation 

(Augusto et al., 2012; Kubo et al., 2013; Rojas et al., 2016). Importantly, the thus formed aggregates 

may not be detected in the particle size analysis as inter-particle forces are relatively weak and may be 

disrupted during particle size analysis due to the pumping and mixing forces of the instrument (Kubo 

et al., 2013). Finally, besides the amount and size, the particle nature or morphology is also an 

important factor in serum separation (Heutink, 1986; Kimball and Kertesz, 1952). It is for example 

known that elongated particles as created by homogenization, improve the consistency and reduce 

settling in the product (Stoforos & Reid, 1992; Tanglertpaibul & Rao, 1987). In that manner, the lower 

exerted vacuum and/or the smaller pores during the second filtration, could have changed the particle 

shape compared to JFO, leading to more unstable juices. Thus, as cited in literature and confirmed in 

this research, the physical juice stability seems to be influenced by the interplay of the enzymatic 

activity on the one hand and the characteristics of the WIS components (amount, distribution, shape, 

aggregate formation) on the other hand (Kaur et al., 2007). These juice characteristics are to some 

extent controllable by varying specific parameters in the applied processing such as filter size, applied 

vacuum and pasteurization duration which can be used to customize end products. Another important 

factor is the tomato variety which appears to interact in some cases with the effect of processing 

(Heutink, 1986; Stoforos & Reid, 1992). Specific measurements of the concentration and activity of the 

enzymes, active in the cloud stability of tomato juice (pectin methylesterase and polygalacturonase) 

should be included in the future. This will allow to further elucidate the influence of varying process 

variables and different varieties on both WIS characteristics and enzymatic activity. Consequently, such 

information can be used more effectively to control the juice stability.  
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3.6 Conclusion 

Producing qualitative, healthy products while meeting the challenges related to food losses proves 

difficult. The proposed juice production process aims at producing attractive products using the spiral-

filter press. The results showed that a stable tomato juice could be produced with a high yield using a 

very light thermal pretreatment and a mild pasteurization. During juice pressing, the red color was 

maintained which indicates the preservation of the juice quality. Furthermore, by varying the filtration 

and pasteurization conditions juices of different turbidity and stability were produced. Comparing the 

characteristics of the diverse juices allowed us to gain more insight in the processes underlying these 

phenomena, contributing to the knowledge for better understanding the relation between the 

structure and the stability of the resulting juices. These insights are crucial for further process design 

and product formulation of biomass with a similar soft texture. However, changing the tomato 

feedstock cultivar showed that the same process conditions led to unstable juices. Therefore, more 

research is necessary to fully elucidate the juice stability phenomenon. 
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Chapter 4: A novel spiral-filter press for tomato juice processing: fate 

of phenolic compounds, carotenoids and ascorbic acid content 

during spiral-filter processing, downstream processing and storage 

Redrafted from 

Kips, L., De Paepe, D., Van Meulebroeck, L., Van Poucke, C., Larbat, R., Bernaert, N., Van Pamel, E., De 
Loose, M., Raes, K. & Van Droogenbroeck, B. (2017). A novel spiral-filter press for tomato juice 
processing: fate of phenolic compounds, carotenoids and ascorbic acid content during spiral-filter 
processing, downstream processing and storage. Manuscript submitted for publication in Journal of 
Food Engineering (major revisions, resubmitted 8th of February 2017). 

4.1 Abstract  

Industrial processing of fruit and vegetables can have detrimental effects on health-promoting 

phytochemicals. Here, a novel pilot-scale process using an innovative spiral-filter press followed by a 

thermal treatment was evaluated on tomato for the production of tomato juice. Three-month storage 

of the resulting juice was also evaluated. The process impact of the different unit processes, with 

emphasis on the novel spiral-filter pressing, was investigated for the three major compound classes 

present in tomato (ascorbic acid, phenolic compounds and carotenoids). The spiral-filter press 

processing did not seem to cause degradation of ascorbic acid, phenolic compounds or carotenoids, 

which can be ascribed to the fast processing in a low-oxygen atmosphere. Maintaining the native 

constitution of tomato to a great extent, the spiral-filter press thus offers potential for processing 

tomatoes and other vegetables into juices, smoothies and purees.  
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4.2 Introduction 

Fruits and vegetables are important sources of bioactive compounds that have multiple beneficial 

health effects. Year-round consumption is enabled by processing fresh and perishable products into 

juices, smoothies and pastes. Various types of processing have been shown to affect the sensorial 

qualities of the end products as well as the fate of phytochemicals (Chanforan et al., 2012; Georgé et 

al, 2011; Martínez-Hernández et al., 2016; Nayak et al., 2015; Vallverdú-Queralt et al., 2012; 2014). 

This has led to a growing interest in minimally processed fruit and vegetable products and the 

introduction of novel processing techniques (Ragaert et al., 2004). Non-thermal technologies (e.g. 

electric treatments, ultrasound treatments, high hydrostatic pressure treatments) have for example 

been developed and studied in order to inactivate enzymes and microorganisms and minimize adverse 

effects on food nutritional and quality parameters (Barrett & Lloyd, 2012; Jiménez-Sánchez et al., 

2017a; 2017b; Oms-Oliu et al., 2012; Pereira & Vicente, 2010; Turk et al., 2012). Although less 

frequently studied, the processing steps before the thermal treatment can also cause degradations in 

the nutritional profile. Examples in the case of tomato processing are the use of a breaking process 

(thermal pretreatment), which is used to inactivate the enzymes or the straining process, which is 

characterized by a high rate of oxygen absorption caused by a high rotation speed (Noomhorm & 

Tansakul, 1992). Other conventional fruit and vegetable juice pressing techniques (such as belt press 

and decanter) have been proven to negatively affect the bioactive functionalities or require special 

modifications to minimize this degradation (De Paepe et al., 2015b; García-Torres et al., 2009; Turk et 

al., 2012). Depending on the processing conditions, diverse chemical changes including oxidation or 

isomerization can be provoked for different compounds such as ascorbic acid (AA), phenolic 

compounds and carotenoids and influence the physical appearance and nutritional characteristics of 

the end products (Abushita et al., 2000; Capanoglu et al., 2008; Chanforan et al., 2012; Odriozola-

Serrano et al., 2009; Rickman et al., 2007a; 2007b). 

The spiral-filter press is a novel technology to produce juices, smoothies and purees. This press avoids 

oxidative degradation by extracting the juice in a low-oxygen extraction cell under vacuum. The 

beneficial effects of this type of processing have already been described for apple and pear juice, in 

which the phenolic compounds are highly conserved (De Paepe et al., 2015a; 2015b). Significantly 

higher vitamin C and anthocyanin concentrations were demonstrated when processing strawberry on 

a spiral-filter press system as compared to the classical way using a finisher (Possner et al., 2015). To 

the best of our knowledge, there is currently no information available about how the spiral-filter press 

influences the constitution of other matrices and whether it conserves other compounds such as 

carotenoids. Therefore, in order to fully estimate the potential of this technology for the production 
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of innovative, tasty and nutritional food products, it is crucial to assess the processing impact on a 

different matrix (tomato) and study its effect on additional phytochemicals (carotenoids). 

Furthermore, as the type of juice extraction is known to influence the phytochemical retention during 

downstream processing and storage (De Paepe et al., 2015b), these unit processes should also be 

included in the analysis.  

In this chapter, a novel juice processing line was investigated for its process impact on the resulting 

products. This consisted of a shredding pretreatment, filtration with the novel spiral-filter press, 

thermal treatment and 3-month storage of the resulting juices. Care was taken to minimize the 

presence of air throughout all process steps (Figure 4.1). Per unit process, a detailed study of the three 

main compound classes in tomato (AA, phenolic and carotenoid content) was carried out, to generate 

information about the impact of each process on the fate of these parameters. The aim of this chapter 

is not to compare the spiral-filter press with other conventional juice processing industries as the raw 

tomato feedstock was used exclusively as a reference point to evaluate the process impact. 

Comparison with other technologies should be subject of future research. 

 

 

Figure 4.1 Schematic overview of the tomato processing line where white boxes represent unit processes, grey boxes 
represent resulting products and circles represent samples that were taken throughout the process with MT, mashed tomato; 
PR, press residue; JnT, juice non thermally treated; JT, Juice thermally treated; JT14, juice thermally treated and stored for 14 
days; JT30, juice thermally treated and stored for 30 days; JT90, juice thermally treated and stored for 90 days. 
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4.3 Materials and methods 

A batch of 400 kg Merlice tomatoes (Solanum lycopersicum L. cv. Merlice, truss type tomato) at 

commercial maturity was purchased at a Belgian produce auction (Bel’Orta, Sint-Katelijne-Waver, 

Belgium). These tomatoes were stored at 4°C for 24 hours until the experiments were conducted. 

4.3.1 Pilot-scale machinery 

The process consists of a sequence of pilot-scale batch processes, as described above (Figure 4.1). After 

manually removing the green stems, the tomatoes were washed in cold tap water and transferred to 

a shredding device (Multicut, Bruckner Liquid Food Tech GmbH, Abstatt, Germany). Detailed process 

parameters are shown in Table 4.1.  

 Table 4.1 Spiral-filter press parameters used for the experiments in Chapter 4. 

 

 

 

 

The resulting mashed tomato (MT) was pumped to the buffer tank of the spiral-filter press and into 

the extraction cell, where a plastic spiral rotates within a cylindrical filter element (VaculIQ 1000, 

VaculIQ, Hamminkeln, Germany). The milling was tuned to avoid accumulation of MT in the buffer 

tank. In the extraction cell, as a result of both the compression forces in the spiral and the 

underpressure created by the vacuum pump, the MT was dewatered through the filter element 

resulting in a juice fraction (JnT). The increasingly dry MT was carried upwards to exit the system as 

press residue (PR). JnT was collected in a vacuum buffer tank (100 L, VaculIQ, Hamminkeln, Germany). 

From there, it briefly passed a small open buffer tank for sampling and subsequently entered a 

multipurpose ultra-high temperature (UHT) pilot machine (APV SPP, SPX Corporation, Gatwick, UK) 

where it was subjected to a thermal treatment at 108°C for 30 s. The thermally treated juice (JT) was 

cooled to 4°C and cold-filled in bag-in-box aluminum laminate aseptic bags (Rapak Bag-in-box, 2L).  

4.3.2 Characterization of the intermediate and end products  

4.3.2.1 Sampling 

At four points along the tomato juice processing line, samples (MT, PR, JnT and JT, circles in Figure 4.1) 

were taken using 3-way-valves in order to avoid disturbing the system. All four samples (~1000 mL) 

Shredding and filtration parameters Values 

Filter size  500 µm 

Spiral (channels - inclination angle)  #5 – variable 

Milling pump frequency 11.1 rpm 

Feed pump frequency 14.6 rpm 

Spiral frequency 55.8 rpm 
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were taken twice without interrupting the processing. Approximately 500 mL of these samples were 

analyzed in triplicate immediately after collection for moisture content (MC) and AA. The remainder 

was immediately snap frozen using liquid nitrogen (Air Liquide, Liège, Belgium) and subsequently 

freeze-dried (Epsilon 2-10 D LSC, Martin Christ, Osterode am Harz, Germany) and milled. The resulting 

dry powders were stored at -80°C in amber glass bottles under a nitrogen atmosphere before analysis 

of carotenoids and phenolic compounds. Finally, the thermally treated juice samples were stored in 

aluminum bag-in-box bags at 20°C for 14 days (JT14), 1 month (JT30) and 3 months (JT90). At these 

time intervals, the stored samples were (i) subjected to microbial and AA analysis and (ii) freeze-dried 

for analysis of carotenoids and phenolic compounds. 

4.3.2.2 Juice yield 

The juice yield (JY) of the filtration was calculated gravimetrically by recording the masses of both juice 

and press residue during the steady-state phase of the process: 𝐽𝑌 [%] =
𝑀𝑗

𝑀𝑗+𝑀𝑝
 𝑥 100 %, with Mj 

the net mass of the juice and Mp the net mass of the press residue. The masses were recorded in 

triplicate. 

4.3.2.3 Physico-chemical characterization of the intermediate and end products 

Moisture content (MC) was determined by means of a halogen moisture analyzer (HB43-S, Mettler 

Toledo, Schwerzenbach, Switzerland). AA content was determined by voltametric titration with 2,6-

dichlorophenolindophenol (DPI) on all liquid samples according to the Mettler-Toledo method M411-

2006 (T70, Mettler-Toledo, Greifensee, Switzerland). All measurements were conducted in triplicate. 

Phenolic compounds were extracted from the freeze-dried samples in triplicate using the extraction 

method of De Paepe et al. (2013). Briefly, 0.5 g freeze-dried sample was extracted with 5 mL of 100 % 

MeOH in a first step and 5 mL MeOH:water (20/80, v/v) in a second step. The ultrasound-assisted 

extraction (Transsonic Digital S, Elma, Germany) lasted 60 minutes (stirred after 30 minutes). Following 

centrifugation (3000 rpm, 15 min) (Sigma Laboratory Centrifuges 4K12, Germany), the supernatans 

were collected and stored at 4 °C. After the second extraction cycle, 1000 µL of both supernatans were 

combined, centrifuged (14000 rpm, 10 min), filtered (0.22 µm, Millipore, Overijse, Belgium) and stored 

in capped vials prior to injection. An internal standard (daidzein, 1 µg.g- 1) was added before extraction. 

The analytical separation and detection were performed by means of reversed-phase, ultra-high 

performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), based 

on the method described by De Paepe et al. (2013), using an AcquityTM UPLC (Waters) coupled to a 

XevoTM TQ-S mass spectrometer (Waters) and a Waters UPLC BEH C18 chromatographic column 

(150 mm x 2.1 mm, 1.7 µm, Waters) with a flow rate of 196 µL.min-1. The MS detector operated in ESI- 
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mode with a cone voltage of 40 V and a capillary potential of 2.8 kV. Source and desolvation 

temperatures were 130 °C and 450 °C, respectively. Desolvation gas flow was set at 800 L.h-1. 

Quantification was performed based on relative peak areas and using external standard curves with 

reference standards. Due to the presence of high amounts of chlorogenic acid, quantification of this 

compound was performed using 1/10 dilution (MeOH:water, 60/40, v/v) of the extracts and on an 

absolute basis (i.e. without using the signal of the internal standard as this was too diluted). Correct 

compound identification was assured based on the ion ratio and the relative retention time taking into 

account the criteria stipulated in Commission Decision 2002/657/EC. Data recording was performed 

by MassLynxTM (v.4.1) while the integration was performed with TargetLynxTM (v.4.1) (Waters).  

The extraction, separation and identification of the carotenoids (trans-lycopene, 5-cis-lycopene, 9-cis-

lycopene, 13-cis-lycopene and β-carotene) were performed using a HPLC-DAD procedure adapted 

from Cucu et al. (2012). Briefly, freeze-dried samples (0.1 g) were extracted in triplicate with 1 mL 

hexane/acetone/ethanol (2:1:1, v/v/v). After mixing on ice and centrifugation (1,000 g, 5 min), the 

upper orange organic phase was recovered. This procedure was repeated twice until the pellet was 

white. The pooled supernatant (3 mL) was thoroughly mixed with 3 mL of a saturated NaCl solution 

(200 g.L-1), the upper organic phase was recovered (1 mL) and evaporated under a nitrogen stream 

until dry. The dry extracts were resuspended in 250 µL of extraction buffer. Twenty microliters of the 

extract were separated on a C30 RP-column (3 µm, 250 x 4.6 mm) from YMC corporation (Kyoto, Japan) 

using a mobile phase (methanol/isopropyl alcohol/tetrahydrofuran) (30:30:35, v/v/v), stabilized with 

250 mg.L-1 butylated hydroxytoluene and 0.05 % trimethylamine and compounds were detected by 

measuring absorbance at 475 nm. The flow rate was 0.8 mL.min-1. For the JT90 sample, due to technical 

problems with the C30 column, analysis was carried on a C18 column with the method developed by 

Daood et al. (2014), using an elution gradient from water and acetone. Therefore, only β-carotene and 

trans-lycopene could be analyzed. Equal performance was confirmed by analysis of three quality 

control samples on both columns with deviations of maximum 10 %. Quantification was performed 

using authentic reference analytical standards for lycopene and β-carotene. The nature of the lycopene 

isomers was proposed based on the absorbance spectra (specific for lycopene) and retention times 

with regard to Cucu et al. (2012) and Ishida & Chapman (2006). As lycopene is a very unstable molecule, 

the concentration of the lycopene stock solution was checked in advance by measuring the absorbance 

at 502 nm and recalculating the exact concentration by using the Beer-Lambert law DO=ε.c.l, with 

DO=optical density, ε502=absorption coefficient = 1.72.105 L.mol- 1.cm-1, c=concentration of the solution 

and l=length of the light pad=1 cm. 

Following analytical standards were purchased from Sigma (Diegem, Belgium): 3,4,5-

trimethoxycinnamic acid, 4-p-hydroxyphenyl acetic acid, apigetrin, avicularin, caffeic acid, chicoric 
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acid, chlorogenic acid, cyanidin chloride, epicatechin, daidzein, dihydrocafeic acid, dihydroferulic acid, 

ferulic acid, gallic acid, gentisic acid, hesperetin, hesperidin, kaempferol, luteolin, miquelianin, 

naringenin, o-coumaric acid, p-coumaric acid, phloretin, propyl gallate, quercetin, salicylic acid, 

sinapinic acid and vanillic acid. Aromadendrin, catechin, cynaroside, phloridzin, procyanidin B2, 

protocatechuic acid, taxifolin and naringenin chalcone were purchased from Phytolab GmbH & Co 

(Vestenbergsgreuth, Germany). Apigenin, astragalin, β-carotene, galangin, lycopene, naringin, 

quercitrin and rutin were provided by Extrasynthese (Genay, France). Ascorbic acid, isoquercitrin and 

isorhamnetin were provided by Carl Roth GmbH (Karsruhe, Germany). Dichloroindophenol was 

purchased from Merck (Kenilworth, USA).  

4.3.2.4 Calculation of retention and extraction efficiencies of the unit processes 

The impact of the various unit processes on the phenolic and carotenoid compounds was evaluated by 

calculating the retention efficiency (% R) for each compound, representing the ratio of the 

concentration of the compound present after and before the process. This % R was calculated for both 

the filtration process and thermal process. The former can be divided in juice and press residue 

extraction efficiency (% EJnT and % EPR) representing the percentage of the compound that ends up in 

the juice fraction or the press residue, respectively (calculations in Appendix 2). The % R and % E-values 

of the filtration process were only calculated for compounds with concentrations larger than their 

corresponding quantification limit in the MT fraction. Corresponding concentrations in JnT or PR that 

were lower than their detection limit were considered zero. The % R values of the thermal process 

were only calculated for compounds with concentrations larger than their quantification limit in the 

JnT fraction. 

4.3.2.5 Microbial juice characterization 

Total colony count at 30°C was determined by a surface plating technique in accordance with the ISO 

4833 method, carried out in a BELAC-certified laboratory. Further, yeast and mold counts were 

performed at 25°C in accordance with the ISO 7954 method. These parameters were assessed for 

thermally treated tomato juices which were stored at 20°C for 0 days, 14 days, 1 month and 3 months. 

4.3.3 Statistical analysis 

Statistical analysis was carried out using SPSS Statistics 22 (IBM, Brussels, Belgium). Treatments were 

compared using one-way analysis of variance (ANOVA) followed by a Scheffé post-hoc test. The 

dependent variables were MC, AA content and the concentrations of the measured phenolic 

compounds and carotenoids. The independent variable was the sample treatment, where the data 
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were split into three subsets. In the first subset, the effect of processing with the spiral-filter press was 

investigated (MT, JnT and PR). In the second dataset, the effect of thermal treatment was assessed 

(JnT and JT) and the third subset was used to examine the effect of storage by comparing samples JT, 

JT14, JT30 and JT90. A significance level of p < 0.05 was used. Sigmaplot 12.5 (Systat Software GmbH, 

Erkrath, Germany) was used to visualize the data. 
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4.4. Results and discussion 

4.4.1 Microbial juice characterization  

Throughout the entire 3-month storage, both the total colony count and the yeast and mold counts 

were in all cases smaller than 1.0 kve.ml-1, indicating adequate microbial inactivation in the final 

products.  

4.4.2 Ascorbic acid  

Ascorbic acid (AA) is one of the most important vitamins in fruits and vegetables and has many 

beneficial biological functions such as antioxidative properties. However, it is a very labile molecule 

that is easily oxidized, both chemically and enzymatically, during processing into dehydroascorbic acid 

and further hydrolyzed to 2,3-diketogluconic acid. This conversion is to be minimized as the latter is 

devoid of vitamin C activity. The extent of degradation is influenced by many factors such as 

temperature, pH and the presence of oxygen and metal ions (Dewanto et al., 2002; Jayathunge et al., 

2015; Munyaka et al., 2010; Phillips et al., 2016). The AA content therefore serves as an excellent 

indicator for the quality of processed tomato products.  

The AA content of the mashed tomatoes was 14 ± 1 mg.100 g-1 FW (fresh weight) which is in 

accordance with values published for red ripe tomatoes, which vary from 9 to 16 mg. 100 g- 1 FW 

(moisture contents in Table 4.2 and calculation for wet based concentrations in Appendix 2) (Frusciante 

et al., 2007). The AA content did not significantly decrease upon filtration (Figure 4.2). However, the 

presence of oxidative enzymes (e.g. ascorbic acid oxidase and ascorbic acid peroxidase) have been 

known to catalyze the enzymatic oxidation of AA upon exposure to oxygen, particularly after matrix 

disruption (Munyaka et al., 2010). Hence, it can be assumed that the fast processing with the spiral-

filter press in a low-oxygen atmosphere suppressed oxidation, leading to a retention of AA. 

Table 4.2 Moisture contents (%) of the four obtained fractions MT, mashed tomato, PR, press residue, JnT, juice not thermally 
treated and JT, juice thermally treated. 

Sample MC (%) 

MT 96 ± 0.2 b 

PR 90 ± 0.2 c 

JnT 96 ± 0.1 a 

JT 97 ± 0.1a 
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Figure 4.2 AA content of the tomato juice from mashed tomato (MT) throughout filtration (juice not thermally treated, JnT), 
thermal treatment (juice thermally treated, JT) and storage (juice stored for 14 (JT14), 30 (JT30) and 90 (JT90) days). Vertical 
error bars represent standard deviations (n=6). Different letters indicate statistically significant differences (p < 0.05). Letters 
a and b denote differences throughout processing (MT and JnT). K and l are used for differences during thermal treatment 
(JnT and JT) and x, y and z denote differences throughout storage (JT, JT14, JT30 and JT90). 

 

After thermal treatment, the AA content increased significantly to 15 ± 0.2 mg.100 g-1 FW. This 

contrasts with the well-known effect of speeding the oxidation process of AA when heated, leading to 

numerous examples of AA degradation during thermal processing of tomato products, ranging from 

10 % to 80 % degradation (88°C - 100°C) (Abushita et al., 2000; Dewanto et al., 2002; Gahler et al., 

2003; Georgé et al., 2011; Koh et al., 2012). The thermal treatment could have inhibited the AA 

degrading enzymes, leading to retention of AA. This phenomenon has already been shown in broccoli 

at temperatures above 70°C (15 min) and in other fruits and vegetables such as carrots, apricots and 

cherries at 98°C (10 min) (Leong & Oey, 2012; Munyaka et al., 2010). 

Storage of the juice for 14 days led to a significant decrease in AA of 37 %. Longer storage up to three 

months led to an additional decrease of approximately 20 %. These decreases could be ascribed to the 

rather high storage temperature leading to accelerated oxidation rates (Jayathunge et al., 2015; Kalt, 

2005; Phillips et al., 2016), either in the presence of residual dissolved oxygen in the juice, leading to 

non-enzymatic oxidation of AA (García-Torres et al., 2009; Odriozola-Serrano et al., 2008) or under 

anaerobic conditions leading to the slow degradation of AA (Zerdin et al., 2003). As the measurements 

of JT were performed immediately after the thermal treatment, it can be hypothesized that these 

factors did not immediately result in any AA degradation in JT but they did after storage.  
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4.4.3 Phenolic compounds 

Besides AA, phenolic compounds are well-known as the major contributors to the total hydrophilic 

antioxidative capacity of tomato (Martínez-Valverde et al., 2002; Takeoka et al., 2001; Toor & Savage, 

2005). These compounds have been found to be susceptible to enzymatic and non-enzymatic 

oxidation. These effects can be induced by factors such as enzymes, oxygen, heat and metallic cations 

(Le Bourvellec & Renard, 2012; Manach et al., 2004; Tomás-Barberán & Espín, 2001; van der Sluis et 

al., 2002), but results reported are not consistent (Dewanto et al., 2002; Gahler et al., 2003; Georgé et 

al., 2011; Nayak et al., 2015). In this article, the impact of the proposed process is evaluated based on 

the fate of these compounds. 

4.4.3.1 Absolute concentrations 

The phenolic compounds quantified in the tomato samples are shown in Table 4.3. The basic structural 

formulas of the corresponding phenolic classes are displayed in Figure 4.3.The sum of the measured 

phenolic compounds on a fresh weight basis was 18,116 ± 1,602 ng.g- 1 FW, 10,168 ± 129 ng.g- 1 FW and 

58,213 ± 3,869 ng.g- 1 FW in MT, JnT and PR, respectively. Chlorogenic acid was the most abundant 

hydroxycinnamic acid, whereas naringenin chalcone and rutin were the major flavonoids (as also 

shown by Gómez-Romero et al. (2010)). The order of magnitude of the predominantly present 

compounds is generally in agreement with previous research (Chanforan et al., 2012; Gómez-Romero 

et al., 2010; Martínez-Valverde et al., 2002; Moco et al., 2006; Slimestad & Verheul, 2009; Vallverdú-

Queralt et al., 2012).  

 

Figure 4.3 Subclasses of phenolic acids and flavonoids and their basic chemical structures. Figure based on Amarowicz et al. 
(2009) and Gurung et al. (2015). 
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Table 4.3 Content of phenolic compounds (ng.g-1 FW) in the analyzed sample, i.e. mashed tomato (MT), press residue (PR), juice not thermally treated (JnT), thermally treated juice (JT), 
thermally treated juice stored for 14 (JT14), 30 (JT30) and 90 (JT90) days. Different letters indicate statistically significant differences (p<0.05). Letters a and b denote differences throughout 
processing (MT, PR and JnT). K and l are used for differences during thermal treatment (JnT and JT) and w, x, y and z denote differences throughout storage (JT, JT14, JT30 and JT90). 
Concentrations lower than LOQ but higher than LOD are denoted by < LOQ. 

 

Phenolic class  Phenolic compound MT PR JnT JT JT14 JT30 JT90 

Hydroxybenzoic 

acids 

 Protocatechuic acid 
<25 <55 <25 60 ± 2 w 85 ± 1 x 102 ± 4 y 126 ± 5 z 

Hydroxycinnamic 

acids 

 Caffeic acid 
98 ± 0.1a 215 ± 42 b 119 ± 27 a,k 164 ± 7 l,w 155 ± 18 w 164 ± 1 w 172 ± 11 w 

  Chlorogenic acid (3-caffeoylquinic acid) 10,242 ± 1594 a 8,943 ± 250 a 8,766 ± 54 a,k 8,334 ± 418 k,x 5,710 ± 58 w 6,012 ± 32 w 5,601 ± 242 w  

  Ferulic acid 46 ± 3 a 248 ± 32 b 44 ± 29 a,k 62 ± 5 k,w 60 ± 8 w 63 ± 3 w 62 ± 5 w 

  p-coumaric acid 9.4 ± 0.3 a 37 ± 5 b 10 ± 3 a,k 13 ± 1 l,w 14 ± 2 w,x 15 ± 0.2 x 15 ± 1 x 

Hydroxyphenyl 

propanoic acid 

 Dihydroferulic acid 
11 ± 2 a 32 ± 6 b 11 ± 2 a,k 12 ± 1k,w 12 ± 1 w 12 ± 1 w 14 ± 1 w 

Flavonoids Flavonols Astragalin (Kaempferol 3-O-glucoside) 1.6 ± 0.03 b 6.1 ± 0.6 c 0.91 ± 0.03 a,l 0.81 ± 0.02 k,w 0.80 ± 0.08 w 0.85 ± 0.03 w 0.82 ± 0.04 w 

  Isoquercitrin (Quercetin 3-O-glucoside) 4.7 ± 0.6 a 17 ± 0.03 b 4.0 ± 0.3 a,l 3.4 ± 0.04 k,w 3.5 ± 0.1 w,x 3.8 ± 0.1 x 3.8 ± 0.2 x 

  Quercetin 0.97 ± 0.11 a 6.5 ± 0.6 b <0.5  <0.5 <0.5 <0.5 <0.5  

  Rutin (Quercetin 3-O-rutinoside) 3105 ± 30 b 17,429 ± 1342 c 1088 ± 77 a,k 990 ± 26 k,x 823 ± 14 w 898 ± 23 w,x 965 ± 18 x 

 Flavanones Naringenin 145 ± 21 b 1,205 ± 140 c 4.2 ± 1.4 a,k 61 ± 14 l,x 44 ± 5 w 48 ± 1 w 46 ± 4 w 

  Hesperetin 3.1 ± 0.4 a 29 ± 3 b <0.5 <0.5 <0.5 <0.5 <0.5 

 Flavanonols Aromadendrin (Dihydrokaempferol) 1.6 ± 0.3 a 17 ± 2 b <0.5 <0.5 <0.5 <0.5 <0.5 

 Chalcones Naringenin chalcone 4439 ± 155 b 29,943 ± 3617 c 120 ± 79 a,l 30 ± 35 k,w 0.66 ± 0.001 w <0.5 <0.5 

 Dihydrochalcones Phloretin 8.3 ± 1.2 a 79 ± 14 b <0.5 <0.5 <0.5 <0.5 <0.5 

  Phloridzin (Phloretin-2’-O-glucoside) 1.4 ± 0.03 a 7.4 ± 0.7 b 0.80 ± 0.10 a,k 0.81 ± 0.02 k <0.5 <0.5 <0.5  

  Sum 18,116 ± 1,602 58,213 ± 3,869 10,168 ± 129 9,731 ± 420 6,910 ± 63 7,319 ± 40 7,006 ± 243 
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4.4.3.2 Retention efficiencies 

The main goal of the study in Chapter 4 was to evaluate the different unit process performances. 

Investigation of the process impact of a certain technology or process is often done by comparing the 

phytochemicals’ concentration before and after processing, either on a fresh or dry weight basis. This 

was done for the thermal treatment and storage and resulting values are expressed as retention 

efficiencies. For the spiral-filter processing, processing of one fraction (MT) results in two fractions (PR 

and JnT). Conventionally, only the end product of interest is taken into account. In case of tomato juice 

processing, juice is the desired product and press residue is considered as waste. In contrast, in this 

dissertation, both juice and press residue fractions were considered as valuable end products and thus 

both fractions were taken into account in the calculation of the retention efficiency of the spiral-filter 

processing to evaluate the actual process impact.  

a/ Spiral-filter processing 

Considering all measured phenolic compounds and accounting for the obtained juice yield of 

87.8 % ± 0.3 %, an average retention efficiency (% R) of 114 % ± 22 % was achieved for the filtration 

process with values for the individual phenolic compounds varying between 85 % and 153 % (Figure 

4.4). However, the retention efficiencies during filtration with the spiral-filter press for each compound 

were never significantly lower than 100 % (except for quercetin).  

Figure 4.4 Retention efficiencies (% R) of phenolic compounds throughout the filtration process. Light grey columns represent 
the extraction efficiency in the press residue (% EPR), whereas black columns represent the extraction efficiency in the juice 
(% EJnT). The vertical error bars represent standard deviations (n=2). The sum of both extraction efficiencies is the retention 
efficiency of the compound. The retention efficiencies have only been calculated for the compounds present in 
concentrations larger than the quantification limit in the MT fraction. The phenolic classes displayed are hycroxycinnamic 
acids (HCA), hydroxylphenyl propanoic acids (HPPA), flavonols (FLS), flavanones (FNS), flavanonols (FNLS), chalcones (CH) and 
dihydrochalcones (DHCH). 
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These values indicate that the phenolic compounds that are present in the mash were conserved (and 

enriched) in either JnT or PR and were not degraded during filtration. This is in contrast with literature, 

where rupture of the cell structures as a result of grinding, pressing or maceration can break the 

integrity of the plant cell, leading to oxidative enzymes that catalyze the transformation and 

degradation of phenolic compounds in the presence of oxygen, resulting in brown pigments (Le 

Bourvellec & Renard, 2012; Manach et al., 2004; Tomás-Barberán & Espín, 2001; van der Sluis et al., 

2002). However in this study, no general reduction was observed, which implies that the fast spiral-

filter processing was able to reduce the enzymatic activity and limit the presence of oxygen.  

The small differences in retention efficiencies for the individual compounds can be partly explained by 

differences in susceptibility of the individual phenolic compounds to degradation. For example, 

chlorogenic acid is known to be a good substrate for polyphenoloxidases (PPO), making it more 

susceptible to enzymatic degradation (De Paepe et al., 2015b; Turk et al., 2012). Another example is 

rutin, a quercetin glycoside. Sugar moieties shield the hydroxyl group, which leads to higher stability 

against oxidation compared to their aglycons such as quercetin, as also observed in Figure 4.4. The 

extent of polyphenol degradation thus not only depends on the oxidation conditions but also on the 

phenolic structure (Georgé et al., 2011; Vallverdú-Queralt et al., 2014; Tomas et al., 2017). These 

individual differences in susceptibility underline the added value of weighing the retention efficiencies 

of the individual compounds by the magnitude of their absolute concentrations, thus avoiding that 

retention efficiencies of compounds present in small concentrations (e.g. quercetin) affect the 

interpretation. Weighed for the mass fraction of the different phenolic compounds, this % R becomes 

88 % ± 8 %. This smaller value originates predominantly from the large share of chlorogenic acid.  

In absolute concentration, it was found that PR contains about five times more phenolic compounds 

compared to JnT, in accordance with prior observations (Toor & Savage, 2005; Slimestad & Verheul, 

2009). Physiologically, this can be explained by the role of the dermal tissues of plants in protection 

against oxidative damage caused by external stress conditions (Toor & Savage, 2005). This tissue 

location determines the matrix destination of the compounds as some compounds predominantly end 

up in the PR fraction and others do in the JnT fraction. Evaluating the tendency of each individual 

compound for migration to juice or press residue was performed by using the extraction efficiencies 

of JnT (% EJnT) and PR (% EPR). Whereas % R could be considered as an evaluation of the process used, 

% E can be interpreted as an evaluation of the end products. Both parameters are shown in Figure 4.4, 

where the sum of % EPR and % EJnT corresponds to the % R. It can be seen that the compounds retained 

predominantly in the press residue are flavonoids. In contrast, the phenolic acids (hydroxycinnamic 

acids and hydroxyphenylpropanoic acids) were mainly present in the juice. Accordingly, the mean juice 

extraction efficiencies (weighed for the mass fraction of the different phenolic compounds) for the 
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phenolic acids and flavonoids were 76 % ± 12 % and 14 % ± 1 %, respectively. These values are 

generally in accordance with the hydrophobic or hydrophilic nature of the compounds as expressed by 

their partitioning coefficient in octan-1-ol or olive oil and water (Kpart). Hydroxycinnamic acids are 

characterized by a lower Kpart, implying a higher solubility in aqueous environment. Accordingly, they 

are more present in the juice fraction. Flavanones, and to a lesser extent the flavonols, are reported 

to have a higher Kpart, which is reflected by a predominant presence in the press residue fraction 

(Choudhury et al., 1999; van Dijk et al., 2000). These findings are in accordance with current literature 

data (Kalogeropoulos et al., 2012; Kalt, 2005; Slimestad & Verheul, 2009; van der Sluis et al., 2002). 

Although at first sight it appears that PR contains more phenolic compounds than JnT, the mean 

phenolic juice extraction efficiency was higher than the press residue extraction efficiency. This can be 

ascribed to the small mass fraction of press residue (12.2 %). The calculations have been weighed with 

the mass fraction thus even though PR has a higher absolute phenolic concentration, the larger mass 

of the juice fraction leads to a higher phenolic juice efficiency. Hence, although characterized by a 

smaller absolute concentration compared to PR, the resulting JnT fraction contains 49 % of the initial 

phenolics present in MT. We believe that the ratio of compounds in JnT and PR can be slightly tuned 

using other milling technologies in combination with other filter pore sizes, thereby reducing the 

particle size and allowing more particles in the juice.  

b/ Thermal processing 

For the thermal process, a mean phenolic retention efficiency of 107 % ± 26 % was achieved (excluding 

naringenin and naringenin chalcone) with values varying from 85 % to 175 % (Figure 4.5). Weighed for 

their mass fraction, this value becomes 96 % ± 4 %. In literature, conflicting results of thermal 

processing on the fate of phenolic compounds have been reported. Heating of tomato juice (92°C, 

10 min followed by 100°C, 10 min) has been suggested to lead to disruption of cell walls, releasing 

oxidative and hydrolytic enzymes, destroying phenolic compounds in tomatoes (Georgé et al., 2011). 

Besides this enzymatic degradation, Nayak et al. (2015) report chemical oxidation of phenolic 

compounds to quinones and their polymers after processing at high temperatures (90 – 120 °C). 

Negative thermal effects on the fate of phenolic compounds have also been reported by Koh et al. 

(2012) and Vallverdú-Queralt et al. (2012; 2014). But if the temperature is high enough, the enzymatic 

activity can be deactivated, conserving phenolic compounds, as demonstrated by Dewanto et al. (2002) 

for thermal processing of mashed tomato at 88°C. Increases in phenolic content upon thermal tomato 

processing have also been reported (Capanoglu et al., 2008; Chanforan et al., 2012; Tomas et al., 2007). 

Gahler et al. (2003) found that phenolic compounds are released from the cellular constituents upon 

thermal treatment (121°C, 2 min followed by 80°C, 20 min) leading to higher concentrations measured, 

which has been confirmed by Vallverdú-Queralt et al. (2014). Kalt et al. (2000) also report a higher 
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extraction yield upon thermal treatment, which they linked to the increase of fruit skin permeability. 

Sometimes, the effect of increased phenolic compounds is attributed to dehydration, leading to 

concentration during processing (Nayak et al., 2015). The high mean thermal retention efficiency of 

phenolic compounds observed in this study indicates no overall degradation and thus an adequate 

thermal process that inactivates the enzymes but does not destroy heat labile compounds.  

 

Figure 4.5 Retention efficiencies (% R) of phenolic compounds throughout the thermal treatment. The vertical error bars 
represent standard deviations (n=2). 

The individual retention efficiencies per compound are in accordance with previous studies, where the 

hydroxycinnamic acids (especially chlorogenic acid) and dihydrochalcones (especially phloridzin) have 

been identified as heat resistant phenolic compounds. The flavonols have also been reported to remain 

unaffected by thermal processing. Isoquercetin and rutin are identified as being more thermolabile, 

however (Chanforan et al., 2012; De Paepe et al., 2014; van der Sluis et al., 2005). For naringenin a 

strong enrichment was observed during the thermal process (1,497 %) whereas naringenin chalcone 

levels were depleted by heat (20 %). This can be ascribed to a cyclization of the unstable naringenin 

chalcone to the robust cyclic naringenin (Amarowicz et al., 2009). Correspondingly, Chanforan et al. 

(2012) found a 18-fold increase of naringenin upon filtration and thermal treatment of tomato. Similar 

results have been found by others (Capanoglu et al., 2008; 2010; Tomas et al., 2017). However, in this  
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study, the degradation of naringenin chalcone only took place during thermal treatment, proving the 

mild operating conditions of the spiral-filter press. 

c/ Storage 

Finally, during storage up to three months, the majority of the phenolic compounds showed no 

significant decrease (Table 4.3). The mean retention of phenolic compounds after storage was 

98 % ± 20 %. Some compounds appeared to be more susceptible to degradation upon storage such as 

chlorogenic acid (-33 %) and naringenin (-25 %). Also the concentrations of naringenin chalcone and 

phloridzin decreased strongly after storage. Due to the large mass fraction of chlorogenic acid and its 

decrease upon storage, the weighed retention efficiency was 72 % ± 4 %. The conservation of the 

predominant part of the phenolic compounds during storage as observed here is in accordance with 

the results of storing apple and pear juice produced by using the spiral-filter press (De Paepe et al., 

2015a; 2015b). In literature, decreases in phenolic compounds upon storage are often reported (Nayak 

et al., 2015; Odriozola-Serrano et al., 2009). The retention of phenolic compounds observed here 

during storage can be explained by a sufficient inactivation of oxidative enzymes and the limited 

presence of oxygen (Dewanto et al., 2002; Vallverdú-Queralt et al., 2012). 

4.4.4 Carotenoids 

Carotenoids are highly unsaturated compounds with an extensive conjugated double-bound system, 

which makes them susceptible to oxidation and isomerization during processing and storage (Boon et 

al., 2010; Martínez-Hernández et al., 2016; Xianquan et al., 2008). These processes are influenced by 

the presence of light, oxygen and heat (Xianquan et al., 2008).  

4.4.4.1 Absolute concentrations 

The concentrations of lycopene and β-carotene for the different samples are shown in Table 4.4 and 

their chemical structures in Figure 4.6.  

Table 4.4 Content of carotenoids (µg.g-1 FW). The total sum also includes the cis-forms of lycopene (data not shown). Different 
letters indicate statistically significant differences (p < 0.05). Letters a and b denote differences throughout processing 
(mashed tomato (MT), press residue (PR) and juice not thermally treated (JnT)). K and l are used for differences through 
thermal treatment (JnT and thermally treated juice (JT)) and x, y and z denote differences throughout storage (JT, thermally 
treated juice stored for 14 (JT14), 30 (JT30) and 90 (JT90) days). 

 

Sample MT PR JnT JT JT14 JT30 JT90 

Trans-lycopene 15 ± 2 a 41 ± 3 b 16 ± 1 b,k 8.9 ± 2.3 l,x,y 10 ± 1 y 7.8 ± 0.4 x 8.2 ± 1.0 x,y 

Β-carotene 1.9 ± 0.2 a 4.5 ± 0.2 a 1.8 ± 0.01 a,l 0.90 ± 0.33 k,x 0.89 ± 0.10 x 0.87 ± 0.05 x 0.98 ± 0.18 x 

Sum 18 ± 2 46 ± 3 19 ± 1 10 ± 2 11 ± 1 9.0 ± 0.4 9.2 ± 1.0 
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Figure 4.6 Chemical structures of lycopene and β-carotene. Figure based on Gülçin (2012). 

The sum of the absolute amounts of the measured carotenoids was the highest in the PR fraction (4.6 

± 0.3 mg.100 g- 1 FW), followed by JnT (1.9 ± 0.1 mg.100 g- 1 FW) and MT (1.8 ± 0.2 mg.100 g- 1 FW). 

Approximately 89 % of the measured carotenoid content consisted of lycopene, whereby 96 % was 

trans-lycopene. The concentrations of the cis-lycopene isomers are not presented but showed the 

same trend as for trans-lycopene, with values in MT of 0.15 ± 0.01, 0.24 ± 0.002 and 0.30 ± 0.03 

µg.g- 1 FW for 15-cis, 13-cis and 9-cis lycopene, respectively. 

The absolute carotenoid content of tomatoes can vary widely. The reported concentrations of 

lycopene in raw tomato range from 2.5 mg to 670 mg.100 g- 1 FW (Martínez-Hernández et al. 2016). 

The β-carotene content has been reported to vary from 0.1 mg.100 g- 1 FW (Daood et al., 2014) to 

1 mg.100 g- 1 FW (Georgé et al., 2011). Both the lycopene and the β-carotene concentrations in MT 

reported in this study (1.5 mg.100 g- 1 FW and 0.19 mg.100 g- 1 FW, respectively) are thus rather low 

compared to the concentration ranges reported in literature. Various factors such as genetics and 

maturity, environmental factors and postharvest handling are known to markedly affect the 

biosynthesis of carotenoids, which may explain these low concentrations (Abushita et al., 2000; Kalt, 

2005). Typically, carotenoids are relatively stable during processing, however the degree of 

degradation varies with the matrix constitution, i.e. the presence of vitamin C, oil, water and other 

phytochemicals. Especially water has been reported to have a protective effect on the carotenoid 

degradation. Therefore, dehydrated tomato products, such as commercial lycopene standards are 

sensitive to lycopene isomerization and degradation which can complicate their quantification by 

chemical analysis. Besides the chemical standards, also the tomato samples have been freeze-dried in 

this experiment, which could have resulted in a decrease of carotenoid concentration. Georgé et al. 

(2011) showed that lyophilization could lead to a decrease of 14 % and 47 % in β-carotene and 

lycopene, respectively due to increased porosity and thus greater exposure to oxygen. It has also been 
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stated that the extractability of carotenoids is reduced in freeze-dried material (Martínez-Hernández 

et al., 2016). Interestingly, the total polyphenol concentration was reported to be unaffected by 

lyophilization (Georgé et al., 2011). These absolute concentrations are only used to benchmark the 

obtained results with the reported literature data, however, as the primary goal was to compare 

relative concentration changes within the process. 

4.4.4.2 Retention efficiencies 

a/ Spiral-filter processing 

The retention efficiencies of the measured carotenoids in the filtration process are shown as the sum 

of the stacked bars in Figure 4.7. A mean overall carotenoid retention efficiency of 112 % ± 10 % is 

obtained with compound specific values ranging from 101 % to 125 %. Weighed for their mass fraction, 

this value was 122 % ± 15 %. Despite their susceptibility to degradation, the carotenoids were thus 

conserved throughout processing with the spiral-filter press. In conventional tomato processing, the 

straining process is often associated with a reduction of carotenoids due to oxidation. The high rotation 

speeds in the straining equipment generate large amounts of dissolved air in the tomato juice that can 

quickly destroy substantial amounts of lycopene. In addition, the presence of light and use of fine metal 

screens are reported to promote lycopene oxidation (Shi & Le Maguer, 2000).  

 

Figure 4.7 Retention efficiencies of carotenoids through the filtration process. Light grey columns represent the extraction 
efficiency in the press residue, whereas black columns represent the extraction efficiency in the juice. The vertical error bars 
represent standard deviations (n=2). The sum of both extraction efficiencies is the retention efficiency of the compound. The 
retention efficiencies have only been calculated for the compounds present in concentrations larger than the quantification 
limit in the mashed tomato fraction. 

The conservation of all carotenoids as observed in this study can thus be attributed to the fast 

processing of the spiral-filter press in a low-oxygen atmosphere, which diminishes carotenoid 
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oxidation and conserves the carotenoids in their original concentration and form. This is the first time 

that the fate of the carotenoids has been described throughout processing with the spiral-filter press. 

Similar to the phenolic compounds, the carotenoids measured (lycopene and β-carotene) were 

predominantly present in the press residue. In absolute amounts, the sum of all carotenoids was about 

2.5 times higher in the PR compared to the JnT fraction. This illustrates that the most lycopene is 

attached to the insoluble fiber portion of tomatoes, as confirmed by Toor & Savage (2005). The 

extraction efficiencies make it possible to evaluate the tendency of each individual compound to 

migrate into the juice or the press residue as shown by the black and grey bars, respectively, in Figure 

4.7. In parallel to the phenolic compounds, it can be concluded that the juice extraction efficiencies 

were higher than those of the press residue due to the larger mass fraction of the juice, despite the 

larger absolute concentrations in the press residue. The mean juice extraction efficiency of the 

measured carotenoids was 85 % ± 10 %, which became 91 % ± 11 % when weighed for the mass 

fractions of the individual compounds.  

b/ Thermal processing 

During thermal treatment, the carotenoids underwent an average decrease in concentration of 

approximately 46 % ± 13 %, with individual values ranging from 32 % to 50 % (data not shown). In 

contrast to the minor effects on phenolic compounds, thermal treatment thus led to a significant 

decrease in carotenoid concentration. In literature, conflicting results concerning the effect of thermal 

treatment on total carotenoid concentration have been described (Seybold et al., 2004; Xianquan et 

al., 2008). Decrease (Capanoglu et al., 2008; Koh et al., 2012; Sharma & Le Maguer, 1996; Shi et al., 

2003; Takeoka et al., 2001), increase (Abushita et al., 2000; Dewanto et al., 2002) and conservation 

(Arjmandi et al., 2017; Georgé et al., 2011) of carotenoids upon thermal processing have been 

reported. Here, the decrease in all-trans-lycopene was not accompanied by an increase in cis-lycopene 

concentration which suggests that degradation through oxidation of lycopene was the predominant 

mechanism (in contrast to isomerization). This is in accordance with the findings of Shi et al. (2002) 

who reported lycopene degradation to be the main mechanism of lycopene loss at temperatures 

above 100 °C.  

The thermal treatment that is used to inactivate microorganisms and enzymes and extend the shelf 

life of juice products thus had adverse effects on the nutritive quality of tomato. Possible 

improvements to the proposed setup could consist of different temperature and duration settings of 

the thermal treatment, as both parameters have been shown to affect the carotenoid concentration 

(Lin & Chen, 2005a; Odriozola-Serrano et al., 2009; Shi & Le Maguer, 2000; Xianquan et al., 2008). 

Another possibility could be to use other treatments such as radiation treatments, electrical 
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treatments, ultrasound treatments, high hydrostatic pressure treatments and combinations thereof 

instead of traditional thermal processing (Barrett & Lloyd, 2012; Jiménez-Sánchez et al., 2017a; 2017b; 

Pereira & Vicente, 2010; Turk et al., 2012). These novel, alternative techniques have been widely 

studied for their effects on the bioactive content and quality attributes of the processed products 

(Barrett & Lloyd, 2012; Jiménez-Sánchez et al., 2017b). The combination of the spiral-filter press with 

these novel preservation techniques opens new perspectives and should be the subject of further 

research.  

c/ Storage 

After thermal treatment, a three-month storage period showed no additional consistent decrease in 

carotenoids, which can be attributed to the dark storage of tomato juices with minimal oxygen 

presence (Xianquan et al., 2008) (Table 4.4). Analogous to the phenolic compounds, decreases in 

carotenoids by oxidation upon storage are often reported, however (Jayathunge et al., 2015; Lin & 

Chen, 2005b; Odriozola-Serrano et al., 2009; Sharma & Le Maguer, 1996; Xianquan et al., 2008). 
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4.5 Conclusion 

These results clearly show that the spiral-filter press led to a conservation in AA, phenolic compounds 

and carotenoids in the resulting juice and press residue fractions. The thermal treatment conserved 

the phenolic compounds and the AA content, but resulted in a significant decrease in carotenoid 

content. Three months of storage led to a significant decrease in AA, while the predominant part of 

the other compounds remained conserved. These results indicate a minimal process impact of the 

novel spiral-filter press on tomato, which can be attributed to fast processing in a low-oxygen 

atmosphere. Earlier studies on apple and pear processed with the spiral-filter press support these 

findings, making it a promising technology for other fruit and vegetable matrices as well. The results 

also show that the process conditions of the subsequent thermal stabilization step should be adjusted 

or that the thermal treatment should be substituted by another technology with a lower impact on the 

phytochemical content.  

One should however keep in mind that several factors can influence the concentration and/or behavior 

of phytochemicals under different conditions. Factors such as the type of fruit and vegetable, ripening 

stage and firmness as well as processing parameters (e.g. temperature, treatment duration) and the 

presence of other compounds can alter the behavior of phenolic compounds and carotenoids upon 

thermal treatment (Capanoglu et al., 2010; Nayak et al., 2015; Tomas et al., 2017; Vallverdú-Queralt 

et al., 2014; Xianquan et al., 2008). For example, for carotenoids a cultivar-dependent thermal effect 

was shown by Seybold et al. (2004) where a decrease of lycopene and β-carotene was observed when 

heating Dutch tomatoes. The same experiment, when performed with Spanish tomatoes, led to a 

significant rise in lycopene during the first 30 minutes. It could be hypothesized that this difference in 

behavior is related to the genetic differences between fresh market tomatoes and processing 

tomatoes, assuming that the Dutch tomatoes were predominantly fresh market tomatoes and Spanish 

tomatoes predominantly processing tomatoes. Moreover, sample treatment can influence the total 

measured concentration, as shown for freeze-dried samples (Georgé et al., 2011; Martínez-Hernández 

et al., 2016). Another factor that can lead to differences and discrepancies between studies is the 

method of analysis. An example is the instability of commercial standards such as lycopene used in 

chemical analysis. In the case of phenolic compounds, the total phenolic content is often measured 

spectrophotometrically using the Folin-Ciocalteau method or is deduced from the antioxidative 

capacity. Both methods are less specific compared to methods such as LC-MS analysis and therefore 

do not always correctly reflect the actual changes induced by the processing (Capanoglu et al., 2008; 

Georgé et al., 2011; Martínez-Valverde et al., 2002; Tomas et al., 2017; Vallverdú-Queralt et al., 2012). 
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All of these influencing factors make sound conclusions about the process impact of a certain 

technology and its comparison with other technologies challenging. This study did not aim to compare 

or rate the different unit processes with other processes, rather it aimed to understand and evaluate 

the observed changes throughout the process line relative to the raw feedstock. A further evaluation 

of the proposed process could consist of comparing the different unit processes with other 

technologies and investigating the fate of different phytochemicals. To minimize the impact of the 

factors mentioned above, it is important to account for aspects such as using the same feedstock 

tomatoes, performing parallel experiments on the same scale and using the same sample treatment 

in combination with correct measurement methods.  
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Chapter 5: Detailed profiling of bioactive compounds in Belgian 

endive (Cichorium intybus L. var. foliosum): determination of 

sesquiterpene lactones, phenolic compounds, antioxidative capacity 

and elemental composition 

Redrafted from 

Kips, L., Annaratone, C., Hertog, M., Van Ceulebroeck, C., Van Poucke, C., Van Pamel, E., Raes, K. & Van 
Droogenbroeck, B. (2017). Detailed profiling of bioactive compounds in Belgian endive (Cichorium 
intybus L. var. foliosum). Manuscript submitted for publication in Journal of agricultural and food 
chemistry. 

5.1 Abstract  

Bitter Belgian endive chicons, consumed as leafy vegetables, are grown by ‘forcing’ roots. In Belgium, 

yearly 36,000 tonnes of these forced roots are byproducts and used to feed cattle. However, they could 

have a higher added value in food, pharma or as biocide. This chapter investigates in detail the 

sesquiterpene lactone content, the phenolic content, the elemental composition and the antioxidative 

capacity of forced roots. Their constitution was compared to industrial chicory, different cultivars of 

fresh Belgian endive roots, chicons and non-forced roots, both stored and non-stored. Results showed 

that for the sesquiterpene lactones, the lactucin forms were significantly enriched in the forced roots. 

Also their chlorogenic acid content (main phenolic compound) and antioxidative capacity were higher 

compared to non-forced roots. With very little information available in literature, this knowledge is 

crucial for further evaluation of the valorization opportunities for forced Belgian endive roots towards 

bioactive products. 
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5.2  Introduction 

In the fruit and vegetable processing sector, 40 % to 50 % of the biomass is lost during the production, 

handling, storage, processing, distribution and consumption stages, leading to huge losses of 

potentially health-beneficial and high-value biomass (FAO, 2011). Consequently, the European Union 

legislation supports the use of these byproducts in the framework of a circular economy (European 

Commission, 2015c). Such valorization can be achieved for example by the use of high-value 

compounds such as proteins, dietary fibers, flavor compounds and phytochemicals present in vegetal 

byproducts that have the potential to be used as functional food ingredients or pharmaceutical 

ingredients (Baiano, 2014). 

The white and bitter tasting Belgian endive chicon (Cichorium intybus L. var. foliosum) is an important 

Belgian vegetable that belongs to the Asteraceae family (Wulfkuehler et al., 2013) with an annual 

Belgian production volume of approximately 40,000 tonnes (Department of Agriculture and Fisheries, 

2014). These chicons are characterized by a bitter taste caused by sesquiterpene lactones (SLs) of the 

guaianolide family (de Kraker, 2002). These SLs are terpenoid compounds prevalent in the Asteraceae 

and are known to exert a variety of biological and pharmacological activities (Bischoff et al., 2004; 

Chadwick et al., 2013; Chaturvedi, 2011) (Figure 5.1).  

To produce chicons, Belgian endive roots are forced in the absence of light. Non-forced roots are 

harvested on the field and stored cold (-2 °C) for up to several months, depending on cultivar. 

Subsequently, they are forced to produce edible chicons, which are compact heads of white to pale 

yellow leaves sitting on suppressed floral stems. The forcing process can take place in two different 

ways: (i) hydroculture or (ii) soil-based production (about 5 %). The 36,000 tonnes of forced roots, 

remaining after forcing of the chicons are not used for human consumption and are currently 

predominantly used as feed for local cattle (Department of Agriculture and Fisheries, 2014). However, 

as these roots are also bitter, they are expected to be major sources of SLs and could thus be of great 

value in various sectors such as food, pharma or biocides (Chadwick et al., 2013; Ghantous et al., 2010).  

To date, rather limited research has been performed on the composition of Belgian endive chicons and 

roots. Whereas the genus Cichorium in general has been the subject of some research, a general 

misclassification leads to results that are difficult to allocate to specific varieties and cultivars. Several 

common names are circulating such as Belgian endive, French endive, coffee chicory, succory, witloof, 

chicon, industrial chicory and root chicory. Those terms are freely used as synonyms for various species 

of the Cichorium genus, leading to a confusing terminology, which is rooted in the presence of a great 

amount of varieties and cultivars (Innocenti et al., 2005; Lucchin et al., 2008). Generally, the species 
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Figure 5.1 The 16 measured sesquiterpene lactone structures, differing in type of backbone and sidechain. 

Cichorium intybus species can be split into three main cultivar groups: (i) the root chicory known as 

Cichorium intybus L. var. sativum, also called industrial chicory as these roots are used for industrial 

inulin extraction and coffee substitutes, (ii) the witloof chicory known as Cichorium intybus L. var. 

foliosum, and (iii) the leafy chicory, sub-classified into Sugarloaf (var. porphyreum), Radicchio (var. 

latifolium) and Catalogne (var.sylvestre) (Barcaccia et al., 2016). Despite this classification, often only 

the general term Cichorium intybus L. is mentioned in literature, hence it is difficult to gain insight in 

the composition of specific varieties. Another aspect that impedes valorization of roots, is the scarce 

analysis of the roots of the foliosum variety, as leaves have been the predominant focus, probably due 

to their commercial use as vegetables (Bahri et al., 2012; Carazzone et al., 2013; Heimler et al., 2009; 

Innocenti et al., 2005; Peters & van Amerongen, 1996; Sinkovič et al., 2014; Sinkovič et al., 2015). 

Additionally, for a long time it has been thought that the free, nonconjugated forms were the 

Abbreviation Common name Backbone R1 R2 

LAC Lactucin U A D 

doLAC Deoxylactucin U A F 

LCP Lactucopicrin U A E 

DHLAC Dihydrolactucin S A D 

DHdoLAC Dihydrodeoxylactucin S A F 

DHLCP Dihydrolactucopicrin S A E 

LACox Lactucin oxalate U B D 

doLACox Deoxylactucin oxalate U B F 

LCPox Lactucopicrin oxalate U B E 

DHLACox Dihydrolactucin oxalate S B D 

DHdoLACox Dihydrodeoxylactucin oxalate S B F 

DHLCPox Dihydrolactucopicrin oxalate S B E 

LACglyc Lactucin glycoside U C D 

DHLACglyc Dihydrolactucin glycoside S C D 

doLACglyc Deoxylactucin glycoside U C F 

DHdoLACglyc Dihydrodeoxylactucin glycoside S C F 

- H 
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predominant SLs, hence most analytical methods only focused on these free forms (Annaratone et al., 

2016). However, by the end of the 20th century, the glycosides were discovered and recently Sessa et 

al. (2000) discovered that SLs in the latex  

The objective of this chapter was in the first place to investigate the composition of the forced Belgian 

endive roots as a basis for their further valorization. In order to gain more insight in the effect of variety 

and cultivar on the one hand and the distribution between forced roots and the commercially valuable 

chicons on the other hand, various additional samples were taken, enabling the comparison of variety 

and cultivar (industrial chicory versus six Belgian endive cultivars), matrix (root vs. chicon), forcing 

(non-forced vs. forced root) and storage of the non-forced roots (four-month storage). These different 

samples were subjected to an investigation of (i) the SLs, both free and bound forms, (ii) the phenolic 

compounds, (iii) the antioxidative capacity and (iv) the elemental composition. The latter was 

investigated from a nutritional and food safety point of view to obtain a broad compositional 

fingerprint of the scarcely investigated forced Belgian endive roots. However, to allow for possible 

future valorization pathways, other than food, all elements that were present above the limit of 

quantification were reported.  

With these data, a contribution was made to the composition of Belgian endive and its influencing 

factors, which has never been reported to the best of our knowledge. These insights can be used to 

further exploit the potential of forced Belgian endive roots. 
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5.3  Materials and methods 

5.3.1 Sampling 

The data in this article were organized in two different groups, the variety dataset and the forcing 

dataset (Figure 5.2). The first dataset contained freshly harvested Topmodel (Hoquet, hybrid) roots 

which were collected in November 2015 (Affligem, Belgium). In parallel, the roots of five other Belgian 

endive cultivars were sampled from another location (November 2015; Herent, Belgium): Van Hamme 

(landrace), Van Tongelen (landrace), De Winter (landrace), Takine (Vilmorin, hybrid) and Fakir (Hoquet, 

hybrid). The latter two, like Topmodel, can be forced both in soil as hydroponically, whereas Van 

Hamme, Van Tongelen and De Winter are soil-forcing varieties. Finally, roots of the closely related 

chicory crop (Cichorium intybus L. var. sativum) were added to the dataset (November 2015; Chic 1331, 

Melle, Belgium). These will be denoted as industrial chicory, in order to make a clear distinction with 

the Belgian endive roots. In this variety dataset, the effects of variety and cultivar were thus 

investigated. The Topmodel variety was followed further throughout the forcing process, which was 

included in the forcing dataset. These Topmodel roots were harvested in November 2014 (Affligem, 

Belgium) and further stored at -2 °C. Two samples were taken from these stored, non-forced roots: 

one after 6 months (non-forced - NF1) and one after 10 months (non-forced - NF2) (Figure 5.2). 

 

Figure 5.2 Sampling scheme for the Belgian endive profiling, split into two subsets which were analyzed separately i.e. the 
variety dataset (left panel) and the forcing dataset (right panel). In the variety dataset, non-forced roots from different variety 
and cultivar were sampled in November. In the forcing dataset, both roots (non-forced and forced) and chicons were sampled 
at the start (1 – not stored - May) and at the end (2 – stored - September) of the forcing season. 

Subsequently they were forced in hydroculture during 21 days to produce chicons (C1, C2) and forced 

roots (forced - F1, forced - F2). This forcing dataset thus investigates the effects of storage (1 vs. 2), 

matrix (root vs. chicon) and forcing (NF vs. F). 
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From each cultivar, about 20 roots were washed under cold tap water and cut into 1 cm³ cubes (CL 50 

Ultra, Robot coupe, Mont-Sainte-Geneviève, Belgium). An analogous procedure was used to prepare 

the chicons. These samples were immediately freeze-dried (Epsilon 2-10 D LSC, Martin Christ, Osterode 

am Harz, Germany) and milled to a fine powder (Ultra centrifugal mill ZM 200, Retsch, Haan, Germany). 

The resulting dry powders were stored at -80 °C in plastic bottles (NalgeneTM, Thermo Fisher Scientific, 

Waltham, USA) under nitrogen atmosphere until analysis.  

5.3.2 Characterization  

5.3.2.1 Reagentia 

The following analytical standards were purchased from Sigma (Diegem, Belgium): 3,4,5-

trimethoxycinnamic acid, 4-p-hydroxyphenyl acetic acid, apigetrin, avicularin, caffeic acid, chicoric 

acid, chlorogenic acid, cyanidin chloride, daidzein, epicatechin, dihydrocafeic acid, dihydroferulic acid, 

ferulic acid, gallic acid, gentisic acid, hesperetin, hesperidin, kaempferol, luteolin, miquelianin, 

naringenin, o-coumaric acid, p-coumaric acid, phloretin, propyl gallate, quercetin, salicylic acid, 

santonin, sinapinic acid and vanillic acid. Aromadendrin, catechin, cynaroside, phloridzin, procyanidin 

B2, protocatechuic acid, taxifolin and naringenin chalcone were purchased from Phytolab GmbH & Co 

(Vestenbergsgreuth, Germany). Apigenin, astragalin, galangin, naringin, quercitrin, rutin, lactucin, 

11β,13-dihydrolactucin, lactucopicrin and 11β,13-dihydrolactucopicrin were purchased from 

Extrasynthese (Genay, France). Isoquercitrin and isorhamnetin were provided by Carl Roth GmbH 

(Karsruhe, Germany).  

5.3.2.2 Determination of the sesquiterpene lactones 

SLs were extracted from the freeze-dried samples in triplicate. Both extraction and separation were 

based on the method developed by Annaratone et al. (2016) with minor modifications. Briefly, 

extraction of 50 mg powdered sample was performed using 1.480 mL H2O + 0.1 % formic acid. After 

addition of the internal standard santonin (74 µL, 10 ppm), the samples were shaken for 15 minutes at 

30 °C at a speed of 1,300 rpm (Eppendorf thermomix comfort, Eppendorf, Rotselaar, Belgium) and 

centrifuged (15 min, 20817 g). The supernatans was filtered over a PVDF filter (0.22 µM, Millipore, 

Overijse, Belgium) and transferred to a vial for analysis. In order to separate the SLs present, ultra-high 

performance liquid chromatography (UHPLC) by means of an AcquityTM UPLC (Waters, Manchester, 

UK) was performed. A BEH C18 column (150 mm x 2.1 mm, 1.7 µm) was used for chromatographic 

separation (Waters). The mobile phase consisted of H2O + 0.1 % formic acid (solvent A) and ACN + 

0.1 % formic acid (solvent B). The gradient was initiated at 5 % B for 5 min, then linearly increased from 

5 % to 53 % B in 20 min, held constant at 53 % for 1 min and finally set at 100 % B for 3 min. Afterwards, 
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the initial conditions of 5 % B were re-equilibrated for 4 min prior to the next injection. The column 

temperature was set at 40 °C and the flow rate was 0.350 mL min-1. The injection volume was 5 µL. 

Detection of the SLs was performed by means of a Synapt G2-S (Waters) high resolution mass 

spectrometer (HRMS). The MS detector was operated in positive electrospray (ESI+) mode with a 

capillary potential of 1.5 kV. Source and desolvation temperatures were 120 °C and 500 °C, 

respectively. Gas flows were 800 L.h-1 and 20 L.h-1 for desolvation and cone gas, respectively. Data 

were acquired in MSE mode with the collision energy at 4 eV in the low energy mode to determine the 

accurate mass, fragmentation spectra were obtained in the high energy mode using a collision energy 

ramp (8 – 40 eV). Four compounds were quantified with reference standards: lactucin (LAC), 

lactucopicrin (LCP), dihydrolactucin (DHLAC) and dihydrolactucopicrin (DHLCP). As no other standards 

were available, the other compounds (doLAC: 8-deoxylactucin; doLACglyc: 8-deoxylactucin glycoside; 

doLACox: 8-deoxylactucin oxalate; DHdoLAC: dihydro-8-deoxylactucin; DHdoLACglyc: 

dihydrodeoxylactucin glycoside; DHdoLACox: dihydro-8-deoxylactucin oxalate; DHLACglyc: 

dihydrolactucin glycoside; DHLACox: dihydrolactucin oxalate; DHLCPox: dihydrolactucopicrin oxalate; 

LACglyc: lactucin glycoside; LACox: lactucin oxalate; LCPox: lactucopicrin oxalate) were identified based 

on the accurate mass and fragmentation pattern and reported as relative peak areas (area 

compound/area internal standard). Data recording was achieved with MassLynxTM (v.4.1) while the 

integration was performed with TargetLynxTM (v. 4.1) (Waters).  

5.3.2.3 Determination of the phenolic profile 

Phenolic compounds were determined following the procedure described in Chapter 4 (section 

4.3.2.3). Due to the presence of high amounts of chlorogenic acid, quantification of this compound 

was performed using 1/100 dilution (MeOH:water, 60/40, v/v) of the extracts and on an absolute basis 

(i.e. without using the signal of the internal standard as this was too diluted).  

5.3.2.4 Determination of the antioxidative capacity 

In order to take into account the multiple antioxidant structures and reaction mechanisms, two 

different assays were used: the oxygen radical absorbance capacity (ORAC) assay and the 2,2-diphenyl-

1-picrylhydrazyl (DPPH) assay (Prior et al., 2005). The ORAC-assay is based on a hydrogen atom transfer 

(HAT) mechanism, whereas the DPPH assay is characterized by a single electron transfer (SET) 

mechanism. Both analyses were performed as described by Bernaert et al. (2013). Analyses were 

performed in triplicate (n=3). Results were expressed in µmoles of Trolox equivalents per gram of dry 

weight (µmol TE.g-1 DW). 
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5.3.2.5 Determination of the elemental composition 

The elemental composition was determined using XRF (X-Ray fluorescence) spectrometry 

(Epsilon3XLE, PANalytical, Brussels, Belgium). The dry powders were placed in a cup (P1 with 4µm 

prolene film), manually compressed and subsequently analyzed in triplicate (n=3). Mineral elements 

detected in concentrations above the quantification limit were quantified: Na, Mg, Si, P, S, Cl, K, Ca, 

Mn, Fe, Cu, Zn, Br, Rb and Sr. Data analysis was performed with PANalytical Omnian Solution 

precalibrated for an Epsilon3XLE spectrophotometer.  

5.3.2.6 Statistical analysis 

The data were split into two subsets: the variety dataset and the forcing dataset. Statistical analysis 

was carried out using SPSS Statistics 22. Treatments were compared using one-way analysis of variance 

(ANOVA) followed by a Scheffé post-hoc test. The dependent variables were the relative peak areas of 

the 16 SLs obtained by HRMS analysis, the concentrations of the four quantified SLs (LAC, DHLAC, LCP, 

DHLCP), the most abundant phenolic compounds (chlorogenic acid, caffeic acid, rutin, quercetin-3-O-

glucuronide & isoquercetin), the antioxidative capacities (ORAC, DPPH) and the concentration of 15 

mineral compounds. A significance level of p < 0.05 was used. Sigmaplot 12.5 was used to visualize the 

data. 

5.3.2.7 Data processing and visualization of the sesquiterpene lactones 

The relative peak areas of the SLs obtained by HRMS analysis were used for data visualization. The 

variety dataset contained the seven freshly harvested roots, in triplicate, as rows and the 16 SLs as 

columns (21 x 16 matrix). The second dataset contained the six Topmodel samples, in triplicate, as 

rows and the 16 SLs as columns (18 x 16 matrix). In the first subset, variation was mainly induced by 

variety and cultivar. In the second subset, variation arose from matrix, forcing treatment and storage. 

In both datasets the technical variance or the sum of the analytical variance (errors arising from 

differences during instrumental analysis) and sample work-up variance (errors arising from differences 

during sample work-up) were estimated from triplicate measurements. Before performing an 

exploratory data analysis, the data were subjected to a power transformation in order to remove the 

heteroscedastic error structure in the dataset, followed by a column-wise autoscaling. Subsequently, 

the principal component analysis (PCA) was performed for these transformed and scaled datasets. 

Finally, in order to discover clusters in the data, k-means clustering was performed. The number of 

clusters was determined using the ‘Elbow’ method (De Paepe et al., 2015c). 
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5.4 Results 

5.4.1 Sesquiterpene lactone profile 

The results of the SL-analysis of the variety dataset are shown in Figure 5.3. The fresh roots of the 

different Belgian endive varieties and industrial chicory clustered together in two groups based on 

their SL-profile. In general, compounds in the fourth and second quadrant that were aligned close to 

the y-axis and x-axis, could be linked to the variation between cluster 1 and 2, respectively, which was 

illustrated by significantly higher levels of DHdoLACglyc, DHdoLAC, DHLCP and DHLACglyc in most of 

the cultivars of cluster 1 compared to cluster 2 (Table A1 in Appendix). LACox and doLACglyc were on 

average significantly more present in cluster 2 (De Winter, Fakir and Van Tongelen), the latter 

compound in very low levels. Within cluster 1, the compounds of the fourth quadrant that were closely 

located to the x-axis were significantly more present in industrial chicory and Topmodel (LAC glyc, 

DHLAC and DHLACglyc) whereas those in the first and second quadrant were more characteristic for 

the varieties Takine and Van Hamme (DHdoLACox, doLAC, DHLCPox, doLAXox, LCPox and doLACglyc).  

 

Figure 5.3 K-means clustered PCA-plot of the 16 measured sesquiterpene lactones in the variety subset which was power 
transformed and autoscaled. The total variance captured by the first two PCs is 67.8 %. The loadings were multiplied by factor 
10 for visual purposes. 
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The more vertical the compound, the less variation it captured within cluster 1. LAC did not contribute 

much to the observed variation. From all measured SLs, the Belgian endive and industrial chicory roots 

predominantly contained oxalates. In industrial chicory however, these oxalates were less present, 

leading to a lower total SL-level in industrial chicory compared to Belgian endive roots.  

A PCA-plot of the relative SL-peak areas of the HRMS profile in the forcing dataset reveals a more 

pronounced clustering, where most of the variation in the SL-content of Belgian endive was related to 

the matrix (root and chicon) and to the forcing treatment, as samples clustered together in three 

distinct groups: forced roots, non-forced roots and chicons (Figure 5.4). It can be observed that the 

Belgian endive roots (NF and F) were significantly enriched in almost all dihydro-forms of LAC and in 

all glycosides compared to the chicons (Table A2 in Appendix). This resulted in chicons with overall less 

SLs compared to the roots, containing predominantly oxalate SLs. The roots contained predominantly 

oxalate and glycosidic SL-forms. Forcing the Belgian endive roots significantly increased all levels of 

LAC-SLs (except for DHLAC). This increase can be predominantly attributed to an increase in oxalates. 

After storage, even the LCP-forms significantly increased upon forcing (except LCPox). Accordingly, 

almost all SLs in F2-roots were thus present in significantly larger amounts compared to F1-roots (Table 

A2 in Appendix). 

 

Figure 5.4 K-means clustered PCA-plot of the 16 measured sesquiterpene lactones in the forcing subset which was power 
transformed and autoscaled. The total variance captured by the first two PCs is 80.6 %. The loadings were multiplied by factor 
10 for visual purposes. The different samples are non-forced roots (NF), forced roots (F) and chicons (C) both not stored and 
stored (1 and 2). 
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Interestingly, when focusing only on the roots of the forcing dataset, another clustering becomes 

apparent (Figure A2 in Appendix). The distinct clustering between forced and non-forced roots 

vanished as NF2 and F1 clustered together. This indicates that both storage and forcing of NF1-roots 

induced a similar, increasing effect on the amount of SLs. The impact of four-month storage on the NF-

roots (NF1 vs. NF2) could predominantly be attributed to an increase in the compounds located in the 

second quadrant (DHdoLACox, DHLACglyc, LACox, doLACglyc, DHdoLACglyc, DHLACox, DHdoLAC, 

LACglyc). The NF1-roots on the other hand were characterized by significantly higher levels of the 

compounds in the first and fourth quadrant (LCP, DHLCP, DHLAC, doLAc, LAC). Storage of the NF-roots 

thus showed a significant increase in all bound LAC SLs (except doLACox) and a corresponding 

significant decrease in the free LAC and LCP SLs (except DHdoLAC). Upon forcing (NF1 vs. F1), these 

effects were similar yet more pronounced and were manifested even more during forcing after storage 

(NF2 vs. F2). Indeed, besides the bound LAC SLs, the free LAC-forms also significantly increased upon 

forcing, which were complemented with the free LCP-forms upon forcing after storage. These 

similarities may explain the observed clustering.  

Four SLs (LAC, DHLAC, LCP, DHLCP) were quantified with an external calibration curve and results are 

shown on a dry weight basis in Figure 5.5. This quantification could be used to distinguish the 

contribution of these commonly investigated SLs to the observed SL-clustering and are thus discussed 

accordingly. Generally, in both the variety and the forcing dataset, LAC and LCP were present in higher 

concentrations (20 – 120 µg.g-1 DW) than their DH-counterpart ( 2 - 95 µg.g-1 DW). Within the variety 

samples (Figure 5.5A), the trends observed for the four quantified compounds corresponded to the 

ones described in the PCA-plots. That is, a significantly larger concentration of DHLAC and DHLCP in 

industrial chicory, Topmodel and Takine (cluster 1 without Van Hamme). This resemblance between 

the PCA-plot and measured concentrations was not visible for the non-DH-forms (LAC and LCP), which 

could indicate that the latter two compounds were less responsible for the PCA-clustering in the variety 

dataset. In the forcing dataset (Figure 5.5B), the four quantified compounds did not contribute much 

to the distinction between the chicon and the root matrix as seen in the PCA-plot, as only the LCP-

concentration was significantly lower in the chicons. This was in accordance with the trend in the PCA-

plot where the distinction between chicons and roots was predominantly related to the glycosides and 

the DH-forms of LAC (except DHLAC). The effects of forcing and storage on the SLs observed here, 

corresponded to the ones seen in the PCA-plot. 
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Figure 5.5 Four quantified sesquiterpene lactones (lactucin (LAC), dihydrolactucin (DHLAC), lactucopicrin (LCP) and 
dihydrolactucopicrin (DHLCP)) (µg . g-1 DW) A) in the variety dataset, B) in the forcing dataset. The different samples in the 
forcing dataset are non-forced roots (NF), forced roots (F) and chicons (C) both not stored and stored (1 and 2). Different 
letters indicate significant differences (p < 0.05). 

5.4.2 Phenolic profile 

The major phenolic compounds are shown in Table 5.1. Chlorogenic acid (CHA) constituted more than 

99 % of the detected phenolic compounds in both Belgian endive roots and industrial chicory roots.  

B 

A 
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Table 5.1 Content of phenolic compounds (µg.g DW-1). Different letters indicate statistically significant differences (p < 0.05). 
Letters a – e denote differences in the forcing dataset. W - z are used for differences within the variety dataset. The different 
samples in the forcing dataset are non-forced roots (NF), forced roots (F) and chicons (C) both not stored and stored (1 and 
2). 

 

In the variety dataset, industrial chicory was characterized by a significantly lower CHA-concentration 

compared to the Belgian endive roots. Van Hamme, Fakir and De Winter contained the highest CHA 

levels, about twice as high as the level in industrial chicory. Caffeic acid levels did not follow this CHA 

trend, showing significantly higher concentrations in industrial chicory and Topmodel compared to the 

other varieties. Rutin, a flavonoid present in the fresh roots also showed a completely different 

distribution compared to CHA, with a significantly higher concentration (~factor 2) in industrial chicory 

roots compared to the Belgian endive roots. In the forcing dataset, the roots contained significantly 

more CHA compared to the chicons (~factor 2). Forcing significantly increased the level of CHA whereas 

this effect was less visible in forcing after storage. The other phenolic compounds, present in much 

lower concentrations showed a different profile. These were much more present in the chicons 

compared to the roots varying from a factor 6 in caffeic acid to 65 in the flavonoids. No consistent 

effects of storage were observed. Chicoric acid was identified in this dataset, but the obtained results 

did not allow for a correct quantification due to suboptimal peak shape. 

  Hydroxycinnamic acids Flavonoids (flavonols) 

 
 Chlorogenic acid Caffeic acid Rutin 

Quercetin-3-O-

glucuronide 
isoquercetin 

V
ar

ie
ty

 d
at

as
e

t 

Industrial chicory 927 ± 45 w 2.4 ± 0.1 z 1.9 ± 0.1 x 0.37 ± 0.02w 0.1 ± 0.01 x 

Topmodel 1,251 ± 54 x 2.2 ± 0.04 z 0.02 ± 0.0001 w < 0.1 < 0.01 

Takine 1,473 ± 27 x 0.68 ± 0.05 w 0.02 ± 0.001 w < 0.1 < 0.01 

Van Hamme 2,503 ± 145 y 1.0 ± 0.1 x 0.10 ± 0.01 w < 0.1 < 0.01 

Van Tongelen 1,375 ± 95 x 0.66 ± 0.02 w 0.02 ± 0.0.002 w < 0.1 < 0.01 

Fakir 2,374 ± 90 y 1.6 ± 0.1 y 0.04 ± 0.02 w < 0.1 < 0.01 

De Winter 2,227 ± 105 y 1.1 ± 0.04 x 0.05 ± 0.01 w < 0.1 0.02 ± 0.007 w 

 p-value < 0.001 < 0.001 < 0.001  -  0.002 

Fo
rc

in
g 

d
at

as
e

t 

NF1 4,515 ± 293 b  5.3 ± 0.2 b 0.05 ± 0.004 a 0.12 ± 0.01 a 0.01 ± 0.001 a 

F1 5,949 ± 180 c 1.8 ± 0.02 a 0.07 ± 0.01 a 0.16 ± 0.02 a 0.04 ± 0.003a 

C1 2,358 ± 180 a 20 ± 1 c 4.7 ± 0.2 b 7.9 ± 0.4 b 1.2 ± 0.04 b 

NF2 4,233 ± 113 b 1.8 ± 0.02 a 0.08 ± 0.002 a 0.18 ± 0.01 a 0.02 ± 0.004 a 

F2 4,415 ± 126 b 5.3 ± 0.3 b 0.07 ± 0.01 a 0.15 ± 0.03 a < 0.01 

C2 2,281 ± 67 a 25 ± 2 d 5.3 ± 0.5 b 10 ± 1 c 1.3 ± 0.2 b 

 p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
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5.4.3 Antioxidative capacity (AOC) 

The AOC measured by the ORAC-assay on freshly harvested roots from different Belgian endive 

varieties and the closely related industrial chicory root are shown in Figure 5.6A. Industrial chicory and 

Topmodel had the lowest AOC whereas Fakir and De Winter were varieties with the largest AOC. From 

Figure 5.6B, it can be seen that the chicons of Belgian endive had a comparable AOC compared to the 

F-roots. Forcing of the NF-roots significantly increased the AOC. Furthermore, the forced roots and 

chicons were characterized by a significantly higher AOC when produced from stored non-forced roots. 

This effect was less clear in the NF-roots indicating that storage of NF at -2 °C had little impact on the 

AOC.  

Figure 5.6 Antioxidative capacity as determined by the ORAC-assay (µmol TE.100g-1 DW). A) ORAC-values for the variety 
dataset and B) ORAC-values for the forcing dataset. Different letters indicate statistically significant differences (p < 0.05). 
Vertical bars represent standard deviations. The different samples in the forcing dataset are non-forced roots (NF), forced 
roots (F) and chicons (C) both stored and not stored. 

The DPPH-profile of the variety dataset (Figure A3A in Appendix) showed no significant differences 

between the different samples (except for a significantly higher AOC of Van Hamme). In the DPPH-

profile of the forcing dataset (Figure A3B in Appendix), the AOC of the chicons was similar to that of 

the forced roots whereas the AOC of the NF-roots was significantly lower, analogous to the ORAC-

assay. No other pronounced effects were observed here. 

5.4.4 Elemental composition 

The elements predominantly present in both datasets were K (2,500 – 4,500 µg.g-1 FW), P (300 – 450 

µg.g-1 FW), Cl (250 – 600 µg.g-1 FW ) and Ca (200 – 600 µg.g-1 FW) (Tables A3 and A4 in Appendix). A 

large variation was found between the varieties and cultivars (factor 1.2 – 4.9). A PCA-plot of this 

A B 
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elemental composition shows two clusters with the industrial chicory roots in one cluster and all 

Belgian endive roots in the other cluster (Figure A4 in Appendix). The elemental composition of 

industrial chicory roots was thus distinctly different compared to the Belgian endive roots with a 

significant enrichment of Cl and Mn in the former. The Belgian endive cluster was characterized by a 

significantly higher concentration of P, K and S. However, within the Belgian endive cluster, the 

composition of the Topmodel roots differed slightly from the others as these were significantly 

enriched in Mn, Zn, Cu and P levels compared to the other cluster members. Cl and Br on the other 

hand were present in significantly lower concentrations in the Topmodel roots compared to the other 

Belgian endive roots. In the forcing dataset, a greater amount of variation was found (factor 1.2 – 17). 

Here, the same three groups were found as discerned by the PCA on SLs, i.e. chicons, forced roots and 

non-forced roots (Figures A5 and A6 in Appendix). The chicons were characterized by significantly 

higher concentrations of Cl, P, K, S and Mg whereas Na, Fe and Sr were present in significantly lower 

amounts compared to the roots. Forcing Topmodel roots led to a significant increase in the levels of 

Cl, Ca, Na and Sr.  
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5.5 Discussion 

The goal of this chapter was to gain insight in the composition of the currently underutilized forced 

Belgian endive roots which could have potential for valorization towards food, pharma or biocidal 

products. The analyses on the forced roots were complemented with other samples to identify the 

effect of variety, cultivar, matrix, forcing and storage on the constituents. 

5.5.1 Sesquiterpene lactones  

The major presence of oxalates in industrial chicory roots, Belgian endive roots and chicons is in 

accordance with the results of Sessa et al. (2000) who investigated the latex of C. intybus. It also agrees 

with the results of Annaratone et al. (2016) who investigated the latex of Belgian endive chicons and 

found a ratio of free to bound SLs close to 0.1.  

Although not clustered separately in the PCA-plot, the total SL-level in chicory roots (var. sativum) was 

lower compared to the level in the Belgian endive roots (var. foliosum), which could be related to either 

variety or other factors like growing conditions, growing locations, etc. The Belgian endive cultivars 

tested in this study (other than Topmodel) have been grown on the same location, under the same 

conditions and were harvested at the same time, thus it is very likely that the variation observed in 

their SL-profile (factor 1.3 – 4.9) was in part related to the cultivar. The effects of both variety and 

cultivar have already been demonstrated for Cichorium intybus, affecting the total amount of SLs as 

well as the relative proportions (Foster et al., 2011; Peters et al., 1996; Peters et al., 1997; Van 

Steenkiste et al., 2013). Interestingly, the genetic background of the different cultivars (open-

pollinated varieties vs. classical or CMS hybrids) nor location and growing conditions (Topmodel roots 

vs. other Belgian endive roots) were clearly reflected in the clustering. The elemental composition did 

seem to reflect this difference in variety as well as location, as industrial chicory was clustered 

separately from the Belgian endive roots and as the Topmodel roots were located distinctly further 

away from the other cluster members. Previously, location as well as location-cultivar interaction and 

P and N availability in the soil have also been linked to the SL-composition of chicory foliage and chicons 

(Foster et al., 2006; Peters et al., 1996, Peters et al., 1997). More data are thus necessary to determine 

the exact effect of location and soil mineral composition on the SL-profile. 

Leaving out geography, variety and cultivar, the forcing dataset allowed to identify the effects of 

various other parameters (matrix, forcing and storage). In the PCA-plot of the forcing dataset, the 

samples clustered closely together in three categories: (i) chicons, (ii) NF-roots and (iii) F-roots. This 

demonstrates that the sesquiterpene lactone profile was linked to matrix and forcing treatment and 
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varied distinctively within these treatments. Compared to chicons, roots contained more SLs. Forcing 

these roots led to a significant increase in most SLs. Four month storage of the NF-roots seemed to 

significantly increase the bound SL-forms and significantly decrease the free SL-forms, which may 

indicate a partial conversion of free to bound forms upon storage. These stored NF-roots, enriched in 

bound SLs, in their turn gave rise to F-roots with an increased SL-content compared to the forced roots 

that resulted from the non-stored NF-roots. 

In literature, very little information is available on the effect of matrix, storage and forcing the free SL-

content in Cichorium intybus L. var. foliosum, leave alone data on bound SLs, thus it is difficult to make 

a reasonable comparison of the data obtained. Dolezal (1976 as cited in Leclerq, 1992) also reported 

an increase of the bitter compounds in the Belgian endive roots during forcing, however using a rather 

inaccurate method, including all compounds reacting with KCN. Aerial parts of other cultivars of the 

foliosum variety have been analyzed for their SL-content and the same trend was found, namely that 

dihydroforms are present in smaller amounts compared to their non-dihydro counterpart (Graziani et 

al., 2015). Analogous to the results found here, de Kraker (2002) found the SL-concentration in the 

roots (0.11 % – 0.81 % dry weight) to be higher compared to the leaves (not specified which kind of 

leaves) (0.06 % - 0.45 % dry weight).  

5.5.2 Phenolic composition and antioxidative capacity 

The hydroxycinnamic acids predominate in the Cichorium intybus species, represented by mono- 

(mainly chlorogenic acid) and dicaffeoylquinic acids and chicoric acid (Jurgoński et al., 2011; Milala et 

al., 2009; Sinkovič et al., 2014; 2015). This is confirmed in this study as chlorogenic acid was by far the 

main phenol present, constituting 99 % of the detected phenolics in all matrices sampled. Three minor 

compounds, identified as quercetin derivatives (flavonols) were quantified as well namely rutin, 

quercetin-3-O-glucuronide and isoquercetin. All of these compounds have been reported in Cichorium 

intybus species before, either in free or bound form (Carazzone et al., 2013; Ferioli & D’Antuono, 2012; 

Mascherpa et al., 2012).  

Differences within these compounds were predominantly found between different varieties and 

cultivars (factor 2 difference in CHA-levels). The industrial chicory roots have been investigated 

previously for their phenolic content. CHA-concentration in industrial chicory roots was reported to be 

91.9 ± 5.7 µg.g-1 DM (Willeman et al., 2014), which is a factor 10 lower compared to the values obtained 

here. The large phenolic concentration ranges reported here however, highlight the large within-

variety variability (factor 10), which has also been confirmed earlier by Sinkovič et al. (2014) and 

Annaratone et al. (2016). Besides variety and cultivar, external conditions can also exert an influence 
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on the phenolic composition such as crop management (Sinkovič et al., 2015) as well as biotic and 

abiotic factors.  

Besides variety and cultivar, also the effect of matrix was large, with a 2 times higher level of CHA in 

the roots compared to the chicons and an up to 65 times lower concentration for the minor 

compounds. Whereas almost no research has been conducted in the phenolic composition of the 

Belgian endive roots, the edible leaves of Belgian endive have been investigated to a small extent. 

Recently Annaratone et al. (2016) have identified that Belgian endive chicons contain mostly simple 

phenylpropanoids derived from caffeic acid such as CHA (48 µg.g-1 FW), neochlorogenic acid (4.2 µg.g-

1 FW), cynarin (11 µg.g-1 FW), chicoric acid, caftaric acid and caffeic acid itself. Innocenti et al. (2005) 

reported CHA-concentrations in Belgian endive chicons of 16 – 74 µg.g-1 FW. About three times higher 

levels were measured in the chicons (139 µg.g-1 FW) in this study. Ferioli et al. (2015) analyzed the 

phenolic constitution of 10 different Belgian endive chicon cultivars and found hydroxycinnamic acids 

to be present in levels of 1,565 – 26,055 µg.g-1 DW, from which the lower limit is in line with our results. 

It has to be noted that only a limited set of hydroxycinnamic acids has been measured in this study, 

which can in part explain the lower concentration compared to the often reported total sum of 

hydroxycinnamic acids. The effects of forcing and storage on the phenolic content in this study were 

found to be minor compared to the differences between matrix and variety. 

Phenolic acids are widely considered as natural antioxidants with potential health benefits for humans 

(Innocenti et al., 2005; Sinkovič et al., 2014). In that way, a correlation is to be expected between the 

phenolic concentration and the AOC. Interestingly, due to their structure, no AOC is attributed to SLs 

(Chadwick et al., 2013). The AOC has been determined by two assays, which are based on different 

working principles, as no single assay can accurately reflect all of the radical sources or antioxidants in 

a complex system (Prior et al., 2005). This implies that the results of any two AOC-methods will not 

automatically follow the same trend (U.S. Department of Agriculture, 2010). The trends of the 

predominantly present phenolic compound CHA in the variety dataset were to some extent reflected 

by the ORAC-assay as industrial chicory and Topmodel were characterized by half the AOC of De 

Winter, Fakir and Van Hamme. The AOC measured by the DPPH assay did not detect major differences 

within these varieties, however the order of magnitude of the AOC was similar compared to that 

reported in literature (Milala et al., 2009). The observed correspondence of the CHA-profile and the 

AOC in the roots could be traced back to CHA being the major phenolic compound in C. intybus roots 

(Jurgoński et al., 2011; Milala et al., 2009). In the forcing dataset, no pronounced correspondance of 

the AOC (both ORAC and DPPH) with the phenolic profile was found. These findings suggest that there 

are other compounds contributing to the AOC or at least that the compounds, present in the largest 

concentration, do not necessarily have the largest AOC. Another explanation could be the lack of 

chicoric acid data in this study, as this is reported to be the major phenolic compound in chicons 
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(Innocenti et al., 2005). Fraisse et al. (2011) highlighted the important role of caffeoyl derivatives in 

antioxidative activity, with chicoric acid contributing 59 % and CHA only 4 % the total AOC in the aerial 

parts of Cichorium intybus L. Forcing the NF-roots seemed to significantly increase the AOC, leading to 

a rather high value compared to other vegetables, comparable with broccoli, green lettuce and spinach 

(U.S. Department of Agriculture, 2010). It has to be remarked though that AOC-values are currently 

under debate as (i) they are not considered to directly reflect the effect of specific bioactive 

compounds, including phenolic compounds, and (ii) the values cannot be directly extrapolated to in 

vivo human effects (U.S. Department of agriculture, 2016). 

5.5.3 Valorization of forced Belgian endive roots 

Yearly approximately 36,000 tonnes of forced Belgian endive roots are fed to local cattle, which could 

be used otherwise to serve a higher added value in food, pharma or as biocide. In order to investigate 

in which manner they can serve another purpose, investigation of the vitamins (not measured) and 

minerals is valuable, specifically regarding food valorization. Calcium and potassium are for example 

considered nutrients of U.S. public health concern because low intakes are associated with health 

concerns (U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2015). 

Additional to their beneficial impact for consumers, their presence can be translated into nutrition 

claims, which is important for marketing of the resulting food products. Particularly interesting in this 

regard are the claims “source of” and “rich in”, which may be used solely in conjunction with permitted 

vitamins and minerals (EC 1169/2011). Using the first claim is permitted if 15 % of the nutrient daily 

reference intake of the vitamin or mineral is supplied by 100 g of the product, whereas the second 

claim requires at least twice this value. Based on the results from this study, the K, Fe and Cu-levels in 

forced Belgian endive roots seem to meet the “source of” criterion, however more research is 

necessary to establish this.  

Besides minerals, an investigation of the bioactive compounds was made in order to facilitate further 

valorization of the forced Belgian endive roots into products with higher added value. Indeed, the 

related Cichorium intybus species have been widely used in herbal preparations with multiple health 

beneficial effects, often ascribed to the presence of the phenolic compounds (hydroxycinnamic acids 

and flavonoids) and SLs (Das et al., 2016; Ferioli et al., 2015; Milala et al., 2009). The specific phenolic 

compounds (CHA, caffeic acid, chicoric acid and derivatives of quercetin), found in the Belgian endive 

roots have been reported to express a wide range of activities such as antihyperglycemic, anti-

inflammatory, antibacterial and anti-carcinogenic (Azay-Milhau et al., 2013; Milala et al., 2009). Also 

the bioactivity of the sesquiterpene lactones has been subject of numerous investigations, although 
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often not specifically for the structures found in this study or more generally related to an extract 

containing SLs (Ghantous et al., 2010; Picman, 1986; Prakash & Gaikwad, 2012). Historically, SLs have 

been the active ingredient in folk medicines for many treatments such as diarrhea, burns, influenza 

and neurodegradation (Chadwick et al., 2013; Ghantous et al., 2010). They have gained interest for 

treating human diseases due to their potential for the treatment of inflammation, cardiovascular 

diseases, cancer and more. Some SL-derived drugs from thapsigargin, artemisinin and parthenolide 

even reached cancer clinical trials (Ghantous et al., 2010). Due to their hypothesized evolutionary 

significance in plants as deterrents against herbivores and anti-fungal, anti-bacterial allelopathic 

agents, they could also be used in crop production (Chadwick et al., 2013).  

Although the above mentioned properties imply promising industrial valorization opportunities, 

several steps need to be undertaken before valorization of the currently low-value, forced Belgian 

endive roots into food, pharmaceutical products or herbicides can be realized. Firstly, due to their 

recent discovery, the SL-oxalates, shown here to be the predominantly present form of SLs, have not 

yet been investigated for their stability nor bioactivity. Although the net bioactive effects may to some 

extent be assumed, based on the knowledge of related compounds of the same class in related 

matrices (Chadwick et al., 2013), these novel compounds should be the subject of specific research 

before considering their utility in a biological context. Secondly, related to the bioactivity of novel 

compounds, a matrix effect should be taken into account. The role of compounds in the plant matrix 

is complex and often cannot be assumed to be allocated to a single compound. Thus, even when the 

bioactivity of a certain present compound is known, this knowledge has to be interpreted cautiously, 

as the matrix in other Cichorium varieties may suppress or enhance the activity of a specific compound 

or compound class, leading to a different activity. Therefore, actual valorization of Belgian endive 

forced roots will specifically require the obtained extracts to be bio assayed. Thirdly, if extraction of 

SLs and phenolic compounds on industrial scale is desirable, the green extraction method used for SL-

extraction as proposed here, using only water and formic acid is an environmentally friendly option. 

Furthermore, it can be used for the simultaneous extraction of phenolic compounds (Annaratone et 

al., 2016). This upscaling however requires rigorous testing of the extraction efficiency, performance 

and economic viability on a pilot and industrial scale.  

Besides serving as a basis for the identification of potential valorization pathways of forced Belgian 

endive roots, the obtained SL-data can also be valuable in regard to the taste of the currently 

commercially valuable chicons. This is gaining interest as growers often want to offer Belgian endive 

chicons of diverse bitterness levels. Therefore, the link between bitterness and SLs should be 

reassessed (including both bound and free forms), in order to identify the most bitter-tasting 

compounds. Further investigating the effect of manipulation of the roots (cultivation conditions , 
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storage conditions, forcing conditions) on the SL-profile in chicons and linking this to the bitter taste 

may enable us in the future to influence and customize the final taste of the chicon. In effect however, 

this control might not be as straightforward, taking into account different aspects such as a SL-

dependent disease resistance, cultivar-location interaction effect on the SLs and the occurrence of 

other bitter compounds (D’Antuono et al., 2016; Leclerq, 1992; Peters et al., 1997; Peters & van 

Amerongen, 1998; van Beek et al., 1990; Van Steenkiste et al., 2013). More research is thus necessary 

in order to gain more insight into the factors influencing the expression of bitterness in chicons in 

relation to the SLs. 
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Chapter 6: Reflective discussion 

6.1 General framework  

In this dissertation, the valorization of horticultural byproducts has been assessed from a broad 

perspective, thereby applying an open and transdisciplinary approach (Chapter 1). From the 

explorative idea development phase, it was established that horticultural byproducts represent a rich 

feedstock with ample potential valorization applications. Furthermore, continuing technological 

developments have enabled the translation of a large part of these innovative ideas into lab-scale 

experiments and further conversion into a proof-of-concept, reaching pilot scale in some cases. 

However, this is currently often the terminus. As a consequence, further development and subsequent 

translation towards commercialization remains scarce. Throughout our research, we have identified a 

number of aspects that can have an influence on this apparent difficulty of translating ideas for 

valorization of horticultural byproducts into commercialized concepts. These aspects are depicted in 

Figure 6.1 and will be discussed in more detail in this chapter. 

The remainder of this discussion is divided into four main parts. Firstly, in section 6.2, the facilitating 

or obstructing impact on the valorization pathway of six traits related to the horticultural byproduct 

feedstock are discussed (labeled Feedstock in Figure 6.1). Secondly, the extent to which these traits 

are manifested often depends on the type of byproduct. However, two of these traits are inherently 

present in almost all horticultural byproducts (i.e. high moisture content and seasonal occurrence) and 

can obstruct their valorization. Consequently, the processing technology must be tuned to be able to 

cope with these constraints (labeled Processing technologies in Figure 6.1). These constraints are used 

to explain, discuss and evaluate the suitability of the spiral-filter press as one of the possible options 

for the valorization of horticultural byproducts in section 6.3. Thirdly, a number of feedstock-related 

traits (e.g. variation in type and concentration of phytochemicals) and processing-related aspects (e.g. 

amount of refining, process impact) determine the characteristics of the derived products and thus the 

created added value (labeled Output in Figure 6.1). These aspects and their repercussions on the 

valorization process are discussed in section 6.4, specifically focused on food products. Finally, the 

biorefinery processing strategy, in which the adopted processing technology fits, is critically discussed. 

This strategy is increasingly being advocated for its use in the valorization of biomass, however its 

adoption and diffusion as a strategy for valorizing horticultural byproducts is limited today. Throughout 

our research, we have identified three main aspects that can be experienced as barriers, which are 

discussed in 6.5, together with potential measures to stimulate biorefineries. 
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Figure 6.1 thus serves as a framework for this reflective discussion and covers aspects related to the 

different stages of the supply chain, from horticultural byproduct feedstock, to processing and 

(predominantly food) output products. Different aspects are critically reflected upon and specifically 

linked to the feasibility of valorizing horticultural byproducts. The framework includes aspects 

investigated in the previous chapters of this dissertation, complemented with additional important 

aspects related to the topic of the valorization of horticultural byproducts. Hence, the reflective 

discussion (i) provides more insight into how the different research chapters of this dissertation relate 

to each other, and (ii) puts the performed research into a broader perspective of valorizing 

horticultural byproducts within the bioeconomy.  

Although the framework structures and relates a large number of important aspects that can affect 

the feasibility of a potential valorization trajectory, it cannot however be viewed as a completely 

comprehensive guide. It is primarily intended as a schematic representation of the structure of this 

research and the topics addressed in this general discussion. 
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Figure 6.1 General framework of the reflective discussion tackling aspects related to the valorization of horticultural byproducts throughout the supply chain. 
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6.2. Feedstock: is the available amount of byproduct the major criterion to 

determine its suitability for valorization?  

A constantly available and sufficient amount of feedstock often facilitates the valorization of 

byproducts. Therefore, a profound insight into the yearly available amount of byproducts and the 

variation of supply throughout the year are crucial for the viability of the valorization pathway 

(Matharu et al., 2016; Mirabella et al., 2014; OVAM, 2014; OVAM, 2015b).  

In the introduction of this dissertation (Chapter 1), an overview was given of the amount of byproducts 

occurring in Flanders throughout various parts of the food supply chain. This entailed an overview of 

the different parts (both edible and inedible) of different crops occurring at different stages (primary 

production and harvesting, processing and auction stages). From this, information regarding crop 

specific amounts could be deduced, as well as general information on the relative share of the different 

crop classes and production stages. From the Flemish data, it became clear that the predominant part 

of inedible byproducts is created during harvesting. The amount of edible byproducts on the other 

hand is largest during harvesting and processing and predominantly arise from outdoor vegetables and 

fruits. This trend is confirmed by the European data available (Table 1.4 in Chapter 1) with the amount 

varying in function of the type of processing.  

The overview provided in this dissertation and other quantitative spreadsheets on food waste and 

byproducts (e.g. EU-FP7 projects FUSIONS13, NOSHAN14 and REFRESH15, Cost action EUBIS16) are 

valuable from some specific points of view. For example, they can provide a general insight in the 

amount of byproducts occurring in a certain region and allow to draw overall conclusions about the 

relative amount of the different types of byproducts. However, two aspects should be taken into 

consideration when interpreting the data from such databases, namely (i) the reliability of the data 

and (ii) the unilateral focus on the amount of byproducts.  

6.2.1 Lack of reliable data on the amount of available byproducts can limit their 

usefulness  

Even though the issue of waste and byproducts is increasingly being conceived, there is still a scarcity 

on detailed and qualitative statistics on their amounts (Ekman et al., 2013). This can be mainly 

                                                           
13 ‘Food Use for Social Innovation by Optimizing Waste Prevention Strategies’ - http://www.eu-fusions.org/ 
14 http://www.noshan.eu/index.php/en/ 
15 ‘Resource Efficient Food and dRink for the Entire Supply cHain’ - http://eu-refresh.org/ 
16 http://costeubis.org/ 
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allocated to three different factors: (i) lack of consistent definitions, (ii) data based on estimations, and 

(iii) the so-called circular referencing.  

The first factor lying at the basis of this limited data quality is the different terminology for byproducts 

and waste, as described in the introduction of this dissertation. Adopting different criteria or not clearly 

pinpointing the criteria used, can lead to using different definitions and classifications of waste and 

byproducts (Ekman et al., 2013; Hennig et al., 2016; Stenmark et al., 2016). This is for example very 

clear in case of inclusion or exclusion of inedible byproducts. These differences in terminology lead to 

figures that are hard to interpret and compare, thus detrimental for the data quality.  

Secondly, the amounts are often based on estimations or were measured using different methods 

(Hennig et al., 2016; Stenmark et al., 2016). Absent data are often extrapolated using waste 

percentages from similar biomasses or industries. For example, in the European database (Table 1.4, 

Chapter 1), the byproducts occurring at the cultivation stage were predominantly fixed at 20 %, 

whereas the transport stages were assumed to generate about 15 % of byproducts. Also for 

quantifying the share of the processing industry, waste percentages derived from the processing of 

similar crops or industries are often used. For example, the volume of waste generated during 

production of various types of fruit juices has been calculated based on a waste percentage, reported 

for the production of orange juice (EUBIS Cost action17), while it is evident that different juice yields 

will be obtained using different feedstocks and different technologies. Other examples are the amount 

of byproducts resulting from the peeled tomato industry which are assumed to be equal to the 

amounts generated during juice production or the byproducts of frozen cauliflower and broccoli which 

were assumed to be the same as for other vegetables such as chards (EU datasheet in Chapter 1). Even 

though these educated guesses can help to answer to society’s hunger for quantitative data, they are 

not sensitive to crop specific differences nor to the effect of small changes in practices (e.g. small-scale 

initiatives). 

Thirdly, the data available are frequently reused, leading to ‘circular referencing’, thereby jeopardizing 

the quality of the data. In projects aiming for byproduct valorization, data collection of the available 

amounts of byproducts is often the first step. This has led to an increased amount of available 

databases during the past decade. However, these often consist of citing previous estimations, without 

performing additional research for data collection or quality checks. This may lead (i) to confusion 

regarding the prevalent databases, not clearly defining the hierarchy within the circulating databases, 

                                                           
17 http://costeubis.org/pdf/waste-mapping.pdf 
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the source document, the year of data collection, the region sampled and the measuring methodology 

adopted and (ii) to confusion as to the causes of differences between databases. 

Consequently, the data available are thus rather based on rough estimations that are being 

continuously reused but that are not systematically monitored nor uniformly defined, hence causing a 

lack of data specificity. This makes these data unsuitable as a base for drafting a specific byproduct 

valorization business plan as well as for a detailed monitoring of the effects of changes in policy or 

management. Consequently, the added value of these general databases can be considered as rather 

limited. An improvement could be to consistently perform actual measurements on these byproducts, 

using a standardized protocol for different crop types. These should be accompanied by a detailed 

description of the parameters such as the year, variety, location, cultivation and harvesting method. 

The adopted terminology as to which biomass parts are included should also be formalized and 

explicitly stated. Furthermore, these measurements should be organized and verified by a centralized 

authority in order to guarantee the uniformity and quality of the data, thereby providing a solid base 

to make comparisons and spot trends. This might convert the estimations into reliable and transparent 

figures and could avoid circular referencing in the future. These detailed, systematically collected data 

would also allow to measure the effect of certain actions or policy measures and monitor progress. 

This rationale is increasingly being recognized by the European Commission (European Commission, 

2016b) as for example demonstrated by the FUSIONS project, proposing a practical guideline for a 

harmonized approach for EU member states on how to determine and quantify food waste in different 

stages of the food supply chain (Stenmarck et al., 2016). Also the assignment of one central instance 

(Institute of Agricultural, Fisheries and Food research) responsible for the collection of projects related 

to byproducts has been introduced under the form of the Agrocycle database. In the future, this could 

be complemented by the collection of quantitative data related to the occurrence of byproducts. 

6.2.2 More than just amounts as criterion for evaluating the feasibility for 

valorization of a certain byproduct  

A second issue that merits attention in light of data collection is the unilateral focus on the amount of 

byproduct as a basis to estimate the valorization potential of horticultural byproducts. The byproducts 

occurring from the food industry are characterized by specific characteristics such as regional and 

seasonal availability and rapid product quality decay (Jonkman et al., 2017; Russ & Mayer-Pitroff, 

2004). These characteristics can lead to specific requirements regarding transport, storage and 

processing and can influence the quality of the derived end product(s). Hence, they can determine the 

viability of a certain valorization and thus provide additional criteria to determine whether or not a 
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byproduct is suitable for valorization (Jonkman et al., 2017; Sweet et al., 2016; Tsolakis et al., 2014). 

Although the importance of logistics has been widely recognized in the light of valorizing byproducts 

and the development of the bio(based) economy (Kusch et al., 2014; OVAM, 2014), the repercussions 

of some logistic traits on the feasibility of valorization are often not specifically addressed nor 

documented. In addition to the amounts of byproducts, five traits were identified for their effect on 

the feasibility of an envisaged valorization pathway: (i) geographical spread, (ii) seasonal occurrence, 

(iii) ability for storage, (iv) collectability and (v) purity.  

6.2.2.1 Geographical spread 

The figures available frequently refer to amounts collected in a widespread geographical region, not 

discriminating for their often scattered or concentrated occurrence. This geographical occurrence is a 

first trait that influences the practical feasibility, performance and scale of a specific processing 

strategy (Budzianowski & Postawa, 2016; Ghatak, 2011; Hennig et al., 2016; OVAM, 2014; Poltronieri 

& D’Urso, 2016; Sweet et al., 2016). When focusing on one particular feedstock, processors may need 

to source scattered occurring byproducts from different regions to operate the processing equipment 

throughout the year, (Jonkman et al., 2017). Byproducts occurring in a rather concentrated manner 

can facilitate the collection and reduce transport costs. Also the proximity of the source of byproducts 

and their subsequent processors influence the feasibility of a valorization route (Mirabella, 2014). 

Completely excluding this specific geographical information and only including large-scale data, can 

limit their usefulness for practical translation into case studies and for crafting specific valorization 

strategies. In general, byproducts generated at large processing facilities and surplus products at the 

produce auctions can be considered to suffer least from this geographical spread, as they occur 

centralized and in substantial amounts in the production chain. Clusters of greenhouses also provide 

opportunities for the collection of horticultural byproducts, however these are still predominantly 

under development (OVAM, 2014). In the Netherlands, a large greenhouse cluster area has been 

developed and in parallel an Interreg 2 Seas project (BioBoost) has been initiated to valorize the hereby 

occurring byproducts. Mobile processing units can also be used in case byproducts are not available 

together on one location. Examples are mobile fruit juice presses18 driving around during fruit 

harvesting and storage seasons and the Dutch mobile grass biorefinery, refining grass into fibers, 

proteins, phosphate and juice (GRASSA19). 

                                                           
18 http://www.appelpom.com/index-nl.html 
19 http://grassa.nl/ 
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6.2.2.2 Seasonal occurrence 

Besides a geographical occurrence, the byproducts also often occur concentrated in time. This 

seasonality is a second aspect that may influence the economic feasibility of a valorization route due 

to ineffective use of equipment and discontinuous supply of outputs to the market (Budzianowski & 

Postawa, 2016; Fava et al., 2015; Hennig et al., 2016; Jonkman et al., 2017; Kasapidou et al., 2015; 

Sweet et al., 2016; Tsolakis et al., 2014). Often, peak volumes are generated in a certain time frame as 

described for tomato in the introduction (Chapter 1). This can be obviated for example by using a 

flexible processing technology, able to process a wide range of byproducts throughout the year into a 

range of related end products (e.g. vegetable juices, soups, powders, etc.), whereby each byproduct 

guarantees a sufficient supply during the season in which it is available (Jonkman et al., 2017). Investing 

in such flexible processing technologies can thus lead to a profitable business case, for example at a 

large produce auction, where different byproducts are centralized.  

6.2.2.3 Ability for storage 

In case of scattered and seasonally available byproducts, processors can also temporarily store the 

byproducts, averaging the peak volumes (Jonkman et al., 2017). Cooled and frozen storage are 

promising options, however large storage capacities are often absent. Furthermore, chilled storage or 

storage at ambient temperatures is often imparted by the high moisture content and corresponding 

fast spoilage of the byproducts. Depending on the crop, this can be manifested to a greater (e.g. 

perishable leafy crops such as lettuce) or lesser (e.g. tuber or root crops such as beets and carrots) 

extent. This ability for storage is a third trait that puts constraints on further processing in order to 

preserve the quality of the byproducts, for example through demanding cold temperature during 

storage and transport or limiting the duration of storage and processing conditions (Poltonieri & 

D’Urso, 2016). These can exert a distinct influence on the economic feasibility of the valorization as 

well (Jonkman et al., 2017; Sweet et al., 2016). This is also the case for primary products and can be 

illustrated by the sugar beet campaign. This only lasts three to four months per year and long storage 

of the beets is impossible due to quality degradation. This limits the time available for processing, 

which in its turn increases the size of the processing facilities. This increased capacity comes at a cost, 

even though the equipment cannot be operated to process beet throughout the year (Jonkman et al., 

2017). 

Rapid pretreatments to remove unwanted water before transport (e.g. drying, pressing) have been 

reported to be a good option to overcome this issue of storage. In case of sugar beets for example, 

decentrally pressing the beets to a thick juice and subsequent transport of this juice to a central 

processing facility can be a viable alternative for current practices, as the quality of the liquid is less 
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perishable. These can lead to a reduced transport cost and less dependency on the seasonal 

production, which in its turn can reduce the fixed cost of the processing facility by allowing it to be 

smaller (Bruins & Sanders, 2012; de Jong et al., 2005; Jonkman et al., 2017; OVAM, 2014).  

6.2.2.4 Collectability 

The byproducts must not only be present, they must also be easily collectable. In this regard, their 

ability to allow for selective collection is a fourth trait, determining to a large extent the technical 

requirements and the economic feasibility of the valorization. Byproducts occurring during harvesting 

are predominantly left on the field. Allowing for example the co-collection or on-field sorting of crops 

and crop byproducts would avoid the need for two separate passes over one field and could also 

improve the quality of the byproducts (see 6.2.2.5 Purity) (KTN, 2016). In most cases, an adaptation or 

completely novel design of current harvesting machines would be necessary (Fava et al., 2015). This 

additional cost can impact the economic feasibility of the total valorization pathway. However, in the 

long run, the separate, dedicated collection will improve the homogeneity and purity of the 

byproducts, thus limiting the following necessary pretreatment(s) and related extra costs. Stimulating 

the selective collection throughout the entire logistic production chain is adopted as one of the action 

programs by the Flemish policy (OVAM, 2015b).  

6.2.2.5 Purity 

A final trait is related to the purity of the byproduct. For example, the presence of undesired subjects 

may pose a problem, as is the case in greenhouse vegetables, where plastic clips and ropes often 

remain in the biomass after collection. Also, surplus products at the auctions as well as food waste at 

the supermarkets contain impurities, such as labels and cardboard or plastic packaging material. De-

packaging before upcycling is a laborious and costly extra pretreatment (KTN, 2016). Besides physical 

impurities, also chemical and microbial contamination with for example pesticides, mycotoxins and 

soil residues can impede subsequent valorization by compromising the chemical and microbiological 

safety. To avoid the presence of soil contamination on harvesting byproducts for example, an 

adaptation of the harvesting equipment may be required, impacting the economic feasibility of the 

valorization (Agneessens et al., 2014; OVAM, 2015b; Van Buggenhout et al., 2016). For example, 

pumpkins grown for their seeds, are harvested and the seeds are automatically separated. The residual 

pumpkin biomass is thrown back on the field, complicating or even prohibiting collection of pure 

pumpkin biomass due to the presence of soil and stones (personal communication Van 

Droogenbroeck, 2016). Surplus products occurring at the produce auctions will be less susceptible to 

this chemical and microbial contamination, as the products have been approved for sale and have to 

comply with the food standards regarding chemical and microbiological safety. Also the byproducts 
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resulting after food processing generally score better on this form of impurity as their lack of purity is 

often only of an esthetic nature (e.g. freezing, canning). In many cases, this is not an issue when 

subsequent processing is applied. The purity of the harvesting byproducts on the other hand can be 

more obstructing for some derived products. For example, valorization into food products will be 

subjected to a more stringent regulation regarding purity compared to valorization into compost. This 

stresses the importance of tuning the targeted end product on the achievable degree of purity of the 

horticultural byproduct (KTN, 2016; OVAM, 2014).  

6.2.3 Application of the above mentioned criteria on the choices made in this 

dissertation 

For the choices of the two crops investigated in this dissertation, namely tomato and Belgian endive, 

the logistic traits mentioned above were taken into account to the best of our ability.  

A class of byproducts, namely the surplus products occurring at the produce auctions, was selected in 

Chapters 2, 3 and 4 to evaluate the suitability of the spiral-filter press for processing horticultural 

byproducts.  

 Geographical occurrence & collectability: centralized.  

 Seasonal occurrence: present but constant supply of different crops throughout the year. 

 Purity: products meet commercial criteria. 

Within this class of byproducts occurring at the auctions, tomato was chosen as an illustrative case.  

 Amount: tomatoes are one of the major byproducts occurring at the auctions (3.1 10³ tonnes 

in 2015). 

 Ability for storage: rather than choosing a crop that scores high on the ability for storage, a 

perishable crop, susceptible to a quick deterioration was chosen to demonstrate the potential 

of the processing technology.  

In contrast to the choice of a class of byproducts in Chapters 2, 3 and 4, Belgian endive roots were 

selected as biomass feedstock for the study in Chapter 5. 

 Amount and seasonal occurrence: yearly approximately 40,000 tonnes in Flanders, arising 

consistently throughout the year. 

 Geographical occurrence: concentrated in Flemish Brabant (about 40 %) and West-Flanders 

(about 40 %) (personal communication National chicory research center, 2013). 
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 Purity and collectability: predominantly hydroculture (about 95 %) after which the forced 

roots are free of soil residues and easy to collect.  

 Ability for storage: firm root structure making the roots less susceptible to microbial 

degradation during storage. 

Thus, in conclusion, the quality of the data on the amount of byproducts is limited and in need of 

amelioration. In addition to the amounts, the impact of five other traits was discussed regarding their 

effect on the feasibility of the valorization. Some of these aspects appear to be less impeding for 

byproducts generated at the produce auctions and during food processing, compared to harvesting 

byproducts (e.g. geographical occurrence, collection, purity). Other aspects are inherently present in 

almost all horticultural byproducts (e.g. small amounts, difficult storage due to high moisture content, 

seasonal occurrence), which requires a processing strategy appropriately tuned on these traits. 

Depending on the targeted end product, the degree of manifestation of these aspects differs. End 

products with a higher added value (e.g. bioactive compounds) may impose stricter quality-related 

conditions on the feedstock, whereas lower-value end products may be more depending on the 

available amounts and geographical occurrence (e.g. anaerobic digestion and composting). 

6.3 Processing: is the spiral-filter press suitable to valorize horticultural 

byproducts? 

Byproducts occurring at the auctions suffer less from geographical spread, difficult collectability and 

lack of purity, which may increase the feasibility of their valorization (Figure 6.2). Other aspects such 

as difficult storage and seasonal occurrence are however inherently present in predominantly all 

horticultural byproducts, including those at the auctions. Therefore, they require a processing 

technology appropriately tuned on these traits. 

The high moisture content is the first common denominator of almost all horticultural byproducts, 

leading to a difficult storage. Therefore, a pressing technology was selected which is able to perform a 

separation of liquid and solid fractions, aiming at minimal waste and optimal utilization of all fractions. 

Furthermore, three additional constraints were imposed on this pressing technology in order to 

increase the chances of successful valorization towards food, which was primarily targeted, in line with 

the cascade principle (OVAM, 2012b; 2015). Firstly, the relatively small and geographically dispersed 

volumes of byproducts and the seasonality of their production can obstruct the feasibility of the 

valorization process. This can be increased by choosing a technology flexible in type of feedstock and 

able to process different inputs (Budzianowski & Postawa, 2016; Fava et al., 2015; Lin et al., 2014; 
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Matharu et al., 2016). Secondly, consumers increasingly demand attractive products (i.e. products with 

attractive color, appearance and taste) which thirdly, maximally retain the naturalness of the fruits and 

vegetables. Hence, a technology that is able to meet these demands is expected to generate products 

that are competitive and may be able to lead to a successful valorization of horticultural byproducts. 

 

Figure 6.2 Intensity map of the horticultural sector in Flanders, expressed in euro standard output per ha in 2011 (Platteau 
et al., 2012). 
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These three targeted technology characteristics (flexibility towards feedstock, attractive output 

products and limited process impact) are used to evaluate the suitability of the spiral-filter press for 

valorizing horticultural byproducts, drawing further on the results obtained in Chapters 2, 3 and 4 (part 

6.3.1 – 6.3.3). This fractionation in liquid and solid products can be seen as a pretreatment to be 

complemented either with further refining and conversion (in line with the biorefinery concept) or 

with stabilization of the derived homogeneous fractions, depending on the desired amount of refining 

and the envisaged end products. In this dissertation, a thermal processing step has been included to 

stabilize the derived products, which is also critically assessed hereafter (part 6.3.4) (Figure 6.3). 

6.3.1 Can the spiral-filter press be used to process different matrices? 

In Chapters 2, 3 and 4, the processing of tomato was described. Besides tomatoes, also apples and 

pears have been processed with the spiral-filter press, as described by De Paepe (2015a, 2015b). 

Furthermore, a range of other matrices including banana, strawberry, beans, carrot, cauliflower, 

celeriac, celery, leek, peas, red beet, salsify but also corn and nuts have been successfully processed 

recently with this spiral-filter press (data not included in this dissertation, personal communication De 

Paepe, 2016). This clearly confirms its flexibility towards different types of feedstock. 

In Chapter 2, more insight into the working principle of the spiral-filter press was gained. This was 

based on tomato, but the insights can be extrapolated to the processing of different feedstocks. The 

general working principle consists of a combination of (i) compression forces, exerted by both the feed 

pump and the spiral rotation and (ii) underpressure acting on the mash through the filter element, 

which lead to an effective separation of solid and liquid fractions. Conventional pressing technologies 

are often only based on one driving force. Juice extraction with a horizontal rotary press or belt press 

for example is based on the application of compression forces whereas the working principle of the 

decanter is based on centrifugal forces only (Lozano, 2006; Rombaut et al., 2014).  

For soft, berry-like matrices such as tomato, a high spiral and vacuum frequency appeared to be crucial 

in order to obtain a high juice yield. In contrast, this spiral frequency was found to be negatively 

correlated to the juice yield when processing harder products such as apples and pears. Indeed, as the 

latter type of matrix did not lead to a blocking of the filter pores, the lower spiral frequency increased 

the residence time in the extraction cell, thereby raising the juice yield (De Paepe et al., 2015a; 2015b). 

Furthermore, also the processing of more liquid products, which may result from a thermal or 

enzymatic pretreatment, was investigated. It was found that this type of input requires processing with 

less steep spiral channels. This can be explained by the fact that softer, more liquid products are less 

susceptible to compressing forces, which consequently implies that an increased steepness does not 
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generate any extra driving force. Moreover, less steep channels lead to an increased residence time of 

the liquid input product, thereby improving the juice extraction. Processing of very fluid pulps, derived 

from soft fruits such as raspberries and strawberries are often difficult to squeeze during pressing with 

conventional pressing technologies, such as horizontal and belt presses (Beveridge & Rao, 1997). 

Furthermore, soft tissue can collapse under compression forces, leading to particles that clog the 

escape channels (Beveridge & Rao, 1997; Roberts et al., 2004). In contrast, the rotating spiral in the 

spiral-filter press scrapes the surface of the filter which clears the pores and assures a continuous juice 

extraction.  

 

Figure 6.3 Tomato processing: A) washing, B) milling, C) pressing with spiral-filter press into D) press residue and E) juice, F) 
thermal pasteurization and G) resulting products, i.e. mashed tomato, press residue, non thermally treated tomato juice, 
thermally treated tomato juice. 

6.3.2 Can the spiral-filter press produce attractive and natural products? 

A technology able to produce tasty and fresh products with an attractive color and without the use of 

additives or preservatives can increase the market value of the byproduct-derived food products. 

6.3.2.1 Liquid end products 

In Chapter 2, the processing conditions were tuned to (i) achieve optimal juice yield without using 

enzymes and (ii) to refine the tomato in different fractions. Hence, insight was gained into the effect 

of changing parameters on the process performance and juice characteristics. Even though these 

insights are crucial to understand the working principle of the spiral-filter press, the optimization needs 
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to be performed case per case, for each novel matrix. For example, changing the process conditions 

gave rise to fractions of different turbidity (juices and purees). It was found that the filter pore size 

primordially influenced the turbidity of the juice and the amount of insoluble particles. As expected, a 

larger filter pore size gave rise to a thicker, more turbid juice comparable to a soup or a passata (Figure 

6.3). However, processing of peas with the 5-channel spiral instead of a 4-channel spiral changed the 

end product from a juice to a puree while the same filter was used (data not included in this 

dissertation). Thus, only by changing the spiral and keeping the filter constant, the turbidity and 

viscosity of the juice was changed. This was caused by the fact that the channels were not completely 

filled when the 4-channel spiral was used. Using the 5-channel spiral, they were completely filled, 

which led to a deeper vacuum and thus to a greater driving force for particles to travel to the juice 

fraction, leading to a more turbid juice. This knowledge could not be derived from our experiments on 

tomato, as in all experiments the channels were completely filled with tomato mash. It is thus of vital 

importance to generate a broad knowledge on the working principle of the spiral-filter press, by 

processing a wide variety of raw materials in order to be able to identify and fully understand the 

combined effect of the different process parameters on the output characteristics. This knowledge is 

also necessary for the daily operation of the spiral-filter press. Especially when processing byproducts, 

variation in feedstock characteristics within one type of biomass often occurs. Variation in color or 

texture will for example exist due to variation in moment of harvesting or temperature of storage. This 

variation can generate differences in the optimal processing conditions. For example, cold storage of 

tomatoes can lead to discoloration, chilling injury, decreased softening, decreased weight loss and 

altered aroma profiles (Farneti et al., 2015; Tadesse et al., 2015).  Different tomato cultivars are known 

to have a different tolerance to chilling stress and their processing can thus affect the process 

performance and resulting products. For example, a change in firmness can change the effect of milling 

and the compressibility of the matrix in the spiral-filter press, influencing the juice yield and the juice 

characteristics (e.g. particle size distribution). Such a change in firmness can be the result of a 

difference in enzymatic activity which could in turn also affect the stability of the resulting tomato 

juice. Therefore, no rigid, unique protocol per type of biomass can be provided. Rather some guiding 

principles and an ad hoc finetuning of the process parameters is necessary which requires a good 

understanding of the working principles of the press.  The work performed in this dissertation 

subscribes to this, but it is clear that a larger range of experiments on additional feedstocks should be 

performed in the future to further increase this knowledge. 

In Chapter 3, the physical stability of the resulting tomato juice was investigated, as the visual 

appearance of a cloudy drink is a decisive factor for consumer acceptance (i.e. homogeneous 

distribution without sedimentation or flotation) (Beveridge, 2002). We were able to produce a stable 
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tomato juice without sedimentation (Growdena JFO). Quick processing with a large filter size and 

maximum vacuum were process parameters found to beneficially affect the stability of tomato juice. 

However, using exactly the same process conditions on another variety (Merlice JFO) generated an 

unstable juice subjected to sedimentation (Figure 6.4). This illustrates that changing the process 

parameters alone is often not sufficient to control the juice stability. This effect of variety on stability 

can partly be attributed to the difference in inherent water insoluble solids (WIS) characteristics 

(Barrett et al., 1998; Beveridge, 2002; Kaur et al., 2007; Kubo et al., 2013) as described in Chapter 3. 

However, we believe that the effect of variety on the stability is predominantly due to a different 

enzymatic activity, inherent to different varieties (Aghajanzadeh et al., 2016; Laratta et al., 1995; 

Moelants et al., 2014). As this has not been investigated, we cannot make an unequivocal assessment 

of the effect of process parameters on juice stability. Therefore, in future assessments of the spiral-

filter press juice stability, we recommend to include additional aspects for example via measurements 

of the concentration and activity of the enzymes active in the cloud stability of tomato juice (pectin 

methylesterase and polygalacturonase) or investigation of particle interactions.  

 

Figure 6.4 1) Tomato juice subjected to flotation, stable tomato juice and tomato juice subjected to sedimentation. 2A) 

Turbiscan Stability Index (TSI) profile of stable tomato juice and unstable tomato juice, subjected to sedimentation. 2B) TSI-

profile of stable tomato juice and unstable tomato juice, subjected to flotation. 
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In that manner, the influence of varying process variables and different varieties on both WIS 

characteristics and enzymatic activity can be further elucidated and consequently be used more 

effectively to control the juice stability. 

For the choice of the filter in Chapter 4, we used the information obtained in Chapter 2 and 3. As it was 

shown that larger filter pores lead (i) to an increased yield and (ii) to more and larger WIS (which 

contribute to a higher juice stability), a larger filter unit of 500 µm (instead of 300 µm or 60 µm) was 

used. Furthermore, the experiments were performed on the cultivar most susceptible to juice 

sedimentation (Merlice). Interestingly, another type of instability was found in this case. Instead of 

sedimentation, as seen in Chapter 3 for this variety, a flotation phenomenon was observed here (Figure 

6.4). Due to the dense macrostructure of the tomato juice produced with a 500 µm filter unit, the air 

bubbles inherently present in the tomato fruit and those introduced during milling, were not able to 

escape from the juice during processing (not during the production in the spiral-filter press, nor during 

storage in the vacuum storage tank or during pasteurization). After filling and storage in sealed bottles, 

these air bubbles gradually rose upwards in the juice, thereby taking part of the insoluble solids with 

them. This resulted in flotation, leaving a clear-colored serum at the bottom of the bottles. By including 

a hot vacuum degassing step (60 °C at 100 mbar for 3 sec) before the pasteurization treatment, we 

were able to avoid this type of instability. Briefly, increasing the temperature of the juice decreased its 

viscosity which allowed the trapped air bubbles to escape. Furthermore, the increasing juice 

temperature also decreases the gas solubility which could have contributed to the phenomenon of 

escaping gas bubbles. A better understanding of these different physico-chemical processes is crucial 

for further product development. In most cases stable juices are demanded, however transparent 

juices with a fruit or vegetable taste have also been shown to gain interest during this research project. 

6.3.2.2 Solid end products 

Although this dissertation focused on the optimization of the quality and appearance of the liquid 

products, the press residue is another important fraction resulting from the spiral-filter processing. Its 

added value for the food and feed industry has been investigated extensively, predominantly on lab 

scale and is mainly associated with the high fibrous content and the associated phytochemicals.  

Multiple studies have evaluated the potential of the press residue of tomato for use in food as 

functional or nutritional ingredient (e.g. O’Shea et al., 2009). Sogi et al. (2002) for example have 

investigated the utilization of tomato seed cake in bread, which improved loaf volume, texture and 

crumb quality. Another example is tomato pulp powder addition to ketchup as a thickener, thereby 

improving the color and texture of the product (Farahnaky et al., 2008). Dried tomato peels have been 

reported to be a useful food ingredient due to their fiber content and have been included in fermented 
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sausages to test the increase in nutritional value due to the presence of lycopene (Calvo et al., 2008; 

García Herrera et al., 2009). A myriad of other studies and projects have focused on the added value 

of similar fruit and vegetable processing byproducts such as berry pomace, defatted strawberry and 

blackcurrant seeds, orange pomace, lemon pomace, apple skin powder in food (Balasundram et al., 

2006; Larrauri, 1999; Kamerer et al., 2014; O’Shea et al., 2012; Papoutsis et al., 2016; Rombaut et al., 

2014; Šarić et al., 2016; SUSFOOD ERA-Net Berrypom project20).  

Although not specifically addressed in the preceeding chapters, the press residue obtained from the 

spiral-filter processing of tomato (Chapters 2, 3 & 4) has been further subjected to some experiments 

regarding their valorization (unpublished results, Figure 6.5). The seeds and peels were separated using 

a flotation-sedimentation process in water. The seeds were dried in a fluidized-bed air-dryer and 

mechanically cold-pressed, yielding approximately 13 % oil. The oil consisted predominantly (80 %) of 

unsaturated fatty acids (linoleic and oleic acid) and was characterized by a low peroxide value (3.13 ± 

0.34 mEq/kg) and a low amount of free fatty acids (0.287 ± 0.024 g/100g oil), which is in accordance 

with the findings of Zuorro et al. (2014). This tomato seed oil was found to be an interesting ingredient 

in cosmetic products and the commercial production is currently being investigated by an industrial 

partner (personal communication Schatteman, 2016; Zuorro et al., 2014). The remaining seed hulls 

contained a relatively large amount of fat (15 %) and protein (32 %) which indicates their potential as 

food and feed ingredient. This has also been shown by Sarkar & Kaul (2014). As shown by Sarkar & Kaul 

(2014) and confirmed in Chapter 4, the peels were characterized by a high phenolic content and 

antioxidative capacity which might be valuable in food- or feed-derived products. Formulation of the 

dried tomato peels and seed hulls in bread did not yield promising results, as they led to an increasing 

water absorption and a decreasing bread volume (predominantly in case of the dried tomato peels) 

(personal communication Mouton, 2016). These results are however preliminary and have to be 

complemented with additional research and development. 

                                                           
20 http://berrypom.mw.tu-dresden.de/index.html 
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Figure 6.5 Experiments to separate and valorize the tomato press residue (unpublished results). A) press residue separation, 
B) peels, C) seeds, D) fluidized bed dryer, E) oil press, F) tomato seed oil, G) tomato seed hulls, H) dried tomato peel and I) 
dried fractions of seed hulls and peels incorporated in bread. 

6.3.3 Can the spiral-filter press produce qualitative end products? 

In Chapter 4, the quality-preserving character of the spiral-filter press for phenolic compounds, 

carotenoids and ascorbic acid was studied. 

6.3.3.1 Total retention efficiency  

The retention efficiency of the different phenolic compounds and carotenoids during filtration was 

never significantly lower than 100 % (except for quercetin). The content of the highly labile ascorbic 

acid was also conserved upon processing with the spiral-filter press. This high retention of 

micronutrients is very important in regard to maintaining the native constitution and nutritional quality 

of the feedstock. A significant decrease in lightness however was observed (data not shown), which 

might be attributed to enzymatic dark color formation, as a result of polyphenol oxidase (PPO) activity. 

This could be related with the observation of a slight parallel decrease in the concentration of 

chlorogenic acid, which is reported to be a PPO-substrate in various fruits and vegetables such as 

tomato, eggplant, and apple (Casado-Vela et al., 2005; De Paepe et al., 2015b; Mishra & Gautam, 2016; 

Turk et al., 2012). Specific PPO-measurements should be performed in order to confirm this 

phenomenon. The highly abundant and susceptible chlorogenic acid could be used as a quality 

indicator in future experiments.  
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Processing with other presses often does not lead to a conservation of phenolic compounds. Taking 

the case of apple as an example, as one of the most studied juices, not all of the native phenolic 

compounds present in the apple mash could be found after pressing either in the juice or in the press 

residue when using a belt press (Turk et al., 2012) or a horizontal rotary press (van der Sluis et al., 

2002). These observations can probably be attributed to enzymatic oxidation. Actually, the production 

of a juice with a low content of phenolic compounds is sometimes actively pursued, since phenolic 

compounds can contribute to undesired astringency or haze formation and inhibit the pectolytic 

enzymes, used to increase the juice yield (Beveridge, 2000; van der Sluis et al., 2002; Will et al., 2008). 

Therefore, effective polyphenol removal techniques are used such as grinding to open air, mash 

aeration before enzymatic incubation and pressing, mash oxidation during pressing and clarification 

after pressing using clarifying agents such as polyvinylpolypyrrolidone which lead to dramatic 

reduction in the phenolic content (García-Torres et al., 2009; Le Bourvellec & Renard, 2012; Oszmiański 

et al., 2007; Turk et al., 2012; van der Sluis et al., 2002). However, following the trend for natural, high 

quality and minimally processed products with clean labels (Balasundram et al., 2006; Kammerer et 

al., 2014; Kasapidou et al., 2015; Moure et al., 2001; Sharma et al., 2016), these practices are 

increasingly being avoided, focusing on the production of cloudy juices with a higher phenolic content 

(Markowski et al., 2015; Will et al., 2008). Production of such juices and avoiding oxidative degradation 

using the conventional equipment, requires specific modifications (e.g. pressing under inert 

atmosphere, additional degassing of dissolved oxygen) or the use of quality preserving additives (e.g. 

ascorbic acid addition) (García-Torres et al., 2009; Markowski et al., 2015; Will et al., 2008). A clear 

advantage of the spiral-filter press is that it allows juice extraction under low oxygen conditions, 

thereby limiting oxidation of the phenolic compounds, carotenoids and ascorbic acid. The effect of 

conventional pressing systems on the fate of carotenoids has been less extensively investigated. 

Aspects such as oxygen, light, metals, enzymes and severity of the treatment have however been 

reported to affect their presence (Rodriguez-Amaya, 2001). In conventional tomato-processing for 

example, the straining process is often associated with a reduction of carotenoids due to oxidation. 

The high rotation speed in the straining equipment generates large amounts of dissolved air in the 

tomato juice that can quickly destroy substantial amounts of lycopene. In addition, the presence of 

light and use of fine metal screens in this filtration process are reported to promote lycopene oxidation 

(Reyes-De-Corcuera et al., 2014; Shi & Le Maguer, 2000). 

6.3.3.2 Tissue localization 

The resulting juice and press residue were characterized by a different composition (Chapter 4). In 

absolute amounts, it was found that the press residue contained more phenolic compounds and 

carotenoids, which has already been reported earlier (Shi & Le Maguer, 2000; Stewart et al., 2000; 
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George et al., 2004; Slimestad & Verheul, 2009; Toor & Savage, 2005). Physiologically, this can be 

explained by the role of dermal plant tissues in the protection against damage caused by external stress 

conditions (Toor & Savage, 2005). Thus, even though the press residue mass only comprised 12.2 % of 

the total processed tomato mass, its composition stresses the importance of valorizing such press 

residue fractions, which is in line with the idea of total biomass valorization.  

Despite the higher absolute concentration in the press residue for phenolics and carotenoids, the press 

residue extraction efficiency was in both cases lower compared to the juice extraction efficiency. This 

can be attributed to the larger mass of the juice fraction. Taking into account the juice yield, about 

49 % of the phenolic compounds present in the mashed tomato end up in the juice fraction after 

filtration. This average value might be somewhat misleading as the juice extraction efficiencies of 

phenolic acids and flavonoids are 76 % and 14 %, respectively. This could be explained by the more 

hydrophilic nature of the phenolic acids compared to the flavonoids (Choudhury et al., 1999; van Dijk 

et al., 2000). Furthermore, also the compound specific tissue location of the phenolic compounds can 

affect these findings. In contrast to phenolic acids, which were reported to be more evenly distributed 

in all tissues of tomato fruit, flavonoids have been found to be mainly located in the solid parts of the 

tomato (skin and seeds), which may complicate their extraction due to interaction with cell wall 

compounds (Padayachee et al., 2017; Slimestad & Verheul, 2009; Stewart et al., 2000; Toor & Savage, 

2005). Analogous trends have been found in apple juice production (van der Sluis et al., 2002; Will et 

al., 2008). Approximately 91 % of the initial carotenoids present in the mashed tomato fraction were 

found in the juice. Despite their hydrophobic character, this juice extraction efficiency was thus higher 

compared to that of the phenolic compounds. However, the higher retention efficiency of carotenoids 

(122 %) compared to that of the phenolic compounds (88 %) can bias the interpretation of this figure 

(see Chapter 5). When this retention efficiency was scaled to 100 %, the contribution of the juice 

efficiency was calculated and showed a larger value for the phenolic acids (87 %) compared to 

carotenoids (75 %), followed by flavonols (15 %) (Figure 6.6). This trend is in accordance with the 

absolute concentrations in the tissues, where the largest enrichment in press residue was found for 

the flavonoids, followed by lycopene and phenolic acids. Other aspects can influence the final 

distribution such as the intracellular location. Carotenoids are for example synthesized and stored in 

chloro- and chromoplasts and are thus harder to extract due to interaction with proteins (Padayachee 

et al., 2017). Also interaction with plant cell wall compounds can occur and influence the extractability. 

For example, phenolic compounds present in the cell vacuoles, are released upon rupture of the cell 

wall, making them able to bind with proteins and polysaccharides of the cell walls (Hutzler et al., 1998; 

Le Bourvellec & Renard, 2012; Padayachee et al., 2017). Thus, several factors can influence the final 
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compound distribution and extractability such as the native tissue location, intracellular location and 

interaction with the cell wall compounds (Padayachee et al., 2017; Slimestad & Verheul, 2009).  

 

Figure 6.6 A) Measured retention efficiency during filtration, constituted out of juice extraction efficiency (black) and press 
residue extraction efficiency (grey). B) Retention efficiency scaled to 100 %, constituted out of juice extraction efficiency 
(black) and press residue extraction efficiency (grey). 

The cause of the carotenoid retention efficiency larger than 100 % (122 %) and the phenolic retention 

efficiency smaller than 100 % (88 %) could be related to the effect of the spiral-filter treatment on the 

compounds extractability and on their vulnerability to oxidation. It appears that pressing under 

vacuum increases the extraction efficiency of carotenoids compared to maceration, without 

destructing them and leading to a larger concentration of carotenoids after spiral-filter processing. This 

particular effect has not yet been reported, however, there is clear evidence that juicing (Reboul et al., 

2006; Tydeman et al., 2010a) and other processing technologies (mechanical, chemical and enzymatic) 

significantly enhance the carotenoid bioaccessibility and extractability (Michelon et al., 2012; Moelants 

et al., 2012). Shi & Le Maguer (2000) have attributed this to the dissociation of carotenoids from the 

plant matrix upon processing. The smaller figure of phenolic retention efficiency on the other hand 

could imply that that these compounds are more sensitive to oxidation, compared to carotenoids (Kalt, 

2005). 

B 
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Thus, whereas the amount of degradation and the resulting total amount of micronutrients present in 

the processed products is influenced by (i) processing technology and processing conditions (oxidative 

environment, duration, temperature, etc.) and (ii) type of compounds (vulnerability to degradation), 

the composition of the resulting end products is mainly dependent on the compound characteristics 

(native tissue location, intracellular location, interaction with the cell wall compounds, solubility). The 

processing conditions might slightly influence the final composition though, for example the milling 

technology might increase the press-residue-related compounds in the juice fraction. Also changing 

the filter size might allow more press residue particles in the juice fraction.  

6.3.4 Which are the next processing steps? 

Based on the experiments performed, the spiral-filter press was found to be a suitable technology able 

to tackle the major hindering traits of horticultural byproducts thus leading to a generic applicability 

for a range of feedstocks. Also the quality-preserving characteristics regarding the phenolic 

compounds, carotenoids and ascorbic acid content in the end products, were shown to be positive.  

The liquid and solid end products are however still susceptible to deterioration, thus further processing 

steps are necessary. As mentioned above, these can consist of further refining and conversion or only 

stabilization of the derived homogeneous fractions. The latter was performed in this dissertation for 

the liquid fractions. A thermal treatment was proposed in Chapters 3 and 4. From these results, a 

conservation of ascorbic acid and the predominant phenolic compounds was found upon processing. 

Furthermore, a significant decrease in redness were observed. This was in line with a significant 

decrease (about 46 %) in the carotenoid content. This confirms that conventional thermal treatment 

may negatively affect the physical, nutritional or bioactive properties of fruit and vegetable juices, as 

also shown in literature (Abushita et al., 2000; Capanoglu et al., 2008; Dewanto et al., 2002; Gahler et 

al., 2003; Georgé et al., 2011; Jiménez-Sánchez et al., 2017a; Koh et al., 2012; Nayak et al., 2015; Oms-

Oliu et al., 2012). In order to preserve the benefits associated with the minimal processing impact of 

the spiral-filter press, a mild stabilization technology should be included in the future. In this regard, 

novel technologies are increasingly being investigated such as radiation treatments (UV light, high-

intensity light pulses, γ-irradiation), electrical treatments (pulsed electric fields, radiofrequency electric 

fields, microwave heating, ohmic heating), ultrasound treatment, high hydrostatic pressure (HHP), 

inert gas treatments (supercritical carbon dioxide, ozonation) and combinations thereof (Barrett & 

Lloyd, 2012; Jiménez-Sánchez et al., 2017a; 2017b; Oms-Oliu et al., 2012; Pereira & Vicente, 2010; Turk 

et al., 2012). While some technologies are already being exploited at commercial scale (e.g. HPP, PEF, 

microwave), others are only tested at lab scale. Furthermore, a lack of standardization in operation 
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conditions make comparisons between different studies difficult. More research on their performance 

on pilot and industrial scale is thus necessary (Jiménez-Sánchez et al., 2017a). The application of some 

of these novel technologies (HHP and pulsed electric field) as pretreatment or conservation in 

combination with the spiral-filter press was recently the subject of investigation in the follow-up 

research project HighQJuice21. 

6.4 Output: can the chemical profile be used to explore the potential 

bioactivity? 

In this dissertation, the distribution of different phytochemicals in Belgian endive was mapped 

(Chapter 5, Figure 6.7) and the process impact of the spiral-filter press was investigated on the phenolic 

and carotenoid content of tomato (Chapter 4). This generates valuable information on the type and 

abundance of certain phytochemicals which can be used as a basis to explore potential functionality 

of derived products. Indeed, a range of potentially health-promoting activities have been attributed to 

these compounds, which has aroused interest for their use in the area of nutrition and food science 

such as functional foods and nutraceuticals (Bohn et al., 2015; Gowe, 2015; O’Shea et al., 2012; Porrini 

& Riso, 2008; Schieber et al., 2001).  

Intake of foods rich in phenolic compounds and carotenoids has been associated with a reduced 

incidence of cardiovascular diseases, diabetes mellitus and several types of cancer (Bazzano, 2005; 

Bohn et al., 2015; Del Rio et al., 2013; Dillard & German, 2000; Rodriguez-Mateos et al., 2014; 

Williamson & Manach, 2005). Although less extensively studied, the sesquiterpene lactones have also 

been attributed with a range of potential activities, although often not specifically for the structures 

found in this study or more generally related to an extract containing SLs (Amorim et al., 2013; 

Ghantous et al., 2010; Picman, 1986; Prakash & Gaikwad, 2012). Pharmacological properties include 

antimicrobial, antiprotozoal, anticancer, antihelmintic, anti-inflammatory and analgesic activity 

(Bischoff et al., 2004; Chadwick et al., 2013; Chaturvedi, 2011; Ghantous et al., 2010; Picman, 1986; 

Padilla-Gonzalez et al., 2016; Prakash & Gaikwad, 2012). Historically, SLs have been the active 

ingredient in folk medicines for many treatments such as diarrhea, burns, influenza, and 

neurodegradation (Chadwick et al., 2013; Ghantous et al., 2010; Padilla-Gonzales et al., 2016). They 

have gained interest for treating human diseases due to their potential for the treatment of 

inflammation, cardiovascular diseases, cancer and more. Today, the WHO recommends artemisinin-

based combination therapies for the treatment of malaria (WHO, 2016). Some guaianolides (a specific 

                                                           
21 http://www.flandersfood.com/projecten/highqjuice 
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type of SLs, particularly present in Cichorium genus (de Kraker, 2002)) are highly specific anti-tumor 

agents that inhibit aromatase and thus possess potential applications in the treatment of breast cancer 

(Padilla-Gonzales et al., 2016). Drugs derived from parthenolide, thapsigargin and artemisinin have 

reached cancer clinical trials (Ghantous et al., 2010). 

However, even though a compound group may be associated with a certain functionality, there is a 

great difference between showing the presence of a certain compound in a given matrix, which has 

been associated with a certain functionality on the one hand and drawing conclusions about their 

biological activity in vivo on the other hand. 

6.4.1 The presence of a bioactive compound is no guarantee for its bioactivity in 

derived products  

In order to exert a health benefit, the compound must be bioavailable (D’Archivio et al., 2010; Gonzalez 

et al., 2015; Padayachee et al., 2017; Rein et al., 2012). This can be defined as “the fraction of the 

ingested nutrient or compound that reaches the systemic circulation and the specific sites where it can 

exert its biological action” (Porrini & Riso, 2008). Hence, a high in vitro functionality does not 

necessarily guarantee a high bioavailability and bioactivity in the human body. Thus to establish 

evidence of a certain bioactivity in the human body, evaluating the bioavailability is a first crucial step 

(D’Archivio et al., 2010; Williamson & Manach, 2005). Several factors are known to affect this 

bioavailability, which can be grouped in three categories: (i) the chemical structure and concentration, 

(ii) the matrix and (iii) the host-related factors (D’Archivio et al., 2010; Padayachee et al., 2017). 

Variation in these factors can create variation in the bioavailability and thus the bioactivity. This 

bioavailability and the influencing factors will be discussed hereafter in the context food products, 

drawing further on the data generated in this dissertation. 

6.4.1.1 Chemical structure and concentration 

The concentration and chemical structure are among the main factors influencing the bioavailability 

of a compound. Structural features such as the configuration of compound, the degree of molecular 

linkage (e.g. glycosylation, esterification, acylation), conjugation with other compounds and solubility 

determine their rate and extent of absorption and metabolism, and accordingly their effect in the 

human body (Balasundram et al., 2006; D’Archivio et al., 2010; Gonzales et al., 2015; Porrini & Riso, 

2008; Rein et al., 2012). This chemical structure and concentration may be impacted by natural 

variation as well as processing.  
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a/ Natural variation 

In Chapter 5, it was shown that the types (free forms, conjugated forms, dihydroforms) and amounts 

of the SLs were strongly influenced by variety and cultivar. Depending on the individual SL, a variation 

of a factor up to 5 has been found to result from changing the cultivar while keeping the location, 

growing and harvesting conditions constant. Also the phenolic concentrations varied between cultivars 

and varieties, with differences of a factor 2 for example for chlorogenic acid (CHA) levels. Other 

external aspects that were not specifically investigated here, such as agricultural conditions, harvesting 

conditions and ripeness have also been reported to lead to different structures and concentrations of 

phytochemicals (D’Archivio et al., 2010; Manach et al., 2004; Tiwari & Cummins, 2013; Tomás-

Barberán & Espín, 2001). Interpreting these varying results can be further complicated by the use of 

different extraction and analysis methods. In case of Belgian endive for example, traditional extraction 

methods allowed the measurement of the non-conjugated SL-forms only whereas the use of more 

sophisticated up-to-date methods led to the conclusion that the bound forms appear to be 

predominantly present (Annaratone et al., 2016; Sessa et al., 2000). 

b/ Variation induced by processing and different tissues 

The SL-profile of the Belgian endive roots was also shown to be influenced by storage and forcing 

treatment, as shown in Chapter 5. The four-month storage of the NF-roots significantly increased the 

bound SL-forms and significantly decreased the free SL-forms, which may indicate a partial conversion 

of free to bound forms upon storage. Forcing these roots led to a significant increase in most SLs (up 

to factor 3.5, depending on the individual SL). The effect of matrix was even larger, showing a higher 

concentration in the roots compared to the leaves (up to factor 39, depending on the individual SL). 

For the phenolic compounds, this effect of matrix was also significant with a two times higher level of 

CHA in the roots compared to the chicons and an up to 65 times lower concentration for the minor 

phenolic compounds. The effects of forcing and storage were smaller. 

In Chapter 4, it was shown that filtration using the spiral-filter press had a minimal effect on the 

concentration of phenolics and carotenoids in tomato. The thermal treatment resulted in a 

conservation of the predominant phenolic compounds, whereas a significant decrease (about 46 %) 

was observed in the carotenoid content. Also a cyclization of naringenin chalcone was evoked by the 

thermal treatment. Finally, a three-month storage showed a 57 % decrease in ascorbic acid and no 

decrease in the majority of the phenolic compounds and carotenoids. The effect of a multitude of 

different processing technologies on the stability of a range of phytochemicals in different fruits and 

vegetables is widely described in literature. Both limited and strong effects on their concentration and 

conversion have been described, depending on factors such as matrix, phytochemicals, type of 
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processing, duration, temperature, pressure, presence of oxygen, etc. (Tiwari & Cummins, 2013; 

Tomás-Barberán, 2001). 

 

 

Figure 6.7 Belgian endive production and the resulting forced roots in hydroculture. A) Belgian endive roots grown in the 
field, B) Belgian endive chicons and forced roots after hydroculture, C) non-forced roots and forced roots with chicon, D-F) 
washed and cut forced roots. 

c/ Possible implications of differences in chemical structure and concentration on horticultural byproduct 

valorization 

Byproducts often have to be taken ‘as such’, rather than being produced with a predetermined goal 

(Lin et al., 2014; OVAM, 2014). Natural and processing-induced variation can thus lead to a feedstock 

characterized by a heterogeneous composition, which may obstruct the straightforward valorization 

of horticultural byproducts into functional products (Kasapidou et al., 2015). This may require an extra 

pretreatment for example by including a selective collection of certain varieties (Center of Expertise 

for Plant Compounds, 2016b; OVAM, 2014). Special conversion or purification steps may also be 

necessary to upgrade the byproducts, depending on the processing history (van der Goot et al., 2016). 

These aspects are less stringent when no specific bioactivity is targeted. For example, in case of 

processing horticultural byproducts in juices, different batches can be mixed based on their brix value 

in order to counter the difference in taste generated by the varying composition, as traditionally done 

by the beverage industry. 

6.4.1.2 Matrix  

Besides the chemical structure and concentration, the food matrix is also a determining factor in the 

functionality of a certain compound. It has been shown that matrix structure and composition may 

positively or negatively influence the bioaccessibility and further the bioavailability (Bohn et al., 2015; 

Padayachee et al., 2017; Sensoy, 2014). This bioaccessibility is often seen as the first step of 

bioavailability and has been defined as “the fraction of a compound which is released from the food 
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matrix in the gastrointestinal lumen and thereby made available for intestinal absorption” (Rein et al., 

2012; Saura-Calixto et al., 2007). This bioaccessibility is influenced by (i) the matrix structure and (ii) 

synergistic or antagonistic activity of compounds present in the matrix (Rein et al., 2012). 

a/ Matrix structure 

The physical state of the food matrix plays a key role in the release, accessibility and biochemical 

stability of food compounds (Palafox-Carlos et al., 2011). Cellular compartmentalization can physically 

trap phytochemicals and decrease their corresponding bioaccessibility. The binding of phytochemicals 

with food matrix constituents such as proteins, fibers, fat or alcohol may also affect the bioavailability 

of the phytochemical (Balasundram et al., 2006; D’Archivio et al., 2010; Padayachee et al., 2017; Rein 

et al., 2012). While dietary fibers and proteins are likely to cause detrimental effects on the phenolic 

and carotenoid bioaccessibility and absorption in the small intestine, the presence of dietary lipids 

appears to increase the bioavailability (Gonzalez et al., 2015; Lemmens et al., 2014; Palafox-Carlos et 

al., 2011).  

Disruption of the matrix due to physical (e.g. chopping, cutting, slicing, trimming, mashing, juicing) and 

thermal processing steps (e.g. cooking, steaming, frying) can liberate phytochemicals and make them 

more extractable and bioaccessible (Bohn et al., 2015; D’Archivio et al., 2010; Sensoy, 2014). Physical 

processing for example decreases the particle size and thus increases the surface area for digestive 

enzymes. This leads to a greater release of phytochemical compounds from the matrix (Lemmens et 

al., 2014; Palafox-Carlos et al., 2011; Tydeman et al., 2010b). Thermal processing has been shown to 

break down cell constituents and thus enhance the levels of free phenolic compounds and carotenoids, 

probably attributed to an increased extractability (Chanforan et al., 2012; Dewanto et al., 2002; Porrini 

& Riso, 2008; Sensoy, 2014). The combination of mechanical and thermal treatment has also been 

reported to enhance the phenolic bioaccessibility, extractability and bioavailability. For example, 

Martínez-Huélamo et al. (2015) described an increased concentration of naringenin glucuronide in 

urine and plasma samples after consumption of tomato sauce compared to raw tomato. On the other 

hand, this cell disintegration may also lead to oxidation or degradation, which may decrease the 

health-beneficial effects of the compounds, as also illustrated above (6.4.1.1) (Bohn et al., 2015; 

Sensoy, 2014).  

b/ Interaction with other phytochemicals compounds 

Besides the food matrix structure, also the presence of other phytochemicals may influence the action 

or stability of certain phytochemicals. Combining foodstuffs can thus result in different 

bioaccessibilities. It is increasingly being conceived that phytochemicals do not act in isolation. They 

rather act together with many other compounds in the food matrix, leading to synergistic or 
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antagonistic effects (Jacobs & Tapsell, 2013). Several phenolic compounds have for example been 

shown to be better absorbed in the small intestine in the presence of additional phenolic compounds. 

The presence of antioxidants may also prevent oxidation of phytochemicals (Bohn, et al., 2014). The 

lycopene degradation vulnerability has for example been shown to be influenced by the presence of 

vitamin C, vitamin E, flavonoids and non-lycopene carotenoids (Capanoglu et al., 2010). Therefore, 

foods are increasingly considered as a whole, rather than as a sum of compounds (Dillard & German, 

2000; van der Goot et al., 2016). This implies that studying the functionality of individual compounds 

or aiming for intense fractionation and recovery of isolated compounds may be misleading and may 

hamper the use of functional compounds present in the original matrix.  

From this matrix effect some questions arise regarding the strategy to extensively biorefine 

horticultural byproducts into pure, isolated compounds or compound groups. Whereas this strategy 

might be beneficial to level out the differences in concentration and composition, often encountered 

in the byproduct feedstock, the bioactivity and thus the added value of the resulting isolated fractions 

might be limited.  

6.4.1.3 Host-related factors 

Gaining insight in the bioactivity of a certain compound or byproduct may also be hampered by host-

related factors leading to inter- and intraindividual variability. Inter-individual variability are the 

differences between individuals such as genetic make-up, exposure patterns, disease states, life stage, 

gender and physiological condition. Intra-individual variability are within-person fluctuations such as 

seasonality, time of awakening, stress, etc. (Almeida et al., 2009; Bohn et al., 2017). These aspects 

complicate the execution and outcome of human intervention trials. For example, two cancer 

prevention trials have suggested that high dosages of β-carotene, achieved by formulations with high 

bioavailability might lead to harmful effects, in contrast to the widely accepted epidemiologic evidence 

indicating that diets rich in carotenoid-rich fruits and vegetables are associated with a reduced risk of 

lung cancer (ATBC study group, 1994; Omenn et al., 1996; Dillard & German, 2000). A possible 

explanation could be the free-radical-rich atmosphere in the lungs of cigarette smokers that enhances 

the oxidation of β-carotene, after which the resulting oxidative metabolites might accelerate lung 

tumorigenesis (Dillard & German, 2000; Wang et al., 1999).  

6.4.2 Investigating bioactivity is not straightforward 

Thus, measuring the amount of potentially bioactive compounds and gaining insight in the variation of 

their abundance is a first step towards elucidating the development of an effective functional end 

product, as performed in this research. The literature data available can be used to give an indication 
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of the presence or absence of a certain compound group and their potential functionality in a human 

body. However, a careful assessment is required, as simple extrapolation of the possible health-

beneficial effects and generalizations for related products can be misleading. The putative bioactivity 

should thus be tested for different matrices individually, thereby investigating the stability and 

interaction with other food ingredients. The effect in the human body can be demonstrated by human 

intervention studies. However, these are very difficult to perform thus often in vitro or animal studies 

are carried out to elucidate the mechanism of action upfront (D’Archivio et al., 2010; Dillard & German, 

2000; Moran et al., 2013). Great care is required when performing and interpreting the data from in 

vitro studies. Amongst others, both concentration and type of compounds used in these in vitro studies 

are important. The tested concentrations often exceed those occurring in real life. Physiological 

concentrations of phenolic compounds for example rarely exceed the nmol/L-level in blood plasma. 

Elevated in vitro doses may thus not necessarily be relevant for the in vivo situation (D’Archivio et al., 

2010; Williamson & Manach, 2005). Furthermore, parent compounds are often metabolized by 

microbiota or undergo extensive modification. In vitro tests or animal models using only the native 

structures instead of the metabolites thus need cautious extrapolation (D’Archivio et al., 2010; Del Rio 

et al., 2013; Porrini & Riso, 2008; Willamson & Manach, 2005). Hence, even though these in vitro 

studies may help to shed light on the mechanisms of action, they need to be complemented by in vivo 

experiments to indicate their possible bioactivity in the human body (Fernández-García et al., 2009).  

These in vivo tests are also required for obtaining claims related to the potential health-beneficial 

effect (Brookes, 2016; Dillard & German, 2000; O’Kennedy et al., 2016; Younesi & Ayseli, 2015). For 

example, Fruitflow® is the first European Food Safety Authority-approved product with a health claim 

under the European health claims regulation (1924/2006). It is a tomato based concentrate for which 

human volunteer studies have demonstrated the potency and bioavailability of the active compounds 

(polyphenols, flavonoids and nucleosides) as natural cardio-protective functional ingredients 

(O’Kennedy et al., 2016). 

6.4.3 What about the chemical food safety of the byproduct-derived products? 

Identifying the bioavailability of bioactive food compounds is essential for evaluating their potential 

health-beneficial effects but also for their toxicity (Rein et al., 2012). When ingested at high 

concentrations, some phytochemical compounds may exhibit a toxic activity (Balasundram et al., 

2006). Furthermore, contaminants may remain or even accumulate in the byproducts, leading to 

potentially hazardous effects upon consumption.  
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6.4.3.1 Plant toxins 

Indeed, many plant constituents are toxic as they have been developed through evolution for the 

specific purpose of the plant’s self-defense towards microbes, insects and other animals (Dillard & 

German, 2000). For example, phenolic compounds, when ingested at high concentrations, may exhibit 

negative activity such as carcinogenicity and genotoxicity (Mennen et al., 2005). The disappointing 

results from the human intervention trials with β-carotene supplementation, as referred to above, 

demonstrate the potentially adverse effects of carotenoids (ATBC study group, 1994). Also for SLs, 

severe toxicity and other adverse effects have been reported (Amorim et al., 2013; Padilla-Gonzalez et 

al., 2016). SL-containing plants for example have long been known to cause systemic allergic contact 

dermatitis and toxic syndromes in farm animals (Amorim et al., 2013; Paulsen, 2015). There is also a 

growing concern about their genotoxicity and embryotoxicity (Amorim et al., 2013). Also other 

phytochemicals have been attributed with a toxicity such as glycoalkaloids, most commonly found in 

the Solanaceae family (e.g. potato, tomato, eggplant) (Scherhaufer et al., 2015). 

Elucidating (i) which structural moieties can cause unwanted toxicity and (ii) in which dose they do, is 

crucial for the evaluation of the efficacy and safe use of the end products (Ghantous et al., 2010; 

Kasapidou et al., 2015; Mennen et al., 2005; Zhang et al., 2015a). These data are also required when 

applying for a health claim or a novel food (Brookes, 2016). 

6.4.3.2 Pesticide residues 

Residues of pesticides and other agrochemicals can be concentrated in the outer layers of crops 

(Moncalvo et al., 2016; Scherhaufer et al., 2015). These are often the byproducts (e.g. peels, press 

residue, etc.) and thus may pose a risk for human consumption. Performing efficient routine analysis 

and using quality control systems are thus crucial in this regard. This presence of pesticides is however 

not only an issue for byproducts, it also applies to regular fruit and vegetable consumption. Therefore, 

the exposure of the Belgian population to residues of plant protection products through the 

consumption of fruit and vegetables is continuously monitored and was recently investigated by the 

FASFC (Federal Agency for the Safety in the Food Chain). It was shown that on average 95 % of the 

11,000 fruit and vegetable samples analyzed were compliant with the legal limits and 30 % – 40 % of 

the samples contained no residues. Furthermore, the estimated average exposure of adult consumers 

appears to be lower (even up to 100 times lower for the majority of the evaluated residues) than the 

toxicological reference value, namely the acceptable daily intake (ADI). Even though the resulting risk 

of pesticide residues will be depending on the targeted use (e.g. use of peel for application in human 

consumption), the dose and the form in which the byproducts are used, these observations show a 

strict compliance with the regulation (Scicom, 2015).  
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6.4.3.3 Mycotoxins and traces of heavy metals 

Mycotoxins are toxic metabolites derived from fungi (e.g. aflatoxins, ochratoxins, fumonisins, etc.) 

(Scherhaufer et al., 2015). A long-term exposure can affect the immune system and normal 

development or cause cancer (WHO, 2015b). Cereals and grains are among the main sources that are 

contaminated, but some also occur in horticultural products. Patulin is for example commonly found 

in apples and pears with brown rot whereas tomatoes are susceptible to contamination with 

mycotoxins from Alternaria species (da Cruz Cabral et al., 2016; Scherhaufer et al., 2015). Furthermore, 

also the presence of trace levels of heavy metals can have adverse effects on health (Moncalvo et al., 

2016; San Martin & Zufía, 2016). Cadmium and lead are for example known to exert detrimental effects 

on the kidneys and nervous system, respectively (WHO, 1996). On the other hand, some metals are 

essential for the human metabolism such as iron, chromium, copper and zinc (Moncalvo et al., 2016; 

WHO, 1996). The risk of these forms of contamination depends on the origin of the byproducts. For 

example, byproducts produced in the auctions and in greenhouse production in general could be 

expected to be less susceptible to traces of these compounds.  

It thus follows that horticultural byproducts may contain a number of compounds with potentially 

adverse effects for humans. In order to cope with these potentially hazardous compounds, there is a 

need for (i) additional research on the potential adverse effects of plant phytochemicals and (ii) 

stringent quality control on products developed from byproducts ensuring that they are in line with 

the defined legal requirements. 

6.5 Biorefineries: one recipe for guaranteed success?  

The spiral-filter press technology was investigated in this study for its applicability to fractionate 

horticultural byproducts. It can be regarded as a pretreatment to be complemented either (i) with 

further refining and conversion or (ii) with stabilization of the derived homogeneous fractions, 

depending on the desired amount of refining and the envisaged end products. Either way, this flexible 

and quality-conserving pretreatment technology fits in the biorefinery concept, aiming for minimal 

waste and optimal valorization of all fractions. 

6.5.1 The biorefinery concept 

Within the bioeconomy, the cascade principle is increasingly advocated for optimal use of biomass and 

byproducts (SCAR, 2014). This guiding principle suggests a priority order with high value applications 

on top followed by lower value applications, entailing systematic exploitation of biomass for higher-
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added-value products, before using it as an energy source (IWG BE, 2013; Keegan & Kretschmer, 2013) 

(Chapter 1). Whether a certain application is associated with a high or low added value is determined 

by its social, environmental and economic dimensions (Mourad, 2016). From a social perspective, food 

security is of primordial importance. Therefore, valorization of biomass towards food is most often 

perceived as the highest added-value application (de Besi & McKormick, 2015; Girotto et al., 2015; 

IWG BE, 2013; Maciulevičius, 2016; OVAM, 2012; 2015b; SCAR, 2014). The environmental added value 

lies in the fact that the production processes should aim at minimizing waste and limit the adverse 

impact on the environment. The economic dimension finally implies that the proposed biomass 

valorization should be economically profitable. 

It is believed that this can be realized through using biorefineries (McKormick & Kautto, 2013; Mohan 

et al., 2016; Odegard et al., 2012). In analogy with the petroleum refineries, biorefineries convert 

biomass and byproducts into a range of products with a high total added value (Girotto et al., 2015; 

Ekman et al., 2013). The objective is to optimize the use of resources and minimize wastes, thereby 

maximizing benefits and profitability (WEF, 2010). The value of such a biorefinery concept is being 

increasingly recognized for optimal biomass utilization, since linear production models, targeting one 

specific end product and accordingly generating large fractions of waste, are being increasingly 

criticized. Although the latter is not a totally novel concept and has already been used in some 

traditional industries such as the paper, wood, sugar and meat industry, it is an emerging field, for 

which research and development are still at their initial stages (McCormick & Kautto, 2013; SCAR, 

2014). 

To accomplish this integral biomass use, the feedstock can be subjected to multiple sequential 

combinations of unit processes such as pretreatment, recovery, transformation and downstream 

processing (Fava et al., 2015). These can involve (but are not restricted to) physical processing (e.g. 

dewatering, centrifugation, size reduction, extrusion, drying), chemical processing (e.g. distillation, 

hydrolysis, extraction), biological processing (e.g. enzymatic treatment, fermentation) or thermal 

processing (e.g. pyrolysis) and combinations thereof (Ghatak, 2011; Lin et al., 2014; Rosentrater, 2005; 

WEF, 2010).  

Feedstocks may originate from dedicated crops (e.g. corn, sugarcane). Industrially successful 

biorefineries nowadays are predominantly present for this so-called first generation biomass, 

consisting of edible biomass such as starch crops, sugar crops, oil crops and wood (IEA bioenergy, 2012; 

WEF, 2010). Some examples include pilot and commercial plants for biorefining sugar and starch crops 

into bioethanol and animal feed (Crop Energies AG, Germany; Permolex, Canada), commercial plants 

for biorefining rapeseed and sunflower oilseed into biodiesel, glycerine, animal feed, chemicals and 
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polymers (Sofiproteol, France) and lignocellulosic crops into bioethanol, chemicals, biomaterials and 

heat (Ensyn, Canada; Lignol, Canada; Zellstoff Stendal GmbH, Germany) (WEF, 2010). Besides primary 

crops, also waste and byproducts from agriculture, food and forest sectors can be used as biorefinery 

feedstock (Cherubini, 2010; Ekman et al., 2013; Ghatak, 2011; WEF, 2010). An example of such a 

second generation biorefinery plant is the pilot-installation for refining lignocellulosic residues into 

bioethanol, animal feed, electricity and heat (Inbicon IBUS, Denmark). Different pilot and 

demonstration plants based on grass have also been reported, involving the production of several 

combinations of products such as a feed product, grass fibers and biogas (Biowert, Germany), feed, 

materials, fertilizer and/or biogas (Grassa, Netherlands), insulation material and co-generation of 

biogas (Biorefinery, Ireland) and lactic acids, amino acids and biogas (Utzenaich, Austria) (Mandl, 

2010). Despite the examples mentioned above, the majority of the biobased products are being 

produced in single production chains, based on one conversion technology and not on a cascading 

combination of technologies (Cherubini, 2010; McCormick & Kautto, 2013). 

The examples mentioned above indicate that biorefineries and biofuels are currently closely related 

and that they are mainly associated with the conversion of agricultural crops or byproducts (Cherubini, 

2010; McCormick & Kautto, 2013). Utilization of horticultural byproducts, or more generally food 

waste, often remains an idea or a promising strategy, leading to a scarce amount of successful 

industrial implementations (Fava et al., 2015; Yang et al., 2015). However, interest is growing as shown 

by the increasing amount of research conducted. Diverse byproducts (e.g. onion byproducts, orange 

peel, olive mill wastewaters, grape pomace, apple pomace, tomato and bell pepper foliage) have been 

assessed for their potential in biorefineries on research level (Ekman et al., 2013; Farhat et al., 2011; 

Federici et al., 2009; Gama et al., 2015; Martinez et al., 2016; Schuurbiers et al., 2013). They are mainly 

recognized for their content of dietary fibers, vitamins, natural antioxidants and mono- and di-

oligosaccharides (Fava et al., 2015). More specifically, the case of citrus byproducts has been 

extensively investigated. Currently, citrus juice industries dry their residue and sell it either as raw 

material for pectin extraction or pelletized for animal feeding. Multiple studies have however 

investigated the conversion of different citrus byproducts into various added-value products such as 

essential oils, pectin, dietary fibers, enzymes, proteins, natural antioxidants, bioethanol, organic acid 

and/or prebiotics (Lin et al., 2013; Matharu et al., 2016; Mamma & Christakopoulos, 2013). Besides 

specific feedstocks such as citrus, multiple articles have reviewed the state of the art of biorefining 

food waste conversion in general. Kiran et al. (2014) and Yang et al. (2015) for example gave an 

overview of the current biochemical processes for the conversion of organic waste into valuable 

products, showing that these are still mostly situated in the lab-scale stage and that effective 

downstream processes are necessary for their adoption.  
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6.5.2 Difficulties when applying the biorefinery concept 

In general, it can be concluded that specific interest in biorefining horticultural byproducts is rising in 

Europe. Although the industrially implemented examples of horticultural-byproduct-based 

biorefineries are still scarce, the idea is being incorporated in many policy texts and research projects. 

However, even though the biorefinery concept, and by extension the bioeconomy, sounds 

straightforward, it appears to be rather difficult to put into practice (de Besi & McCormick, 2015). 

Although not specifically investigated in this research, literature studies and discussions with 

stakeholders have led us to identify three main aspects that can be experienced as barriers for 

adoption and diffusion of the biorefinery concept. These are related with (i) the perceived primordial 

importance of economic feasibility, (ii) the lack of inherent environmental sustainability and its difficult 

measurement and (iii) the necessary structural changes accompanied by implementing the biorefinery 

approach in practice. These aspects are discussed from the perspective of biorefineries and can also 

be interpreted in the context of the bioeconomy in general.  

6.5.2.1 Economic feasibility appears to be the major driving force 

Acquiring a balanced combination of social, ecologic and economic aspects appears to be difficult in 

practice, both on policy level and on industrial level (Boehlje & Bröring, 2011; McCormick & Kautto, 

2013; Mourad, 2016; Staffas et al., 2013). 

Policy is often unable to stimulate a consistent, simultaneous adoption of these three sustainability 

pillars. In the translation of their policy, economic growth is often addressed first, followed only to a 

limited extent by aspects of environmental and social sustainability (McCormick & Kautto, 2013; Pfau 

et al., 2014; Staffas et al., 2013). This is for example illustrated by policy documents such as the USA 

bioeconomy blueprint as well as the OECD policy agenda, not specifically addressing the environmental 

sustainability as a driving force (Organization for Economic Cooperation and Development) (Staffas et 

al., 2013). In the European strategy, the environmental sustainability is more explicitly stated 

(European Commission, 2012). However, even in this case, the legislation remains complex and 

sometimes even contradictory. This can be illustrated by Flanders stimulating the use of horticultural 

byproducts in the food industry (OVAM, 2015b) in contrast to the non-transparent regulation 

associated with the waste status (Directives 2008/98/EC; Materialendecreet, VLAREMA) as well as the 

strict quality requirements for the valorized food products (e.g. novel food, additives, claims) (Fava et 

al., 2015; Mourad, 2016). Also Europe, pushing the utility of biomass towards the production of 

biofuels and renewable energy by binding goals and accompanying support mechanisms, is rather 

contradictory with the top priority of food and biomaterials (Bos-Brouwers et al., 2012; Carus et al., 

2015; de Besi & McCormick, 2015; Keegan et al., 2013; OVAM, 2014; 2015b).  
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Besides policy, also industry struggles with addressing the three sustainability pillars in a balanced way. 

Even though they are increasingly concerned about environmental sustainability, this is often believed 

to come at the expense of economic productivity and competitiveness (Boehlje & Bröring, 2011; de 

Jong et al., 2005). Accordingly, in practice, profitability remains the ultimate driving force, while social 

and ecologic issues are considered secondary (Aramyan & Valeeva, 2016; Budzianowski & Postawa, 

2016; McCormick & Kautto, 2013). The economic feasibility is thus often used as primary criterion to 

evaluate the biomass valorization trajectory. However, as applying the basic principles of the 

bioeconomy is not always economically feasible, this may have an impact on its difficult adoption. 

For example, an extensive level of refining using environmentally sustainable technologies is 

advocated in the biorefinery approach. This idea originates from the assumption that incorporating 

multiple processing steps and producing several products, helps to increase the environmental 

sustainability by (i) using the entire biomass and thus avoiding the production of residues and (ii) 

providing better resource efficiency due to the maximization of the value derived from this biomass 

(Fava et al., 2015; Keegan et al., 2013). From an economic point of view, the different end products 

are expected to enter different markets and augment the total economic added value of the products 

(Budzianowski & Postawa, 2016; Fava et al., 2015). However, it also implies that the initially required 

economic investments increase and that the economic value of the derived products must be high in 

order to be able to justify the necessary investments (Fava et al., 2015; Keegan et al., 2013; Kusch et 

al., 2014; McCormick & Kautto, 2013; Mirabella et al., 2014; WEF, 2010). Therefore, this high level of 

refining is not always easy to accomplish, which can be illustrated by a study performed by Royal 

Haskoning DHV for sugar extraction from horticultural products. In a first step, C5-sugars were 

extracted from hemicellulose, followed by the recovery of C6-sugars in a second step. However, the 

enzymatic hydrolysis to recover the C6-sugars appeared to be too expensive compared to the extra 

revenues provided by the C6-sugars, leading to an overall negative business case, whereas excluding 

this step rendered the business case profitable (Koop et al., 2014).  

Another example of the fact that applying the basic principles of the bioeconomy is not always 

economically feasible, is related to the adoption of novel, clean technologies. Even though they might 

be associated with clear social and environmental benefits, their adoption is often hampered by 

financial aspects or uncertainties (Aramyan & Valeeva, 2016; del Río Gonzalez, 2005). Aspects such as 

high initial investment costs which are not necessarily related with immediate increased revenues, 

high switching costs, uncertainty regarding regulation, required organizational adaptations, market 

uncertainties and technical uncertainties can overwhelm the economic and financial advantages of 

implementing clean technologies. Some of these issues can be expected to be alleviated when the 

technologies mature (Dietrich et al., 2016). Indeed, often they have only been recently developed and 
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are therefore still expensive or they have not reached their maximum efficiency yet. This is sometimes 

referred to as early adoption costs (del Río Gonzalez, 2005). By intensifying research and development 

on process upscaling and performance, the associated costs can thus be expected to be reduced (Fava 

et al., 2015; Kamm & Kamm, 2015; Matharu et al., 2016; Schieber et al., 2001; Staffas et al., 2013). Also 

the expected increase in oil prices could make clean technologies economically more viable in the 

future (Fava et al., 2015). 

Finally, the stringent regulations associated with byproduct valorization towards food or materials can 

also render the cascade principle economically less feasible compared to other options such as 

conversion to energy or composting. Byproduct valorization towards food can be subjected to the 

novel food legislation22. This obliges the producers of ‘novel’ foods or ingredients to demonstrate the 

safety of their product before market introduction in order to protect the consumer (Baiano, 2014). 

Brookes (2016) states that the time necessary for completing food ingredient research (e.g. novel food) 

can take 4 to 10 years, divided in 2 to 5 years for research and 2 to 5 years for product development 

(incl. regulatory approval). The time necessary for authorizing the sale of novel foods/ingredients in 

the EU market is already 36 months on average. Time for approval for health claims is about 30 months 

(Brookes, 2016). The costs associated with the development of a novel food product with a health or 

nutrition claim may cost in the range of €15 million to €20 million. These are less when launching a 

new ingredient without a health claim. A significant part of this overall cost comes from regulatory 

requirements (e.g. generation of safety data, clinical trials, etc.) and can add up to 50 % of the total 

costs of bringing a product to the market (Brookes, 2016). Also for cosmetics23, pharmaceutical 

products24 and chemicals25, strict regulations are present. Without questioning their importance, these 

strict quality requirements include a rigorous testing and administrative cost, which may be impeding 

for smaller companies (Lin et al., 2013; OVAM, 2014).  

It can thus be concluded that economic aspects are often considered dominant and can hamper the 

adoption of the basic principles of the biorefinery approach.  

6.5.2.2 Environmental sustainability not self-evident and difficult to measure 

The envisioned environmental benefits of biorefining and cascading lie in the form of minimization of 

residues and optimal resource efficiency (Fava et al., 2015; Keegan et al., 2013; Pfau et al., 2014). 

                                                           
22 Novel food is defined as food that has not been consumed to a significant degree by humans in the EU prior to 
1997. It can be newly developed, innovative food or food produced using new technologies and production 
processes as well as food traditionally eaten oustide the EU (EC 1852/2001). 
23 https://ec.europa.eu/growth/sectors/cosmetics/legislation_en 
24 https://ec.europa.eu/growth/sectors/healthcare_en 
25 https://ec.europa.eu/growth/sectors/chemicals_en 
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(Dewulf & Van Langenhove, 2006). However, this is not self-evident (Mourad, 2016; Pfau et al., 2014). 

Extensive biorefining itself may indeed be associated with a substantial environmental impact on 

different stages in the supply chain.  

Starting at the beginning of the supply chain, the impact of removing biomass, which is conventionally 

left on the field, can influence the total environmental sustainability. Removal of these residues can 

on the one hand aid in minimizing the risks of N-losses during autumn (predominantly for N-rich 

vegetable crops such as cauliflower, cabbages, leek and celery). On the other hand, their removal also 

causes loss of their beneficial contribution to soil quality and fertility. Using fertilizers or compost could 

make up for the removed nutrient value. However, their production is also associated with a certain 

environmental impact, which could partly offset the benefits gained by the removal and use of the 

agricultural residues (Agneessens et al., 2015; Budzianowski & Postawa, 2016; De Meester et al., 2011; 

Wellisch et al., 2010). Using biomass residues is often automatically considered a more sustainable 

resource compared to fossil based feedstock, however in the longer term, it might turn out to be worse 

(De Meester et al., 2011). It is increasingly being argued that small-scale preprocessing at the 

agricultural company could help to overcome this. Instead of refining the biomass centrally and 

transporting products that contain predominantly water and minerals back to the farms (e.g. molasses 

and lime fertilizer in case of sugarbeet refining), the latter should not be removed from the farms in 

the first place (Bruins & Sanders, 2012). Unnecessary costs associated with their transport are 

accordingly avoided and they can be reused on the local field as fertilizers. 

Also the necessary transport of biomass, characterized by high moisture content and low energy 

density, affects the environmental impact of the biorefinery (Bruins & Sanders, 2012; Budzianowski & 

Postawa, 2016; Keegan et al., 2013). The extent to which byproducts are transported depends on the 

scale of the biorefinery. Petroleum biorefineries use raw materials that do not contain water and 

where all transported product is used. Therefore, large petroleum biorefineries benefit from 

economies of scale. Biorefineries obey different rules due to the logistic aspects mentioned above 

(water content, seasonal and scattered occurrence) (Bruins & Sanders, 2012). Small-scale utilization of 

byproducts within one farm or company eliminates the need for transport, in contrast to large-scale 

biorefining exceeding the boundaries of one company. The optimal size of a biorefinery has to find an 

adequate balance between centralized and distributed performance (Budzianowski & Postawa, 2016; 

Bruins & Sanders, 2012). In this context, a model is proposed by McCormick & Kautto (2013) which is 

based on the proximity of raw materials, production and consumption sites and which strives towards 

many integrated, local production plants. This so-called “glocal” approach ensures that residues and 

wastes are fully utilized by different processes in a concentrated region. Bruins & Sanders (2012) 

advocate the decentralized preprocessing followed by a more capital-intensive processing at large 
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centralized factories. In Flanders, this concept could be realized by setting up valorization actions at 

the produce auctions and at large horticultural processors, located close to the horticultural 

production sites. 

Besides the removal of byproducts from the land and transport, the processing is also associated with 

an environmental impact, for example by its energy consumption, use of polluting solvents and/or 

chemicals and the production of hazardous waste (Mirabella et al., 2014; van der Goot et al., 2016; 

Wellisch et al., 2010). Technological advancements on designing low-environmental-impact 

technologies could for example make these technologies more sustainable (Fava et al., 2015; Kamm & 

Kamm, 2015; Lin et al., 2014; Schieber et al., 2001). Novel thermal and non-thermal preservation 

technologies such as microwave heating and pulsed electric fields appear to be more environmentally 

friendly in terms of energy efficiency, water savings and/or reduced emissions, compared to traditional 

ones (Pereira & Vicente, 2010). Other examples are the Refractance Window Drying and the similar 

Dry-On-Water technology, which can significantly lower the energy use, normally consumed by 

conventional drying technologies such as freeze-drying and spray-drying (Baeghbali et al., 2015; Van 

Mierlo, 2016). Also a range of extraction technologies are being developed with a lower environmental 

impact such as supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted 

extraction, pulsed electric field extraction, enzyme-assisted extraction, benign solid-liquid solvent 

extraction and pressurized fluid extraction (Baiano, 2014; Cherubini, 2010; Matharu et al., 2016; 

Rombout et al., 2014). Besides the use of novel, sustainable technologies, also the processing strategy 

can be adapted. Van der Goot et al. (2016) argue that food products are often produced with a high 

purity, a defined composition and a broad applicability, which demand intensive processes. They 

advocate a transition from pure and highly processed ingredients to enriched fractions which are 

produced using mild fractionation processes and are less destructed and less pure, but show improved 

functional properties (e.g. more compounds present in their native state unaltered by processing, 

presence of impurities that can help in the final functionality, presence of natural structure beneficially 

affecting the bioavailability of micronutrients). 

Finally, also the types of products that are manufactured and how they are used and disposed of at 

the end of life, influence the environmental sustainability of the biorefinery (Wellisch et al., 2010).  

Thus, although aiming for environmental sustainability by minimizing residues and optimal resource 

efficiency, the biorefining process itself and the associated supply chain are also characterized by an 

environmental impact (Pfau et al., 2014). Hence, biorefining is not environmentally beneficial per se 

and the total environmental added value of the derived end products may be undermined by the 

created environmental impact (Dewulf & Van Langenhove, 2006; Wellisch et al., 2010). Therefore, 
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understanding the full consequences of a biorefinery is necessary and sustainability of the whole 

supply chain must be assessed (Wellisch et al., 2010). However, measuring the environmental 

sustainability of an entire supply chain is difficult. In this context, a system analysis approach for 

measuring the environmental impact such as Life Cycle Analysis (LCA) is promising (Budzianowksi & 

Postawa, 2016; Cherubini, 2010; De Meester et al., 2011; European Commission, 2012; Fava et al., 

2015; Keegan et al., 2013; Pfau et al., 2014; Unger et al., 2016).  

6.5.2.3 The biorefinery approach calls for changes in the strategy and behavior patterns 

Adopting the biorefinery approach often requires a number of changes in the strategy and organization 

of the industry and in the behavior of consumers, which may obstruct its implementation (Keegan et 

al., 2013).  

In order to create integrated biorefineries, a concerted action of multiple non-traditional partners will 

be necessary to create knowledge from a variety of sciences and technologies and to cover all aspects 

of the value chain (European Commission, 2012; Fava et al., 2015; Golembiewski et al., 2015; Mourad, 

2016; Pfau et al., 2014; Tsolakis et al., 2014). For example, the food industry and the cosmetic and/or 

pharmaceutical industries are allying, targeting the production of nutraceuticals and functional foods. 

The bioenergy sector is increasingly cooperating with the chemical industry for the production of 

biobased materials and chemicals (Boehlje & Bröring, 2011; Younesi & Ayseli, 2015). This leads to the 

emergence of novel supply chains cutting across the borders of the existing organizations and sectors. 

This might be quite challenging for the participating companies, as these require moving beyond the 

core business and the traditional framework of expertise (Aramyan & Valeeva, 2016; Boehlje & Bröring, 

2011; Dansereau et al., 2014; Keegan et al., 2013; Kircher, 2012; McCormick & Kautto, 2013). These 

new intersections of previously relatively independent industries require increased cooperation and 

managing capabilities to facilitate the knowledge transfer among actors from different scientific 

backgrounds (Boehlje & Bröring, 2011; European Commission, 2012; Golembiewski et al., 2015). The 

European Commission is aware of this challenge and stimulates the interactive cooperation model for 

conducting research and innovation, for example via European Innovation Partnerships (EIPs) under 

the Europe Horizon 2020 Strategy. The REFRESH project, focusing on reducing food losses, has already 

adopted this method by working in collaboration with working platforms that provide the team with 

guidance on business and consumer acceptance of byproducts (Sweet et al., 2016). 

Besides the cooperative approach, an integrated biorefinery is often associated with structural 

changes in the supply chain. These can originate from the adoption of novel technologies, which may 

be associated with financial changes (e.g. high investment costs, high switching costs), technical 

changes (e.g. lack of full control of process operational variables) and regulatory uncertainties (del Río 
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Gonzalez, 2005; Pereira & Vicente, 2010). Market insecurity can further aggravate the company’s 

reluctance to produce new products. The consumers might not be willing to pay price premiums for 

products or processes with a lower environmental impact. Potentially adverse consumer perception 

towards new products may also pose uncertainties and risks for the producers. Consumers might be 

hesitant to embrace new products, such as those generated from byproducts or waste streams. Also 

the use of dedicated feestocks produced by innovative technologies (e.g. genetic modification, novel 

breeding techniques) or novel production technologies (e.g. nanotechnology, irradiation) can give rise 

to products characterized by an insecure market (Golembiewski et al., 2015; Frewer et al., 2011; 

McCormick & Kautto, 2013; Pereira & Vicente, 2010). For example, the introduction of the food 

irradiation technology has been constrained due to a negative consumer attitude, despite the potential 

benefits (Aramyan & Valeeva, 2016; Pereira & Vicente, 2010). Consequently, consumer acceptance is 

essential for the adoption and diffusion of new technologies and derived products (Aramyan & 

Valeeva, 2016). Consumer acceptance is found to increase with knowledge and perceived usefulness 

(Golembieswki et al., 2015). This can for example be reached by using transparent certifications, 

quality labels and education campaigns (European Commission, 2012; Frewer et al., 2011). Also 

research driven by the market instead of by technology is believed to stimulate commercialization of 

biobased end products (Rönnlund et al., 2014).  

6.5.3 Potential measures to stimulate biorefineries 

Reconciling economic, ecologic and social aspects through the cascade biorefining system is not 

straightforward. It can also be deduced that the biorefinery concept is no rigid concept applicable in 

every situation with an ensured positive end balance. A range of different ways and levels of 

refinement are possible and the viability and applicability of the specific design has to be evaluated 

case-by-case. Consequently, no one-size-fits-all translation of the biorefinery concept can be made 

(Jonkman et al., 2017; Wellisch et al., 2010). In theory however, the concept holds strong and (i) by 

allowing some flexibility to account for different contextual factors and (ii) by further supporting and 

investing in research and development of novel technologies, the practical translation can be 

facilitated and become more feasible. 

Even though no concrete strategy applicable for all contexts can be proposed, a balanced regulatory 

framework with clear priorities and ambitions regarding sustainability can help to alleviate some of 

the aforementioned challenges (de Besi & McCormick, 2015; European Commission, 2012; McCormick 

& Kautto, 2013; Pfau et al., 2014). An aspect that can be suggested in this regard is to set up a 

standardized systemic approach that can be used as an evaluation framework for measuring the 
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sustainability of a product or production system from an economic, environmental and social point of 

view and thus can provide guidance to industry, government and society (De Menna et al., 2016). 

Nowadays, some isolated methodologies exist to measure the environmental (life cycle analysis - LCA), 

cost (life cycle costing - LCC) or social impact (social LCA - S-LCA) of decisions and products. The results 

of these analyses are difficult to relate because they are often based on different assumptions or 

include different parts of the life cycle (De Menna et al., 2016; Valdivia et al., 2011). Therefore, a 

holistic approach, encompassing all sustainability pillars is necessary to ‘get the whole picture’ and to 

make informed and balanced decisions. Various efforts have been made in the past. Recently, Valdivia 

et al. (2011), supported by the United Nations Environment Programme (UNEP), have developed a Life 

Cycle Sustainability Assessment (LCSA), which is a combination of an LCA, an LCC and an S-LCA, and 

which evaluates all environmental, social and economic negative impacts and benefits throughout a 

products life cycle. They state that while the application is already feasible, more research is needed 

in regard to improving data acquisition, management and access, enhancing and facilitating the 

methodology and providing guidance for interpretation and communication of the results (Valdivia et 

al., 2011). The European Commission is aware of these challenges and is further stimulating integrated 

sustainability assessments by (i) supporting the further development of integrated assessment 

methodologies and (ii) requiring research proposals to include sustainability assessments (Wellisch et 

al., 2010).  

This sustainability framework can be linked to establishing an expert cluster that can use the developed 

methodology for evaluating and comparing technologies for their overall sustainability (Wellisch et al., 

2010). This expertise could in turn be used by policy makers and adopters to make more informed 

choices. Good scores can for example serve as a criterion for funding research and development of 

certain technologies in order to reduce their cost and increase their scale and performance. It can also 

be used as a base for allocating grants for the use of these technologies or providing soft loans, thereby 

directly stimulating their industrial adaptation. This holistic sustainability assessment could in turn be 

used to aid in ensuring a market value, by linking it to the development of a transparent 

standardization, verification and labeling system for the derived products to prove their environmental 

benefits and their safety (del Río Gonzalez, 2005; Maciulevičius, 2016; Wellisch et al., 2010).  

Another aspect that can help to facilitate the adoption of the bioeconomy and thus the biorefinery is 

associated with the current lack of legislative transparency and the stringent regulation for food and 

feed production. Complicated legislation makes it difficult for producers of byproducts to know what 

kind of byproduct is allowed in which application. Even though the importance of strict regulations is 

widely acknowledged for guaranteeing food safety and controlling for correct consumer information, 

the procedures are often long and costly. Creating more transparency in the administrative procedure 
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(which procedure to follow, what requirements need to be met, how long the procedure will take and 

how much it will cost) and limiting the duration and thus the associated costs, can already mean a 

great difference in the business case (Brookes, 2016). The European Commission is aware of this 

challenge. This is demonstrated for example by the EU-funded REFRESH project, developing a mobile 

application for businesses to facilitate valorization of byproducts towards feed, by providing them with 

clear information on the applicable legislation and requirements. The EU-funded BACCHUS26 project 

aims to alleviate the legislative complexity related to food production by providing information about 

the European regulation on nutrition and health claims and developing tools and resources to facilitate 

the generation of robust and exploitable scientific evidence to support health claims. Furthermore, the 

European Commission supports the clarification of the EU-legislation related to waste, food and feed. 

They also want to facilitate food donation and the use of byproducts in feed, without compromising 

the safety (European Commission, 2016b). Also Flanders is aware of the role policy can play in 

stimulating the bioeconomy and has founded a platform for collecting the obstructing regulations and 

issues related to a lack of transparency or complicated procedures27. 

6.6 Conclusion and further perspectives 

This dissertation aimed to facilitate the valorization of horticultural byproducts. Therefore, two 

currently hindering aspects related to (i) the need to cope with moist byproducts occurring scattered, 

both in time and space and (ii) the lack of knowledge on the composition of some byproducts, were 

tackled from a technical perspective, leading to scientific insights in the defined research areas. 

Additionally, these scientific insights were discussed in the bioeconomy context and critically discussed 

from a broader technical and socio-economic perspective. As a result, this dissertation clearly shows 

the possibilities of these byproducts and accordingly the opportunities for their valorization. On the 

other hand, it shows the complexity of valorizing horticultural byproducts and the necessary 

multifaceted approach. Today, we are only at the beginning and much work is to be done, but the 

interest keeps growing and the route is being paved.  

This research has allowed us to identify some avenues for further research. These have been 

extensively described above but the main suggestions are summarized below. 

 Valorization of the press residue fraction 

                                                           
26 http://www.bacchus-fp7.eu/ 
27 http://www.ewi-vlaanderen.be/wat-doet-ewi/ondernemende-economie/bio-economie/meldpunt-
belemmerende-regelgeving 
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This dissertation focused on the liquid fraction but clearly showed the enrichment of 

phytochemicals in the press residue. In order to optimally valorize the whole byproduct, 

further research should focus on the handling and product formulation of this press residue 

fraction. Aspects that can be investigated to allow valorization of the associated 

phytochemicals and fibers are for example the oxygen-free collection of the press residue after 

pressing, further stabilization, optimization of the pilot-scale extraction of phytochemicals, 

product formulation and evaluation of the final product properties such as functionality and 

sensory and safety aspects. 

 Investigation of novel stabilization technologies 

The thermal treatment used in this dissertation led to a significant decrease in redness and 

carotenoid content of the tomato juice. This was in line with the finding that conventional 

thermal treatment may negatively affect the physical, nutritional and/or bioactive properties 

of fruit and vegetable juices, as described in literature (Jiménez-Sánchez et al., 2017a). Future 

research should thus investigate coupling the spiral-filter press to a less impacting stabilization 

technology on pilot scale in order to generate a low total processing impact on the byproduct-

derived products.  

 Economic assessment of the valorization process 

In order to create more insight in the economic viability of the proposed valorization strategy 

and to allow comparison with other scenarios, an economic assessment of the whole resulting 

process (biomass collection, transport, pretreatment, pressing, stabilization, downstream 

processing) should be performed. Subsequently, different scenarios could be tested varying in 

type of end product, scale, location, legislative procedures, etc.  

 Bioactivity testing 

The concentration and variability of phytochemicals in function of natural and processing 

related factors has been investigated in this study, showing the potential of forced Belgian 

endive roots. However, this is only the first step towards valorizing these byproducts. Careful 

assessment of a several aspects is necessary such as for example their functionality in extracts 

or in original root matrix, the compounds and the dose responsible for this functionality, and 

their stability, bioaccessibility and bioactivity in the final matrix.  

 Pilot-scale extraction and fibrous root fraction valorization 

If the functionality of the derived extracts is promising, an extraction process at pilot scale 

should be investigated regarding performance and economic viability. The extraction method 

proposed in this research for the sesquiterpene lactones is a good starting point as it is 

relatively simple and green. Furthermore, this also allows for the valorization of the remaining 

fibrous fraction. 
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 Evaluation of toxicity and contaminants  

Depending on the derived product and the valorization sector, the potential toxicity of the end 

products should also be investigated. Elucidating which structural moieties can cause 

unwanted toxicity (e.g. pesticide residues, unknown effects of SLs) and in which dose they do, 

is crucial for the evaluation of the efficacy and safe use of the derived end products. 
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Appendix 

Appendix 1: Calculation of the juice yield 

Consider the tomato juice production process. On each moment t during the juice extraction process, 

both during the transient of steady-state phase (Figure A1), the formula below applies:  

𝑚𝑚(𝑡) = 𝑚𝑗(𝑡) + 𝑚𝑝(𝑡)              (1) 

with mj(t), mp(t) and mm(t) the mass flow rates on each time t of the juice, pomace and mash 

respectively. Integration of both sides with respect to time from the beginning (120 s) to the end (160 

s) of the sampling phase (part of steady-state phase) delivers: 

∫ 𝑚𝑚(𝑡)𝑑𝑡 =  ∫ 𝑚𝑗(𝑡)𝑑𝑡 + ∫ 𝑚𝑝𝑑𝑡
𝑡

0

𝑡

0

𝑡

0
 (2) 

As mm, mj and mp can be considered constant during the sampling phase, equation (2) can be converted 

to: 

𝑚𝑚 ∫ 𝑑𝑡 =  𝑚𝑗 ∫ 𝑑𝑡 + 𝑚𝑝 ∫ 𝑑𝑡
𝑡

0

𝑡

0

𝑡

0

 

corresponding to:  

𝑚𝑚∆𝑡 = 𝑚𝑗∆𝑡 + 𝑚𝑝∆𝑡 or 𝑀𝑚 = 𝑀𝑗 + 𝑀𝑝 (3) 

with Mm the mass of the mash processed during the sampling phase, and Mj and Mp the mass of the 

juice and pomace produced during the sampling phase respectively.  

The juice yield can be defined as: 

𝐽𝑌(𝑡) =  (
𝑚𝑗(𝑡)

𝑚𝑚(𝑡)
) . 100 %              (4) 

With inclusion of equation (1), this becomes 

𝐽𝑌(𝑡) =  (
𝑚𝑗(𝑡)

𝑚𝑗(𝑡)+𝑚𝑝(𝑡)
)                (5) 
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By the fact that mm, mj and mp can be considered as constant during the sampling phase (part of the 

steady-state phase), they can be equalized to Mm/t, Mj/t, and Mp/t respectively. As a consequence, the 

percentage juice yield can be calculated from: 

𝐽𝑌 = (
𝑀𝑗

𝑀𝑗+𝑀𝑝
) . 100 % (6) 

 

Appendix 2: Derivation of an expression for (i) the wet based concentration, 

(ii) the retention efficiency and (iii) the extraction efficiency of the filtration 

a. Wet based concentration 

The material balances for the freeze-drying system (batch process) are: 

Total mass balance: 

2, ,s w H O s dM M M   (1) 

with Ms,w the mass of the sample before freeze-drying (wet sample), MH2O the mass of water removed 

from the sample during freeze-drying and Ms,d the mass of the sample after freeze-drying (dry 

sample). 

Partial mass balance for water: 

 

Figure A1 Absolute underpressure in extraction cell (white), feed pump pressure (black) and total soluble solids 
(grey) during transient and steady-state phase. 

Steady-state phase Transient phase 

Sampling 
phase 
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2, , , ,100%s w s w H O s d s dM MC M M MC   (2) 

with MCs,w the moisture content of the sample before freeze-drying and MCs,d the moisture content of 

the sample after freeze-drying. 

Partial mass balance for compound i: 

𝑀𝑠,𝑤𝑐𝑤 = 𝑀𝑠,𝑑  𝑐𝑑 
 (3) 

with cw and cd the concentration of compound i in the sample before and after freeze-drying, in other 

words, the concentration on wet base or dry base, respectively. From equation 1, 2 and 3 can be 

derived that: 

𝑀𝑠,𝑤

𝑀𝑠,𝑑
=

𝐴𝑂𝐶𝑑

𝐴𝑂𝐶𝑤
=  

100 %−𝑀𝐶𝑠,𝑑

100 %−𝑀𝐶𝑠,𝑤
 (4) 

In this manner, a linkage could be made between cw and cd:  

For all samples 

𝑐𝑤 =  𝑐𝑑 (
100 %−𝑀𝐶𝑤 

100 %− 𝑀𝐶𝑑
) (5) 

b. Retention efficiency 

The spiral-filter press is used for filtration. The general terms mash, juice and press residue are used, 

which correspond to MT, JnT and PR. 

Following material balances are valid for a control volume, which encloses the spiral-filter press: 

Total mass balance: 

, , ,m w j w p wm m m   (6) 

with mm,w, mj,w and mp,w the mass flow rates of the mash, juice and press residue respectively.  

Partial mass balance for water: 

, , , , , ,m w m w j w j w p w p wm MC m MC m MC   (7) 

with MCm,w the moisture content of the mash, MCj,w the moisture content of the juice and MCp,w the 

moisture content of the pomace on wet base.  

Partial mass balance for compound i: 

𝑚𝑚,𝑤𝑐𝑖,𝑚,𝑤 = 𝑚𝑗,𝑤𝑐𝑖,𝑗,𝑤 + 𝑚𝑝,𝑤𝑐𝑖,𝑝,𝑤   (8) 
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The retention efficiency (% Ri) of a specific compound during pressing can be defined as: 

% 𝑅 =  (
𝑚𝑖,𝑗+𝑚𝑖,𝑝

𝑚𝑖,𝑚
) . 100 % (9) 

what corresponds with: 

% 𝑅 =  (
𝑚𝑗,𝑤𝑐𝑖,𝑗,𝑤+𝑚𝑝,𝑤𝑐𝑖,𝑝,𝑤

𝑚𝑚,𝑤𝑐𝑖,𝑚,𝑤
) . 100 %              (10) 

Substituting mi,m, ci,p,w, ci,j,w and ci,m,w by their corresponding expressions (5) and (8) gives: 

% 𝑅 =  (
𝑚𝑗,𝑤(

100 %−𝑀𝐶𝑗,𝑤

100 %−𝑀𝐶𝑗,𝑑
)𝑐𝑖,𝑗,𝑑+𝑚𝑝,𝑤 (

100 %−𝑀𝐶𝑝,𝑤

100 %−𝑀𝐶𝑝,𝑑
)𝑐𝑖,𝑝,𝑑

(𝑚𝑗,𝑤 +𝑚𝑝,𝑤)(
100 %−𝑀𝐶𝑚,𝑤
100 %−𝑀𝐶𝑚,𝑑

)𝑐𝑖,𝑚,𝑑

) . 100 % (11) 

The % juice yield (JY) can be defined as:  

𝐽𝑌 = (
𝑀𝑗,𝑤

𝑀𝑗,𝑤+𝑀𝑝,𝑤
) (12) 

Combining equation 11 and 12: 

% 𝑅 = (
𝐽𝑌 (

100 %−𝑀𝐶𝑗,𝑤

100 %−𝑀𝐶𝑗,𝑑
)(𝑐𝑖,𝑗,𝑑)+(100 %−𝐽𝑌)(

100 %−𝑀𝐶𝑝,𝑤

100 %− 𝑀𝐶𝑝,𝑑
)(𝑐𝑖,𝑝,𝑑)

(
100 %−𝑀𝐶𝑚,𝑤
100 %− 𝑀𝐶𝑚,𝑑

)(𝑐𝑖,𝑚,𝑑)
) (13) 

This formula holds for % Rfiltration,i 

c. Extraction efficiency 

The extraction efficiency (% E) or the percentage of the amount of compound i in the mash which is 

found in the juice after juice extraction is defined in an analogue way as outlined for % R: 

% E = (
Y% (

100 %-MCj,w

100 %-MCj,d
)(𝑐𝑖,𝑗,𝑑)

(
100 %-MCm,w
100 %- MCm,d

)(𝑐𝑖,𝑚,𝑑)
) .100 %  (14) 

The % R for the thermal treatment can be deduced from (13). This process doesn’t generate two 

fractions, hence the total input is equal to the total output, hence the JY is equal to 100 %, simplifying 

the formula to: 

% 𝑅𝑖 = (
 (

100 %−𝑀𝐶𝑜𝑢𝑡𝑝𝑢𝑡,𝑤

100 %−𝑀𝐶𝑜𝑢𝑡𝑝𝑢𝑡,𝑑
)(𝑐𝑖,𝑜𝑢𝑡𝑝𝑢𝑡,𝑑)

(
100 %−𝑀𝐶𝑖𝑛𝑝𝑢𝑡,𝑤

100 %− 𝑀𝐶𝑖𝑛𝑝𝑢𝑡,𝑑
)(𝑐𝑖,𝑖𝑛𝑝𝑢𝑡,𝑑)

) (15) 
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With ci,input,d and ci,output,d the concentration of compound i in the input or output stream on a dry basis 

and MCinput,d, MCinput,w, MCoutput,d and MCoutput,w the moisture contents of input and output on a dry and 

a wet base. 

This equation holds for % Rthermal,i  

Based on De Paepe et al., 2015a. 
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Table A1 Relative peak areas (area compound/area internal standard) of the 16 measured SLs in the HRMS profile of the 

variety dataset. Different letters indicate statistically significant differences (p < 0.001) between different samples. 

 Industrial chicory Topmodel De Winter Fakir Van Hamme Van Tongelen Takine 

DHLACglyc 0.59 ± 0.05 c 1.1 ± 0.1 c 0.30 ± 0.01 a,b 0.30 ± 0.01 a,b 0.34 ± 0.01 b 0.19 ± 0.02 a 0.50 ± 0.07 c 

DHLACox 0.38 ± 0.04a,b 0.38 ± 0.05 a,b 0.47 ± 0.03 b 0.41 ± 0.01 b 0.30 ± 0.02 a 0.39 ± 0.03a,b 0.60 ± 0.02c 

DHLAC 0.44 ± 0.01 d 0.59 ± 0.04 e 0.22 ± 0.01 a,b 0.28 ± 0.01 b,c 0.21 ± 0.001 a,b 0.18 ± 0.01 a 0.32 ± 0.04 c 

DHdoLACglyc 0.44 ± 0.07 a,b 1.0 ± 0.02 c 0.50 ± 0.002 b 0.39 ± 0.02 a,b 0.88 ± 0.03 c 0.27 ± 0.02 a 0.88 ± 0.12 c 

DHdoLACox 0.15 ± 0.01 a 0.20 ± 0.01 a 0.19 ± 0.01 a 0.20 ± 0.004a 0.66 ± 0.01 b 0.14 ± 0.01 a 0.67 ± 0.16 b 

DHdoLAC 0.49 ± 0.06 a,b 1.5 ± 0.1 d 0.58 ± 0.003 b 0.47 ± 0.02 a,b 1.1 ± 0.02 c 0.28 ± 0.03 a 1.1 ± 0.2 c 

DHLCPox 0.09 ± 0.01 b,c 0.05 ± 0.003 a 0.10 ± 0.003 c,d 0.07 ± 0.002 b 0.11 ± 0.01 d,e 0.07 ± 0.003 a,b 0.13 ± 0.01 e 

DHLCP 0.07 ± 0.01 c 0.06 ± 0.01 b,c 0.03 ± 0.003 a 0.04 ± 0.004 a 0.04 ± 0.002 a,b 0.03 ± 0.002 a 0.07 ± 0.01 c 

LACglyc 0.12 ± 0.02 c 0.13 ± 0.003 c 0.08 ± 0.002 b 0.03 ± 0.002 a 0.05 ± 0.01 a,b 0.08 ± 0.01 b 0.08 ± 0.004 b 

LACox 3.8 ± 0.3 a 5.2 ± 0.1 b 7.2 ± 0.2 c 8.8 ± 0.2 d 4.1 ± 0.03 a 7.0 ± 0.2 c 7.6 ± 0.1 c 

LAC 0.50 ± 0.04 b 0.62 ± 0.09 b,c 0.46 ± 0.06 b 0.70 ± 0.05 c 0.26 ± 0.01 a 0.52 ± 0.02 b 0.56 ± 0.01 b,c 

doLACglyc 0.003 ± 0.001 a 0.01 ± 0.001 b 0.03 ± 0.001 e 0.02 ± 0.002d 0.01 ± 0.002 c 0.02 ± 0.002 c 0.01 ± 0.001 c 

doLACox 3.1 ± 0.3 a 3.9 ± 0.1 b 8.6 ± 0.3 d 9.4 ± 0.2 e 12 ± 0.1 f 7.7 ± 0.3 c 16± 0.1 g 

doLAC 0.25 ± 0.03 a 0.40 ± 0.09 a,b 0.41 ± 0.06 a,b 0.60 ± 0.05 c 0.69 ± 0.03 c 0.43 ± 0.02 b 1.0 ± 0.01 d 

LCPox 0.22 ± 0.01 a 0.21 ± 0.01 a 0.31 ± 0.002 b,c 0.33 ± 0.01 c,d 0.29 ± 0.01 b 0.27 ± 0.01 b 0.37 ± 0.01 d 

LCP 0.08 ± 0.01 a 0.14 ± 0.03 b,c 0.09 ± 0.02 a 0.14 ± 0.02 b,c 0.09 ± 0.01 a 0.10 ± 0.01 a,b 0.17 ± 0.01 c 
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Table A2 Relative peak areas (area compound/area internal standard) of the 16 measured SLs in the HRMS profile of the 

forcing dataset. Different letters indicate statistically significant differences (p < 0.001) between different samples. 

 NF1 F1 C1 NF2 F2 C2 

DHLACglyc 1.5 ± 0.02 b 2.1 ± 0.1 d 0.20 ± 0.004 a 1.8 ± 0.03 c 2.3 ± 0.02 e 0.13 ± 0.003 a 

DHLACox 0.97 ± 0.03 a 2.0 ± 0.2 c 0.97 ± 0.01 a 1.4 ± 0.04 b 2.7 ± 0.04 d 0.76 ± 0.03 a 

DHLAC 1.3 ± 0.1 b 1.1 ± 0.02 b 1.2 ± 0.03 b 0.63 ± 0.04 a 2.2 ± 0.1 c 0.64 ± 0.02 a 

DHdoLACglyc 1.9 ± 0.04 b 2.8 ± 0.02 d 0.18 ± 0.04 a 2.0 ± 0.03 c 3.1 ± 0.02 e 0.13 ± 0.03 a 

DHdoLACox 0.62 ± 0.06 b 1.1 ± 0.01 d 0.23 ± 0.01 a 0.90 ± 0.06 c 1.2 ± 0.1 e 0.21 ± 0.0003 a 

DHdoLAC 2.9 ± 0.1 b 4.9 ± 0.1 d 0.13 ± 0.004 a 3.4 ± 0.1 c 6.2 ± 0.2e 0.09 ± 0.004 a 

DHLCPox 0.21 ± 0.003 c 0.27 ± 0.02 d 0.16 ± 0.001 b 0.23 ± 0.01 c 0.31 ± 0.01 e 0.11 ± 0.004 a 

DHLCP 0.19 ± 0.01 d 0.11 ± 0.001 b 0.14 ± 0.01 c 0.13 ± 0.01 b,c 0.17 ± 0.001 d 0.08 ± 0.003 a 

LACglyc 0.07 ± 0.01 b 0.09 ± 0.003 c 0.06 ± 0.004 a 0.10 ± 0.003 d 0.13 ± 0.005 e 0.05 ± 0.002 a 

LACox 4.2 ± 0.1 a 10 ± 0.4 c 5.0 ± 0.1 b 5.0 ± 0.1 b 11 ± 0.2 c 5.0 ± 0.2 b 

LAC 0.60 ± 0.04 b 0.93 ± 0.04 c 0.87 ± 0.05 c 0.44 ± 0.03 a 1.3 ± 0.04 d 0.68 ± 0.03 b 

doLACglyc 0.06 ± 0.002 a 0.14 ± 0.01 c  - 0.12 ± 0.002 b 0.24 ± 0.006 d - 

doLACox 3.8 ± 0.1 a 8.4 ± 0.5 d 5.4 ± 0.1 b 3.7 ± 0.1 a 7.2 ± 0.1 c 5.7 ± 0.1 b 

doLAC 0.48 ± 0.01 b 0.64 ± 0.03 c 0.52 ± 0.01 b 0.32 ± 0.02 a 0.66 ± 0.05 c 0.49 ± 0.01 b 

LCPox 0.18 ± 0.01 a 0.22 ± 0.09 a 0.16 ± 0.01 a 0.19 ± 0.01 a 0.25 ± 0.07 a 0.14 ± 0.01 a 

LCP 0.16 ± 0.01 c 0.10 ± 0.01 b 0.06 ± 0.01 a 0.12 ± 0.01 b 0.14 ± 0.01 c 0.05 ± 0.01 a 
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Figure A2 k-means clustered PCA-plot of the 16 measured sesquiterpene lactones in the forcing subset containing only the roots, 
which was power transformed and autoscaled. The total variance captured by the first two PCs is 82.9 %. The loadings were 
multiplied by factor 10 for visual purposes. 

Figure A3 Antioxidative capacity as determined by the DPPH assay (µmol TE . 100g-1 FW). A) DPPH values the variety dataset 
and B) DPPH values for the forcing dataset. Different letters indicate statistically significant differences (p < 0.05). Vertical 
bars represent standard deviations. 
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Table A3 Elemental composition of the variety dataset. Values are expressed in µg.g-1 FW. Different letters indicate 
statistically significant differences (p < 0.05) between different samples. 

 

Table A4 Elemental composition of the forcing dataset. Values are expressed in µg.g-1 FW. Different letters indicate 
statistically significant differences (p < 0.05) between different samples. 

 NF1 F1 C1 NF2 F2 C2 

Na 154 ± 4 b 288 ± 13 c 19 ± 1.2 a 166 ± 9 b 289 ± 3 c 17 ± 1 a 

Mg 194 ± 4 b 193 ± 5 b 126 ± 1 a 203 ± 3 b 201 ± 6 b 117 ± 7 a 

Si 159 ± 20 c 117 ± 15 b 23 ± 1 a 132 ± 4 b,c 125 ± 9 b,c 22 ± 1 a 

P 425 ± 5 c 316 ± 1 a,b 301 ± 0.3 a 458 ± 2 d 320 ± 7 b 307 ± 7 a,b 

S 206 ± 3 c 178 ± 1 b 155 ± 1 a 207 ± 1 c 178 ± 2 b 156 ± 6 a 

Cl 400 ± 11 a 613 ± 4 d 544 ± 6 c 453 ± 4 b 459 ± 1 b 385 ± 8 a 

K 3,439 ± 59 d 3,278 ± 39 c 2,876 ± 24 a,b 3,520 ± 24 d 2,985 ± 32 b 2,792 ± 79 a 

Ca 436 ± 6 c 612 ± 10 f 246 ± 2 b 465 ± 1 d 556 ± 4 e 177 ± 8 a 

Mn 2.0 ± 0.1 e 1.2 ± 0.03 b,c 0.97 ± 0.02 b 1.5 ± 0.1 d 1.3 ± 0.1 c,d 0.68 ± 0.04 a 

Fe 24 ± 1 d 17 ± 1 b 2.9 ± 0.04 a 20.3 ± 0.3 c 22 ± 1 c 2.6 ± 0.1 a 

Cu 1.9 ± 0.03 b,c 1.7 ± 0.1 b 0.75 ± 0.01 a 2.0 ± 0.2 c 1.74 ± 0.1 b 0.83 ± 0.04 a 

Zn 5.9 ± 0.1 d 5.1 ± 0.1 c 2.0 ± 0.02 a 5.3 ± 0.02 c 4.7 ± 0.1 b 1.9 ± 0.1 a 

Br 1.1 ± 0.01 a 4.2 ± 0.1 d 3.7 ± 0.1 c 1.4 ± 0.1 b 1.1 ± 0.04 a 0.90 ± 0.1 a 

Rb 1.2 ± 0.03 b,c 0.95 ± 0.02 b 0.16 ± 0.28 a 1.4 ± 0.1 c 1.2 ± 0.1 b,c 0.49 ± 0.05 a 

Sr 2.7 ± 0.04 b 3.5 ± 0.1 c 0.37 ± 0.01 a 3.0 ± 0.1 b 3.9 ± 0.1 d 0.24 ± 0.02 a 

  

 Industrial chicory Topmodel Takine Van Hamme Van Tongelen Fakir De Winter 

Na 37 ± 6 b 14 ± 3 a 27 ± 1 a,b 28 ± 6 a,b 35 ± 3 b 69 ± 2 c 31 ± 1 b 

Mg 87 ± 1 a 136 ± 3 c 143 ± 6 c 106 ± 0.3 b 98 ± 3 a,b 130 ± 3 c 102 ± 8 b 

Si 46 ± 1 a 58 ± 3 c 52 ± 1 a,b,c 55 ± 1 b,c 49 ± 2 a,b 58 ± 3 c 55 ± 3 b,c 

P 289 ± 4 a 444 ± 7 d 347 ± 9 b,c 345 ± 1 b,c 368 ± 8 c 362 ± 9 b,c 342 ± 4 b 

S 112 ± 1 a 175 ± 1 d 178 ± 5 d 156 ± 0.3 c 157 ± 4 c 168 ± 4 d 141 ± 2 b 

Cl 498 ± 8 d 245 ± 2 a 321 ± 6 b,c 304 ± 1 b 319 ± 7 b,c 327 ± 9 b,c 339 ± 7 c 

K 3,079 ± 42 a 4,413 ± 43 c,d 4,524 ± 133 d 4,141 ± 12 b,c 3,982 ± 97 b 4,141 ± 115 b,c 4,136 ± 36 b,c 

Ca 310 ± 5 a 359 ± 5 c 351 ± 17 b,c 330 ± 5 a,b,c 335 ± 12 a,b,c 321 ± 11 a,b 329 ± 4 a,b,c 

Mn 1.9 ± 0.1 d 1.5 ± 0.1 c 0.87 ± 0.1 b 0.61 ± 0.04 a 0.80 ± 0.03 a,b 0.71 ± 0.06 a,b 0.78 ± 0.06 a,b 

Fe 5.3 ± 0.2 a 7.4 ± 0.2 b,c 7.9 ± 0.7 b,c 8.4 ± 0.1 c 6.6 ±  0.3 a,b 11 ± 1 d 8.5 ± 0.2 c 

Cu 1.2 ± 0.1 a,b 1.8 ± 0.1 c 1.1 ± 0.1 a,b 1.1 ± 0.1 a,b 1.2 ± 0.04 a,b 1.4 ± 0.1 b 1.0 ± 0.1 a 

Zn 2.7 ± 0.2 c 3.3 ± 0.1 d 1.7 ± 0.2 a 1.7 ± 0.02 a 1.7 ± 0.1 a 2.4 ± 0.2 b,c 2.0 ± 0.1 a,b 

Br 0.82 ± 0.06 a 0.60 ±0.02 a 2.3 ±  0.4 c 1.8 ± 0.1 b,c 1.5 ± 0.1 b 2.0 ± 0.2 b,c 1.5 ± 0.1  b 

Rb 0.61 ± 0.06 b,c 0.44 ± 0.03 a,b 0.40 ± 0.07 a 0.48 ± 0.03 a,b,c 0.61 ± 0.02 b,c 0.52 ± 0.03 a,b,c 0.60 ± 0.08 c 

Sr 1.3 ± 0.1 b 1.1 ± 0.02 a,b 0.99 ± 0.17 a 0.99 ± 0.01 a 1.1 ± 0.04 a,b 0.99 ± 0.07 a 1.0 ± 0.1 a,b 
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Figure A4 k-means clustered PCA-plot of the 15 measured elements in the variety subset which was power transformed 
and autoscaled. The total variance captured by the first two PCs is 74.6 %. The loadings were multiplied by factor 10 for 
visual purposes. 
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Figure A5 k-means clustered PCA-plot of the 15 measured elements in the forcing subset which was power transformed and 
autoscaled. The total variance captured by the first two PCs is 87 %. The loadings were multiplied by factor 10 for visual purposes. 
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Figure A6 k-means clustered PCA-plot of the 15 measured elements in the forcing subset only containing roots, which was 
power transformed and autoscaled. The total variance captured by the first two PCs is 79.6 %. The loadings were multiplied 
by factor 10 for visual purposes. 
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